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Abstract001

Retrieval-augmented generation (RAG) has002
emerged as a powerful approach for improv-003
ing the factual accuracy of large language mod-004
els (LLMs), particularly by mitigating halluci-005
nations, incorporating up-to-date information,006
and enhancing generalization across domains.007
However, current RAG methods often suffer008
from limitations due to their reliance on ex-009
tended input prompts and a dependency on010
supervised retrievers for external knowledge011
access. In this work, we introduce Keys-to-012
Knowledge (K2K), a novel retrieval framework013
that shifts the paradigm from external docu-014
ment retrieval to internal, key-based knowledge015
retrieval within the LLM itself. K2K employs016
lightweight knowledge infusion to encode es-017
sential information directly into the model’s pa-018
rameter space, enabling the use of its internal019
key-value memory for retrieval. To improve the020
quality of query representations, we propose an021
activation-guided probe construction method.022
Furthermore, we introduce a cross-attention023
reranking mechanism to extract diverse and rel-024
evant information from the model’s enriched025
internal knowledge. Experimental results on026
health outcome predictions demonstrate that027
K2K significantly improves both the efficiency028
and effectiveness of knowledge-intensive tasks,029
offering a promising alternative to traditional030
RAG approaches by eliminating the need for031
external retrieval pipelines. 1032

1 Introduction033

Large Language Models (LLMs) have demon-034

strated strong performance across a wide range035

of natural language processing (NLP) tasks, such036

as link prediction, question answering, text classi-037

fication, etc (Li and Ji, 2022; Achiam et al., 2023;038

Li et al., 2024a; Guo et al., 2025). However, a039

fundamental limitation remains: it is challenging040

1The code is available here: https://anonymous.4open.
science/r/K2K-2390/README.md

Diagnosis: Paroxysmal tachycardia NOS. Atrial fibrillation. 
Atrial flutter. Premature beats NOS. Tachycardia NOS. 
Palpitations.
Question X: Is the predicted modality of the next visit 
emergency based on the input diagnosis?
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Figure 1: Comparison of retrieval-augmented genera-
tion pipelines and our proposed K2K Approach.

for LLMs to incorporate newly emerging knowl- 041

edge beyond their static pre-training data. To ad- 042

dress this, retrieval-augmented generation (RAG) 043

has emerged as an effective solution (Lewis et al., 044

2020; Li et al., 2025), enabling LLMs to dynam- 045

ically retrieve relevant information from external 046

corpora, thereby enhancing performance on down- 047

stream tasks. 048

Existing studies have explored various aspects 049

of the RAG pipeline, with most efforts focusing on 050

knowledge retrieval from structured sources (e.g., 051

knowledge graphs, Wikidata) (Li and Huang, 2023; 052

Zhang et al., 2025), unstructured documents (Jin 053

et al., 2025). As shown in Figure 1, Pipelines 2 and 054
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3. While these approaches have improved RAG055

