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Abstract

Retrieval-augmented generation (RAG) has
emerged as a powerful approach for improv-
ing the factual accuracy of large language mod-
els (LLMs), particularly by mitigating halluci-
nations, incorporating up-to-date information,
and enhancing generalization across domains.
However, current RAG methods often suffer
from limitations due to their reliance on ex-
tended input prompts and a dependency on
supervised retrievers for external knowledge
access. In this work, we introduce Keys-to-
Knowledge (K2K), a novel retrieval framework
that shifts the paradigm from external docu-
ment retrieval to internal, key-based knowledge
retrieval within the LLM itself. K2K employs
lightweight knowledge infusion to encode es-
sential information directly into the model’s pa-
rameter space, enabling the use of its internal
key-value memory for retrieval. To improve the
quality of query representations, we propose an
activation-guided probe construction method.
Furthermore, we introduce a cross-attention
reranking mechanism to extract diverse and rel-
evant information from the model’s enriched
internal knowledge. Experimental results on
health outcome predictions demonstrate that
K2K significantly improves both the efficiency
and effectiveness of knowledge-intensive tasks,
offering a promising alternative to traditional
RAG approaches by eliminating the need for
external retrieval pipelines. '

1 Introduction

Large Language Models (LLMs) have demon-
strated strong performance across a wide range
of natural language processing (NLP) tasks, such
as link prediction, question answering, text classi-
fication, etc (Li and Ji, 2022; Achiam et al., 2023;
Li et al., 2024a; Guo et al., 2025). However, a
fundamental limitation remains: it is challenging

!The code is available here: https://anonymous. 4open.
science/r/K2K-2390/README . md

Diagnosis: Paroxysmal tachycardia NOS. Atrial fibrillation.
Atrial flutter. Premature beats NOS. Tachycardia NOS.
Palpitations.

Question X: Is the predicted modality of the next visit
emergency based on the input diagnosis?
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Figure 1: Comparison of retrieval-augmented genera-
tion pipelines and our proposed K2K Approach.

for LLMs to incorporate newly emerging knowl-
edge beyond their static pre-training data. To ad-
dress this, retrieval-augmented generation (RAG)
has emerged as an effective solution (Lewis et al.,
2020; Li et al., 2025), enabling LLMs to dynam-
ically retrieve relevant information from external
corpora, thereby enhancing performance on down-
stream tasks.

Existing studies have explored various aspects
of the RAG pipeline, with most efforts focusing on
knowledge retrieval from structured sources (e.g.,
knowledge graphs, Wikidata) (Li and Huang, 2023;
Zhang et al., 2025), unstructured documents (Jin
et al., 2025). As shown in Figure 1, Pipelines 2 and
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3. While these approaches have improved RAG
performance, recent studies (Su et al., 2025) have
highlighted two main limitations. First, Injecting
knowledge through input prompts inevitably in-
creases the context length, especially for tasks with
already long inputs. Second, training a high-quality
retriever remains a challenging task. Developing
customized retrieval modules typically requires a
large number of query-context pairs for supervised
training, which imposes substantial demands on la-
beled data and computational resources, especially
when dealing with massive, heterogeneous knowl-
edge sources.

As prior work (Geva et al., 2020) has demon-
strated, the Keys in the feed-forward layers (FFN)
of transformer-based language models implicitly
store factual knowledge. These Keys correspond
to the vectors of the first projection matrix in the
FFN, representing semantic units. One potential
direction to address the above limitations is to re-
trieve these Keys as a source of internal knowledge.
This approach bypasses the need to inject a long
external context, thereby avoiding excessive input
length, and also eliminates the dependence on ex-
ternal retrievers that require supervised training,
since the knowledge is accessed directly from the
model’s own parameters.

However, using the query without incorporating
contextual activation signals to retrieve top-k Keys
do not guarantee accurate and relevant retrieval
from the knowledge space. In our preliminary ex-
periments, we observed that different queries often
yield highly similar retrieved Keys, suggesting that
the resulting probe query representations exhibit
low discriminative power. In particular, these repre-
sentations tend to obscure important semantic dis-
tinctions, ultimately leading to less effective knowl-
edge retrieval. A similar observation was also re-
ported by (Xiao et al., 2025). Otherwise, directly
retrieving knowledge from the LLM’s internal key
space by top-k strategies lacks interpretability and
structural awareness, as the retrieved key vectors
are latent and not grounded in explicit sources like
documents or knowledge graphs. Moreover, the
retrieval process is static and non-adaptive, lacking
explicit semantic signals to guide the reweighting
of the retrieved knowledge.

To solve these issues, we propose Keys-to-
Knowledge (K2K), a novel retrieval framework
that directly retrieves key-based knowledge from
LLMs infused with external information. The
framework consists of three main components: In-

ternal Memory Construction, Activation-Guided
Probe Query Construction, and Cross-Attentive
Reranking, as shown in Figure 1, the numbered
circle 4.

