
Published as a conference paper at ICLR 2024

ADJOINTDPM: ADJOINT SENSITIVITY METHOD FOR
GRADIENT BACKPROPAGATION OF DIFFUSION PROBA-
BILISTIC MODELS

Jiachun Pan∗

National University of Singapore
pan.jc@nus.edu.sg

Jun Hao Liew
ByteDance
junhao.liew@bytedance.com

Vincent Y. F. Tan
National University of Singapore
vtan@nus.edu.sg

Jiashi Feng
ByteDance
jshfeng@bytedance.com

Hanshu Yan∗†

ByteDance
hanshu.yan@bytedance.com

ABSTRACT

This paper considers a ubiquitous problem underlying several applications of
DPMs, i.e., optimizing the parameters of DPMs when the objective is a differen-
tiable metric defined on the generated contents. Since the sampling procedure of
DPMs involves recursive calls to the denoising UNet, naïve gradient backpropaga-
tion requires storing the intermediate states of all iterations, resulting in extremely
high memory consumption. To overcome this issue, we propose a novel method
AdjointDPM, which first generates new samples from diffusion models by solv-
ing the corresponding probability-flow ODEs. It then uses the adjoint sensitivity
method to backpropagate the gradients of the loss to the models’ parameters (includ-
ing conditioning signals, network weights, and initial noises) by solving another
augmented ODE. To reduce numerical errors in both the forward generation and
gradient backpropagation processes, we further reparameterize the probability-flow
ODE and augmented ODE as simple non-stiff ODEs using exponential integration.
AdjointDPM can effectively compute the gradients of all types of parameters in
DPMs, including the network weights, conditioning text prompts, and noisy states.
Finally, we demonstrate the effectiveness of AdjointDPM on several interesting
tasks: guided generation via modifying sampling trajectories, finetuning DPM
weights for stylization, and converting visual effects into text embeddings.1

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) constitute a family of generative models that diffuse data
distributions into white Gaussian noise and then revert the stochastic diffusion process to synthesize
new contents (Ho et al., 2020; Song et al., 2021). DPM-based methods have recently achieved
state-of-the-art performances in generating various types of contents, such as images (Saharia et al.,
2022; Rombach et al., 2022; Ramesh et al., 2022), videos (Blattmann et al., 2023; Zhou et al., 2022;
Ho et al., 2022), and audio data (Liu et al., 2023a; Schneider, 2023). To promote the development
of downstream tasks, several pre-trained high-performance models, such as Stable Diffusion (SD)
(Rombach et al., 2022), have been made publicly available. Based on these public large-scale
models, researchers have developed many algorithms for creative applications (Gal et al., 2022;
Daras & Dimakis, 2022; Kawar et al., 2023; Ruiz et al., 2022; Fei et al., 2023; Wen et al., 2023;

∗Equal contribution. This work was completed during Jiachun Pan’s internship at ByteDance.
†Project Lead.
1Github link for codes: https://github.com/HanshuYAN/AdjointDPM.git

1

https://github.com/HanshuYAN/AdjointDPM.git

Published as a conference paper at ICLR 2024

Molad et al., 2023). For example, a line of customization algorithms of DPMs, such as Textural-
Inversion (Gal et al., 2022) and DreamBooth (Ruiz et al., 2022), have been proposed to adapt DPMs
for generating images/videos that share certain styles or identities. Researchers also have proposed
some guidance algorithms (Bansal et al., 2023; Ho & Salimans, 2021) to make the generation process
more controllable.

A ubiquitous problem in customization and guidance applications is the optimization of the diffusion
models’ parameters so that the final generated contents satisfy certain properties. For example, to
customize models for certain styles, we need to optimize the model weights to minimize the style
distance between the generated images and the reference. Alternatively, concerning the guidance
of sampling, we need to adjust the intermediate noisy states via the gradients of the guidance loss
computed on the final generated data. Generally, the parameters to optimize include the conditional
text embeddings, the network weights, and the noisy states, as they all affect the sampling trajectories.
We formulate this optimization problem as follows. Denote the DPM as Φ(·, ·, ϵθ), which generates
samples by iteratively calling a function ϵθ. The desired properties can be defined by the loss function
L(·) computed based on the generated contents x0 = Φ(xT , c, ϵθ). We aim to minimize the loss by
optimizing the variables ψ, including the weights θ, conditioning signals c, or initial noise xT , i.e.,

min
ψ∈{xT ,c,θ}

L(Φ(xT , c, ϵθ)). (1)

To solve the optimization problem (1), an effective backpropagation (BP) technique is required to
compute the gradient of the loss function L(x0) with respect to the optimization variables. Song
et al. (2021) showed that the DPM sampling process is equivalent to solving a probability-flow
ODE. Thus, many efficient sampling methods have been developed using adaptive ODE solvers. The
sampling process involves recursive calls to the denoising UNet ϵθ(xt, t, c) for multiple iterations.
Using naïve gradient BP requires intermediate state storage for all iterations, resulting in significant
GPU memory consumption. To overcome this problem, we propose AdjointDPM, a novel gradient
BP technique based on the adjoint sensitivity method (Chen et al., 2018). AdjointDPM computes
the gradient by solving a backward ODE that only needs to store the intermediate state at the time
point of function evaluation, resulting in constant memory usage. Moreover, we reparameterize the
diffusion generation process to a simple non-stiff ODE using exponential integration, which helps
reduce discretization errors in both the forward and reverse processes of gradient computation.

We evaluate the effectiveness of AdjointDPM by applying it to several interesting tasks, involving
optimizing the initial/intermediate noisy states, network weights, and conditioning text prompts,
respectively. 1) Guided sampling. Under the supervision of fine-grained vision classifiers, Adjoint-
DPM can guide the Stable Diffusion to synthesize images of certain breeds of animals. 2) Security
auditing of image generation systems. AdjointDPM successfully finds a set of initial noise whose
corresponding output images contain NSFW (not safe for work) content, but can sneakily bypass the
moderation filters. This triggers an alert about the potential security issues of existing AI generation
systems. 3) Stylization via a single reference image. AdjointDPM can finetune a Stable Diffusion
model for stylization defined by the Gram Matrix (Gatys et al., 2015) of a reference image. The
stylizing capability of the fine-tuned model can generalize to different objects. All the empirical
results demonstrate the flexibility and general applicability of AdjointDPM. We summarize the main
contributions of this paper as follows:

1. We propose a novel gradient backpropagation method of DPMs by applying the adjoint
sensitivity method to the sampling process of diffusion models.

2. To the best of our knowledge, AdjointDPM is the first general gradient backpropagation
method that can be used for all types of parameters of DPMs, including network weights,
conditioning text prompts, and intermediate noisy states.

3. AdjointDPM can be used for several creative applications and outperforms other baselines.

2 BACKGROUND

2.1 PROBABILITY-FLOW ODES CORRESPONDING TO DPMS

The framework of diffusion probabilistic models involves gradually diffusing the complex target data
distribution to a simple noise distribution, such as white Gaussian, and solving the corresponding

2

Published as a conference paper at ICLR 2024

reverse process to generate new samples (Ho et al., 2020; Song et al., 2021). Both the diffusion and
denoising processes can be characterized by temporally continuous stochastic differential equations
(SDEs) (Song et al., 2021). Song et al. (2021) derive deterministic processes (probability-flow
ODEs) that are equivalent to the stochastic diffusion and denoising processes in the sense of marginal
probability densities for all the time steps.