performance, recent studies (Su et al., 2025) have056

highlighted two main limitations. First, Injecting057

knowledge through input prompts inevitably in-058

creases the context length, especially for tasks with059

already long inputs. Second, training a high-quality060

retriever remains a challenging task. Developing061

customized retrieval modules typically requires a062

large number of query-context pairs for supervised063

training, which imposes substantial demands on la-064

beled data and computational resources, especially065

when dealing with massive, heterogeneous knowl-066

edge sources.067

As prior work (Geva et al., 2020) has demon-068

strated, the Keys in the feed-forward layers (FFN)069

of transformer-based language models implicitly070

store factual knowledge. These Keys correspond071

to the vectors of the first projection matrix in the072

FFN, representing semantic units. One potential073

direction to address the above limitations is to re-074

trieve these Keys as a source of internal knowledge.075

This approach bypasses the need to inject a long076

external context, thereby avoiding excessive input077

length, and also eliminates the dependence on ex-078

ternal retrievers that require supervised training,079

since the knowledge is accessed directly from the080

model’s own parameters.081

However, using the query without incorporating082

contextual activation signals to retrieve top-k Keys083

do not guarantee accurate and relevant retrieval084

from the knowledge space. In our preliminary ex-085

periments, we observed that different queries often086

yield highly similar retrieved Keys, suggesting that087

the resulting probe query representations exhibit088

low discriminative power. In particular, these repre-089

sentations tend to obscure important semantic dis-090

tinctions, ultimately leading to less effective knowl-091

edge retrieval. A similar observation was also re-092

ported by (Xiao et al., 2025). Otherwise, directly093

retrieving knowledge from the LLM’s internal key094

space by top-k strategies lacks interpretability and095

structural awareness, as the retrieved key vectors096

are latent and not grounded in explicit sources like097

documents or knowledge graphs. Moreover, the098

retrieval process is static and non-adaptive, lacking099

explicit semantic signals to guide the reweighting100

of the retrieved knowledge.101

To solve these issues, we propose Keys-to-102

Knowledge (K2K), a novel retrieval framework103

that directly retrieves key-based knowledge from104

LLMs infused with external information. The105

framework consists of three main components: In-106

ternal Memory Construction, Activation-Guided 107

Probe Query Construction, and Cross-Attentive 108

Reranking, as shown in Figure 1, the numbered 109

circle 4. 110

More specifically, 1) We construct a retrieval 111

memory from the pre-trained language model. For 112

knowledge not present in the pre-training corpus, 113

we apply LoRA (Hu et al., 2021) to adapt the model 114

and inject new knowledge. The Keys stored in the 115

FFN layers collectively form this retrieval mem- 116

ory. This mitigates the reliance on external retriev- 117

ers and alleviates the burden caused by long input 118

contexts. 2) To effectively estimate the important 119

tokens during inference and recognize the scarce 120

outlier features, we construct the probe-query2 for 121

each context window to retrieve the relevant knowl- 122

edge from retrieval memory, and designate acti- 123

vated query vectors with prominent activation bias 124

to dominate the representation of probe-query for 125

accurate retrieval, where the activation bias is com- 126

puted by a diagonal approximation of the Maha- 127

lanobis distance between each token and the mean 128

token to balance per-dimension variance. 3) Due to 129

the varying relevance and structural dependencies 130

across different knowledge, as well as the need for 131

dynamic, context-dependent integration, we intro- 132

duce a cross-attentive reranking mechanism that dy- 133

namically integrates multi-source knowledge con- 134

ditioned on the query. 135

2 Preliminaries 136

2.1 Feed-Forward Layers as Unnormalized 137

Key Memories 138

Feed-forward Layers In transformer-based ar- 139

chitectures (Vaswani et al., 2017), the feed-forward 140

network (FFN) operates alongside the self-attention 141

mechanism and plays a crucial role in representa- 142

tions. Each feedforward layer is a position-wise 143

function, processing each input vector indepen- 144

dently. Given an input vector x ∈ Rd, typically 145

obtained from the attention layer, the output of the 146

feed-forward layer FF(.) can be formulated as: 147

FF(x) = W2 · f(x ·W1) (1) 148

To align this with the key-value memory (Geva 149

et al., 2020), we can define : 150

FF(x) = V · f(x ·K⊤) (2) 151

2A probe query is a representation derived from the current
input that is used to retrieve relevant information from the
model’s internal key space.
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where K,V ∈ Rdm×d are learnable weight152

matrices,K⊤ = W1 and V = W2, and f(·) de-153

notes an activation function such as ReLU.154

Feed-forward Layers in Lora To incorporate155

specific knowledge to the LLM, we follow the low-156

rank adaptation (LoRA) formulation by introducing157

trainable matrices A ∈ Rh×r and B ∈ Rr×k, such158

that the FFN becomes:159

FF(x) = (W2 +∆W2) · f(x · (W1 +∆W1))160

= (W2 +A2B2) · f(x · (W1 +A1B1))
(3)

161

where W ∈ Rh×k is the original pre-trained162

weight matrix, and f(·) denotes an activation func-163

tion such as ReLU. where, K⊤ = W1+A1B1 and164

V = W2 +A2B2.165

3 Methodology166

As illustrated in Figure 2, our K2K has three167

stages (1) Retrieval memory construction, (2)168

Activation-guided probe query construction for169

knowledge matching, and (3) a cross-attention170

reranking method is used to retrieve the key knowl-171

edge.172

3.1 Retrieval Memory Construction173

In our work, the retrieval memory primarily con-174

sists of two types of information: (1) document175

knowledge and (2) graph knowledge. To construct176

the memory from the document level, we begin177

by leveraging a pretrained large language model178

(Mbase) as the backbone. A common approach179

to encoding domain-specific document knowledge180

into an Mbase is through continued pretraining.181

As an alternative to costly continued pretrain-182

ing, we adopt an existing domain-adapted model183

(Mdoc
domain).184

To adapt the graph information, we first con-185

vert each triple in the graph into its correspond-186

ing textual description, such as the relationship be-187

tween head entity and tail entity is relationship. We188

then apply LoRA-based continued training to train189

Mdoc
domain on the organized triples dataset, enabling190

it to encode domain-specific knowledge from the191

graph. After that, Mdoc
domain is further adapted with192

graph information and becomes Mdoc+graph
domain .193

We use the Keys from the FFN within l-th Trans-194

former layer of Mdoc
domain as the internal represen-195

tation of document-level knowledge, denoted as196

K l
doc, same as the W1 in equation (1). Similarly, we 197

treat the LoRA adapter matrices A1B1 (as shown 198

in equation (3)) from the FFN layer of Mdoc+graph
domain 199

as the structured knowledge source derived from 200

the knowledge graph in layer l, denoted as K l
graph. 201

3.2 Activation-Guided Probe Query 202

Construction 203

As suggested on (Xiao et al., 2025), existing probe 204

queries often rely on widely used mean pooling 205

strategies, which fail to capture the core seman- 206

tics of the question. Their attention is dispersed 207

across all tokens, rather than focusing on mean- 208

ingful anchors. This limits their effectiveness for 209

KV retrieval and motivates the need for a more se- 210

mantically grounded query construction. To solve 211

this issue, in our work we propose an Contextual 212

Activation Weight to distinguish the importance of 213

each query vector within a window context. 214

For query vector Ht = [ht1, h
t
2, . . . , h

t
w], where 215

t refers the t-windows, w refers the token length of 216

window t. We first calculate the statistical mean z̄t 217

in the window w, 218

z̄t =
1

w

w∑
j=1

htj (4) 219

The previous work (Xiao et al., 2025) uses Eu- 220

clidean distance to compute the weight of each 221

token, but it suffers from the limitation of treat- 222

ing all dimensions equally, ignoring per-dimension 223

variance and thus being less sensitive to meaningful 224

deviations in low-variance directions (Weinberger 225

and Saul, 2005; Xing et al., 2002). To address the 226

limitations of Euclidean distance, we propose us- 227

ing a diagonal approximation of the Mahalanobis 228

distance to better account for per-dimension vari- 229

ance. Unlike the full Mahalanobis distance, our 230

approach avoids expensive matrix inversion, sig- 231

nificantly reducing computational complexity and 232

runtime. 233

ϕt
j ≈

√√√√ D∑
d=1

(htj,d − z̄td)
2

σ2
d

(5) 234

In this formula, ϕt
j measures how much the j-th to- 235

ken deviates from the mean across each dimension, 236

normalized by the variance σ2
d, where d indexes 237

the feature dimensions, σ2
d denotes the variance of 238

the token representations along the d-th dimension 239

within the context window. 240
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Figure 2: Overview of the K2K framework, consisting of three steps: (1) Retrieval Memory Construction builds
Kdoc = [K1,K2, · · · ,Kdm] and Kgraph = [K∗