More specifically, 1) We construct a retrieval
memory from the pre-trained language model. For
knowledge not present in the pre-training corpus,
we apply LoRA (Hu et al., 2021) to adapt the model
and inject new knowledge. The Keys stored in the
FEN layers collectively form this retrieval mem-
ory. This mitigates the reliance on external retriev-
ers and alleviates the burden caused by long input
contexts. 2) To effectively estimate the important
tokens during inference and recognize the scarce
outlier features, we construct the probe-query? for
each context window to retrieve the relevant knowl-
edge from retrieval memory, and designate acti-
vated query vectors with prominent activation bias
to dominate the representation of probe-query for
accurate retrieval, where the activation bias is com-
puted by a diagonal approximation of the Maha-
lanobis distance between each token and the mean
token to balance per-dimension variance. 3) Due to
the varying relevance and structural dependencies
across different knowledge, as well as the need for
dynamic, context-dependent integration, we intro-
duce a cross-attentive reranking mechanism that dy-
namically integrates multi-source knowledge con-
ditioned on the query.

2 Preliminaries

2.1 Feed-Forward Layers as Unnormalized
Key Memories

Feed-forward Layers In transformer-based ar-
chitectures (Vaswani et al., 2017), the feed-forward
network (FFN) operates alongside the self-attention
mechanism and plays a crucial role in representa-
tions. Each feedforward layer is a position-wise
function, processing each input vector indepen-
dently. Given an input vector x € R?, typically
obtained from the attention layer, the output of the
feed-forward layer FF(.) can be formulated as:

FF(x) = Wy - f(x- W) (1)

To align this with the key-value memory (Geva
et al., 2020), we can define :

FF(x) =V - f(x-K") )

%A probe query is a representation derived from the current
input that is used to retrieve relevant information from the
model’s internal key space.



where K,V € R *? are learnable weight
matrices, K = Wj and V = W, and f(-) de-
notes an activation function such as ReLLU.

Feed-forward Layers in Lora To incorporate
specific knowledge to the LLM, we follow the low-
rank adaptation (LoRA) formulation by introducing
trainable matrices A € R"*" and B € R"**, such
that the FFN becomes:

FF(X) = (W2 + AWQ) . f(X . (Wl + AWl))
= (Wa+ A2Bs) - f(x- (W1 + A1 By))
3

where W € RM** is the original pre-trained
weight matrix, and f(-) denotes an activation func-
tion such as ReLU. where, K ' = W; + A1 B and
V =Wy + Ay Bs.

3 Methodology

As illustrated in Figure 2, our K2K has three
stages (1) Retrieval memory construction, (2)
Activation-guided probe query construction for
knowledge matching, and (3) a cross-attention
reranking method is used to retrieve the key knowl-
edge.

3.1 Retrieval Memory Construction

In our work, the retrieval memory primarily con-
sists of two types of information: (1) document
knowledge and (2) graph knowledge. To construct
the memory from the document level, we begin
by leveraging a pretrained large language model
(Mpase) as the backbone. A common approach
to encoding domain-specific document knowledge
into an My, is through continued pretraining.
As an alternative to costly continued pretrain-
ing, we adopt an existing domain-adapted model
(Mggrcnain)'

To adapt the graph information, we first con-
vert each triple in the graph into its correspond-
ing textual description, such as the relationship be-
tween head entity and tail entity is relationship. We
then apply LoRA-based continued training to train
M4 . on the organized triples dataset, enabling
it to encode domain-specific knowledge from the
graph. After that, M4 . is further adapted with

domain
. . doc+graph
graph information and becomes M =

We use the Keys from the FFN within [-th Trans-
former layer of MY . as the internal represen-
tation of document-level knowledge, denoted as

K (lioc, same as the W in equation (1). Similarly, we
treat the LoRA adapter matrices A1 B (as shown
in equation (3)) from the FFN layer of Mgggﬁ;ﬁph
as the structured knowledge source derived from

the knowledge graph in layer [, denoted as K émph.

3.2 Activation-Guided Probe Query
Construction

As suggested on (Xiao et al., 2025), existing probe
queries often rely on widely used mean pooling
strategies, which fail to capture the core seman-
tics of the question. Their attention is dispersed
across all tokens, rather than focusing on mean-
ingful anchors. This limits their effectiveness for
KV retrieval and motivates the need for a more se-
mantically grounded query construction. To solve
this issue, in our work we propose an Contextual
Activation Weight to distinguish the importance of
each query vector within a window context.