Let q0 denote the unknown d-dimensional data distribution. Song et al. (2021) formulated the forward
diffusion process {x(t)}t∈[0,T] as follows

dxt = f(t)xt dt+ g(t) dwt, x0 ∼ q0(x), t ∈ [0, T], (2)

where xt denotes the state at time t and wt is the standard Wiener process. f(t)xt is a vector-valued
function called drift coefficient and g(t) is a scalar function known as diffusion coefficient. For
the forward diffusion process, it is common to adopt the conditional probability as q0t(xt|x0) =
N (xt|αtx0, σ

2
t I), and the marginal distribution of xT to be approximately a standard Gaussian. For

sampling, we have a corresponding reverse process as

dxt = [f(t)xt − g(t)2∇xt log qt(xt)] dt+ g(t) dwt, xT ∼ N (0, σ2
T I), t ∈ [0, T]. (3)

In Eqn. (3), the term ∇x log qt(x), is known as the score function. We can train a neural network
ϵθ(xt, t) to estimate −σt∇x log qt(xt) via denoising score matching. As discussed in Song et al.
(2021), there exists a corresponding deterministic process whose trajectory shares the same set of
marginal probability densities {qt(x)}Tt=0 as the SDE (3). The form of this deterministic probability-
flow ODE is shown in (4). We can generate new samples by solving Eqn. (4) from T to 0 with initial
sample xT drawn from N (0, σ2

T I).

dx =

[
f(t)xt +

g(t)2

2σt
ϵθ(xt, t)

]
dt (4)

For conditional sampling, classifier-free guidance (CFG) (Ho & Salimans, 2021) has been widely
used in various tasks for improving the sample quality, including text-to-image, image-to-image,
class-to-image generation (Saharia et al., 2022; Dhariwal & Nichol, 2021; Nichol et al., 2022). We
can use CFG to generate new samples by solving Eqn. (4) and replacing ϵθ(xt, t) with ϵ̃θ(xt, t, c).

ϵ̃θ(xt, t, c) := s · ϵθ(xt, t, c) + (1− s) · ϵθ(xt, t,∅),

2.2 ADJOINT SENSITIVITY METHODS FOR NEURAL ODES

Considering a neural ODE model
dx

dt
= s(xt, t, θ),

the output x0 = xT +
∫ 0

T
s(xt, t, θ) dt. We aim to optimize the input xT or the weights θ by

minimizing a loss L defined on the output x0. Regarding ∂L
∂xT

, Chen et al. (2018) introduced adjoint
state a(t) = ∂L

∂xt
, which represents how the loss w.r.t the state xt at any time t. The dynamics of a(t)

are given by another ODE,

da(t)

dt
= −a(t)T ∂s(xt, t, θ)

∂xt
, (5)

which can be thought of as the instantaneous analog of the chain rule. Since ∂L
∂x0

is known, we can
compute ∂L

∂xT
by solving the initial value problem (IVP) backwards in time T to 0 of ODE in (5).

Similarly, for θ, we can regard them as a part of the augmented state:
d

dt
[x, θ, t] (t) := [s(xt, t, θ),0, 1] .

The corresponding adjoint state to this augmented state are aaug(t) := [a(t),aθ(t),at(t)], where
aθ :=

∂L
∂θ and at :=

∂L
∂t . The augmented adjoint state aaug is governed by:

daaug

dt
= −

[
a ∂s∂x ,a

∂s
∂θ ,a

∂s
∂t

]
. (6)

By solving the IVP from time T to 0 of Eqn. (6), we obtain the gradients of L w.r.t. {xt, θ, t}. The
explicit algorithm (Chen et al., 2018) is shown in Algorithm 1.

3

Published as a conference paper at ICLR 2024

Algorithm 1 Reverse-mode derivative of an ODE initial value problem
Input: Dynamics parameter θ, start time t0, end time t1, final state xt1 , loss gradient ∂L/∂xt1 .
a(t1) =

∂L
∂xt1

, aθ(t1) = 0, z0 = [xt1 , a(t1), aθ(t1)] ▷ Define initial augmented state.
def AugDynamics([xt,at, ·], t, θ) ▷ Define dynamics on augmented state.

return [s(xt, t, θ),−aTt ∂s
∂x ,−a

T
t
∂s
∂θ] ▷ Concatenate time-derivatives

[xt0 ,
∂L
∂xt0

, ∂L∂θ] = ODESolve(z0,AugDynamics, t1, t0, θ) ▷ Solve reverse-time ODE

Return: [∂L∂xt0
, ∂L∂θ] ▷ Return gradients

3 ADJOINT SENSITIVITY METHODS FOR DIFFUSION PROBABILISTIC MODELS

In this section, we develop the AdjointDPM for gradient backpropagation in diffusion models based
on the adjoint sensitivity methods from the neural ODE domain. When optimizing the model’s
parameters xT or θ (including the conditioning c), AdjointDPM first generates new samples via the
forward probability-flow ODE (4). Through applying the adjoint sensitivity method, we then write
out and solve the backward adjoint ODE (6) to compute the gradients of loss with respect to the
parameters. One can apply any general-purpose numerical ODE solver, such as Euler–Maruyama and
Runge–Kutta methods (Atkinson et al., 2011), for solving the ODE. To further improve the efficiency
of the vanilla adjoint sensitivity methods, we exploit the semi-linear structure of the diffusion ODE
functions (4), which has been used in several existing works for accelerating DPM samplers (Lu et al.,
2022a;b; Karras et al., 2022; Zhang & Chen, 2022), and reparameterize the forward and backward
ODEs as simple non-stiff ones.

3.1 APPLYING ADJOINT METHODS TO PROBABILITY-FLOW ODES

Sampling from DPMs, we obtain the generated data x0 = xT +
∫ 0

T
s(xt, t, θ, c) dt, where

s(xt, t, θ, c) = f(t)xt +
g(t)2

2σt
ϵ̃θ(xt, t, c). (7)

Concerning the customization or guidance tasks, we aim to minimize a loss L defined on x0, such as
the stylization loss or semantic scores. We plug the equation (7) into the augmented adjoint ODE (5),
and obtain the reverse ODE function in Algorithm 1 as:

d

xt
∂L
∂xt

∂L
∂θ
∂L
∂t

 = −

−f(t)xt − g(t)2

2σt
ϵ̃θ(xt, t, c)

f(t) ∂L∂xt
+ ∂L

∂xt

g(t)2

2σt

∂ϵ̃θ(xt,t,c)
∂xt

∂L
∂xt

g(t)2

2σt

∂ϵ̃θ(xt,t,c)
∂θ

df(t)
dt

∂L
∂xt

xt +
∂L
∂xt

∂[g(t)2/2σtϵ̃θ(xt,t,c)]
∂t

 dt. (8)

We observe that the ODEs governing xt and ∂L
∂xt

both contain linear and nonlinear parts. If we
directly use off-the-shelf numerical solvers on Eqn. (8), it causes discretization errors of both the
linear and nonlinear terms. To avoid this, in Section 3.2, we exploit the semi-linear structure of the
probability-flow ODE to better control the discretization error for each step. Thus, we are allowed to
use a smaller number of steps for generating samples of comparable quality.