1 ,K
∗
2 , · · · ,K∗

dm]; (2) Activation-Guided Probe Query Construction
(Blue box function f(.)) enhances the query representation for key retrieval from Kdoc and Kgraph; (3) Cross-
Attentive Reranking retrieves relevant document knowledge Hdoc and graph knowledge Hgraph for the enhanced
query Q+

t = f(H+
t ), and integrates them with the original representation H for final prediction. Here, t ∈ 1, 2, 3.

In the next, we normalize the activation bias241

scores ϕt
j across all tokens within the context win-242

dow to obtain token-level weights αt
j , ensuring that243

their sum equals 1. This allows us to treat the scores244

as a soft attention distribution:245

αt
j =

ϕt
j∑w

k=1 ϕ
t
k

(6)246

In the last, we compute the enhanced probe vec-247

tor Qt for the context window by aggregating all248

token vectors htj using the normalized weights αt
j .249

This results in a single representation that empha-250

sizes semantically important tokens:251

Qt = f(Ht) =
w∑

j=1

αt
j · htj (7)252

Here, f(.) refers to the activation-guided probe253

query construction function described in this part.254

3.3 Cross Attention Reranking255

To perform cross-attention reranking, following256

RETRO (Borgeaud et al., 2022), we first split the257

representation H of input sentence into a sequence258

of t−1 chunks, denoted as {H+
1 , H+

2 , . . . ,H+
t−1}.259

H+
t represents the query embeddings constructed260

by concatenating the last token of chunk Ct and the261

first w − 1 tokens of chunk Ct+1. For each chunk262

Ct, we compute its contextualized query representa-263

tion Q+
t = f(H+

t ) using the probe query construc-264

tion method introduced in Section 3.2. Next, we re-265

trieve relevant knowledge for each chunk from two266

distinct knowledge sources: Document Knowl-267

edge: K l
doc and Graph Knowledge: K l

graph in268

the layer l. To construct the relevant document269

knowledge K t
doc and graph knowledge K t

graph, we270

compute similarity scores between the query repre- 271

sentation Q+
t and K l

doc, K l
graph, respectively. The 272

top-k most relevant vectors are selected via: 273

Kt
doc = top-k

(
sim(Q+

t ,K
l
doc)

)
Kt

graph = top-k
(
sim(Q+

t ,K
l
graph)

) (8) 274

We apply Cross-Attention (CA) to rerank and 275

select the most relevant document knowledge Ht
doc 276

and graph knowledge Ht
graph for the query repre- 277

sentation, 278

Ht
doc = CA(Q+

t ,K
t
doc, V

t
doc)

Ht
graph = CA(Q+

t ,K
t
graph, V

t
graph)

(9) 279

Each knowledge is first processed by a pooling 280

function P (.) to normalize the vector dimensional- 281

ity, after which they are fused through concatena- 282

tion. 283

Ht
k = [P (Ht

doc);P (Ht
graph)] (10) 284

We then aggregate all chunk-level fused repre- 285

sentations together with the input sentence repre- 286

sentation H and feed the combined representation 287

into an MLP for final prediction. The loss is defined 288

as: 289

Lcls = CrossEntropy
(
MLP([H; H1

k ;H
2
k ; . . . ;H

t−1
k ]), y

)
(11) 290

where y denotes the ground truth label. 291

4 Experiments 292

4.1 Testbeds Setup 293

In this work, we use healthcare prediction as our 294

testbed, where relevant information is sparsely dis- 295

tributed and implicitly expressed within long and 296

complex clinical events. This setting poses signifi- 297

cant challenges for retrievers, as it requires captur- 298

ing dispersed and subtle clinical signals that are not 299
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explicitly stated. More specifically, given hospital300

visits V = {v1, v2, ..., v|V |} for each patient, along301

with the associated International Classification of302

Diseases (ICD) codes Ci for each visit, the model303

aims to predict the patient’s clinical outcome yi (a304

binary label). Each visit vi includes a list of ICD305

codes Ci, where each ICD code ci ∈ Ci represents306

a code and is associated with a name si in the form307

of a short text snippet. In our experiments, we con-308

sider two prediction tasks as testbeds: (1) Mortality309

prediction, where yi indicates whether the patient310

dies in the subsequent visit vi+1, and (2) Readmis-311

sion prediction, which predicts if the patient will312

be readmitted into hospital within α days, same as313

KARE (Jiang et al., 2024), we set α=15.314

4.2 Dataset315

III-Mort III-Read IV-Mort IV-Read

Train 7,777 7,777 100,125 10,0125

Test 953 953 12,667 12,667

Dev 978 978 12,547 12,547

Table 1: Datasets Statistics, Mort refers to the Mortality.
III refers to the MIMIC-III. Read refers to readmission.