For query vector H; = [h},h, ..., k], where
t refers the t-windows, w refers the token length of
window t. We first calculate the statistical mean z*
in the window w,

L1
zt:EZhE 4)

The previous work (Xiao et al., 2025) uses Eu-
clidean distance to compute the weight of each
token, but it suffers from the limitation of treat-
ing all dimensions equally, ignoring per-dimension
variance and thus being less sensitive to meaningful
deviations in low-variance directions (Weinberger
and Saul, 2005; Xing et al., 2002). To address the
limitations of Euclidean distance, we propose us-
ing a diagonal approximation of the Mahalanobis
distance to better account for per-dimension vari-
ance. Unlike the full Mahalanobis distance, our
approach avoids expensive matrix inversion, sig-
nificantly reducing computational complexity and
runtime.
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In this formula, gb; measures how much the j-th to-
ken deviates from the mean across each dimension,
normalized by the variance ag, where d indexes
the feature dimensions, 03 denotes the variance of
the token representations along the d-th dimension
within the context window.
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Figure 2: Overview of the K2K framework, consisting of three steps: (1) Retrieval Memory Construction builds

Kdoc = [K17K27 s 7Kdm] and Kgraph = [KT7K2*»

, K, 1; (2) Activation-Guided Probe Query Construction

(Blue box function f(.)) enhances the query representation for key retrieval from Kgoc and Kgpapn; (3) Cross-
Attentive Reranking retrieves relevant document knowledge Hgo. and graph knowledge Hgpapn for the enhanced
query Q7 = f(H,"), and integrates them with the original representation H for final prediction. Here, ¢ € 1,2, 3.

In the next, we normalize the activation bias
scores gb;- across all tokens within the context win-
dow to obtain token-level weights Ck;, ensuring that
their sum equals 1. This allows us to treat the scores
as a soft attention distribution:

t
a? - w¢] i
> k=1,

In the last, we compute the enhanced probe vec-
tor (Q; for the context window by aggregating all
token vectors h} using the normalized weights .
This results in a single representation that empha-
sizes semantically important tokens:

(6)

Q= f(H)=> o -hf (7
j=1

Here, f(.) refers to the activation-guided probe
query construction function described in this part.

3.3 Cross Attention Reranking

To perform cross-attention reranking, following
RETRO (Borgeaud et al., 2022), we first split the
representation H of input sentence into a sequence
of t—1 chunks, denoted as {H;", Hy , ..., H;" | }.
H t+ represents the query embeddings constructed
by concatenating the last token of chunk C} and the
first w — 1 tokens of chunk C ;. For each chunk
C}, we compute its contextualized query representa-
tion Q;“ =f (Hj’ ) using the probe query construc-
tion method introduced in Section 3.2. Next, we re-
trieve relevant knowledge for each chunk from two
distinct knowledge sources: Document Knowl-
edge: K/, and Graph Knowledge: K/ in
the layer [. To construct the relevant document

knowledge K, and graph knowledge Ky, ,, we

compute similarity scores between the query repre-
: + ! l .

sentation ();” and K, K, araph? respectively. The

top-k most relevant vectors are selected via:

Koo = top-k (sim(Qf, Kiec))
Kapn = top-k (sim(Q7 , Klopn))
We apply Cross-Attention (CA) to rerank and
select the most relevant document knowledge H .
and graph knowledge H gt for the query repre-
sentation,

®)

raph

Héoc = CA(Q?_7 K(limn ‘/dloc)

9
ngaph = CA(Qj7 Kéraphv ‘/glraph) ( )

Each knowledge is first processed by a pooling
function P(.) to normalize the vector dimensional-
ity, after which they are fused through concatena-
tion.

Hli = [P(Héoc);P(Héraph)] (10)

We then aggregate all chunk-level fused repre-
sentations together with the input sentence repre-
sentation H and feed the combined representation
into an MLP for final prediction. The loss is defined
as:

Ls = CrossEntropy (MLP([H; Hp He;. . HY'Y), y)
an

where y denotes the ground truth label.

4 Experiments

4.1 Testbeds Setup

In this work, we use healthcare prediction as our
testbed, where relevant information is sparsely dis-
tributed and implicitly expressed within long and
complex clinical events. This setting poses signifi-
cant challenges for retrievers, as it requires captur-
ing dispersed and subtle clinical signals that are not



explicitly stated. More specifically, given hospital
visits V' = {v1, va, ..., v}y } for each patient, along
with the associated International Classification of
Diseases (ICD) codes C; for each visit, the model
aims to predict the patient’s clinical outcome y; (a
binary label). Each visit v; includes a list of ICD
codes C;, where each ICD code ¢; € C; represents
a code and is associated with a name s; in the form
of a short text snippet. In our experiments, we con-
sider two prediction tasks as testbeds: (1) Mortality
prediction, where y; indicates whether the patient
dies in the subsequent visit v;41, and (2) Readmis-
sion prediction, which predicts if the patient will
be readmitted into hospital within o days, same as
KARE (Jiang et al., 2024), we set a=15.

4.2 Dataset

III-Mort  III-Read IV-Mort IV-Read
Train 7,777 7,777 100,125 10,0125
Test 953 953 12,667 12,667
Dev 978 978 12,547 12,547

Table 1: Datasets Statistics, Mort refers to the Mortality.
III refers to the MIMIC-III. Read refers to readmission.

We use the publicly available MIMIC-III (John-
son et al., 2016) and MIMIC-IV (Johnson et al.,
2020) datasets. Table 1 presents statistics of the
processed dataset. Both datasets are split into train-
ing, validation, and test sets in a 0.8/0.1/0.1 ratio
grouped by patient and controlled with a fixed ran-
dom seed (42). We ensure that all samples from the
same patient are assigned to a single subset, with
no overlap among the training, validation, and test
instances, thereby preventing data leakage. Unlike
KARE (Jiang et al., 2024), which randomly selects
a subset of samples from MIMIC-1V, we use the
entire dataset as our testbed to more closely reflect
real-world clinical settings.

