
Under review as a conference paper at ICLR 2024

ADVERSARIAL DEFENSE USING TARGETED MANI-
FOLD MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial attacks on deep models are often guaranteed to find a small and in-
nocuous perturbation to easily alter class label of a test input. We use a novel
Targeted Manifold Manipulation approach to direct the gradients from the gen-
uine data manifold towards carefully planted trapdoors during such adversarial
attacks. The trapdoors are assigned an additional class label (Trapclass) to make
the attacks falling in them easily identifiable. Whilst low-perturbation budget at-
tacks will necessarily end up in the trapdoors, high-perturbation budget attacks
may escape but only end up far away from the data manifold. Since our manifold
manipulation is enforced only locally, we show that such out-of-distribution data
can be easily detected by noting the absence of trapdoors around them. Our de-
tection algorithm avoids learning a separate model for attack detection and thus
remain semantically aligned with the original classifier. Further, since we ma-
nipulate the adversarial distribution it avoids the fundamental difficulty associated
with overlapping distributions of clean and attack samples for usual, unmanipu-
lated models. We use six state-of-the-art adversarial attacks with four well-known
image datasets to evaluate our proposed defense. Our results show that the pro-
posed method can detect ∼99% attacks without significant drop in clean accuracy
whilst also being robust to semantic-preserving, non-attack perturbations.

1 INTRODUCTION

Adversarial attacks on deep learning models pose a serious concern especially for deployment in
high-security scenarios. It has been consistently shown (PGDL∞Madry et al. (2017), FGSM Good-
fellow et al. (2014), CW Carlini & Wagner (2017),PixelAttack Pomponi et al. (2022), DeepFool
Moosavi-Dezfooli et al. (2016) and AutoAttack Croce & Hein (2020b)) that it is easily possible to
find an extremely small, and imperceptible alteration to a genuine input data and control its pre-
dicted label. Attacks can be both targeted (i.e., change prediction to a given class) or untargeted
(i.e., change prediction to any other class) and attack methods can be both white-box (i.e., access to
the model gradient is assumed) or completely black-box (i.e., access is restricted to outputs only).
Such attacks happen through formulation of an optimization problem and then solving it through a
sequence of queries to the model under attack. Attacks are almost always successful within only
few queries. Thus, thwarting such attacks is nearly impossible through usual security surveillance.

Current methods to defend against such attacks do it either by making it robust up to a certain amount
of perturbation Cohen et al. (2019); Salman et al. (2019); Zhang et al. (2019); Finlay & Oberman
(2019); Qin et al. (2019), or by detecting the attack samples as out-of-distribution (OOD) using a
separate detector Lee et al. (2018); Ma et al. (2018); Gao et al. (2021); Deng et al. (2021); Pang
et al. (2018), or more recently, by planting pre-defined shortcuts between each pair of classes using
backdoors inside the model (named Trapdoor) Shan et al. (2020). Making a model robust relies
on pre-specification of allowed perturbations and entails a steep trade-off between robustness and
model accuracy. OOD based detectors are difficult to learn for complex datasets and it is almost im-
possible to learn the distribution that includes usual noise (e.g., camera noise) but not the adversarial
perturbations. Controlling the gradients of the adversarial attacks through planting shortcuts pro-
vides a problem-specific solution without needing to pre-specify the level of allowed perturbations.
However, Shan et al. (2020) uses an unique shortcut between each pair of classes thus making the
learning problem untenable when large number of classes are present. Moreover, both OOD based
detectors and Trapdoor Shan et al. (2020) require an additional classifier, adding to the overhead of
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cost, and risk being out-of-sync with the semantics of the main classifier. Thus, a defense method
that works by controlling the gradients but is both scalable and semantically aligned is still missing.

Our solution is based on the principle of modifying the gradient flow from the genuine data man-
ifold so that most of them lead to carefully planted trapdoors. Figure 1 shows the simplified

Figure 1: Proposed modification of the clas-
sifier, where each data samples are enclosed
within a trap-ring having a new class la-
bel, yTrap. The dotted arrows shows the at-
tack from Class 1 to Class 2. Any adver-
sarial attack first needs to penetrate the trap-
ring, thus triggering prediction of yTrap in the
course of the attack. Additionally, the space
within the trap-rings (brown) is made robust
to avoid the class boundary going through it.