We use the publicly available MIMIC-III (John-316

son et al., 2016) and MIMIC-IV (Johnson et al.,317

2020) datasets. Table 1 presents statistics of the318

processed dataset. Both datasets are split into train-319

ing, validation, and test sets in a 0.8/0.1/0.1 ratio320

grouped by patient and controlled with a fixed ran-321

dom seed (42). We ensure that all samples from the322

same patient are assigned to a single subset, with323

no overlap among the training, validation, and test324

instances, thereby preventing data leakage. Unlike325

KARE (Jiang et al., 2024), which randomly selects326

a subset of samples from MIMIC-IV, we use the327

entire dataset as our testbed to more closely reflect328

real-world clinical settings.329

4.3 Baselines and Evaluation Metrics330

Our baselines include several machine learning-331

based models: GRU (Chung et al., 2014), RE-332

TAIN (Choi et al., 2016), Deepr (Nguyen et al.,333

2016), AdaCare (Ma et al., 2020), StageNet (Gao334

et al., 2020), and TCN (Bai et al., 2018). We also335

compare against KARE (Jiang et al., 2025), the336

current state-of-the-art retrieval-based model for337

healthcare prediction tasks. In addition, we include338

standard RAG (Li et al., 2024b), which retrieves339

relevant patient examples to enhance model per-340

formance by using the Contriver (Izacard et al.,341

2021). Furthermore, we incorporate Prompt-Based 342

Retrieval (Frisoni et al., 2024), which leverages 343

in-context learning to instruct the LLM to gen- 344

erate relevant medical knowledge for prediction. 345

Following Jiang et al. (2025, 2023b), we used F1, 346

Jaccard, AUPRC, and AUROC as the evaluation 347

methods. For implementation details, please refer 348

to Appendix A.1. 349

4.4 Main Results 350

Table 2 presents the main results and highlights 351

several key observations: (1) K2K consistently out- 352

performs all other methods across all datasets and 353

tasks. (2) Baseline retrieval methods fail to cap- 354

ture the semantic nuances of the input. Although 355

KARE enhances retrieval by combining relevant 356

documents with the shortest paths from the graph, 357

such paths may overlook critical relational informa- 358

tion. In contrast, our method retrieves key knowl- 359

edge directly from the language model’s internal 360

knowledge store, enabling more comprehensive 361

and context-aware retrieval. (3) We find that LLMs 362

perform worse than traditional machine learning 363

models when the input contains discontinuous or 364

complex diagnoses and suffers from class imbal- 365

ance between positive and negative samples. This 366

is also observed by Gao et al. (2025). By in- 367

troducing document-level knowledge and graph- 368

based knowledge into the language model, our 369

method achieves improved performance. For ex- 370

ample, K2K outperforms LLMs without retrieval 371

mechanisms on the mortality prediction task using 372

the MIMIC-IV dataset. (4) We found that prompt- 373

based retrieval outperforms standard RAG by re- 374

trieving knowledge from external documents, en- 375

abling the language model to generate more useful 376

information that improves the classification results, 377

as evidenced by improvements in AUPRC and AU- 378

ROC on the Mortality-MIMIC-III dataset. (5) Al- 379

though K2K only achieves the best Jaccard score 380

on Readmission-MIMIC-IV, it consistently outper- 381

forms all baselines across the remaining metrics. 382

5 Analysis 383

To further evaluate the effectiveness of our frame- 384

work, we conduct a series of analyses based on 385

different components of our model. First, we inves- 386

tigate the impact of different knowledge sources 387

by introducing two ablations: K2K without docu- 388

ment knowledge and K2K without graph knowl- 389

edge (Section 5.1). We also assess the perfor- 390
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Mortality-MIMIC-III Readmission-MIMIC-III
Type Model F1 Jaccard AUPRC AUROC F1 Jaccard AUPRC AUROC

ML

GRU (Chung et al., 2014) 13.87 7.45 8.03 53.50 68.28 51.84 52.94 50.00

RETAIN (Choi et al., 2016) 13.73 7.37 9.57 54.86 45.88 23.48 54.11 51.29

Deepr (Nguyen et al., 2016) 13.87 7.45 7.58 51.66 68.28 51.84 51.68 49.70

AdaCare (Ma et al., 2020) 12.90 6.89 7.80 50.69 63.49 46.51 52.83 52.27

StageNet (Gao et al., 2020) 9.97 5.25 7.10 47.14 51.56 34.74 50.38 48.27

TCN (Bai et al., 2018) 11.28 5.97 6.76 45.81 65.46 48.66 49.84 47.65

RAG Baselines
KARE (Jiang et al., 2025) 16.42 8.94 12.46 58.35 64.07 47.13 59.53 54.95

Standard RAG (Li et al., 2024b) 15.92 8.65 10.40 57.84 63.03 46.02 57.70 51.34

Retrieval Modules
(Same LLM)

w/o retriever 16.00 8.69 11.61 59.40 69.17 52.87 59.07 54.61

KARE (Jiang et al., 2025) 18.01 9.90 9.72 56.65 61.64 44.55 56.67 50.97

Standard RAG (Li et al., 2024b) 11.94 6.34 9.34 54.19 69.73 53.52 57.09 52.99

Prompt Based Retrieval (Frisoni et al., 2024) 15.05 8.13 10.78 58.72 66.51 49.82 54.19 49.71

K2K (Our Approach) 18.55 10.22 15.22 61.05 69.31 53.03 62.49 56.64

Mortality-MIMIC-IV Readmission-MIMIC-IV
Type Model F1 Jaccard AUPRC AUROC F1 Jaccard AUPRC AUROC