4.3 Baselines and Evaluation Metrics

Our baselines include several machine learning-
based models: GRU (Chung et al., 2014), RE-
TAIN (Choi et al., 2016), Deepr (Nguyen et al.,
2016), AdaCare (Ma et al., 2020), StageNet (Gao
et al., 2020), and TCN (Bai et al., 2018). We also
compare against KARE (Jiang et al., 2025), the
current state-of-the-art retrieval-based model for
healthcare prediction tasks. In addition, we include
standard RAG (Li et al., 2024b), which retrieves
relevant patient examples to enhance model per-
formance by using the Contriver (Izacard et al.,

2021). Furthermore, we incorporate Prompt-Based
Retrieval (Frisoni et al., 2024), which leverages
in-context learning to instruct the LLM to gen-
erate relevant medical knowledge for prediction.
Following Jiang et al. (2025, 2023b), we used F1,
Jaccard, AUPRC, and AUROC as the evaluation
methods. For implementation details, please refer
to Appendix A.1.

4.4 Main Results

Table 2 presents the main results and highlights
several key observations: (1) K2K consistently out-
performs all other methods across all datasets and
tasks. (2) Baseline retrieval methods fail to cap-
ture the semantic nuances of the input. Although
KARE enhances retrieval by combining relevant
documents with the shortest paths from the graph,
such paths may overlook critical relational informa-
tion. In contrast, our method retrieves key knowl-
edge directly from the language model’s internal
knowledge store, enabling more comprehensive
and context-aware retrieval. (3) We find that LLMs
perform worse than traditional machine learning
models when the input contains discontinuous or
complex diagnoses and suffers from class imbal-
ance between positive and negative samples. This
is also observed by Gao et al. (2025). By in-
troducing document-level knowledge and graph-
based knowledge into the language model, our
method achieves improved performance. For ex-
ample, K2K outperforms LLMs without retrieval
mechanisms on the mortality prediction task using
the MIMIC-1V dataset. (4) We found that prompt-
based retrieval outperforms standard RAG by re-
trieving knowledge from external documents, en-
abling the language model to generate more useful
information that improves the classification results,
as evidenced by improvements in AUPRC and AU-
ROC on the Mortality-MIMIC-III dataset. (5) Al-
though K2K only achieves the best Jaccard score
on Readmission-MIMIC-1V, it consistently outper-
forms all baselines across the remaining metrics.

S Analysis

To further evaluate the effectiveness of our frame-
work, we conduct a series of analyses based on
different components of our model. First, we inves-
tigate the impact of different knowledge sources
by introducing two ablations: K2K without docu-
ment knowledge and K2K without graph knowl-
edge (Section 5.1). We also assess the perfor-



Mortality-MIMIC-IIT Readmission-MIMIC-III
Type Model F1  Jaccard AUPRC AUROC F1 Jaccard AUPRC AUROC
GRU (Chung et al., 2014) 13.87 7.45 8.03 53.50 6828  51.84 52.94 50.00
RETAIN (Choi et al., 2016) 13.73 7.37 9.57 54.86 45.88 23.48 54.11 51.29
ML Deepr (Nguyen et al., 2016) 13.87 7.45 7.58 51.66 68.28 51.84 51.68 49.70
AdaCare (Ma et al., 2020) 1290  6.89 7.80 50.69 6349  46.51 52.83 5227
StageNet (Gao et al., 2020) 9.97 525 7.10 47.14 51.56 34.74 50.38 48.27
TCN (Bai et al., 2018) 11.28 5.97 6.76 45.81 65.46 48.66 49.84 47.65
. KARE (Jiang et al., 2025) 16.42 8.94 12.46 58.35 64.07 47.13 59.53 54.95
RAG Baselines
Standard RAG (Li et al., 2024b) 15.92 8.65 10.40 57.84 63.03 46.02 57.70 51.34
w/o retriever 16.00 8.69 11.61 59.40 69.17 52.87 59.07 54.61
KARE (Jiang et al., 2025) 18.01 9.90 9.72 56.65 61.64 44.55 56.67 50.97
Retrieval Modules .
(Same LLM) Standard RAG (Li et al., 2024b) 11.94 6.34 9.34 54.19 69.73  53.52 57.09 52.99
Prompt Based Retrieval (Frisoni et al., 2024) | 15.05 8.13 10.78 58.72 66.51 49.82 54.19 49.71
K2K (Our Approach) 18.55  10.22 15.22 61.05 69.31  53.03 62.49 56.64
Mortality-MIMIC-IV Readmission-MIMIC-IV
Type Model F1  Jaccard AUPRC AUROC F1 Jaccard AUPRC AUROC
GRU (Chung et al., 2014) 3.20 1.62 1.66 53.71 59.28 42.13 57.38 56.58
RETAIN (Choi et al., 2016) 278 1.41 1.43 47.18 66.77 50.12 51.44 49.61
ML Deepr (Nguyen et al., 2016) 2.86 1.46 1.57 51.48 68.13 51.66 52.27 50.44
AdaCare (Ma et al., 2020) 2.98 1.52 1.53 51.41 47.96 31.54 52.12 50.38
StageNet (Gao et al., 2020) 2.96 1.50 1.60 51.11 48.11 31.67 50.74 48.67
TCN (Bai et al., 2018) 292 1.48 1.63 54.17 53.32 36.35 51.33 49.62
RAG Baselines KARE (Jiang et al., 2025) 0.96 0.40 1.50 51.45 63.63 46.66 69.10 67.31
Standard RAG (Li et al., 2024b) 5.66 291 2.71 65.93 63.14 46.14 66.60 65.74
w/o retriever 1.08 0.50 1.30 44.61 61.30 44.20 67.86 65.83
. KARE (Jiang et al., 2025) 1.33 0.67 1.46 49.55 61.75 44.67 67.09 65.44
?{ST:EVEILIKI,I‘;"”M Standard RAG (Li et al., 2024b) 245 161 274 5592 | 6095 4384 6851  66.64
Prompt Based Retrieval (Frisoni et al., 2024) | 3.16 1.60 1.49 48.26 61.02 43.91 68.89 67.02
K2K (Our Approach) 6.61 342 2.93 66.50 63.75  46.79 68.67 66.47

