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FRAME GUIDANCE: TRAINING-FREE GUIDANCE FOR
FRAME-LEVEL CONTROL IN VIDEO DIFFUSION MODEL
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(a) Keyframe-guided video generation

Keyframes

First Time i1 Time i2

(b) Stylized video generation

(c) Loop video generation
…

(e) Depth map guidance

First

Last

(d) Color block guidance

(f) Sketch guidance

i1 i2

“A hand delicately places a thinly sliced radish on top …” “A solitary hiker, clad in a sun hat and … mountain trail.”

“A red monster toy jumping on a trampoline in slow motion…” “Three green mountains transforming into different seasons…”

“A grey SUV driving along a winding mountain road through a forested landscape… ”

<Style>

“A New York City … a man … a dog in watercolor painting style.”

<Style>

… …

“A bustling Paris café … waiters … a dog in cubist aesthetic style.”

Figure 1: Frame Guidance enables training-free controllable video generation using flexible frame-
level inputs. It supports diverse applications, including keyframe-guided generation, stylization, and
looping, using general frame-level inputs such as depth maps, sketches, and color blocks.

ABSTRACT

Advancements in diffusion models have significantly improved video quality,
directing attention to fine-grained controllability. However, many existing methods
depend on fine-tuning large-scale video models for specific tasks, which becomes
increasingly impractical as model sizes continue to grow. In this work, we present
Frame Guidance, a training-free guidance for controllable video generation based
on frame-level signals, such as keyframes, style reference images, sketches, or
depth maps. By applying guidance to only a few selected frames, Frame Guidance
can steer the generation of the entire video, resulting in a temporally coherent
controlled video. To enable training-free guidance on large-scale video models,
we propose a simple latent processing method that dramatically reduces memory
usage, and apply a novel latent optimization strategy designed for globally coherent
video generation. Frame Guidance enables effective control across diverse tasks,
including keyframe guidance, stylization, and looping, without any training, and is
compatible with any models. Experimental results show that Frame Guidance can
produce high-quality controlled videos for a wide range of tasks and input signals.
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Frame-level Conditions Controllable video generation

Controls
• RGB
• Depth
• Sketch
• Style
• Color Block Any VDMs

← Other frames also adjust naturally →

Figure 2: Frame Guidance steers the video generation process of a VDM by applying gradient-based
guidance to selected frames, resulting in a temporally coherent controlled video. Our method is
training-free, model-agnostic, and supports a wide range of frame-level conditions.

1 INTRODUCTION

The rapid advancement of diffusion models (Ho et al., 2020; Song et al., 2021; Lipman et al., 2022)
has led to the development of powerful video generation models. Recent large-scale video diffusion
models (VDMs) have made significant progress in high-quality text-to-video (T2V) and image-to-
video (I2V) generation, which are capable of generating diverse and realistic video content (Brooks
et al., 2024; Polyak et al., 2025; Yang et al., 2025; Wang et al., 2025a). With ongoing advancements,
there is a growing interest in enabling more fine-grained control over the generation process.

Recent progress underscores the need for a practical approach to controllable video generation.
Hence, we identify two major desiderata: (1) a model-agnostic, training-free framework, and (2) a
general-purpose guidance method. Existing methods (Burgert et al., 2025; He et al., 2025; Li et al.,
2025b) typically fine-tune large-scale VDMs (Yang et al., 2025; Wang et al., 2025a) for each specific
control task, which is increasingly impractical due to high computational cost and the burden of
retraining with every new model release. This highlights the need for training-free guidance methods
that work across models. Moreover, end users prefer simple, generalizable frameworks that support
diverse tasks and inputs, such as reference images, depth maps, or sketches, rather than task-specific
models (Hou et al., 2024; Wang et al., 2025b) that are restricted to a fixed input type.

Existing methods fall short of satisfying both desiderata simultaneously: training-free ap-
proaches (Ling et al., 2025; Hou et al., 2024) are often task-specific and lack generalizability,
while general-purpose methods (Li et al., 2025b; Jiang et al., 2025) require fine-tuning and need
substantial training resources. Many existing methods (Wang et al., 2025b; 2024; Bai et al., 2025) are
both task-specific and training-dependent, making them difficult to adapt to new models or tasks.

In this work, we propose Frame Guidance, a novel guidance method for VDMs that is model-agnostic,
training-free, and supports a wide range of controllable video generation tasks using frame-level
signals. As illustrated in Figure 2, Frame Guidance steers the video generation process by applying
guidance to selected frames based on frame-level signals, which produce temporally coherent videos.

We present two core components for effective and flexible frame-level guidance. First, we introduce
latent slicing, a simple latent decoding technique that enables efficient training-free guidance for
large-scale VDMs. Based on temporally local patterns of video encoding, we propose to decode only
the short temporal slices of the video latent for computing the guidance loss. Furthermore, we present
video latent optimization (VLO), a novel latent update strategy designed for precise control of the
video diffusion process. As the overall layout of the frames is largely determined in the first few
inference steps (Wu et al., 2024a), we apply deterministic optimization at the early stages for globally
coherent layout, and employ stochastic optimization until the mid-stage for refining the details.

Frame Guidance is applicable to general frame-level control tasks, as shown in Figure 1, including
keyframe-guided generation, stylized video generation, and looped video generation. In particular,
Frame Guidance supports general input conditions, such as depth maps, sketches, and color blocks.
We demonstrate that Frame Guidance consistently produces superior results on frame-level control
tasks across various VDMs (Yang et al., 2025; HaCohen et al., 2024; Wang et al., 2025a).

2 RELATED WORK

Training-required controllable video generation Advances in T2V and I2V generation have
opened up new opportunities for fine-grained user control. These include conditioning on
keyframes (Zeng et al., 2024; Wang et al., 2025b), using style reference images for stylized genera-
tion (Liu et al., 2023; Wang et al., 2023a), and incorporating trajectory-based signals such as camera
movement (Zheng et al., 2024; Bai et al., 2025) or motion trajectory (Wu et al., 2024b; Namekata
et al., 2025) for dynamic scene generation. However, existing methods often require extensive training
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and model-specific data preparation, such as fixed resolution or frame counts, making fine-tuning
increasingly impractical for general users as model sizes and resource requirements continue to grow.

Training-free controllable video generation To reduce the burden of training large models, several
approaches have explored training-free controllable video generation (Li et al., 2025a; Ling et al.,
2025; Hou et al., 2024; Wu et al., 2023; Zhang et al., 2024; Khachatryan et al., 2023; Geyer et al.,
2024). For example, CamTrol (Hou et al., 2024) enables camera control using external 3D point
clouds, while MotionClone (Ling et al., 2025) performs motion cloning based on temporal attention
maps extracted from a reference video, and Tune-A-Video (Wu et al., 2023) enables video editing
with image diffusion models. However, these methods are tailored to specific tasks and are thereby
ill-suited for more general scenarios requiring different types or even multiple input signals. In
this work, we propose a training-free guidance method that generalizes to a wide range of video
generation tasks using frame-level signals.