ML

GRU (Chung et al., 2014) 3.20 1.62 1.66 53.71 59.28 42.13 57.38 56.58

RETAIN (Choi et al., 2016) 2.78 1.41 1.43 47.18 66.77 50.12 51.44 49.61

Deepr (Nguyen et al., 2016) 2.86 1.46 1.57 51.48 68.13 51.66 52.27 50.44

AdaCare (Ma et al., 2020) 2.98 1.52 1.53 51.41 47.96 31.54 52.12 50.38

StageNet (Gao et al., 2020) 2.96 1.50 1.60 51.11 48.11 31.67 50.74 48.67

TCN (Bai et al., 2018) 2.92 1.48 1.63 54.17 53.32 36.35 51.33 49.62

RAG Baselines
KARE (Jiang et al., 2025) 0.96 0.40 1.50 51.45 63.63 46.66 69.10 67.31

Standard RAG (Li et al., 2024b) 5.66 2.91 2.71 65.93 63.14 46.14 66.60 65.74

Retrieval Modules
(Same LLM)

w/o retriever 1.08 0.50 1.30 44.61 61.30 44.20 67.86 65.83

KARE (Jiang et al., 2025) 1.33 0.67 1.46 49.55 61.75 44.67 67.09 65.44

Standard RAG (Li et al., 2024b) 2.45 1.61 2.74 55.92 60.95 43.84 68.51 66.64

Prompt Based Retrieval (Frisoni et al., 2024) 3.16 1.60 1.49 48.26 61.02 43.91 68.89 67.02

K2K (Our Approach) 6.61 3.42 2.93 66.50 63.75 46.79 68.67 66.47

Table 2: Comparative analysis of various retrieval and machine learning models for mortality and readmission
prediction tasks on the MIMIC-III and MIMIC-IV datasets. Following KARE (Jiang et al., 2025), we use the
Mixtral-based model BioMistral-7B as the LLM backbone. ML refers to machine learning based methods

mance of directly using the LLM with its internal391

knowledge to make predictions, in order to validate392

the effectiveness of our key knowledge retrieval393

framework, which leverages cross-window atten-394

tion (Section 5.2). Next, we compare different395

query representation strategies to demonstrate the396

effectiveness of our proposed diagonal approxima-397

tion of the Mahalanobis distance (Section 5.3). Fi-398

nally, we analyze the effect of retrieving knowledge399

from different LLM layers (Section 5.4).400

For additional experiments on K2K, including401

the effect of different chunk sizes, the impact of the402

hyperparameter top-k in Equation 8, and analyses403

of retrieval and inference efficiency across various404

retrieval methods and pipelines, please refer to Ap-405

pendix C,D,E, and F.406

5.1 Impact of Different Knowledge Source407

Table 3 presents the results of K2K using different408

knowledge sources. Specifically, K2K w/o docu-409

ment refers to the variant of K2K that uses only the410

retrieved graph knowledge Kt
graph, as described in411

Section 3.3. To ensure a fair comparison, the only412

difference between K2K and its ablated versions413

Model F1 Jaccard AUPRC AUROC

Mortality-III

K2K 18.55 10.22 15.22 61.05
K2K w/o graph 20.48 11.40 13.18 60.54

K2K w/o document 16.66 9.09 10.52 55.72

Mortality-IV

K2K Ours 6.61 3.42 2.93 66.50
K2K w/o graph 4.50 2.30 2.51 60.86

K2K w/o document 3.57 1.82 2.71 66.41

Readmission-III

K2K 69.31 53.03 62.49 56.64
K2K w/o graph 70.95 54.98 60.87 54.55

K2K w/o document 69.74 53.54 61.93 56.36

Readmission-IV

K2K Ours 63.75 46.79 68.67 66.47
K2K w/o graph 55.31 38.23 66.14 64.06

K2K w/o document 56.95 39.81 55.43 64.68

Table 3: Results of different knowledge sources in K2K

(w/o document or w/o graph) is the type of knowl- 414

edge source used. From Table 3, we observe that 415

the performance of K2K drops when either docu- 416

ment or graph knowledge is removed, especially on 417

the MIMIC-III dataset. Moreover, although K2K 418

w/o graph achieves a higher F1 score, its lower 419

AUPRC and AUROC suggest that it may overfit 420

to a specific threshold and lacks robustness in dis- 421

tinguishing positive cases across varying decision 422

boundaries. In contrast, K2K achieves more bal- 423

anced performance across all metrics, indicating 424

6



better generalization and retrieval effectiveness.425

5.2 Direct Use vs. Retrieved Use of426

Pre-trained Knowledge427

Model F1 Jaccard AUPRC AUROC

Mortality-III

K2K 18.55 10.22 15.22 61.05
LLM 4.49 2.29 8.67 55.62

LLM+Doc 16.00 8.69 11.61 59.40

LLM+Graph 4.50 2.29 8.67 55.62

LLM+Doc+Graph 16.00 8.70 11.61 59.41

Readmission-III

K2K 69.31 53.03 62.49 56.64
LLM 64.10 47.17 60.81 54.57

LLM+Doc 69.17 52.87 59.07 54.61

LLM+Graph 44.31 28.46 56.57 48.87

LLM+Doc+Graph 70.81 54.81 61.51 54.70

Mortality-IV

K2K 6.61 3.42 2.93 66.50
LLM 2.05 1.03 1.59 51.64

LLM+Doc 1.08 0.50 1.30 44.61

LLM+Graph 3.24 1.60 1.52 50.08

LLM+Doc+Graph 1.08 0.55 1.30 44.61

Readmission-IV

K2K 63.75 46.79 68.67 66.47
LLM 60.06 42.92 66.15 64.64

LLM+Doc 61.30 44.20 67.86 65.83

LLM+Graph 48.97 32.43 50.80 48.30

LLM+Doc+Graph 54.86 37.80 51.57 49.93

Table 4: Comparison of Knowledge-Enhanced Mod-
els on Mortality and Readmission Prediction (MIMIC-
III/IV). LLM refers to Mixtral-7B. LLM+Doc denotes
BioMixtral-7B, which is obtained by further training
Mixtral-7B on a medical corpus. LLM+Graph refers
to Mixtral-7B adapted to graph-based knowledge using
LoRA. LLM+Doc+Graph represents BioMixtral-7B fur-
ther adapted to graph knowledge via LoRA.