3.2 EXPONENTIAL INTEGRATION AND REPARAMETERIZATION

We use the exponential integration to transform the ODE (4) into a simple non-stiff ODE. We multiply
an integrating factor exp(−

∫ t
0
f(τ)dτ) on both sides of Eqn. (4) and obtain

de−
∫ t
0
f(τ)dτxt
dt

= e−
∫ t
0
f(τ)dτ g(t)

2

2σt
ϵ̃θ(xt, t, c).

Let yt denote e−
∫ t
0
f(τ)dτxt, then we have

dyt
dt

= e−
∫ t
0
f(τ)dτ g(t)

2

2σt
ϵ̃θ

(
e
∫ t
0
f(τ)dτyt, t, c

)
. (9)

4

Published as a conference paper at ICLR 2024

We introduce a variable ρ = γ(t) and dγ
dt = e−

∫ t
0
f(τ)dτ g(t)

2

2σt
. In diffusion models, γ(t) usually

monotonically increases when t increases from 0 to T . For example, when we choose f(t) = d logα
dt

and g2(t) = dσ2
t

dt − 2d logα
dt σ2

t in VP-SDE (Song et al., 2021), we have γ(t) = α0
σt

αt
− σ0. Thus, a

bijective mapping exists between ρ and t, and we can reparameterize (9) as:

dy

dρ
= ϵ̃θ

(
e
∫ γ−1(ρ)
0 f(τ)dτy, γ−1(ρ), c

)
. (10)

We also reparameterize the reverse ODE function in Algorithm 1 as follows

d

y
∂L
∂y

∂L
∂θ
∂L
∂ρ

 = −

−ϵ̃θ
(
e
∫ γ−1(ρ)
0 f(τ)dτy, γ−1(ρ), c

)
∂L
∂y

∂ϵ̃θ

(
e
∫γ−1(ρ)
0 f(τ)dτy,γ−1(ρ),c

)
∂y

∂L
∂y

∂ϵ̃θ

(
e
∫γ−1(ρ)
0 f(τ)dτy,γ−1(ρ),c

)
∂θ

∂L
∂y

∂ϵ̃θ

(
e
∫γ−1(ρ)
0 f(τ)dτy,γ−1(ρ),c

)
∂ρ

dρ. (11)

Now instead of solving Eqn. (4) and Eqn. (8), we use off-the-shelf numerical ODE solvers to solve
Eqn. (10) and Eqn. (11). This method is termed AdjointDPM. Implementation details are provided in
Appendix E.

3.3 ERROR CONTROL

Here, we first show that the exact solutions of the reparameterzied ODEs are equivalent to the original
ones. For the equation in the first row of Eqn. (11), its exact solution is:

yρ(t) = yρ(s) +

∫ ρ(t)

ρ(s)

ϵ̃θ

(
e
∫ γ−1(ρ)
0 f(τ)dτy, γ−1(ρ), c

)
dρ. (12)

We can rewrite it as e−
∫ t
0
f(τ)dτxt = e−

∫ s
0
f(τ)dτxs +

∫ t
s

dρ
dτ ϵ̃θ(xτ , τ, c) dτ . Then, we have

xt = e
∫ t
s
f(τ)dτxs +

∫ t

s

e
∫ t
τ
f(r)dr g(τ)

2

2στ
ϵ̃θ(xτ , τ, c) dτ,

which is equivalent to the exact solution of the equation in the first row of Eqn. (8). Similarly, for
other equations in (11), their exact solutions are also equivalent to the solutions in (8). Thus, when
we numerically solve non-stiff ODEs in Eqns (10) and (11), there are only discretization errors for
nonlinear functions and the closed form of integration of linear parts have been solved exactly without
any numerical approximation.

In summary, we reformulate the forward and reverse ODE functions and show that by using off-
the-shelf numerical ODE solvers on the reparameterized ODEs, AdjointDPM does not introduce
discretization eerror to the linear part. In Section 3.4, we experimentally compare the FID of generated
images by solving Eqn. (4) and Eqn. (10) with the same number of network function evaluations
(NFE). The results verify the superiority of solving Eqn. (10) regarding error control.

3.4 SAMPLING QUALITY OF ADJOINTDPM

To evaluate the effectiveness of the reparameterization in AdjointDPM, we generate images by solving
the original ODE (4) and the reparameterized one (10) respectively. We also use other state-of-the-art
samplers to synthesize images and compare the sampling qualities (measured by FID). We follow the
implementation of DPM in Song et al. (2021) and use the publicly released checkpoints2 (trained
on the CIFAR10 dataset) to generate images in an unconditional manner. We use the torchdiffeq
package3 and solve the ODE (4) and (10) via the Adams–Bashforth numerical solver with order 4.
We choose a suitable NFE number for ODE solvers so that the DPM can generate content with good
quality while not taking too much time. We compare the performance of AdjointDPM (solving the
reparameterzied ODEs) to the case of solving the original ones under small NFE regions (≤ 50).

2https://github.com/yang-song/score_sde
3https://github.com/rtqichen/torchdiffeq

5

https://github.com/yang-song/score_sde
https://github.com/rtqichen/torchdiffeq

Published as a conference paper at ICLR 2024

Table 1: FID (↓) for VPSDE models evaluated on
CIFAR10 under small NFE regions.

NFE Solving (4) DPM-solver Solving (10)

10 9.50 4.70 4.36
20 8.27 2.87 2.90
50 5.64 2.62 2.58

We generate the same number of images as the
training set and compute the FID between the
generated images and the real ones. From Ta-
ble 1, we observe that, after reparameterizing
the forward generation process to a non-stiff
ODE function, we can generate higher-quality
samples with lower FID values under the same
NFEs. The sampling qualities of our method are
also comparable to those of the state-of-the-art

sampler (DPM-solver (Lu et al., 2022a)).

4 APPLICATIONS

In this section, we apply AdjointDPM to perform several interesting tasks, involving optimizing initial
noisy states or model weights for performing guided sampling or customized generation. Due to
the space limitation, we provide another application using AdjointDPM for converting visual effects
into identification prompt embeddings in Appendix A. The experimental results of all applications
demonstrate that our method can effectively back-propagate the loss information on the generated
images to the related variables of DPMs.

4.1 GUIDED SAMPLING

In this section, we use AdjointDPM for guided sampling. The guidance is defined by the loss on the
output samples, such as the classification score. We aim to optimize the sampling trajectory, {xt}1t=T ,
to make the generated images satisfy certain requirements.