Table 2: Comparative analysis of various retrieval and machine learning models for mortality and readmission
prediction tasks on the MIMIC-III and MIMIC-IV datasets. Following KARE (Jiang et al., 2025), we use the
Mixtral-based model BioMistral-7B as the LLM backbone. ML refers to machine learning based methods

mance of directly using the LLM with its internal
knowledge to make predictions, in order to validate
the effectiveness of our key knowledge retrieval
framework, which leverages cross-window atten-
tion (Section 5.2). Next, we compare different
query representation strategies to demonstrate the
effectiveness of our proposed diagonal approxima-
tion of the Mahalanobis distance (Section 5.3). Fi-
nally, we analyze the effect of retrieving knowledge
from different LLM layers (Section 5.4).

For additional experiments on K2K, including
the effect of different chunk sizes, the impact of the
hyperparameter top-k in Equation 8, and analyses
of retrieval and inference efficiency across various
retrieval methods and pipelines, please refer to Ap-
pendix C,D,E, and F.

5.1 Impact of Different Knowledge Source

Table 3 presents the results of K2K using different
knowledge sources. Specifically, K2K w/o docu-
ment refers to the variant of K2K that uses only the
retrieved graph knowledge K ;mph, as described in
Section 3.3. To ensure a fair comparison, the only
difference between K2K and its ablated versions

Model Fl Jaccard AUPRC AUROC
K2K 18.55 10.22 15.22 61.05
Mortality-IIT K2K w/o graph 2048 11.40 13.18 60.54
K2K w/o document | 16.66 9.09 10.52 55.72
K2K Ours 6.61 3.42 2.93 66.50
Mortality-IV K2K w/o graph 4.50 2.30 2.51 60.86
K2K w/o document | 3.57 1.82 2.71 66.41
K2K 69.31  53.03 62.49 56.64
Readmission-IIT K2K w/o graph 70.95 5498  60.87 54.55
K2K w/o document | 69.74  53.54 61.93 56.36
K2K Ours 63.75 46.79 68.67 66.47
Readmission-1V K2K w/o graph 5531 3823 66.14 64.06
K2K w/o document | 56.95  39.81 55.43 64.68

Table 3: Results of different knowledge sources in K2K

(w/o document or w/o graph) is the type of knowl-
edge source used. From Table 3, we observe that
the performance of K2K drops when either docu-
ment or graph knowledge is removed, especially on
the MIMIC-III dataset. Moreover, although K2K
w/o graph achieves a higher F1 score, its lower
AUPRC and AUROC suggest that it may overfit
to a specific threshold and lacks robustness in dis-
tinguishing positive cases across varying decision
boundaries. In contrast, K2K achieves more bal-
anced performance across all metrics, indicating



better generalization and retrieval effectiveness.

5.2 Direct Use vs. Retrieved Use of
Pre-trained Knowledge

Model F1 Jaccard AUPRC AUROC
K2K 18.55 10.22 15.22 61.05
LLM 4.49 229 8.67 55.62
Mortality-IIT LLM+Doc 16.00 8.69 11.61 59.40
LLM+Graph 4.50 229 8.67 55.62
LLM+Doc+Graph | 16.00 8.70 11.61 59.41
K2K 69.31  53.03 6249 56.64
LLM 64.10 47.17 60.81 54.57
Readmission-ITT LLM+Doc 69.17 52.87 59.07 54.61
LLM+Graph 4431 2846 56.57 48.87
LLM+Doc+Graph | 70.81  54.81 61.51 54.70
K2K 6.61 3.42 2.93 66.50
LLM 2.05 1.03 1.59 51.64
Mortality-IV LLM+Doc 1.08 0.50 1.30 44.61
LLM+Graph 3.24 1.60 1.52 50.08
LLM+Doc+Graph | 1.08 0.55 1.30 44.61
K2K 63.75  46.79 68.67 66.47
LLM 60.06 42.92 66.15 64.64
Readmission-IV LLM+Doc 6130  44.20 67.86 65.83
LLM+Graph 4897 3243 50.80 48.30
LLM+Doc+Graph | 54.86 37.80 51.57 49.93