Table 4 shows the results of the experiments of428

different knowledge-enhanced models.We found429

that leveraging windowed cross-attention and430

Mahalanobis-guided query construction to retrieve431

internal key knowledge from the LLM yields supe-432

rior performance compared to directly employing a433

knowledge-augmented LLM for downstream tasks.434

We guess the reason is that although knowledge435

augmented LLMs such as BioMixtral 7B encode436

medical knowledge through pretraining, they may437

not explicitly surface critical risk factors for spe-438

cific knowledge. For instance, in the MIMIC-III439

mortality task, the model might miss the implica-440

tion of structured features like mechanical ventila-441

tion or high SOFA score if not directly prompted.442

In contrast, our method retrieves relevant internal443

knowledge from the encoded medical graph, such444

as the relations between symptoms, interventions,445

and mortality and fuses it into the model input.446

This structured retrieval improves the model’s abil-447

ity to reason over clinical signals and enhances448

prediction accuracy.449

Model F1 Jaccard AUPRC AUROC

Mortality-III

K2K 18.55 10.22 15.22 61.05
K2K w Euclidean 16.97 9.27 9.67 57.25

K2K (Mean Only) 12.06 6.42 8.45 52.51

Readmission-III

K2K 69.31 53.03 62.49 56.64
K2K w Euclidean 63.27 46.28 58.26 53.25

K2K (Mean Only) 63.98 47.03 54.67 50.92

Mortality-IV

K2K 6.61 3.42 2.93 66.50
K2K w Euclidean 4.79 2.45 2.19 61.81

K2K (Mean Only) 0.82 0.44 2.51 61.73

Readmission-IV

K2K 63.75 46.79 68.67 66.47
K2K w Euclidean 63.56 46.59 67.87 66.41

K2K (Mean Only) 56.26 39.14 67.71 65.58

Table 5: Comparison of K2K with different query con-
struction methods.
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Figure 3: K2K performance with different layer knowl-
edge. We used BioMistral-7B, which consists of 32
transformer layers.