3 PRELIMINARIES

Video diffusion models (VDMs) Recent video diffusion models (Brooks et al., 2024; Yang et al.,
2025; HaCohen et al., 2024; Wang et al., 2025a) learn to generate video by reversing the noising
process in the latent space. The high-dimensional video x0 is encoded into a lower-dimensional
latent z0 = E(x0). The forward noising process corrupts the latent zt =

√
ᾱtz0 +

√
1− ᾱtϵ, where

ϵ ∼ N (0, I) and {ᾱt}t∈[0,T ] is a pre-defined noise schedule. The reverse denoising process is learned
through predicting a time-dependent velocity vt =

√
ᾱtϵ−

√
1− ᾱtz0, which represents the direction

from a noisy sample toward the clean sample (Salimans and Ho, 2022). For each time step t, the
clean sample z0|t can be computed from the noisy sample zt using Tweedie’s formula (Efron, 2011):

z0|t := E[z0|zt] =
√
ᾱtzt −

√
1− ᾱt · vθ(zt, t), (1)

where vθ is the predicted velocity. Latents z0 are decoded into videos with the decoder x̂0 = D(z0).
Recent large-scale VDMs (Wang et al., 2025a; Yang et al., 2025) commonly employ spatio-temporal
VAEs to encode high-dimensional video data. A notable example is the CausalVAE (Yu et al., 2024;
Brooks et al., 2024), which enforces temporal causality in the latent space by allowing only past
frames to influence future ones. While this design encourages temporally coherent video generation,
it also introduces temporal dependencies within the latent sequence, requiring the entire sequence to
be decoded even to reconstruct a single frame.

Training-free guidance Training-free guidance (Bansal et al., 2024; Yu et al., 2023; Rout et al.,
2025; Shen et al., 2024) uses pre-trained diffusion models to generate samples that satisfy a specific
condition, without additional training. At each denoising step t, it estimates a clean image x0|t =
D(z0|t) from the current latent zt, and computes a guidance loss Le(D(z0|t), c) that measures
alignment with the target control c. The latent zt is then updated using the gradient ∇ztLe during
inference. One such strategy is the time-travel trick (Bansal et al., 2024; Yu et al., 2023; He et al.,
2024), which alternates between denoising and renoising steps to correct accumulated errors.

4 METHOD

We present Frame Guidance, a simple yet effective training-free framework for controllable video
generation using frame-level signals, designed to be compatible with modern large-scale VDMs.
Our approach guides the generation process of pre-trained VDMs by optimizing video latents to
minimize frame-level guidance loss applied to selected frames. In this section, we introduce two key
components that enable efficient and flexible frame-level guidance for large-scale VDMs.

4.1 LATENT SLICING

The main challenge of training-free guidance on video generation is the computational constraint. To
compute the guidance loss for latent optimization, we should keep track of the gradient chain passing
through the whole network (Figure 3). In Figure 4(a), we analyze the memory usage and find that it
exceeds 650GB even with gradient checkpointing (Chen et al., 2016), mostly due to CausalVAE (Yu
et al., 2024; Brooks et al., 2024). This overhead arises from the design of CausalVAE, which requires
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Figure 3: Frame Guidance for keyframe-guided video generation task. (Left) Illustration of our
method with latent slicing and spatial down-sampling (Section 4.1), and gradient propagation with
L2 loss (red arrows; Section 4.3). (Right) Visualization of the video latent optimization (VLO;
Section 4.2), showing the generated video frames at each guided inference step.

decoding the entire latent sequence even to reconstruct a single frame. To tackle this, we first analyze
the latent space of CausalVAE.

Analysis of CausalVAE’s latent space While CausalVAE is designed to enforce temporal causality
in the video latent sequence, we observe that such causality is absent in practice. To validate this, we
conduct a simple experiment: replace a single frame in a real video with a black image (all pixels set
to zero), and measure the difference between the latents of the original video and the modified video.
As shown in Figure 4(b), the perturbation affects only a few consecutive latents rather than the entire
sequence. This behavior consistently appears across various VDMs (Yang et al., 2025; Wang et al.,
2025a; HaCohen et al., 2024). We refer to this property as temporal locality, a key observation for
our efficient decoding method.

Decoding with sliced latent We introduce latent slicing, an essential decoding method for training-
free guidance that significantly reduces the cost of gradient computation on CausalVAE. Instead of
reconstructing the entire sequence, we decode only a few frames from the selected sliced latents. To
be specific, when reconstructing the i-th frame xi, we decode a small window of 3 latents, starting
from the latent zj , where the latent index j is determined by i and the temporal compression rate
of its CausalVAE. Thanks to the temporal locality, it is sufficient to decode only the corresponding
latents to reconstruct a single video frame. As shown in Figure 22, the reconstructed frames are nearly
identical to those from full-sequence decoding. As highlighted in Figure 4(a), this latent slicing
reduces memory usage by up to 15× compared to using the entire latent sequence.

In parallel with latent slicing, we can further reduce the memory usage by spatially down-sampling
the latents before decoding. Despite the lower resolution, the guidance loss from the down-sampled
latents still provides sufficient signals to guide the generation. As shown in Figure 4(a), applying 2×
spatial down-sampling combined with latent slicing reduces memory usage by up to 60×, enabling
gradient computation to be maintained on a single GPU even for large VDMs (Wang et al., 2025a).

4.2 VIDEO LATENT OPTIMIZATION (VLO)

Previous training-free guidance methods for images (Bansal et al., 2024; Yu et al., 2023; Shen et al.,
2024) typically reintroduce noise after a gradient update. However, in the video domain, we observe
that this strategy often has adverse effects on guidance. The overall layout of the frames is largely
determined during the early denoising steps (Wu et al., 2024a). Similarly, the influence of guidance is
most significant on the overall layout in these stages. As shown in Figure 4(c) top, applying guidance
to a single frame (yellow arrow) has a higher influence (dark green) on neighboring latents early
on, with the effect diminishing later. This confirms that early-stage guidance is critical for temporal
coherence. Yet, the noising scale at the early stage is often too large, washing out the guidance signal.

To address this limitation, we propose video latent optimization (VLO), a hybrid strategy that applies
different update rules to video latents depending on the denoising stage. Specifically, at each denoising
step t in the early stage, we update the latent zt with guidance in a deterministic manner:

zt ← zt − η∇ztLe(x
I
0|t, cframes), (2)

4
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Figure 4: (a) GPU memory for guidance when using full latent sequence, sliced latents, and latent
slicing with spatial down-sampling. (b) Temporal locality of CausalVAEs. Each latent (y-axis) is
primarily affected by a small subset of temporally local video frames. (c) Guidance influence during
the denoising steps. Yellow arrows indicate the location for the guidance frame.

where η is the guidance step size, xI
0|t is the predicted clean frames where we apply guidance,

and Le is a guidance loss with frame-level controls cframes. This deterministic update results in a
temporally aligned global layout. In the later steps, we update the latent zt in a stochastic manner by
reintroducing noise in order to reduce accumulated errors during guidance, similar to the time-travel
trick (Yu et al., 2023; Shen et al., 2024). This stage-aware procedure is illustrated in Figure 3 right.
We show in Figure 23 that stochastic updates in the early steps fail to capture the desired layout,
whereas our VLO successfully reflects the layout changes specified by the guidance frames.

4.3 FRAME GUIDANCE

Algorithm 1 Frame Guidance

Require: I , tE , tL, repeat step M , step size η,
guidance loss Le, model vθ(·, ·)

1: zT ∼ N (0, I)
2: J ← Frame-Idx-to-Latent-Idx(I)
3: for t = T, ..., 1 do
4: if t > tL then {Guidance step}
5: for m = 1, ...,M − 1 do
6: z0|t ←

√
ᾱtzt−

√
1− ᾱt ·vθ(zt, t)

7: zJ0|t ← Latent-Slicing(z0|t,J )
8: xI

0|t ← D(z
J
0|t)

9: gt = ∇ztLe(x
I
0|t, cframes)

10: if t > tE then {Early steps}
11: zt ← zt − ηgt
12: else {Later steps}
13: zt ← Time-Travel(zt, z0|t, gt)
14: end if
15: end for
16: end if
17: zt−1 ← DDIM(zt, z0|t)
18: end for
19: return z0

In Algorithm 1, we provide the overall procedure
of our Frame Guidance, which incorporates both
the latent slicing and VLO. Given a set of frame-
level controls cframes and selected frame indices
I ⊆ {i1, · · · } to apply the guidance, we first
compute their corresponding latent indices J ⊆
{j1, · · · } (see Figure 4(b)). For pre-defined genera-
tion phases tE and tL (we provide details on deter-
mining their values in Appendix C.5), we optimize
the video latents in the following manner: At each
denoising step t > tL, we extract the sliced latents
zJ0|t from the latent indices J (Line 7) and com-
pute the guidance loss gt = ∇ztLe(x

I
0|t, cframes)

(Lines 8-9). We optimize the latent zt using VLO
(Line 11) where zt is updated deterministically in
the early denoising steps (t > tE) and stochasti-
cally (Algorithm 2) during the later steps (tE ≥
t > tL). After M times of latent optimization, we
proceed to the next denoising step via DDIM Song
et al. (2020). We provide detailed time-travel al-
gorithm and Frame Guidance algorithm for flow
matching based models, such as Wan (Wang et al.,
2025a), in Appendix C.3.