4.1.1 VOCABULARY EXPANSION

The publicly released Stable Diffusion model is pre-trained on a very large-scale dataset (e.g.,
LAION (Schuhmann et al., 2022)), where the images are captioned at a high level. It can generate
diverse general objects. However, when using it for synthesizing a specific kind of object, such as
certain breeds of animals or species of plants, we may obtain suboptimal results in the sense that the
generated images may not contain subtle characteristics. For example, when generating a picture of
the “Cairn" dog, the Stable Diffusion model can synthesize a dog picture but the shape and the outer
coat may mismatch.

Real examples vanilla CFG DOODL AdjointDPM

B
ra

ba
nc

on
G

rif
fo

n
C

ai
rn

B
lu

e-
W

in
ge

d
W

ar
bl

er
O

rc
ha

rd
 O

rio
le

Figure 1: Examples for Vocabulary Expansion. The original Stable Diffusion cannot generate
samples whose features exactly match the ground-truth reference images. Using the FGVC model,
AdjointDPM can guide the Stable Diffusion to synthesize a certain breed of animals. Here we can
generate images where the dog’s face closely resembles target breeds. Besides, we generate birds
with features that are more similar to real images, such as black heads for Orchard Oriole and blue
feathers for the Blue-Winged Warbler.

6

Published as a conference paper at ICLR 2024

Table 2: Per-Class % FID change (↓).

Dataset DOODL AdjointDPM

Dogs −5.3% −7.1%

Here, we use a fine-grained visual classification
(FGVC) model as guidance to help the Stable Dif-
fusion model generate specific breeds of dogs. The
FGVC model can distinguish objects with subtle vari-
ations between classes. Under the guidance of a
dog-FGVC model, diffusion models can accurately
generate dog images of a specific breed. In other words, the vocabulary base of the diffusion model
gets expanded. We formulate this task as follows: Let f(·) denote the FGVC model. The guidance
L(y, f(x0)) is defined as the prediction score of the generated image x0 for class y. During sampling,
in each time step t, we obtain the gradient of guidance L with respect to the noisy state xt, namely
∂L
∂xt

, to drive the sampling trajectory.

We present the visual and numerical results in Fig. 1 and Table 2, respectively. By visual comparison
to the vanilla Stable Diffusion (SD), we observe that under the guidance of AdjointDPM, the color
and outer coat of the generated dog images align better with the ground-truth reference pictures.
Besides, we compute the reduced FID values on Stanford Dogs (Dogs) (Khosla et al., 2011) and find
that the FID values are also improved. We also compare AdjointDPM to a state-of-the-art baseline,
DOODL (Wallace et al., 2023a). AdjointDPM outperforms in terms of visual quality and reduced
FID values compared to SD. Refer to more results, optimization details, and comparison with the
existing models in the Appendix B.

4.1.2 SECURITY AUDITING

DPMs like Stable Diffusion have been widely used in content creation platforms. The large-scale
datasets used for training may contain unexpected and harmful data (e.g., violence and pornography).
To avoid generating NSFW content, AI generation systems are usually equipped with a safety filter
that blocks the outputs of potentially harmful content. However, deep neural networks have been
shown to be vulnerable against adversarial examples (Goodfellow et al., 2015; Yan et al., 2020). This
naturally raises the concern—may existing DPM generation systems output harmful content that
can sneakily bypass the NSFW filter? Formally, denote f(·) as the content moderation filter and
c as the conditioning prompts containing harmful concepts. We randomly sample an initial noisy
state xT , the generated image Φ(xT , c, ϵθ) will likely be filtered out by f(·). We want to audit the
security of generation systems by searching for another initial noisy state x′

T , which lies in a small
δ-neighborhood of xT , such that the corresponding output Φ(x′

T , c, ϵθ) may still contain harmful
content but bypass f(·). If we find it, the generation systems may face a serious security issue.

This problem can also be formulated as a guided sampling process. The guidance L is defined as
the distance between harmful prompt c and the prediction score f(Φ(x′

T , c, ϵθ)). The distance is
measured by the similarity between CLIP embeddings. We optimize the perturbation δ on xT to
maximize the distance. The norm of the perturbation is limited to be τ as we want to ensure the newly
generated image is visually similar to the original one.

max
δ:∥δ∥∞≤τ

L(c, f(Φ(xT + δ, c, ϵθ))).

We use AdjointDPM to solve this optimization problem and find that there indeed exist initial noisy
states of the Stable Diffusion model, whose corresponding outputs can mislead the NSFW filter.
Results are shown in Fig. 2. This observation raises an alert about the security issues of AI generation
systems. Our research community has to develop more advanced mechanisms to ensure the isolation
between NSFW content and users, especially teenagers.

Table 3: Success ratio (%) of adversarial ini-
tial states bypass the classifier. We show the
results for five classes from the ImageNet
dataset.

Index 242 430 779 859 895

Ratio 63.9 75.8 45.3 58.22 52.6

For numerical evaluation, we also audit the security
of a smaller diffusion model which is trained on the
ImageNet dataset. We chose ten classes and sampled
hundreds of images. For each sample, we search
for the adversarial perturbation that maximizes the
classification error. We record the resultant noisy
states that can mislead the classification module. The
success ratio achieves around 51.2%. Qualitative
results about ImageNet are shown in Fig. 7 and more

experimental details are provided in Appendix C.

7

Published as a conference paper at ICLR 2024

NSFW ×NSFW ✓NSFW ×NSFW ✓ NSFW ×NSFW ✓

Figure 2: Adversarial samples against the NSFW filter. We show the image generated by conditioning
on harmful prompts (e.g., “A photograph of a naked man”) on the left. These images will be blocked
by the NSFW filter. However, the images generated from adversarial initial noises circumvent the
NSFW filter (Black squares are added by authors for publication).

4.2 STYLIZATION VIA A SINGLE REFERENCE

Seen objects Unseen objects

Stylization

Stylization

Figure 3: Stylization examples. Images generated by the original Stable Diffusion are shown at the
top. The bottom are samples of the stylized Stable Diffusion.

We consider using AdjointDPM to fine-tune the weights of the UNet in Stable Diffusion for stylization
based on a single reference image. We define the style of an image x by its Gram matrix (Gatys et al.,
2015), which is computed based on the features extracted from a pre-trained VGG model.4 Here we
denote the features extracted from the VGG as F(x) and the Gram matrix G(x) = FFT .

Given a reference image, we denote the target style as Gstyle. We aim to fine-tune the weights of
the UNet so that the style of generated images matches the target one. This task is formulated as
the optimization problem (13). The objective contains two terms. Besides the style loss Ls (mean
squared error), we also add a term of content loss Lc. The content loss encourages the model to
preserve the ability to generate diverse objects when adapting itself to a certain style. In specific, we
sample multiple noise-prompt-image triplets, {(xiT , ci,xi0)}Ni=1, where xi0 denotes the clean image
generated by the pre-trained Stable Diffusion with the input of (xiT , c

i). The content loss is defined
as the mean squared error between the features of originally generated images F(xi0) and those
generated by optimized weights F(Φ(xiT , c

i, ϵθ)). Two coefficients, ws and wc, balance the strength
of the two loss terms.

min
θ

1

N

∑
i

[
wsLs

(
Gstyle,G(Φ(xiT , c

i, ϵθ))
)
+ wcLc

(
F(xi),F(Φ(xiT , c

i, ϵθ))
)]

(13)

4https://pytorch.org/tutorials/advanced/neural_style_tutorial.html

8

https://pytorch.org/tutorials/advanced/neural_style_tutorial.html

Published as a conference paper at ICLR 2024

Table 4: CLIP similarity scores (↑) between sam-
ples and the conditioning prompts.