5.3 Comparison of Query Representation 450

Strategies 451

Table 5 presents various query representation strate- 452

gies for assessing the importance of each query vec- 453

tor within a window context. K2K (Euclidean) uses 454

Euclidean distance for token weighting, whereas 455

K2K (Mean Only) computes the window represen- 456

tation via simple mean pooling. Table 5 shows 457

that our Mahalanobis-guided query representation 458

consistently outperforms prior approaches. Unlike 459

Euclidean distance, which treats all dimensions 460

equally, our method accounts for per-dimension 461

variance and emphasizes informative low-variance 462

directions. This leads to more precise token weight- 463

ing and better contextual representations. The re- 464

sults validate the effectiveness of variance-aware 465

distance metrics in enhancing retrieval-informed 466

reasoning. 467

5.4 Comparison of Knowledge from Different 468

LLM Layers 469

In this section, we conduct experiments on K2K 470

using knowledge (key) sources stored in differ- 471

ent transformer layers within the LLM. Both the 472

document-based knowledge and the graph-based 473

knowledge are extracted from the same correspond- 474

ing layer. Figure 3 reveals a nuanced deviation 475

7



from the conventional view that upper layers in476

Transformers primarily encode semantic features477

while lower layers capture shallow, surface-level478

patterns. Although the final layers (e.g., Layer 30+)479

do contribute positively to performance in both480

Mortality-MIMIC-III and Readmission-MIMIC-III481

tasks, this improvement is not strictly monotonic.482

Notably, several shallow layers (e.g., Layers 5, 8,483

and 10) also exhibit strong performance across mul-484

tiple metrics, indicating that valuable structural or485

entity-level knowledge resides in the lower layers486

as well. Furthermore, the impact of each layer487

varies across different evaluation metrics (F1, Jac-488

card, AUROC), suggesting that knowledge is dis-489

tributed in a non-linear fashion throughout the net-490

work. These findings underscore the importance of491

considering both shallow and deep layers in knowl-492

edge extraction and reasoning tasks.493

6 Related Work494

Many studies (Lewis et al., 2020; Guu et al., 2020;495

Li and Huang, 2023; Li et al., 2025; Jiang et al.,496

2025), have been proposed to use retrieved infor-497

mation from various knowledge stores to better498

understand the text or generate the expected out-499

put. For example, KIEST (Li and Huang, 2023)500

dynamically injects retrieved entity and attribute501

knowledge from the knowledge graph when gen-502

erating the entity or attribute in the task of entity503

stage changes. REALM (Guu et al., 2020) em-504

ploys a gradient-based method to reward the re-505

triever, leading to improved prediction accuracy,506

while. KARE (Jiang et al., 2025) identifies rele-507

vant entities for each concept in the question and508

constructs a subgraph using the shortest paths be-509

tween the retrieved entities and the query concept510

to provide structured relational context for down-511

stream reasoning and answer generation. Biome-512

dRAG (Li et al., 2025) employs a dynamic retrieval513

mechanism to rerank the initially retrieved top-k514

chunks from a constructed, diverse chunk database.515

RETRO (Borgeaud et al., 2022) proposes a chunk-516

based approach that uses attention mechanisms517

to rerank the retrieved top-k knowledge segments518

from an external knowledge base. To mitigate519

the challenges associated with injecting lengthy520

retrieved knowledge and to reduce retrieval latency521

from massive, heterogeneous knowledge sources,522

we propose a novel approach that retrieves knowl-523

edge directly from the key space of the LLM using524

a top-k and cross-window attention mechanism.525

Recent work (Xiao et al., 2024; Liu et al., 2024; 526

Fountas et al., 2025) has focused on designing re- 527

trieval modules that extract relevant information 528

from the a key-value (KV) cache based on probe 529

queries constructed from the current context to- 530

kens. These methods typically treat the current 531

sliding window as a probe query to retrieve rele- 532

vant key-value pairs from memory. However, most 533

of these approaches overlook the importance of 534

probe construction in the retrieval process, despite 535

the fact that large language models (LLMs) are not 536

inherently optimized for retrieval tasks. There are 537

few works to explore how to construct the probe 538

query in the key retrieval of the LLM. For exam- 539

ple, the ActQKV (Xiao et al., 2025) proposes an 540

activation-aware probe query mechanism that se- 541

lects key tokens based on their activation methods 542

and employs Euclidean distance to retrieve the most 543

relevant key-value pairs. Nevertheless, this method 544

assumes equal importance across all embedding di- 545

mensions, thereby ignoring per-dimension variance 546

and reducing sensitivity to meaningful deviations 547

in low-variance directions. This motivated us to 548

develop a Mahalanobis-guided probe query con- 549

struction method. 550

7 Conclusion 551

In this paper, we propose Keys-to-Knowledge 552

(K2K), a novel retrieval framework that bypasses 553

traditional external retrieval pipelines by leverag- 554

ing the internal knowledge representations encoded 555

within large language models. Unlike conven- 556

tional RAG methods that rely on prompt-based 557

input expansion, K2K retrieves relevant knowl- 558

edge directly from the model’s key space through a 559

training-free, efficient mechanism. By incorporat- 560

ing Mahalanobis-guided query representation, and 561

cross-window attention for dynamic multi-source 562

integration, K2K demonstrates strong potential in 563

enhancing reasoning and prediction in knowledge- 564

intensive tasks. Our findings suggest that internal 565

representations of LLMs are not only latent carriers 566

of knowledge but can be explicitly accessed and 567

utilized to improve performance without additional 568

labeled data or costly retriever training. 569

8 Limitations 570

While our proposed K2K framework demonstrates 571

strong performance in internal knowledge retrieval 572

and integration, it still has several limitations. First, 573

the retrieval memory is constructed from fixed lay- 574

8



ers of a pre-trained language model. Although575

the injected knowledge via LoRA enables domain576

adaptation, our current approach does not dynam-577

ically select which layers or representations (e.g.,578

early vs. late FFN layers) are most informative579

for retrieval. Incorporating a layer-wise selection580

mechanism may further improve retrieval fidelity581

and efficiency. Second, our framework has been582

primarily evaluated within the biomedical domain.583

In the future, we plan to explore more challeng-584

ing tasks and address the issue of data imbalance585

within these tasks.586
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A Appendices 780