Gradient propagation after slicing Without processing the full latent sequence, guidance applied
to sliced latents can control the entire video, resulting in temporally coherent outputs. This coherence
arises from the denoising network vθ, which propagates the gradient of the guidance loss across
the entire video latents. We show in Figure 4(c) bottom that excluding the denoising network when
computing the gradient, i.e., shortcut-based update (He et al., 2024; Rout et al., 2025; Nair and Patel,
2024), restricts the gradients to the guided frame only (bottom), leading to a temporally disconnected
video. On the other hand, using the denoising network propagates the gradients across all frames
(top), allowing guidance on target frames to harmonize with other frames, as illustrated in Figure 3
(right). Therefore, guidance on a few frames where the gradient through the denoising network can
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control the whole video, which enables tasks such as stylized video generation. In Appendix C.4, we
further demonstrate that the temporal coherence is primarily determined by the denoising network,
whereas the contribution of CausalVAE is minimal.

4.4 LOSS DESIGN FOR VARIOUS TASKS

Frame Guidance is readily applicable to a wide range of frame-conditioned video generation tasks,
with appropriately designed guidance loss. Here, we provide simple loss designs for representative
frame-conditioned video generation tasks and general user inputs.

Keyframe-guided video generation aims to synthesize videos that transition smoothly between
multiple user-specified keyframes, without enforcing strict pixel-level reconstruction. Given an initial
image as the input to the I2V model, we minimize a simple L2 loss, Le =

∑
i∈I ∥xi

∗− xi
0|t∥

2
2, where

xI
∗ denotes the target keyframes and xi

0|t is the predicted clean i-th frame. The similarity to each
keyframe can be controlled by adjusting the guidance strength, such as the number of repeat steps
M or step size η. Unlike training-based approaches (Zeng et al., 2024; Wang et al., 2025b) that are
limited to fixed positions (e.g., the last frame), our method supports arbitrary keyframe placements.

Stylized video generation aims to synthesize videos in the style of a given reference image using a
T2V model. We employ a differentiable style encoder Ψ to compute the style loss defined as Le =
−
∑

i∈I cos(Ψ(xstyle),Ψ(xi
0|t)), where xstyle is the style reference image. We use the Contrastive

Style Descriptor (CSD) (Somepalli et al., 2024) for Ψ(·), and find that guiding only a few selected
(or randomly chosen) frames is sufficient to propagate the desired style across the entire video.

Looped video generation aims to synthesize videos where the first and last frames match, producing
a seamless loop using a T2V model. We define the loss as Le = ∥ sg(x1

0|t) − xL
0|t∥

2
2, where sg(·)

denotes the stop-gradient operator. This design prevents over-saturation of the generated frames by
forcing the last frame to be updated the most to match the first frame.

General input guidance aims to synthesize videos conditioned on general user-specified conditions
beyond RGB images, for example, depth maps or sketches. We use a differentiable encoder Ψ,
such as a depth estimator (Yang et al., 2024) or an edge predictor (Chan et al., 2022), to extract
structural features from the estimated clean image. We minimize an encoder-aligned L2 loss defined
as Le =

∑
i∈I ∥Ψ(xi

∗)−Ψ(xi
0|t)∥

2
2, where Ψ(xi

∗) denotes the encoded target conditions.

5 EXPERIMENTS

5.1 KEYFRAME-GUIDED VIDEO GENERATION

We evaluate Frame Guidance on keyframe-guided video generation tasks, which aim to synthesize
videos that smoothly follow multiple user-specified keyframes. Unlike frame interpolation tasks (Feng
et al., 2024; Wang et al., 2025b) that require exact frame matching, keyframe-guided generation only
requires the visual similarity to the keyframes, and addresses the generation of longer videos.

Datasets We select 40 clips with more than 81 frames from DAVIS (Pont-Tuset et al., 2017) and 30
real-world videos from Pexels1 dataset. Pexels features more dynamic and human-centric videos,
making it more difficult for video generation. We provide more details on the dataset in Appendix B.2.

Baselines We compare Frame Guidance against frame interpolation methods, including TRF (Feng
et al., 2024), SVD-Interp (Wang et al., 2025b), and CogX-Interp. TRF is a training-free approach for
Stable Video Diffusion (SVD) (Blattmann et al., 2023), SVD-Interp uses a fine-tuned reversed-motion
SVD, and CogX-Interp2 fine-tunes CogX with first and last frame conditioning. We also compare
with basic I2V baselines (CogX (Yang et al., 2025) and Wan (Wang et al., 2025a)). For our method,
we apply Frame Guidance on CogX and Wan models using the L2 loss defined in Section 4.4 with
the final frame given, and restrict the number of guidance steps so that the total runtime does not
exceed 4× the base model’s inference time (details in Appendix B.1). We further report results that
additionally use the middle frame. We also report results of applying Frame Guidance to CogX-Interp.

1https://huggingface.co/datasets/jovianzm/Pexels-400k (Accessed: 2025-09-19)
2https://github.com/feizc/CogvideX-Interpolation (Accessed: 2025-09-19)
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(e) Ours (CogX-Interp.)
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(c) Ours (CogX-I2V)
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Figure 5: Qualitative comparison on keyframe-guided video generation tasks. Yellow box
indicates the keyframe condition. Orange box in (a) shows a disconnection in SVD-Interp. Red box
in (d) visualizes a failure case for the CogX-Interp baseline for dynamic human motion.
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CogX-I2V I ✓ 60.36 890.1 74.98 1122.6
Wan-14B-I2V I ✓ 59.04 772.8 73.03 1033.3
TRF I, F ✓ 62.07 923.1 79.03 1106.2
Ours (CogX) I, F ✓ 57.62 613.4 68.54 1027.3
Ours (CogX) I,M,F ✓ 55.60 577.1 68.97 989.3
Ours (Wan-14B) I,M,F ✓ 57.68 761.1 71.63 904.8
SVD-Interp. I, F ✗ 63.89 800.3 75.37 1210.7
CogX-Interp. I, F ✗ 46.59 506.0 58.73 1081.5
Ours (CogX-Interp.) I,M,F ✗ 37.95 420.3 47.86 723.26

Figure 6: Keyframe-guided generation results. (Left) Human evaluation. (Right) Quantitative
results. I , M , and F denote initial, middle, and final frames, respectively. “Train-free” indicates
whether the backbone VDM is a base I2V model or fine-tuned for the frame interpolation task.

Qualitative comparison As shown in Figure 5, our approach generates videos with natural
transitions, where the selected frames closely resemble the keyframes. For example, Figure 5(c)
visualizes well-aligned frames, with the paraglider appearing in a consistent position. In contrast,
CogX-Interp often struggles with challenging motion. Applying Frame Guidance to CogX-Interp
(Figure 5(e)) or to a stronger VDM backbone (Figure 5(f)) results in notably improved output quality.