Prompt DreamBooth Text-Inv AdjointDPM

Airplane 21.98 24.44 27.34
Clock 28.23 26.74 30.00
House 25.40 25.91 29.03

Cat 25.90 22.30 26.83
Apples 28.10 24.06 28.59

We construct 10 prompts corresponding to ten
of the CIFAR100 classes and sample starting
noises to generate 100 images (10 images for
each prompt) to form our training dataset. Vi-
sual and numerical results are shown in Fig. 3
and Table 4 respectively. We observe the SD
model fine-tuned by AdjointDPM can generate
stylized images of different objects. The styliz-
ing capability also generalizes to the concepts
unseen during fine-tuning (shown in the right
part of Fig. 3). In addition to the high visual

quality, the samples also align well with the conditioning prompts according to the high CLIP similar-
ity scores. We compare AdjointDPM with other methods for stylization, including DreamBooth (Ruiz
et al., 2022) and Textural-Inversion (Gal et al., 2022) (see the qualitative comparisons in Fig. 12).
We observe that AdjointDPM achieves better alignment between image samples and the prompts. In
addition, these existing methods barely can be generalized to unseen objects in this case only one
reference image is available. More details and examples of stylization are shown in Appendix D.

5 RELATED WORKS AND DISCUSSION

Customization of Text-to-Image Generation Text-to-image customization aims to personalize a
generative model for synthesizing new images of a specific target property. Existing customization
methods typically tackle this task by either representing the property via a text embedding (Gal et al.,
2022; Mokady et al., 2022; Wen et al., 2023) or finetuning the weights of the generative model (Ruiz
et al., 2022; Kawar et al., 2023; Han et al., 2023). For example, Textual-Inversion (Gal et al., 2022)
inverts the common identity shared by several images into a unique textual embedding. To make the
learned embedding more expressive, Daras & Dimakis (2022) and Voynov et al. (2023) generalize
the unique embedding to depend on the diffusion time or the layer index of the denoising UNet,
respectively. In the other line, DreamBooth (Ruiz et al., 2022) learns a unique identifier placeholder
and finetunes the whole diffusion model for identity customization. To speed up and alleviate the
overfitting, Custom Diffusion (Kumari et al., 2022) and SVDiff (Han et al., 2023) only update a
small subset of weights. Most of these existing methods assume that a handful of image examples
(at least 3-5 examples) sharing the same concept or property are provided by the user in the first
place. Otherwise, the generalization of resultant customized models usually will be degraded, i.e.,
they barely can synthesize unseen objects (unseen in the training examples) of the target concept.
However, in some cases, it is difficult or even not possible to collect enough data that can represent
abstract requirements imposed on the generated content. For example, we want to distill the editing
effects/operations shown in a single image by a media professional or a novel painting style of a
unique picture. In contrast, this paper relaxes the requirement of data samples and proposes the
AdjointDPM for model customization only under the supervision of a differentiable loss.

Guidance of Text-to-Image Generation Concerning the guidance of diffusion models, some
algorithms (Bansal et al., 2023; Yu et al., 2023) mainly use the estimated clean state for computing
the guidance loss and the gradient with respect to intermediate noisy states. The gap to the actual
gradient is not negligible. As a result, the guided synthesized results may suffer from degraded image
quality. Instead, some other methods (Wallace et al., 2023a; Liu et al., 2023b), such as DOODL,
compute the gradients by exploiting the invertibility of diffusion solvers (e.g., DDIM). This paper
also formulates the sampling process as ODE and proposes AdjointDPM to compute the gradients in
a more accurate and adaptive way.

The main contribution of this paper is that we propose a ubiquitous framework to optimize the related
variables (including UNet weights, text prompts, and latent noises) of diffusion models based on
the supervision information (any arbitrary differentiable metric) on the final generated data. To
our best knowledge, AdjontDPM is the first method that can compute the gradients for all types of
parameters of diffusion models. In contrast, other methods, such as DOODL (Wallace et al., 2023a),
FlowGrad (Liu et al., 2023b), and DEQ-DDIM (Pokle et al., 2022)), either only work for the noisy
states or require the diffusion sampling process having equilibrium points. In the future, we will
explore more real-world applications of AdjointDPM.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This research/project is supported by the Singapore Ministry of Education Academic Research Fund
(AcRF) Tier 2 under grant number A-8000423-00-00 and the Singapore Ministry of Education AcRF
Tier 1 under grant number A-8000189-01-00. We would like to acknowledge that the computational
work involved in this research work is partially supported by NUS IT’s Research Computing group.

REFERENCES

Kendall Atkinson, Weimin Han, and David E Stewart. Numerical solution of ordinary differential
equations. John Wiley & Sons, 2011.

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas
Geiping, and Tom Goldstein. Universal Guidance for Diffusion Models, February 2023.
arXiv:2302.07121 [cs].

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your Latents: High-Resolution Video Synthesis with Latent Diffusion
Models, April 2023. arXiv:2304.08818 [cs].

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, volume 31, 2018.

Giannis Daras and Alex Dimakis. Multiresolution textual inversion. In NeurIPS 2022 Workshop on
Score-Based Methods, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
Advances in Neural Information Processing Systems, volume 34, 2021.

Zhengcong Fei, Mingyuan Fan, and Junshi Huang. Gradient-Free Textual Inversion, April 2023.
arXiv:2304.05818 [cs].

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel
Cohen-Or. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual
Inversion, August 2022. arXiv:2208.01618 [cs].

LA Gatys, AS Ecker, and M Bethge. A neural algorithm of artistic style. Nature Communications,
2015.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In 3rd International Conference on Learning Representations, ICLR, San Diego, CA,
USA, 2015.

Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. SVDiff:
Compact Parameter Space for Diffusion Fine-Tuning, April 2023. arXiv:2303.11305 [cs].

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, volume 33, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems, 2022.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri,
and Michal Irani. Imagic: Text-Based Real Image Editing with Diffusion Models, March 2023.
arXiv:2210.09276 [cs].

10

Published as a conference paper at ICLR 2024

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for
fine-grained image categorization. In First Workshop on Fine-Grained Visual Categorization, IEEE
Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, June 2011.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion. arXiv preprint arXiv:2212.04488, 2022.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D.
Plumbley. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models, February 2023a.
arXiv:2301.12503 [cs, eess].

Xingchao Liu, Lemeng Wu, Shujian Zhang, Chengyue Gong, Wei Ping, and Qiang Liu. Flowgrad:
Controlling the output of generative odes with gradients. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 24335–24344, June 2023b.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A fast
ODE solver for diffusion probabilistic model sampling in around 10 steps. In Advances in Neural
Information Processing Systems, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text Inversion for
Editing Real Images using Guided Diffusion Models, November 2022. arXiv:2211.09794 [cs].