illustration of how we would like to alter the class
boundary. A genuine data point is encircled with
several trapdoors making it a trap-ring. These trap-
doors are created by slightly altering the traditional
backdoor insertion process Chen et al. (2017b). In
traditional backdoor methods a fixed and small al-
teration (e.g., a 3×3 patch overlaid on an image) is
added to the original data to create a close replica
but with a different class label. We modify this
method in the following ways, a) sampling the back-
door patterns from a distribution to create a trap-ring
around the data points, b) making the inside of the
trap-ring robust so that there is no escape path other
than going through the trap-ring, and c) creating a
completely new class label (Trapclass) for the data
falling in the trap-ring. We call this new way of con-
trolling the classifier manifold as Targeted Manifold
Manipulation (TMM). This design ensures that an
adversary with a small perturbation budget will be
thwarted by the model robustness (effect of b), for
high perturbation budget the attacks will go through
the trap-ring (effect of a), and attacks will be de-
tectable with practically zero cost (effect of c). We
propose two versions of the defense, one where the intermediate class labels for an attack in-progress
is available, (e.g., model is hosted on a cloud server), and another where such is not available (i.e.,
attacks are done offline). Whilst our design makes it exceptionally easy to detect attacks when in-
termediate class labels are available as almost all attacks need to go through the trap-ring during the
attack optimization, and thus making some of the intermediate labels as the Trapclass label (yTrap),
we see that the same design also allows us to detect offline attacks, albeit in a different way. Since
trap-rings demand complex changes in the classifier the deep neural network only enforces them lo-
cally around where it is required by the loss function (i.e., around the genuine data points). Beyond
the genuine data manifold the trap-rings cease to exist. We use this property to detect offline attack
samples which are essentially OOD data by checking the absence of the trap-ring i.e., checking the
ineffectiveness of the backdoor pattern in taking them to Trapclass. Thus, we provide a consis-
tent solution to defend against both online and offline adversarial attacks using the same underlying
design principle of our Targeted Manifold Manipulation approach.

We used four well-known datasets GTSRB Stallkamp et al. (2011), SVHN Netzer et al.
(2011), CIFAR-10 Krizhevsky et al. (2009), and TinyImagenet Deng et al. (2009) to de-
fend against six SOTA attacks (PGDL∞, FGSM, CW, PixelAttack, DeepFool and Au-
toAttack) covering all combinations of targeted, untargeted, whitebox and blackbox set-
tings. Experiments show that our method can achieve better performance to the SOTA
defense methods whilst being computationally cheaper and resilient to semantic-preserving,
non-attack perturbations. Code link:https://drive.google.com/drive/folders/
1MFBqahGTyBJycwrrbjzP-jHUF7yDi1Kj?usp=drive_link.

2 RELATED WORK

2.1 ADVERSARIAL ATTACK

To date several attack methods have been discovered. Among them, Projected Gradient Descent
(PGD) Madry et al. (2017) optimizes required perturbation through a sequence of queries. Fast
Gradient Sign Method (FSGM) Goodfellow et al. (2014), on the other hand, just performs one step
of gradient descent. Carlini and Wagner Carlini & Wagner (2017) proposed modified loss function
(denoted as CW) to primarily circumvent the defensive distillation method Papernot et al. (2016).

2

https://drive.google.com/drive/folders/1MFBqahGTyBJycwrrbjzP-jHUF7yDi1Kj?usp=drive_link
https://drive.google.com/drive/folders/1MFBqahGTyBJycwrrbjzP-jHUF7yDi1Kj?usp=drive_link


Under review as a conference paper at ICLR 2024

AutoAttack is a state-of-the-art attack that has been proposed by Croce et al. in Croce & Hein
(2020b), is a combination of two new versions of PGD attacks with FAB (Fast Adaptive Boundary
attack) Croce & Hein (2020a) and square attack Bai et al. (2023). DeepFool, introduced in Moosavi-
Dezfooli et al. (2016), generates perturbation by moving in the orthogonal direction to the decision
hyperplane. Pixel Attack Pomponi et al. (2022) is a L0 norm based blackbox attack that does not
need model gradient to operate.

2.2 ADVERSARIAL DEFENSE

A common defense strategy relies on making models robust to a range of perturbations. In Adver-
sarial Training (AT) Madry et al. (2017) the model is fed with perturbed instances along with benign
samples to make the model robust against adversarial attacks. Huang et. al. Huang et al. (2020)
showed that AT with PGD-perturbed samples is the most effective. However, this training process
is very costly and often fails to generalize across unseen data. Subsequently, Zhain et. al. Zhai et al.
(2019) proposed to use unlabeled data to improve the stability of the model. However, it comes at
the cost of lower clean-data performance. In fact, recent research Tsipras et al. (2018); Zhang et al.
(2019) argue that there is a stiff trade off between adversarial robustness and the clean accuracy.
However, Yang et. al. Yang et al. (2020) showed that such a trade-off is not necessarily inherent,
and robustness can be unilaterally improved by controlling locally Lipschitz constant. However, it
has been found to be exceedingly hard to train a model for perfect robustness.