Human evaluation We conduct human evaluations to assess the quality of generated videos,
focusing on (1) video quality and (2) similarity to the keyframes. As shown in Figure 6 left, applying
Frame Guidance to Wan yields the highest video quality, surpassing the trained model CogX-Interp.
Applying guidance to CogX-Interp produces high-quality videos with guided frames nearly identical
to the keyframes. Further details are provided in Appendix B.2.

Quantitative results We measure FID (Heusel et al., 2017) and FVD (Ge et al., 2024) to assess the
quality of the generated videos. As shown in Figure 6 right, Frame Guidance applied to pre-trained
I2V models significantly outperforms all other training-free methods. Moreover, Frame Guidance
applied to CogX-Interp outperforms all the training-required baselines. These results, combined
with the human evaluation, demonstrate that our method effectively guides video generation without
additional training. We discuss further details regarding the quantitative results in Appendix B.2.

5.2 STYLIZED VIDEO GENERATION

We also validate Frame Guidance on stylized video generation tasks, which aim to synthesize videos
in the style of a given reference image, using a T2V model.

Dataset We use a subset of the stylized video dataset introduced in StyleCrafter (Liu et al., 2023),
which consists of 6 challenging style reference images, each paired with an aligned style prompt and
9 distinct content prompts. We provide further details about the dataset in Appendix B.3.

Baselines We compare our method with three baselines. CogX-T2V is a pre-trained T2V model.
VideoComposer (Wang et al., 2023a) is a training-based method supporting multiple conditions, such
as style image and depth maps. StyleCrafter (Liu et al., 2023) is also a training-based method that
solely trains a style adapter on top of VideoCrafter (Chen et al., 2023). For our method, we apply
Frame Guidance to CogX-T2V (Yang et al., 2025) model using the style loss defined in Section 4.4.
We provide more details of our method in Appendix B.3.
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(a) Vid. Comp. (b) StyleCrafter (c) CogX-T2V (d) Ours (a) Vid. Comp. (b) StyleCrafter (c) CogX-T2V (d) Ours

A street performer playing the guitar. Low Poly Digital 

Art, geometric shapes, vibrant colors, flat texture, sharp 

edges, gradient shading, modern graphic style.

A field of sunflowers on a sunny day. Manga Style, 

black and white digital inking, high contrast, detailed 

line work, cross-hatching for shadows, clean, no color.

Style Reference Style Reference

Figure 7: Qualitative comparison on stylized video generation. Ours generates high-quality videos
that follow the reference style, whereas baselines fail to produce motion or show poor alignment.

Cogx-T2V Vid.Comp StyleCrafter Ours0

1

2

3

4

5

Style
Text
Motion

Train Text-Alignment Style-Alignment
free CLIP-T ↑ ViCLIP-T ↑ CLIP-S ↑ ViCLIP-S ↑

Vid.Comp. ✗ 0.211 0.137 0.869 0.219
StyleCrafter ✗ 0.207 0.273 0.635 0.157
CogX-T2V ✓ 0.220 0.259 0.588 0.139
Ours ✓ 0.224 0.285 0.624 0.185

Figure 8: Stylized video generation results. (Left) Human evaluation. (Right) Quantitative results.

Qualitative comparison Figure 7 show that our method can generate balanced stylized videos in
terms of both text alignment and style conformity, with diverse motion. In contrast, VideoComposer
fails to disentangle content and style in the reference images, while StyleCrafter produces videos
with minimal motion that are poorly aligned to the reference style. CogX-T2V struggles to capture
detailed textures or patterns, for example, geometric shapes or sunflowers.

Human evaluation We conduct human evaluation to assess the quality of stylized videos, evaluating
three criteria (1) style alignment, (2) text alignment, and (3) motion dynamics. As shown in Figure 8
left, our method achieves the best results across all criteria, significantly outperforming the training-
based baselines. These results show that Frame Guidance successfully guides video generation to
follow the reference style without any additional training. Further details and the results on overall
preference are provided in Appendix B.3.

Quantitative results We evaluate the generated videos for text alignment and style alignment using
CLIP-T, ViCLIP-T, CLIP-S, and ViCLIP-S (Radford et al., 2021; Wang et al., 2023b). As shown in
Figure 7 and Figure 8, our method achieves the best scores on all metrics, except for CLIP-S, where it
matches the performance of StyleCrafter. While VideoComposer achieves the highest style alignment
scores, this is largely due to replicating the style image without adhering to the text prompt.

5.3 LOOPED VIDEO GENERATION

We further apply Frame Guidance on the looped video generation task, which aims to synthesize
videos where the first and last frames match, producing a seamless loop. We use the loop loss defined
in Section 4.4 to steer the last frame to match the first. Guidance is applied to the generated video
without requiring any external conditions, using only text prompts as input. As shown in Figure 1(c)
and Figure 17, Frame Guidance generates high-quality looped videos featuring dynamic motions that
are well-aligned with the input text prompt.

5.4 OTHER APPLICATIONS

Using color block drawing During keyframe-guided generation, keyframe similarity can be flexibly
controlled by adjusting the guidance strength. This allows new forms of user-provided control signals
that are easy to create, such as coarse sketches or color blocks. In particular, we introduce a novel
application that allows users to guide video generation using edited frames, where simple visual edits
via color blocks indicate changes in color or detail. As illustrated in Figure 1(d), the generated video
depicts the mountain changing color and texture in three distinct ways, which is difficult to achieve
using text prompts alone. For Frame Guidance, color blocks act as rough visual hints that allow
natural scene transitions while preserving the contents. We provide more examples in Figure 18.
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First

*

Last Mask

(a) Masked region guidance

(b) Video style transfer

(c) Multi condition guidance

<Style>

Original Video

CogX-Interp. input

Figure 9: Examples of other applications. (a) Object movement guided by masked region. (b) Video
style transfer with SDEdit (Meng et al., 2022). (c) Guidance using multiple types of inputs: depth
map and sketch.

Masked region guidance While our previously described methods apply guidance to the whole
area of a frame, we demonstrate that the guidance can be effectively restricted to specific regions by
using L2 loss with a binary mask. In Figure 9(a), we present an example of generating a video with
object motion, guided by a cropped image and its segmentation mask. By applying guidance solely
to the object region, the background remains unchanged while the object shows smooth movement.

Depth map / Sketch guidance Furthermore, Frame Guidance supports general types of frame-level
signals, such as depth maps and sketches, which offer more user-friendly conditioning compared to
RGB images as input. Using the general input guidance defined in Section 4.4, Frame Guidance is
capable of generating high-quality guided videos as shown in Figure 1(e) and (f).

Video style transfer We extend Frame Guidance to video editing tasks. Taking a video as input, we
apply Frame Guidance to generate an edited video that follows a reference style. It can be achieved
by applying a simple SDEdit (Meng et al., 2022) with a small noise. This results in preserving the
original motion and layout while successfully transferring the reference style, as in Figure 9(b).

Multi condition guidance Frame Guidance can integrate multiple input types by combining losses.
As shown in Figure 9(c), we apply guidance to intermediate frames, combining the depth map loss
and sketch loss for the CogX-Interp model. The generated video demonstrates smooth motion that
follows the input signals, showing the flexibility of Frame Guidance in handling complex scenarios.
We provide additional examples on multi condition guidance in Figure 20.

5.5 ABLATION STUDIES

Table 1: Ablation study on la-
tent optimization strategy.