Eyal Molad, Eliahu Horwitz, Dani Valevski, Alex Rav Acha, Yossi Matias, Yael Pritch, Yaniv
Leviathan, and Yedid Hoshen. Dreamix: Video Diffusion Models are General Video Editors,
February 2023. arXiv:2302.01329 [cs].

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
Mcgrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and
editing with text-guided diffusion models. In International Conference on Machine Learning, pp.
16784–16804. PMLR, 2022.

Ashwini Pokle, Zhengyang Geng, and J Zico Kolter. Deep equilibrium approaches to diffusion
models. Advances in Neural Information Processing Systems, 35:37975–37990, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning Transferable Visual Models From Natural Language Supervision. In Proceedings of the
38th International Conference on Machine Learning, pp. 8748–8763. PMLR, July 2021. ISSN:
2640-3498.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical Text-
Conditional Image Generation with CLIP Latents, April 2022. arXiv:2204.06125 [cs].

Javier Rando, Daniel Paleka, David Lindner, Lennart Heim, and Florian Tramer. Red-teaming the
stable diffusion safety filter. In NeurIPS ML Safety Workshop, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. Tech-
nical report, August 2022. arXiv:2208.12242 [cs].

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-
to-image diffusion models with deep language understanding. In Advances in Neural Information
Processing Systems, volume 35, 2022.

11

Published as a conference paper at ICLR 2024

Flavio Schneider. ArchiSound: Audio Generation with Diffusion, January 2023. arXiv:2301.13267
[cs, eess].

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
LAION-5B: An open large-scale dataset for training next generation image-text models, 2022.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, and Kfir Aberman. P+: Extended Textual Condi-
tioning in Text-to-Image Generation, March 2023. arXiv:2303.09522 [cs].

Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent optimiza-
tion improves classifier guidance, 2023a.

Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled transfor-
mations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22532–22541, 2023b.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard
Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery,
February 2023. arXiv:2302.03668 [cs].

Hanshu Yan, Jiawei Du, Vincent Tan, and Jiashi Feng. On robustness of neural ordinary differential
equations. In International Conference on Learning Representations, 2020.

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
energy-guided conditional diffusion model. arXiv:2303.09833, 2023.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In NeurIPS Workshop on Score-Based Methods, 2022.

Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. MagicVideo:
Efficient Video Generation With Latent Diffusion Models, November 2022. arXiv:2211.11018
[cs].

12

Published as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Background 2

3 Adjoint Sensitivity Methods for Diffusion Probabilistic Models 4

4 Applications 6

5 Related Works and Discussion 9

A Text Embedding Inversion 13

B Experimental Details on Vocabulary Expansion and Comparison with Existing Models 15

C Experimental Details and More Results on Security Auditing 15

D More Examples on Finetuning Weights for Stylization 17

E Implementation of AdjointDPM 22

A TEXT EMBEDDING INVERSION

In addition to the applications shown in Section 4, we consider another application concerning using
AdjointDPM to convert visual effects (e.g., bokeh and relighting) into an identification text embedding
#. Suppose we are given an image pair, namely an original image and its enhanced, the enhanced
version is edited by some professional and appears with certain fascinating visual effects. After
optimization, we can combine the obtained embedding with various text prompts to generate images
with the same visual effect. Here, we simulate this real setting by using a text-to-image model to
generate images with and without a certain effect.

Suppose we are provided a text-to-image DPM Φ(·), we can generate an image x by denoising
randomly sampled noise xT in the condition of the base prompt cbase. We further improve the
aesthetic quality by inserting some keywords ctarget, like “bokeh”, into the conditioning prompt. The
newly generated images are denoted by x∗. We use x∗ or its feature as a reference to define a loss
L(·) that measures the distance to the target effect, such as the ℓ2 or perceptual loss. We aim to
optimize a special embedding # that can recover the visual effects in x∗:

min
#
L (x∗,Φ(xT , {cbase, #}, ϵθ)) .

We utilize the publicly released Stable Diffusion models for image generation and set the loss function
as the mean squared error (MSE) between the target images and the generated images. We aim
to optimize a prompt embedding in the CLIP (Radford et al., 2021) embedding space and use the
obtained embedding for image generation by concatenating it with the embeddings of other text
prompts. As shown in Fig. 4, we observe AdjointDPM successfully yields an embedding # that
can ensure the appearance of target visual effects, including the bokeh and relighting. Furthermore,
the obtained embeddings # also generalize well to other starting noise and other text prompts. For
example, the bokeh-# is optimized on a pair of totoro images; it also can be used for generating
different images of totoro and other objects like dog. Similarly, the obtained # corresponding to
manual editing (“converting to black and white”) also can be used for novel scene generation.

13

Published as a conference paper at ICLR 2024

Target concept: “bokeh” Target concept: “purple neon lighting”

cbase = “A cute totoro in a yard”

cbase cbase, + ctarget cbase,+ # cbase cbase, + ctarget cbase,+ #

cbase = “Fallout concept art school interior
render grim, unreal engine 5”

cbase = “A cute totoro in a yard”
cbase = “Fallout concept art school interior

render grim, unreal engine 5”

cbase = “A cute puppy in a yard” cbase = “A cat running in the dark night”

S
ee

n
no

is
es

U
ns

ee
n

no
is

es
D

if
fe

re
nt

 c
ba

se

Figure 4: Examples on prompt inversion - part 1

Target concept: “in a style of Van Gogh” Target concept: “Black and white”

cbase = “Photo from a city street in the 1970s’’

cbase cbase, + ctarget cbase,+ # cbase cbase, + ctarget cbase,+ #

cbase = “A photo of Emma Watson, close up”

cbase = “Photo from a city street in the 1970s”

cbase = “Photo from city square in the 1970s”

Se
en

 n
oi

se
s

U
ns

ee
n

no
is

es
D

iff
er

en
t c
ba
se

cbase = “A photo of Emma Watson, close up”

cbase = “A photo of Morgan Freeman, close up”