Table 4: Comparison of Knowledge-Enhanced Mod-
els on Mortality and Readmission Prediction (MIMIC-
III/TV). LLM refers to Mixtral-7B. LLM+Doc denotes
BioMixtral-7B, which is obtained by further training
Mixtral-7B on a medical corpus. LLM+Graph refers
to Mixtral-7B adapted to graph-based knowledge using
LoRA. LLM+Doc+Graph represents BioMixtral-7B fur-
ther adapted to graph knowledge via LoRA.

Table 4 shows the results of the experiments of
different knowledge-enhanced models.We found
that leveraging windowed cross-attention and
Mahalanobis-guided query construction to retrieve
internal key knowledge from the LLM yields supe-
rior performance compared to directly employing a
knowledge-augmented LLM for downstream tasks.
We guess the reason is that although knowledge
augmented LLMs such as BioMixtral 7B encode
medical knowledge through pretraining, they may
not explicitly surface critical risk factors for spe-
cific knowledge. For instance, in the MIMIC-III
mortality task, the model might miss the implica-
tion of structured features like mechanical ventila-
tion or high SOFA score if not directly prompted.
In contrast, our method retrieves relevant internal
knowledge from the encoded medical graph, such
as the relations between symptoms, interventions,
and mortality and fuses it into the model input.
This structured retrieval improves the model’s abil-
ity to reason over clinical signals and enhances
prediction accuracy.

Model F1 Jaccard AUPRC AUROC

K2K 18.55 10.22 15.22 61.05
K2K w Euclidean | 16.97 9.27 9.67 57.25
K2K (Mean Only) | 12.06  6.42 845 52.51

K2K 69.31  53.03 62.49 56.64
Readmission-IIT | K2K w Euclidean | 63.27  46.28 58.26 53.25
K2K (Mean Only) | 63.98  47.03 54.67 50.92

Mortality-IIT

K2K 6.61 3.42 293 66.50

Mortality-IV K2K w Euclidean | 4.79 245 2.19 61.81
K2K (Mean Only) | 0.82 0.44 2.51 61.73

K2K 63.75  46.79 68.67 66.47

Readmission-IV | K2K w Euclidean | 63.56  46.59 67.87 66.41
K2K (Mean Only) | 56.26  39.14 67.71 65.58

Table 5: Comparison of K2K with different query con-
struction methods.

Mortality-MIMIC-III Readmission-MIMIC-111

0 40 F1 F1
5 Jaccard Jaccard
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Figure 3: K2K performance with different layer knowl-
edge. We used BioMistral-7B, which consists of 32
transformer layers.

5.3 Comparison of Query Representation
Strategies

Table 5 presents various query representation strate-
gies for assessing the importance of each query vec-
tor within a window context. K2K (Euclidean) uses
Euclidean distance for token weighting, whereas
K2K (Mean Only) computes the window represen-
tation via simple mean pooling. Table 5 shows
that our Mahalanobis-guided query representation
consistently outperforms prior approaches. Unlike
Euclidean distance, which treats all dimensions
equally, our method accounts for per-dimension
variance and emphasizes informative low-variance
directions. This leads to more precise token weight-
ing and better contextual representations. The re-
sults validate the effectiveness of variance-aware
distance metrics in enhancing retrieval-informed
reasoning.

5.4 Comparison of Knowledge from Different
LLM Layers

In this section, we conduct experiments on K2K
using knowledge (key) sources stored in differ-
ent transformer layers within the LLM. Both the
document-based knowledge and the graph-based
knowledge are extracted from the same correspond-
ing layer. Figure 3 reveals a nuanced deviation



from the conventional view that upper layers in
Transformers primarily encode semantic features
while lower layers capture shallow, surface-level
patterns. Although the final layers (e.g., Layer 30+)
do contribute positively to performance in both
Mortality-MIMIC-III and Readmission-MIMIC-III
tasks, this improvement is not strictly monotonic.
Notably, several shallow layers (e.g., Layers 5, 8,
and 10) also exhibit strong performance across mul-
tiple metrics, indicating that valuable structural or
entity-level knowledge resides in the lower layers
as well. Furthermore, the impact of each layer
varies across different evaluation metrics (F1, Jac-
card, AUROC), suggesting that knowledge is dis-
tributed in a non-linear fashion throughout the net-
work. These findings underscore the importance of
considering both shallow and deep layers in knowl-
edge extraction and reasoning tasks.