Method FID ↓ FVD ↓
Time-travel 57.37 778.4
Deterministic 56.61 637.3

VLO (Ours) 55.60 577.1

Necessity of VLO To validate the importance of VLO in Frame
Guidance, we compare it against two variants: one that uses only
the time-travel trick and another that applies only the deterministic
update from Equation 2 during the guidance process. Table 1 shows
that using only the time-travel trick yields higher FVD scores due to
difficulty in forming coherent layouts, while the deterministic update
alone produces over-saturated or temporally disconnected videos.
We provide an additional ablation study on VLO hyperparameter tE
that determines when to apply deterministic update in Appendix C.5.

Model agnostic As shown in Figure 6, our method is compatible with a variety of VDMs, including
CogVideoX (Yang et al., 2025), its fine-tuned variant CogVideoX-Interpolation, and Wan-14B (Wang
et al., 2025a), a flow-matching-based model. To further demonstrate its generality, we also apply our
approach to two additional models: SVD (Blattmann et al., 2023), a U-Net-based (Ronneberger et al.,
2015) diffusion model, and LTX-2B (HaCohen et al., 2024), which supports sequences up to 161
frames. As illustrated in Figure 21, our method consistently performs well across all these VDMs.
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6 CONCLUSION

In this work, we present Frame Guidance, a novel training-free framework for diverse control tasks
using frame-level signals. By applying guidance to selected frames, our method enables natural
control throughout the video. To achieve this, we partially decode sliced latents during guidance
computation and introduce a latent optimization strategy designed for video. Our approach supports a
wide range of tasks without training, including special cases such as color block guidance and looped
video generation. We discuss the limitations of our method in Appendix D.

REPRODUCIBILITY STATEMENT

To ensure reliable and reproducible results, we have provided the source code on supplementary
materials, and detailed experiment settings in Appendix B.
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Appendix
Organization The Appendix is organized as follows: In Section A, we provide the additional
backgrounds of our work. We describe the details of the experiments and our framework in Section B,
and further discussion in Section C. Lastly, in Section D, we discuss the limitations of our work.

A BACKGROUNDS

A.1 TRAINING-FREE DIFFUSION GUIDANCE

Recent works Song et al. (2021); Dhariwal and Nichol (2021); Yu et al. (2023); Chung et al. (2023);
Bansal et al. (2024); He et al. (2024); Shen et al. (2024) have explored conditional generation by
injecting external conditions into pre-trained diffusion models. Among them, training-free guidance
methods (Yu et al., 2023; Chung et al., 2023; Bansal et al., 2024; He et al., 2024; Shen et al., 2024)
achieve controllable generation without additional training by optimizing the noisy latent during the
reverse process. This optimization is guided by a loss function that measures the alignment between
intermediate latents and the target condition at each denoising step. FreeDom (Yu et al., 2023)
and UniversalGuidance (Bansal et al., 2024) leverage off-the-shelf models to compute the various
guidance losses, achieving a wide range of controllable image generation tasks. Later works (He
et al., 2024; Nair and Patel, 2024; Rout et al., 2025) bypass the denoising module for computing the
guidance loss, enabling more efficient training-free diffusion guidance.

A.2 FLOW MATCHING

Flow matching (Lipman et al., 2022) belongs to the family of flow-based generative models, which are
known for faster sampling compared to diffusion models (Ho et al., 2020). Let t ∈ [0, 1] be the time,
x ∈ Rd be a data, and q be a unknown target distribution. The goal of flow matching Lipman et al.
(2022) is to estimate a time-dependent transformation zt : [0, 1]×Rd → Rd (referred to as flow) that
maps a prior distribution p0 (e.g., Gaussian) to a distribution p1 ≈ q. Instead of directly estimating
the flow, Lipman et al. (2022) proposes to regress a generating vector field vt(·, t) : [0, 1]×Rd → Rd

that induces the flow zt via the following ordinary differential equation (ODE):

dzt(x)

dt
= vt(zt(x)) and z0(x) = x. (3)

It is common practice to design this flow ϕt along an optimal transport (OT) trajectory that connects
a prior sample to a target sample with a straight interpolation: zt := (1− t)x0 + tx1, where x0 ∼ p0
and x1 ∼ q. In this case, the target vt is computed as a constant: vt(x, t) = x1 − x0 for all t ∈ [0, 1].
With a neural network vθ that estimates vt, we can generate a data x1 by numerically solving the ODE
in Equation 3 (e.g., Euler method). Similar to Tweedie’s formula Efron (2011), we can approximate a
cleaned sample at each time t by

z1|t := zt +
1

1− t
vθ(zt, t). (4)

Throughout this paper, we interchangeably reverse the direction of time by parameterizing it as
s(t) = T (1− t), t ∈ [0, 1] to align with the convention of the diffusion models where the generative
process proceeds from T to 0.

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

All our experiments are conducted on a single H100 GPU. Hyperparameters related to guidance, such
as step size η and repetition M , are adjustable depending on the task and model characteristics. For
example, in keyframe-guided video generation using diffusion-based CogVideoX (Yang et al., 2025),
we define the layout stage within the first 5 steps, set M = 10, and use a step size of η = 3.0. For the
time-travel trick, M is linearly decreased over 15 steps. At each step, gradients are L2-normalized
before being scaled by η for the update. All comparisons in our paper were conducted using the same
random seed.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 10: A screenshot of questionnaires from our human evaluation on keyframe-guided generation.

Wan-I2V CogX-Interp. Ours
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Figure 11: Human evaluation results on keyframe-guided generation including Wan-I2V.

Since Wan-14B (Wang et al., 2025a) employs flow matching as its generative modeling, its inference
is fully deterministic, and the layout is mostly established within 2 steps. Therefore, we set the layout
stage to the first 2 inference steps, and apply the same M,η, and time-travel configuration. Moreover,
since our implementation introduces more stochasticity (see Appendix C.3), we slightly reduce the
number of time-travel steps. To maintain practicality, we empirically limit the number of guidance
steps such that the overall runtime does not exceed 4× the base model’s inference time.

To reduce GPU memory usage, we apply gradient checkpointing (Chen et al., 2016) to the denois-
ing network using the Diffusers (von Platen et al., 2022) library. For the CausalVAE, gradient
checkpointing is applied only in CogVideoX (Yang et al., 2025), as Wan-14B (Wang et al., 2025a)
implementation does not currently support it. We do not apply spatial downsampling in CogVideoX,
since it runs on a single GPU without it. In contrast, we apply 2× spatial downsampling in experi-
ments with Wan-14B.

B.2 KEYFRAME-GUIDED VIDEO GENERATION

Dataset For evaluation, we use videos from the DAVIS (Pont-Tuset et al., 2017) dataset and
Pexels. From DAVIS, we select 40 videos with at least 81 frames, matching the maximum frame
length supported by Wan-14B (Wang et al., 2025a). The resolution of each video is resized and
center-cropped according to the requirements of each pre-trained model. To ensure fair comparisons
across models, the same initial and final frames are used. Based on this setup, the reference set
for each model is configured with slightly different FPS settings. For example, for an 81-frame
video, CogVideoX (Yang et al., 2025) supports only 49 frames, so we temporally downsample the
video accordingly. The Pexels dataset contains more real-world videos with challenging motions
and frequent camera view changes. We randomly select a subset of 30 videos, which features more
dynamic and human-centric content compared to DAVIS.

For pre-trained models that accept text prompts as input, except for Stable Video Diffusion (Blattmann
et al., 2023)(SVD)-based methods (Feng et al., 2024; Wang et al., 2025b), we used prompts derived
from the original videos. Specifically, we concatenated three frames from each original video and
generated a caption using GPT-4o (OpenAI, 2024). The same prompt was applied consistently across
all baseline models.
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Figure 12: A screenshot of questionnaires from our human evaluation on stylized video generation.
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Figure 13: Human evaluation results on stylized video generation including overall preference.