Figure 5: Examples on prompt inversion - part 2

14

Published as a conference paper at ICLR 2024

B EXPERIMENTAL DETAILS ON VOCABULARY EXPANSION AND
COMPARISON WITH EXISTING MODELS

Comparison with Existing Models. DOODL (Wallace et al., 2023a) optimizes the initial diffusion
noise vectors w.r.t a model-based loss on images generated from the full-chain diffusion process. In
their work, they obtain the gradients of loss w.r.t noise vectors by using invertible neural networks
(INNs). There are three main differences between DOODL and our work. First, while DOODL
optimizes the initial diffusion noise vectors, our work optimizes related variables, including network
parameters, initial noises and textual embeddings w.r.t a model-based loss on images generated from
the full-chain diffusion process. Thus, we consider the broader cases of DOODL. Second, in the
calculation of gradients w.r.t initial noises, DOODL uses the invertibility of EDICT (Wallace et al.,
2023b), i.e., x0 and xT are invertible. This method does not apply to the calculation of gradients w.r.t.
network parameters and textual embeddings as they share across the full-chain diffusion process.
Finally, with regard to the memory consumption when calculating gradients with respect to the initial
noise, our experimental results are as follows: we utilized the stable diffusion v1.5 checkpoint to run
both the AdjointDPM and DOODL models on a V100 GPU (32GB memory). For the AdjointDPM
method, backpropagating the gradients with respect to a single initial noise required 19.63GB of
memory. In comparison, the DOODL method consumed 23.24GB for the same operation. The
additional memory consumption in DOODL is mainly from the dual diffusion process in EDICT.
Thus, our method is more efficient in memory consumption. In terms of time consumption, DOODL
relies on the invertibility of EDICT, resulting in identical computation steps for both the backward
gradient calculation and the forward sampling process. Besides, they usually use DDIM sampling
methods, which is equivalent to the first-order neural ODE solver. However, our AdjointDPM
methods have the flexibility to apply high-order ODE solvers, allowing for faster backward gradient
calculation. See the following for an experimental comparison between our method and DOODL.

We also make a comparison with FlowGrad (Liu et al., 2023b). FlowGrad efficiently backpropagates
the output to any intermediate time steps on the ODE trajectory, by decomposing the backpropagation
and computing vector Jacobian products. FlowGrad focuses on refining the ODE generation paths
to the desired direction. This is different from our work, which focuses on the finetuning of related
variables, including network parameters, textual embedding and initial noises of diffusion models for
customization. Besides, FlowGrad methods also can not obtain the gradients of loss w.r.t. textual
embeddings and neural variables as these variables share across the whole generation path. Then for
the gradients w.r.t the latent variables, we could show the memory consumption of our methods is
constant while they need to store the intermediate results.

Experimental Details on Vocabulary Expansion During the optimization of the noise states under
the guidance of FGVC model, we adopt the Euler ODE solver in our AdjointDPM method with 31
steps. We optimize the noise states using the AdamW optimizer for 30 epochs with different learning
rates for different breeds. For the implementation of DOODL, we follow the officially released code5

and we set the sampling steps also to be 31 and optimization steps for 30. Following the DOODL, we
also measure the performance by computing the FID between a set of generated images (4 seeds)
and the validation set of the FGVC dataset being studied. We do experiments on Stanford Dogs
(Dogs) (Khosla et al., 2011) datasets and calculate FID values. More qualitative results are shown in
Fig 6.

C EXPERIMENTAL DETAILS AND MORE RESULTS ON SECURITY AUDITING

In this section, we provide explicit details about generating adversarial examples against an ImageNet
classifier and the NSFW filter in Stable Diffusion, respectively.

Security Auditing under an ImageNet Classifier. To generate adversarial samples against an
ImageNet classifier, we follow the implementation of classifier guidance generation of DPM6 and use

5https://github.com/salesforce/DOODL
6https://github.com/LuChengTHU/dpm-solver/tree/main/examples/ddpm_and_

guided-diffusion

15

https://github.com/salesforce/DOODL
https://github.com/LuChengTHU/dpm-solver/tree/main/examples/ddpm_and_guided-diffusion
https://github.com/LuChengTHU/dpm-solver/tree/main/examples/ddpm_and_guided-diffusion

Published as a conference paper at ICLR 2024

Real examples vanilla CFG DOODL AdjointDPM

B
ra

ba
nc

on
G

rif
fo

n
C

ai
rn

B
lu

e-
W

in
ge

d
W

ar
bl

er
O

rc
ha

rd
 O

rio
le

Real examples (Stanford Dog) vanilla CFG DOODL AdjointDPM

bl
ac

k-
an

d-
ta

n_
co

on
ho

un
d

W
ei

m
ar

an
er

W
hi

pp
et

Figure 6: More Examples for Vocabulary Expansion.

16

Published as a conference paper at ICLR 2024

the publicly released checkpoints trained on the ImageNet 128x128 dataset to generate images in a
conditional manner. We adopt the pre-trained ResNet507 as our ImageNet classifier.

To generate adversarial examples, we first randomly choose an ImageNet class and set it as the class
label for classifier guidance generation, and then we pass the generated images to the ResNet50
classifier. If the outputs of ResNet50 classifier are aligned with the chosen class label, we begin to do
an adversarial attack by using AdjointDPM. For the adversarial attack, we adopt the targeted attack,
where we choose a target class and make the outputs of ResNet50 close to the pre-chosen target
class by minimizing the cross entropy loss. We also clamp the updated initial noise in the range of
[xT − 0.8, xT + 0.8] (i.e., set τ = 0.8 in Sec. 4.3 to ensure that generated images do not visually
change too much compared with the start images). We show more adversarial examples against the
ImageNet classifier in Fig. 7. Besides, define the attack rate as the ratio between the number of
samples with incorrect classification results after the attack and the total number of samples. We also
get the attack rate 51.2% by generating 830 samples from 10 randomly chosen classes. The class
labels here we choose are [879, 954, 430, 130, 144, 242, 760, 779, 859, 997].

StoveTelevisionSleeping bagPersian cat

Bathing capUmbrellaHenCock

Green mambaBanana

AirlinerWarplane

torchcandlebirdhousewall clock

teddy bearstarfishAngoraPersian cat

Pencil
sharpenerToaster

SorrelBoxer

Figure 7: Adversarial examples against the ImageNet classifier. We show the originally generated
images with their class names on the left; these images are correctly classified by ResNet50. On the
right, we show the corresponding adversarial images which successfully mislead the classifier.

Experimental Details on the NSFW Filter. In this case, we set τ = 0.9. We follow the im-
plementation of Stable Diffusion8 and set the loss function as the cosine distance between CLIP
embeddings Radford et al. (2021) of generated images and unsafe embeddings from Rando et al.
(2022).

D MORE EXAMPLES ON FINETUNING WEIGHTS FOR STYLIZATION

In this section, we introduce the experimental details of stylization and present more stylized examples
on seen noises and seen classes, unseen noises and seen classes, and unseen noises and unseen classes.

For training, we choose ten classes from CIFAR-100 classes, which are [“An airplane”, “A cat”, “A
truck”, “A forest”, “A house”, “sunflowers”, “A bottle”, “A bed”, “Apples”, “A clock”]. Then we
randomly generate 10 samples from each class to compose our training dataset. Besides, we directly
use these class names as the input prompt to Stable Diffusion 9. We optimize the parameters of cross

7https://pytorch.org/vision/stable/models.html
8https://github.com/huggingface/diffusers
9https://github.com/CompVis/stable-diffusion

17

https://pytorch.org/vision/stable/models.html
https://github.com/huggingface/diffusers
https://github.com/CompVis/stable-diffusion

Published as a conference paper at ICLR 2024

attention layers of UNet for 8 epochs by using AdamW optimizer with learning rate 10−4. We show
more stylization results on 100 training samples (seen noises and seen classes) in Fig. 8. Meanwhile,
we also show more examples of seen-classe-unseen-noise and examples of unseen-class-unseen-noise
in Fig. 10. In Fig. 11, we also show the stylization results on other target style images, in which one
is downloaded from the showcase set of Midjourney10 and the other is the Starry Night by Van Gogh.
We also present that the finetuned networks under ODE forms can still apply SDE solvers (such as
DDPM) in Fig. 9.