6 Related Work

Many studies (Lewis et al., 2020; Guu et al., 2020;
Li and Huang, 2023; Li et al., 2025; Jiang et al.,
2025), have been proposed to use retrieved infor-
mation from various knowledge stores to better
understand the text or generate the expected out-
put. For example, KIEST (Li and Huang, 2023)
dynamically injects retrieved entity and attribute
knowledge from the knowledge graph when gen-
erating the entity or attribute in the task of entity
stage changes. REALM (Guu et al., 2020) em-
ploys a gradient-based method to reward the re-
triever, leading to improved prediction accuracy,
while. KARE (Jiang et al., 2025) identifies rele-
vant entities for each concept in the question and
constructs a subgraph using the shortest paths be-
tween the retrieved entities and the query concept
to provide structured relational context for down-
stream reasoning and answer generation. Biome-
dRAG (Li et al., 2025) employs a dynamic retrieval
mechanism to rerank the initially retrieved top-k
chunks from a constructed, diverse chunk database.
RETRO (Borgeaud et al., 2022) proposes a chunk-
based approach that uses attention mechanisms
to rerank the retrieved top-k knowledge segments
from an external knowledge base. To mitigate
the challenges associated with injecting lengthy
retrieved knowledge and to reduce retrieval latency
from massive, heterogeneous knowledge sources,
we propose a novel approach that retrieves knowl-
edge directly from the key space of the LLM using
a top-k and cross-window attention mechanism.

Recent work (Xiao et al., 2024; Liu et al., 2024;
Fountas et al., 2025) has focused on designing re-
trieval modules that extract relevant information
from the a key-value (KV) cache based on probe
queries constructed from the current context to-
kens. These methods typically treat the current
sliding window as a probe query to retrieve rele-
vant key-value pairs from memory. However, most
of these approaches overlook the importance of
probe construction in the retrieval process, despite
the fact that large language models (LLMs) are not
inherently optimized for retrieval tasks. There are
few works to explore how to construct the probe
query in the key retrieval of the LLM. For exam-
ple, the ActQKV (Xiao et al., 2025) proposes an
activation-aware probe query mechanism that se-
lects key tokens based on their activation methods
and employs Euclidean distance to retrieve the most
relevant key-value pairs. Nevertheless, this method
assumes equal importance across all embedding di-
mensions, thereby ignoring per-dimension variance
and reducing sensitivity to meaningful deviations
in low-variance directions. This motivated us to
develop a Mahalanobis-guided probe query con-
struction method.

7 Conclusion

In this paper, we propose Keys-to-Knowledge
(K2K), a novel retrieval framework that bypasses
traditional external retrieval pipelines by leverag-
ing the internal knowledge representations encoded
within large language models. Unlike conven-
tional RAG methods that rely on prompt-based
input expansion, K2K retrieves relevant knowl-
edge directly from the model’s key space through a
training-free, efficient mechanism. By incorporat-
ing Mahalanobis-guided query representation, and
cross-window attention for dynamic multi-source
integration, K2K demonstrates strong potential in
enhancing reasoning and prediction in knowledge-
intensive tasks. Our findings suggest that internal
representations of LLMs are not only latent carriers
of knowledge but can be explicitly accessed and
utilized to improve performance without additional
labeled data or costly retriever training.

8 Limitations

While our proposed K2K framework demonstrates
strong performance in internal knowledge retrieval
and integration, it still has several limitations. First,
the retrieval memory is constructed from fixed lay-



ers of a pre-trained language model. Although
the injected knowledge via LoRA enables domain
adaptation, our current approach does not dynam-
ically select which layers or representations (e.g.,
early vs. late FFN layers) are most informative
for retrieval. Incorporating a layer-wise selection
mechanism may further improve retrieval fidelity
and efficiency. Second, our framework has been
primarily evaluated within the biomedical domain.
In the future, we plan to explore more challeng-
ing tasks and address the issue of data imbalance
within these tasks.
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A Appendices

A.1 Implementation Detail

In this paper, we use Mistral-7B (Jiang et al.,
2023a) as the My, and employ BioMistral-
7B (Labrak et al., 2024) as the MY, ... The chunk
size is set to 64 throughout this work. For the top-k
values, we use k£ = 5 for Mortality-MIMIC-III,
k = 20 for Readmission-MIMIC-III and Mortality-
MIMIC-1V, and k£ = 10 for Readmission-MIMIC-

IV. The same LLM backbone is used during both



the retrieval phase, when keys are extracted, and
the training/inference phases, when those keys are
utilized, ensuring alignment in the representation
space. We use AdamW as our optimizer, with a
learning rate of 2 x 1075 and e set to 1 x 10~%. The
batch size is 16. For the cross-attention module,
we set the model dimension to 4096 and apply a
dropout rate of 0.3.