Human evaluation We conduct human evaluation for keyframe-guided video generation task to
evaluate two main aspects: (1) video quality and (2) similarity to the keyframes. Both metrics are
rated on an absolute scale from 1 to 5. As shown in Figure 10, participants evaluated all videos
generated from the same keyframes side by side. We collected responses from 20 participants,
evaluating 5 types of videos across 5 different methods. The full human evaluation results, including
Wan-I2V, are provided in Figure 11.

Evaluation metric For evaluation metric, we employ FID (Heusel et al., 2017) and content-
debiased FVD (Ge et al., 2024) between generated videos and real videos. Both metrics quantify the
distributional distance between generated videos and real videos from the dataset. FID is computed
by extracting all frames from the video and treating them as individual images. FVD is measured
against reference videos adjusted to match each model’s resolution and FPS. Therefore, cross-model
comparisons are not strictly valid.

As shown in Figure 6 right, our method with Wan slightly outperforms Wan I2V in these quantitative
metrics. However, human evaluations in Figure 6 left suggest a more noticeable improvement, which
may not be fully captured by such metrics. Notably, the overall FID and FVD scores are relatively
high, as our setting involves longer and more dynamic videos compared to related tasks such as video
interpolation, making the dataset more challenging.

We provide more qualitative examples in Figure 14.

B.3 STYLIZED VIDEO GENERATION

Based on our analysis of layout formation in Section 4.2, we apply VLO with a different schedule
for stylized video generation compared to keyframe-guided video generation. Specifically, we start
applying the deterministic latent update (Equation 2) at step 3 before entering the detail stage (step
5), and then switch to time travel during steps 15 - 20. This design helps shape the geometric patterns
and structure of the style reference image during the layout stage. After that, we proceed the inference
without guidance. We set the guidance step size η = 3 and the number of repetition M = 5. We
compute the style guidance loss on 4 evenly spaced frames from the entire video.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Text prompts Liu et al. (2023) used for stylized video generation.

Content prompt Content prompt
A street performer playing the guitar. A wolf walking stealthily through the forest.
A chef preparing meals in kitchen. A hot air balloon floating in the sky.
A student walking to school with backpack. A wooden sailboat docked in a harbor.
A bear catching fish in a river. A field of sunflowers on a sunny day.
A knight riding a horse through a field.

Table 3: Style references and style prompts (Liu et al., 2023) used for stylized video generation.

Style image Style prompt Style image Style prompt

Manga Style, black and white digital
inking, high contrast, detailed line work,
cross-hatching for shadows, clean, no
color.

Ink and watercolor on paper, urban
sketching style, detailed line work,
washed colors, realistic shading, and a
vintage feel.

Low Poly Digital Art, geometric shapes,
vibrant colors, flat texture, sharp edges,
gradient shading, modern graphic style.

Manga-inspired digital art, dynamic
composition, exaggerated proportions,
sharp lines, cel-shading, high-contrast
colors with a focus on sepia tones and
blues.

Wartercolor Paining, fluid brushstrokes,
transparent washes, color blending, visi-
ble paper texture, impressionistic style.

Pixel art illustration, digital medium, de-
tailed sprite work, vibrant color palette,
smooth shading, and a nostalgic, retro
video game aesthetic.

Dataset We use a subset of the test dataset introduced in StyleCrafter (Liu et al., 2023), which
consists of 9 content prompts and 6 style reference images with corresponding style descriptions.
In Table 2 and Table 3, we detail our test dataset. The content prompts describe an entire video
content using a simple sentence, while the style prompts describe the styles of the video. The style
prompts are generated by GPT-4o (OpenAI, 2024). We concatenate each content prompt with each
style prompt, resulting in a total of 54 full prompts for stylized video generation.

Human evaluation In Figure 12, we provide screenshots of the questionnaires and labeling
instructions. 20 participants are asked to evaluate four metrics: (1) style alignment, (2) text alignment,
(3) motion dynamics, and (4) overall video preference of five stylized videos generated by four
models. All metrics were rated on an absolute scale from 1 to 5. The complete evaluation results,
including overall preference, are provided in Figure 13.

Evaluation metric We employ CLIP-Text and ViCLIP-Text to access the text alignment of the
generated videos. We also compute CLIP-Style and ViCLIP-Style to access the style conformity of the
generated videos. Specifically,CLIP-Text and CLIP-Style are computed by using the CLIP Radford
et al. (2021) text and image encoders, respectively:

1

L

L∑
l=1

fI(xl) · fT (p)
∥fI(xl)∥2∥fT (p)∥2

and
1

L

L∑
l=1

fI(xl) · fI(xstyle)

∥fI(xl)∥2∥fI(xstyle)∥2
, (5)

where xl is the l-th frame, p is the text prompt, xstyle is the style reference image, and fI(·) and fT (·)
are the CLIP (Radford et al., 2021) image and text encoders, respectively.

Similarly, ViCLIP-Text and ViCLIP-Style are both computed by using Video CLIP model (Wang
et al., 2023b):

fV (x) · fT (p)
∥fV (x)∥2∥fT (p)∥2

and
fV (x) · fT (pstyle)

∥fV (x)∥2∥fT (pstyle)∥2
, (6)

where x is the video, p and pstyle are the full and style prompts, and fV (·) and fT (·) are the ViCLIP
video and text encoders, respectively.

We provide more qualitative examples in Figure 15 and Figure 16.
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(a) CogX-interp

(b) Ours (CogX-interp)

(c) Ours (CogX-I2V)

(d) Wan-I2V

(e) Ours (Wan)

Figure 14: Qualitative comparison of keyframe-guided video generation. Orange arrows indicate
temporally disconnected frames, and red boxes highlight poor keyframe similarity. Our method
generates temporally coherent videos while maintaining semantic similarity to the keyframes.

B.4 LOOP VIDEO GENERATION

We use the similar guidance schedule with keyframe-guided video generation task, but reduce the
early guidance strength to avoid producing over-saturated examples. We provide more qualitative
examples in Figure 17.

B.5 ADDITIONAL GENERATED EXAMPLES

We provide more examples on Frame Guidance with color block image in Figure 18, multi condition
(style and loop loss) in Figure 20. We show examples generated by other models, SVD (Blattmann
et al., 2023) and LTX-2B (HaCohen et al., 2024), are shown in Figure 21.
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“A New York City street scene with a man and a woman walking down 

the street, a dog running after them, and a bicyclist passing by in oil 

painting style.”

“A New York City street scene with a man and a woman walking down 

the street, a dog running after them, and a bicyclist passing by in Ukiyo-

e style.”

“A bustling Paris café in the morning, waiters serving coffee, people 

chatting at tables, and a dog lying under a chair in Impasto oil painting 

style with vibrant colors.”

Figure 15: Stylized video generated by Frame Guidance using style loss. These videos are generated
by CogVideoX-T2V.

"A New York City street scene with a man and a woman walking down the street, a 
dog running after them, and a bicyclist passing by, in watercolor painting style."

Ø
(Base T2V)

"A New York City street scene with a man and a woman walking down the street, a 
dog running after them, and a bicyclist passing by, in watercolor painting style."

(a) Base T2V

(b) Frame Guidance using style loss

Figure 16: Stylized video generated by Frame Guidance using style loss with the same random seed.
While their content remains similar, the style is primarily altered. These videos are generated by
CogVideoX-T2V.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Start Last

“A squirrel runs along a tree branch, carrying a nut in its mouth, it stops midway, sniffs the bark, then hides the nut 

in a small crevice, it turns back and runs the same path again toward another nut on the ground”

“A red monster toy jumping on a trampoline in slow motion, landing and bouncing back up endlessly, playful loop”

Figure 17: Loop video generated by Frame Guidance using loop loss. These videos are generated by
Wan-14B T2V.