An airplane

Stylization

A cat

A truck

Stylization

A forest

A house

Stylization

Sunflowers

A bottleA bed

Stylization

A clock

Stylization

Apples

Figure 8: Stylization examples on seen classes and seen noises

D.1 QUALITATIVE COMPARISONS TO TEXTUAL-INVERSION AND DREAMBOOTH

We also provide visual comparisons to Textual Inversion Gal et al. (2022) and DreamBooth Ruiz
et al. (2022) in Fig. 12. We follow the implementation of Textual Inversion11 and DreamBooth12.
For textual inversion, we use the same target style image in Section 4.2 as the training dataset. As
in our AdjointDPM model, we use one style image for training, for fair comparison, the training

10https://cdn.midjourney.com/61b8bd5d-846b-4f69-bdc1-0ae2a2abcce8/grid_
0.webp

11https://huggingface.co/docs/diffusers/training/text_inversion
12https://huggingface.co/docs/diffusers/training/dreambooth

18

https://cdn.midjourney.com/61b8bd5d-846b-4f69-bdc1-0ae2a2abcce8/grid_0.webp
https://cdn.midjourney.com/61b8bd5d-846b-4f69-bdc1-0ae2a2abcce8/grid_0.webp
https://huggingface.co/docs/diffusers/training/text_inversion
https://huggingface.co/docs/diffusers/training/dreambooth

Published as a conference paper at ICLR 2024

Style Image

Seen class unseen noise

Figure 9: Stylization examples on seen classes and unseen noises using DDPM.

Style Image

Seen class unseen noise Unseen class

Figure 10: Stylization examples on seen-class-unseen-noise and unseen-class

19

Published as a conference paper at ICLR 2024

Seen classes and seen noises Seen classes and unseen noises

Stylization

Unseen classes and unseen noisesSeen classes and seen noises

Stylization

Seen classes and seen noises Seen classes and unseen noises

Stylization

Unseen classes and unseen noisesSeen classes and seen noises

Stylization

Figure 11: Stylization examples on other style images

20

Published as a conference paper at ICLR 2024

Stylization

Stylization

(a) Stylization examples generated by Textual Inversion.

Stylization

Stylization

(b) Stylization examples generated by DreamBooth.

Figure 12: Comparison to Textual-Inversion and DreamBooth for stylization.

21

Published as a conference paper at ICLR 2024

dataset to Textual Inversion and DreamBooth also include only one style image. We set the learnable
property as “style”, placeholder token as “<bengiles>”, initializer token as “flowers” in Textual
Inversion. Then we run 5000 epochs with a learning rate 5× 10−4 to train the Textual Inversion. For
DreamBooth, we set instance prompt as “bengiles flowers”. Then we run 1000 epochs with a learning
rate 1 × 10−6 to train the DreamBooth. In Fig. 12, we show the stylization examples generated
by using Textual Inversion and DreamBooth. We can observe distinct differences in the stylization
outcomes when comparing the Textual Inversion and DreamBooth approaches to our AdjointDPM
methods. In some cases, for Textual Inversion and DreamBooth, we have noticed that the main
objects within an image can vanish, resulting in the entire image being predominantly occupied by
the applied "style."

E IMPLEMENTATION OF ADJOINTDPM

In this section, we present the explicit AdjointDPM algorithm. For VP-SDE, we have f(t) = d logα
dt

and g2(t) = dσ2
t

dt − 2d logα
dt σ2

t . Based on the definition of yt and ρ, we obtain

yt =
α0

αt
xt, ρ = γ(t) = α0

σt
αt
− σ0.

We denote the timesteps for solving forward generation ODE as {ti}Ni=0, where N is the number
of timesteps. Then based on this re-parameterization, we can show our explicit forward generation
algorithm and reverse algorithm of obtaining gradients for VP-SDE in Algorithm 2 and Algorithm 3.

For the choice of αt, σt, and sampling steps {ti}Ni=1, we adopt the implementation of DPM-solver13.
Specifically, we consider three options for the schedule of αt and σt, discrete, linear, and cosine.
The detailed formulas for obtaining αt and σt for each schedule choice are provided in (Lu et al.,
2022a, Appendix D.4). The choice of schedule depends on the specific applications. We usually
solve the forward generation ODE function from time T to time ϵ (ϵ > 0 is a hyperparameter
near 0). Regarding the selection of discrete timesteps {ti}Ni=1 in numerically solving ODEs, we
generally divide the time range [T, ϵ] using one of three approaches: uniform, logSNR, or quadratic.
The specific time splitting methods can be found in the DPM-solver. Subsequently, we obtain the
generated images and gradients by following Algorithm 2 and Algorithm 3. To solve ODE functions
in these algorithms, we directly employ the odeint adjoint function in the torchdiffeq packages14.

Algorithm 2 Forward generation by solving an ODE initial value problem
Input: model ϵθ, timesteps {ti}Ni=0, initial value xt0 .
yt0 ← xt0 ; ▷ Re-parameterize xt0
{ρi}Ni=1 ← {γ(ti)}Ni=1; ▷ Re-parameterize timesteps

ytN = ODESolve
(
yt0 , {ρi}ni=1, ϵθ

(
αt

αt0
yt, γ

−1(t), c
))

▷ Solve forward generation ODE

Return: xtN =
αtN

αt0
ytN

Algorithm 3 Reverse-mode derivative of an ODE initial value problem
Input: model ϵθ, timesteps {ρi}Ni=1, final state yρN , loss gradient ∂L/∂yρN .
a(ρN) = ∂L

∂yρN
, aθ(ρN) = 0, z0 = [yρN , a(ρN), aθ(ρN)] ▷ Define initial augmented state.

def AugDynamics([yρ,aρ, ·], ρ, θ) ▷ Define dynamics on augmented state.
return [s(yρ, ρ, θ, c),−aTρ ∂s

∂y ,−a
T
ρ
∂s
∂θ] ▷ Concatenate time-derivatives

[yρ0 ,
∂L
∂yρ0

, ∂L∂θ] = ODESolve(z0,AugDynamics, {ρi}Ni=1, θ) ▷ Solve reverse-time ODE

Return: [∂L∂xt0
, ∂L∂θ] ▷ Return gradients

13https://github.com/LuChengTHU/dpm-solver
14https://github.com/rtqichen/torchdiffeq

22

https://github.com/LuChengTHU/dpm-solver
https://github.com/rtqichen/torchdiffeq

	Introduction
	Background
	Adjoint Sensitivity Methods for Diffusion Probabilistic Models
	Applications
	Related Works and Discussion
	Text Embedding Inversion
	Experimental Details on Vocabulary Expansion and Comparison with Existing Models
	Experimental Details and More Results on Security Auditing
	More Examples on Finetuning Weights for Stylization
	Implementation of AdjointDPM