A.2 Separately retrieval

We intentionally use only the base component W7
from the final FFN layer of MY% . to represent
document knowledge. This design is motivated by
the need to preserve a clear and interpretable sepa-
ration between knowledge sources. Specifically, (1)
theoretically, unstructured document knowledge
(captured by W) and structured graph knowledge
(injected via AB) differ fundamentally in format
and reasoning mechanisms, and thus should not be
merged directly in representation; (2) in practice,
combining them into a single matrix W; + AB
would entangle their contributions, making it diffi-
cult to analyze or attribute model behavior to spe-
cific knowledge types; and (3) from an engineer-
ing perspective, separating the two enables more
modular system design, facilitates ablation studies,
debugging, incremental updates, and future knowl-
edge extension.

B Mahalanobis distance
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Figure 4 shows the K2K performance of different
chunk sizes on the dataset MIMIC-III Mortality.
We choose four chunk sizes: 16, 32, 64, and 128.
We observe that smaller chunk sizes (e.g., 16) lead
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Figure 4: K2K performance with different chunk sizes.
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Figure 5: K2K Performance Across Different Top-k
Retrieved Knowledge Values on MIMIC-III.

to higher F1 scores, indicating that finer granularity
benefits the identification of relevant knowledge
segments. However, chunk size 64 achieves the
highest AUPRC and AUROC, suggesting it better
balances precision and recall for more robust clas-
sification. Larger chunk sizes may reduce retrieval
frequency but risk diluting critical signals. There-
fore, chunk size selection should consider both task
sensitivity and retrieval efficiency.

D Ablation Study on Top-£ Retrieval

€ HQilfgures 5 and 6 demonstrate how the number of

retrieved knowledge entries (top-k) affects the per-
formance of K2K on both MIMIC-III and MIMIC-
IV datasets. For MIMIC-III, performance gener-
ally improves with increasing top-k, with the best
F1 (20.61) and Jaccard (11.49) observed at k=25
for the mortality task, while the readmission task
achieves optimal results at k=20-25. Notably, AU-
ROC and AUPRC peak at k=20, suggesting a bal-
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Figure 6: K2K Performance Across Different Top-k
Retrieved Knowledge Values on MIMIC-IV.

ance between sufficient context and noise control.
In contrast, for MIMIC-IV, mortality prediction
shows a performance peak at k=20 across all met-
rics, particularly for F1 and AUPRC, while read-
mission results are relatively stable across k values,
with the highest F1 (63.75) and AUPRC (68.67) at
k=10. However, large k values (e.g., k=25) tend
to hurt AUROC, especially for readmission. These
results indicate that task-specific tuning of top-k is
crucial, and that mortality prediction benefits more
from increasing top-k, while readmission may re-
quire a smaller, more focused knowledge set.

E Retrieval Efficiency Comparison
Across different Retrieval methods

Compared to prior retrieval approaches, our K2K
method demonstrates substantially higher effi-
ciency. Specifically, KARE performs multi-stage
reasoning by first retrieving co-existing concepts
appear in each patient’s data and then computing
the shortest paths between the concepts and the
co-existing concepts over a large knowledge graph.
This results in a total complexity of O(k(|V] +
|E|)), where k is the number of co-existing con-
cepts, and |V, |E| are the number of nodes and
edges in the graph, respectively. Contriever, a
dense retriever, encodes the query and computes
similarities across the entire corpus, resulting in
a time complexity of O(Nd) without approxima-
tion, where N is the number of documents and
d is the embedding dimension. Prompt-based re-
trieval avoids external indexing but relies on LLM
generation conditioned on carefully designed in-
structions, which incurs substantial inference cost
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at O(L-n?-h), where L is the number of layers, n
is the token length, and h is the number of attention
heads.

In contrast, K2K bypasses both external doc-
ument retrieval and graph traversal by directly
reusing the internal knowledge of the LLM. It re-
trieves relevant knowledge by comparing current
input representations with pre-trained FFN keys
and LoRA adapter keys from a specific transformer
layer. This enables fast memory access with a time
complexity of only O(m) or O(mk) (for top-k se-
lection), where m is the number of tokens. By
removing the need for external retrieval or gen-
eration, K2K achieves the fastest inference speed
among all retrievers while maintaining high accu-
racy, demonstrating the efficiency and practicality
of internal knowledge utilization.

F Inference Efficiency Comparison
Across Different Retrieval Pipelines

Compared with traditional RAG pipelines that rely
on document or graph retrieval, our K2K frame-
work significantly reduces inference cost by avoid-
ing long-text prompting. In standard document re-
trieval, the retrieved contents are textual sequences
that must be concatenated with the query as ad-
ditional context, leading to an inference cost of
O(N - T - d), where N is the number of retrieved
documents, 7" is the average number of tokens per
document, and d is the hidden dimension of the
LLM. In contrast, K2K retrieves fixed-size internal
memory vectors from the model itself, resulting
in a much smaller cost of O(k - d), where k is the
number of keys retrieved, independent of token
length. Furthermore, graph-based retrieval meth-
ods introduce an additional computational burden.
Identifying relevant paths or subgraphs in a large-
scale knowledge graph is typically NP-hard, which
further increases the end-to-end latency. By retriev-
ing and reweighting internal key vectors through
cross-attention reranking, K2K bypasses both the
inefficiencies of long-context prompting and the
combinatorial complexity of graph path enumera-
tion.
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