“A close-up shot of two colorful liquids …As they meet in the glass, the yellow liquid, being denser, creating a distinct two-layer separation. 

The interface between the two liquids is sharp and clear, …”

(a) Base CogVideoX-I2V

(b) Frame guidance with color block

Figure 18: Frame Guidance with a color block image allows the generation of a video with a complex
scene. These videos are generated by CogVideoX-I2V.

"A mature sea turtle glides through clear blue waters above a coral reef, its flippers moving gracefully. 
Sunlight filters through, casting a tranquil glow on the turtle and its serene surroundings."

(a) Base CogVideoX-I2V

(b) Frame guidance with edge map (Sobel filter)

Figure 19: Frame Guidance with edge map. Canny edges are intractable, so we replaced it with Sobel
filter. While this approach works to some extent, it struggles to capture fine details and fails under
large scene changes, which we discuss in our limitation Section D. These videos are generated by
CogVideoX-2V.
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"A cat sits on a stone wall, turns to watch falling leaves, then turns its head forward 
again, Impasto oil painting style with vibrant colors."

"A raccoon dips its paw into a shallow stream, ripples spreading out, then looks up 
before dipping its paw again, in watercolor painting style."

Start Last

Start Last

Figure 20: Frame Guidance with style and loop loss. Simply summing the two losses enables effective
composition of both guidance signals. These videos are generated by CogVideoX-T2V.

(a) LTX-2B

(a) Stable Video Diffusion

Figure 21: Frame Guidance is model-agnostic. It is compatible with both SVD (Blattmann et al.,
2023) and LTX-2B (HaCohen et al., 2024). For SVD, since it does not use a temporally compressed
VAE, we skip latent slicing. Some saturation observed in the LTX-2B results occasionally occurs due
to the model itself.
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Original full video (49 frames)

Frames #25 ~ 28 Frames #45 ~ 48

(a) Full latent sequence reconstruction (13-length latent)

(b) 4-length latent

(c) 3-length latent (we use this in latent slicing)

(d) 2-length latent

Figure 22: Video reconstruction with temporally sliced latent. (a) Decoding the full latent
sequence successfully reconstructs the original video. (b)–(c) Using 4 or 3-length latent around the
target latent (frame) is sufficient for accurate reconstruction. (d) With only 2-length latent, there is
slight degradation, therefore, we adpot 3-length latent for the main experiments.

C MORE DISCUSSIONS

C.1 VIDEO RECONSTRUCTION WITH SLICED LATENT

As shown in Figure 22, we can reconstruct nearly identical frames even with temporally sliced latents.
When the 49-frame real video at the top is encoded by CogVideoX’s CausalVAE, each frame is
mapped to a latent zt ∈ Rc×f×h×w with a temporal latent length of f = 13. The four reconstructed
frames on the right side of panels (a–d) correspond to the last four frames of the original video.

• In (a), we fully decode the entire 13-length latent zt to obtain the 49-frame reconstructed video
and visualize the last four frames.

• In (b), we decode only the last four temporal slices (i.e., zt[:, -4:]), which we refer to as 4-length
latent. From this partial latent, the model produces 13-frame reconstructed video and we visualize
the last four frames.

These qualitative results indicates that even for fast-motion videos, a 3-length latent around the target
frame is sufficient for accurate reconstruction (Figure 22(c)), while a 2-length latent shows minor
degradation but remains close to the full-latent result (Figure 22(d)).

C.2 TIME-TRAVEL TRICK IN LAYOUT STAGE

As discussed in Section 4.2, directly applying the time-travel trick (Shen et al., 2024; Yu et al., 2023;
Bansal et al., 2024) to video diffusion models struggles due to excessive stochasticity. The time-
travel trick in Algorithm 2 includes a single-step forward process, but in practice, the added noise is
extremely large, and the coefficient multiplied with the latent is very small, as shown in Table 4. In fact,
in the very first inference step, the coefficient

√
βt becomes 0, resulting in no guidance effect at all.
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Table 4: Forward process coefficients in
early inference steps.

Step (·/50)
√
βt

√
1− βt

1 0.00 1.00
2 0.48 0.88
3 0.64 0.77

Therefore, since the effect of guidance is absent during
the early stages when the layout is largely established,
the model fails to produce a layout that aligns with the
given condition. Even when guidance is applied later, as
discussed in Figure 4(d), only the guided frame is updated,
and it cannot correct the overall layout. Our proposed
VLO addresses this issue by applying a deterministic latent
optimization in the early stage.

Additionally, we provide a visual comparison in Figure 23.
The time-travel trick offers almost no guidance effect in the early steps, which are crucial for layout
formation. Since it fails to establish a proper layout early on, later steps cannot correct this deficiency.
As shown in Figure 23(a), it generates a static camera view, similar to ordinary I2V generation. In
contrast, our VLO provides sufficiently effective guidance through deterministic updates in the early
steps, enabling the model to establish a proper left-to-right moving layout, which in turn allows later
guidance to take meaningful effect, as illustrated in Figure 23(b).

Algorithm 2 Time Travel (diffusion model)

Require: zt, z0|t, t, gt
1: ϵ← N (0, I)
2: zt−1 ← DDIM(zt, z0|t)
3: zt−1 ← zt−1 − η · gt
4: βt ← αt/αt−1

5: zt ←
√
βtzt +

√
1− βtϵ {Renoising}

6: return zt

Algorithm 3 Time Travel-F (flow matching)

Require: zt, z0|t, t, gt
1: ϵ← N (0, I)
2: zt ← σtϵ+ (1− σt)z0|t {Renoising}
3: zt ← zt − η · gt
4: return zt

Algorithm 4 Frame Guidance (Diffusion, full)

Require: I, tE , tL, repeat step M , step size η,
guidance loss Le, model vθ(·, ·)

1: zT ∼ N (0, I)
2: J ← Frame-Idx-to-Latent-Idx(I)
3: for t = T, ..., 1 do
4: if t > tL then {Guidance step}
5: for m = 1, ...,M − 1 do
6: z0|t ←

√
ᾱtzt −

√
1− ᾱt · vθ(zt, t)

7: zJ0|t ← Latent-Slicing(z0|t,J )
8: xI

0|t ← D(z
J
0|t)

9: gt = ∇ztLe(x
I
0|t, cframes)

10: if t > tE then {Early steps}
11: zt ← zt − ηgt
12: else {Later steps}
13: ϵ← N (0, I)
14: zt−1 ← DDIM(zt, z0|t)
15: zt−1 ← zt−1 − η · gt
16: βt ← αt/αt−1

17: zt ←
√
βtzt +

√
1− βtϵ

18: end if
19: end for
20: end if
21: zt−1 ← DDIM(zt, z0|t)
22: end for
23: return z0

Algorithm 5 Frame Guidance (flow matching)

Require: I, tE , tL, repeat step M , step size η,
guidance loss Le, model vθ(·, ·)

1: zT ∼ N (0, I)
2: J ← Frame-Idx-to-Latent-Idx(I)
3: for t = T, ..., 1 do
4: if t > tL then {Guidance step}
5: for m = 1, ...,M − 1 do
6: z0|t ← zt − σt · vθ(zt, t)
7: zJ0|t ← Latent-Slicing(z0|t,J )
8: xI

0|t ← D(z
J
0|t)

9: gt = ∇ztLe(x
I
0|t, cframes)

10: if t > tE then {Early steps}
11: zt ← zt − η · gt
12: else {Later steps}
13: zt ← Time-Travel-F(z0|t, gt)
14: end if
15: end for
16: end if
17: zt−1 ← zt + (σt−1 − σt) · vθ(zt, t)
18: end for
19: return z0
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First frame condition
(I2V input)

Last frame condition
(Frame Guidance)

(a) Time-travel in early steps

(b) Deterministic update in early steps (VLO)

Figure 23: Importance of VLO in early steps. (a) The time-travel method fails to produce a proper
layout. (b) VLO successfully generates the video, capturing the view transition from left to right.
Each top row shows early inference steps, and the bottom row shows the final generated results. Red
boxes are drawn at the same fixed location across all frames.
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Time
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Figure 24: Shortcut-based approaches (He et al., 2024; Rout et al., 2025; Nair and Patel, 2024) lead
to temporal disconnects in video generation.