A.1 Implementation Detail 781

In this paper, we use Mistral-7B (Jiang et al., 782

2023a) as the Mbase and employ BioMistral- 783

7B (Labrak et al., 2024) as the Mdoc
domain. The chunk 784

size is set to 64 throughout this work. For the top-k 785

values, we use k = 5 for Mortality-MIMIC-III, 786

k = 20 for Readmission-MIMIC-III and Mortality- 787

MIMIC-IV, and k = 10 for Readmission-MIMIC- 788

IV. The same LLM backbone is used during both 789

10



the retrieval phase, when keys are extracted, and790

the training/inference phases, when those keys are791

utilized, ensuring alignment in the representation792

space. We use AdamW as our optimizer, with a793

learning rate of 2×10−5 and ϵ set to 1×10−8. The794

batch size is 16. For the cross-attention module,795

we set the model dimension to 4096 and apply a796

dropout rate of 0.3.797

A.2 Separately retrieval798

We intentionally use only the base component W1799

from the final FFN layer of Mdoc
domain to represent800

document knowledge. This design is motivated by801

the need to preserve a clear and interpretable sepa-802

ration between knowledge sources. Specifically, (1)803

theoretically, unstructured document knowledge804

(captured by W1) and structured graph knowledge805

(injected via AB) differ fundamentally in format806

and reasoning mechanisms, and thus should not be807

merged directly in representation; (2) in practice,808

combining them into a single matrix W1 + AB809

would entangle their contributions, making it diffi-810

cult to analyze or attribute model behavior to spe-811

cific knowledge types; and (3) from an engineer-812

ing perspective, separating the two enables more813

modular system design, facilitates ablation studies,814

debugging, incremental updates, and future knowl-815

edge extension.816

B Mahalanobis distance817

Step 1: Compute the Covariance Matrix Σ818

Σ =
1

L− 1

L∑
j=1

(qtj − z̄t)(qtj − z̄t)T ∈ RD×D

Step 2: Compute the Mahalanobis Distance819

(Activation Bias) ϕt
j820

ϕt
j =

√
(qtj − z̄t)TΣ−1(qtj − z̄t) ∈ R

Step 3: Construct the Probe-Query Vector821

Qt
probe822

Qt
probe =

L∑
j=1

αt
j ·qtj , where αt

j =
ϕt
j∑L

k=1 ϕ
t
k

∈ RD

C Comparison of K2K with different823

chunk size824

Figure 4 shows the K2K performance of different825

chunk sizes on the dataset MIMIC-III Mortality.826

We choose four chunk sizes: 16, 32, 64, and 128.827

We observe that smaller chunk sizes (e.g., 16) lead828

16 32 64 128
Chunk Size

10

20

30

40

50

60

Sc
or

e F1
Jaccard
AUPRC
AUROC

Figure 4: K2K performance with different chunk sizes.
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Figure 5: K2K Performance Across Different Top-k
Retrieved Knowledge Values on MIMIC-III.

to higher F1 scores, indicating that finer granularity 829

benefits the identification of relevant knowledge 830

segments. However, chunk size 64 achieves the 831

highest AUPRC and AUROC, suggesting it better 832

balances precision and recall for more robust clas- 833

sification. Larger chunk sizes may reduce retrieval 834

frequency but risk diluting critical signals. There- 835

fore, chunk size selection should consider both task 836

sensitivity and retrieval efficiency. 837

D Ablation Study on Top-k Retrieval 838

Figures 5 and 6 demonstrate how the number of 839

retrieved knowledge entries (top-k) affects the per- 840

formance of K2K on both MIMIC-III and MIMIC- 841

IV datasets. For MIMIC-III, performance gener- 842

ally improves with increasing top-k, with the best 843

F1 (20.61) and Jaccard (11.49) observed at k=25 844

for the mortality task, while the readmission task 845

achieves optimal results at k=20–25. Notably, AU- 846

ROC and AUPRC peak at k=20, suggesting a bal- 847
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Figure 6: K2K Performance Across Different Top-k
Retrieved Knowledge Values on MIMIC-IV.

ance between sufficient context and noise control.848

In contrast, for MIMIC-IV, mortality prediction849

shows a performance peak at k=20 across all met-850

rics, particularly for F1 and AUPRC, while read-851

mission results are relatively stable across k values,852

with the highest F1 (63.75) and AUPRC (68.67) at853

k=10. However, large k values (e.g., k=25) tend854

to hurt AUROC, especially for readmission. These855

results indicate that task-specific tuning of top-k is856

crucial, and that mortality prediction benefits more857

from increasing top-k, while readmission may re-858

quire a smaller, more focused knowledge set.859

E Retrieval Efficiency Comparison860

Across different Retrieval methods861

Compared to prior retrieval approaches, our K2K862

method demonstrates substantially higher effi-863

ciency. Specifically, KARE performs multi-stage864

reasoning by first retrieving co-existing concepts865

appear in each patient’s data and then computing866

the shortest paths between the concepts and the867

co-existing concepts over a large knowledge graph.868

This results in a total complexity of O(k(|V | +869

|E|)), where k is the number of co-existing con-870

cepts, and |V |, |E| are the number of nodes and871

edges in the graph, respectively. Contriever, a872

dense retriever, encodes the query and computes873

similarities across the entire corpus, resulting in874

a time complexity of O(Nd) without approxima-875

tion, where N is the number of documents and876

d is the embedding dimension. Prompt-based re-877

trieval avoids external indexing but relies on LLM878

generation conditioned on carefully designed in-879

structions, which incurs substantial inference cost880

at O(L ·n2 ·h), where L is the number of layers, n 881

is the token length, and h is the number of attention 882

heads. 883

In contrast, K2K bypasses both external doc- 884

ument retrieval and graph traversal by directly 885

reusing the internal knowledge of the LLM. It re- 886

trieves relevant knowledge by comparing current 887

input representations with pre-trained FFN keys 888

and LoRA adapter keys from a specific transformer 889

layer. This enables fast memory access with a time 890

complexity of only O(m) or O(mk) (for top-k se- 891

lection), where m is the number of tokens. By 892

removing the need for external retrieval or gen- 893

eration, K2K achieves the fastest inference speed 894

among all retrievers while maintaining high accu- 895

racy, demonstrating the efficiency and practicality 896

of internal knowledge utilization. 897

F Inference Efficiency Comparison 898

Across Different Retrieval Pipelines 899

Compared with traditional RAG pipelines that rely 900

on document or graph retrieval, our K2K frame- 901

work significantly reduces inference cost by avoid- 902

ing long-text prompting. In standard document re- 903

trieval, the retrieved contents are textual sequences 904

that must be concatenated with the query as ad- 905

ditional context, leading to an inference cost of 906

O(N · T · d), where N is the number of retrieved 907

documents, T is the average number of tokens per 908

document, and d is the hidden dimension of the 909

LLM. In contrast, K2K retrieves fixed-size internal 910

memory vectors from the model itself, resulting 911

in a much smaller cost of O(k · d), where k is the 912

number of keys retrieved, independent of token 913

length. Furthermore, graph-based retrieval meth- 914

ods introduce an additional computational burden. 915

Identifying relevant paths or subgraphs in a large- 916

scale knowledge graph is typically NP-hard, which 917

further increases the end-to-end latency. By retriev- 918

ing and reweighting internal key vectors through 919

cross-attention reranking, K2K bypasses both the 920

inefficiencies of long-context prompting and the 921

combinatorial complexity of graph path enumera- 922

tion. 923
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