C.3 VIDEO LATENT OPTIMIZATION (VLO) FOR FLOW MATCHING

As noted in Section A.2, we follow the time convention of diffusion models by reversing the flow
matching time axis, aligning t = 0 with clean data and t = T with pure noise.

In Algorithm 5, we extend our Frame Guidance to video generation models, which employ the flow
matching (Lipman et al., 2022) for their generative modeling (e.g., Wan (Wang et al., 2025a) and
LTX (HaCohen et al., 2024)). Similar to the diffusion case in Equation 2, we apply the latent slicing
(Lines 7) and optimize the current latent zt through the guidance loss gt (Lines 9-11). Specifically,
we predict the clean sample z0|t by based on the tweedie-like formula in Equation 4.

Time-travel for flow matching However, directly applying the time-travel trick to flow matching is
non-trivial, as a single forward step (Line 5 in Algorithm 2) is not explicitly defined in the context of
flow matching. While renoising in time travel is effective for mitigating accumulated sampling errors,
it cannot be directly utilized here. Our deterministic optimization excludes renoising entirely and can
be applied as is, but performing it fully during inference, as in diffusion, can result in over-saturated
samples or temporally disconnected videos.

To address this, we adopt a simple alternative: instead of stepping from t to t−1, we move directly
from t to 0 (i.e., the estimated clean latent), apply guidance there, and then simulate a forward
step from 0 back to t. Although a single forward step is not defined in flow matching, it is still
possible to apply the forward process for time t from clean data. While this process introduces higher
stochasticity than a single diffusion step, applying it in the later stages of VLO, after the layout has
already been established, does not significantly disrupt the structure. This makes it a viable option.
Empirically, this approach enables the application of VLO to flow matching-based models as well.
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tE step (·/50) FVD (↓) FID (↓)

0 (Time-travel) 725.30 59.03
2 730.38 59.18
4 569.02 57.74
6 514.47 58.03
8 572.55 56.18
10 617.42 59.12
12 662.37 58.17
14 642.01 58.36
16 (≈ Deter.) 662.63 58.80

Figure 25: (Left) Video generation phases and the corresponding guidance influence maps. (Right)
Ablation study on tE .

C.4 IMPORTANCE OF GRADIENT PROPAGATION VIA DENOISING NETWORK

In training-free guidance for image generation, a "shortcut" (Rout et al., 2025; He et al., 2024; Nair
and Patel, 2024) method has been proposed that utilizes a proximal gradient approach to bypass
back-propagation through the denoising network. This strategy significantly reduces memory usage
and enables efficient sampling for gradient-based optimization. While effective for static images,
directly applying this method to video generation poses challenges due to the temporal characteristic
of video data.

Specifically, when guidance is applied to only a few frames, the resulting video often becomes
temporally inconsistent. As illustrated in Figure 24, the latents corresponding to the guided frames are
updated to resemble the target frames, and adjacent frames may also partially align. However, earlier
frames remain disconnected, and the guided frames themselves may exhibit unnatural artifacts. This
is because temporal priors, crucial for maintaining coherence across frames, are primarily encoded
in the denoising network. Consequently, for video generation tasks where temporal consistency is
critical, gradient propagation through the denoising network is essential.

C.5 THE CHOICE OF THE TIMESTEP RANGE FOR STAGES (tE , tL)

As discussed in Section 4.2, VLO employs a hybrid strategy that applies different update rules
depending on the generation stage. We define the early stage, where deterministic updates are applied,
as complete once the low-frequency structure of the video stabilizes. Concretely, this is when the
difference from the final layout falls below 20% of the difference from the initial step, as shown in
Figure 25 left top. To quantify this, we measure the L2 distance in the low-frequency region across
inference steps, which confirms that video layouts are largely determined within the first few steps.
Based on this stabilization criterion, we set tE automatically rather than tuning it manually according
to downstream video quality.

We further conduct an ablation study on tE using the keyframe-guided generation task across 20
DAVIS videos (Figure 25 right). The results show that the best performance occurs at tE = 6,
which closely matches our stabilization-based criterion. Notably, performance remains robust over
a range of nearby values, indicating that the method is relatively insensitive to the precise choice
of tE . Furthermore, as shown in Figure 25 left, the gradient propagation map reveals that gradients
become increasingly localized around the guided frame. This trend mirrors the behavior of the video
generation process itself.

Regarding tL, which specifies how long guidance is applied, it correlates most directly with inference
time. This reveals a trade-off between the strength of guidance and the additional NFEs. In practice,
we set tL such that the overall runtime does not exceed 4× that of the base model’s inference time.
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C.6 IS TEMPORAL LOCALITY LIMITED ON RAPID MOTION VIDEO?
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Figure 26: Temporal locality persists even
under rapid motion.

We conduct the same experiment in Figure 4(b) on a
rapid motion video. Specifically, we replace a single
frame with a black image and measured the differ-
ence between the latents of the original video and
the modified video. To simulate rapid motion, we
sparsely sample the frames from a video at a rate of
16 times the original frame rate, which results in large
differences between adjacent frames.

As shown in Figure 26, we still observe the same
pattern as in Figure 4(b), with activations remaining
localized around the modified frame. Notably, this
behavior persists even when we extremely increase
the motion speed by up to 16×, indicating that the
same localized pattern consistently holds. This result
confirms that temporal locality is largely independent
of motion speed, as it reflects how latent frames are
mapped to video frames during latent decoding. Tem-
poral locality stems from the design of CausalVAE,
not from the video content itself.

(b) Failure with edge map (weak guidance)(a) Unseen (OOD) style generationStyle

Style

Figure 27: Failure cases of Frame Guidance.
D LIMITATIONS

Although Frame Guidance is training-free and supports various applications, it has some limitations:

(1) The computational cost of guidance sampling is higher than that of training-based methods.
Since it requires back-propagation and multiple predictions, the inference speed is approximately
up two to four times slower than that of the base model, depending on the task. This issue is
particularly significant in video generation, which is computationally intensive. We leave addressing
this inefficiency to future work.

(2) While our method is model-agnostic, it is heavily dependent on the performance of the base model.
Since our approach samples videos that align with given conditions within the generation distribution
of the base model, it struggles to generate videos that are either too dynamic or contain fine-detailed
objects the model has not encountered during training. For example, as shown in Figure 27(a), it
often fails to generate unseen (OOD) styles, such as 3D animation character.

(3) As discussed in FreeDom (Yu et al., 2023), it is inherently difficult for training-free guidance
to control fine-grained structural features. For example, as shown in Figure 27(b), when we apply
Frame Guidance using edge maps obtained from Sobel filtering, the guidance often becomes weak or
unstable, even when combined with a large number of iterations, though it works well with the RGB
keyframe. In such cases, training-required methods (Jiang et al., 2025; Li et al., 2025b) offer a more
reliable alternative.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we used large language models (LLMs) to assist with writing refinement, such as
checking for grammatical errors.
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