Whilst the goal of model robustification is to make adversary to fail, the goal of adversarial detec-
tion is to allow the successful computation of the perturbation but detects it during or before the
classification process. Among them, Ma et. al. Ma et al. (2018) analyzed the properties of the
adversarial subspace and used Local Intrinsic Dimensionality (LID) to defend against adversarial
attacks. However, it mostly fails when the attack samples have high probability for the attack class.
Xu et al. (2017) introduced feature squeezing method which performs poorly against attacks such
as FGSM, BIM etc. Lee et. al. in Lee et al. (2018), proposed Mahalanobis distance based detection
method to defend against attacks, but fails to recognize perturbations which are crafted carefully.
Magnet Meng & Chen (2017) performs advanced manifold analysis for detection, but it is vulnera-
ble against adaptive attacks. Bayesian neural network based detection methods Louizos & Welling
(2017); Smith & Gal (2018); Feinman et al. (2017) give promising results however, Bayesian infer-
ence tends to suffer from mode collapse which produces unreliable uncertainty Wenzel et al. (2020).
Recently, Shan et. al. Shan et al. (2020) developed a different approach, where backdoor traps
have been used to capture adversarial attacks. They put backdoors between each pair of classes but
harder to scale when number of classes present is large. More recently, Cohen et al. Cohen et al.
(2020) developed a detection method by using Nearest Neighbor Influence Function (NNIF) Koh
& Liang (2017) where they used the fact that average distance between the k-NNs and influential
samples are substantially high for adversarial samples than the normal samples. However, NNIF has
extremely high computational complexity and is infeasible for real-time application. SAMMD Gao
et al. (2021), showed that it is possible to separate adversarial and benign distribution. Nevertheless,
it can only work reliably when the benign sample is present for comparison.

3 METHOD

The goal of our Targeted Manifold Manipulation (TMM) approach is to modify the manifold around
the genuine data distribution such that any adversarial perturbation of a genuine data instance leads
to a specially crafted trapdoor, denoted by a new label called Trapclass (yTrap). In the following, we
first describe our TMM-based model training process and then we present our detection algorithms.

3.1 TMM MODEL TRAINING

The goal of the TMM is threefold: i) Obtain good clean accuracy, ii) Provide a robust ball around
the data instances, and iii) Create a trap-ring that captures the adversarial attacks.

Mathematically we would like to learn a function fθ : X → RC that predicts a probability vector for
an image x ∈ X belonging each of the classes c ∈ C, where C is the number of classes. We assume
that we have a clean training dataset, Dclean = {(xi, yi)}Ni=1, where N is the number of samples in
the training set and yi is the ground-truth label for the instance xi, where xi ∈ Rch×H×W . Using this
training data we construct two additional datasets, Drobust, and Dtrap (Fig. 2) to obtain a combined
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training dataset Dtrain = Dclean ∪Drobust ∪ DTrap. We describe the creation of these datasets and their
corresponding cross-entropy (CE) loss formulations in the following sections.

Loss function for clean performance To have clean accuracy, we use the usual cross-entropy

loss, LC = 1
N

N∑
i=1

CE(fθ(xi), yi), where {xi, yi} ϵ Dclean.

Loss function for robustness We call a model ϵ-robust when ∀∆x, such that ||∆x||p ≤ ϵ,
fθ′(x) = fθ′(x+∆x). p is often set to ∞ to make it robust against all values of p.

Figure 2: Three separate training datasets for
TMM model training: clean, robust (added with
uniform noise) and backdoored (added with 2x2
checkerboard pattern). yTrap is an extra class la-
bel corresponding to the backdoored data.

We can achieve robustness by creating a ro-
bust training dataset (Drobust) where we per-
turb the original samples whilst still retaining
their original class labels i.e., for each given
input instance xi ∈ Rch×H×W , we sample a
perturbation △xi ∈ Rch×H×W to create the
corresponding robust training instance {xr

i =
xi +∆xi, yi}. These perturbations △xi∀i can
be sampled from a uniform distribution, i.e.,
△xi ∼ U [0, ε]ch×H×W , or from fancier distri-
butions such as Von-Misses-Fisher (VMF) that
allows us to sample from the surface of a n-
sphere. The loss function used is same as that
used for the accuracy 3.1 and we denote this as

LR = 1
N

N∑
i=1

CE(fθ(x
r
i ), yi), where {xr

i , yi} ϵ Drobust.

Loss function for trapdoor A trapdoor is defined by a trigger t of size m × n where m << H
and n << W which when overlaid on an original instance xi will take it to a target class. For our

Figure 3: A 3D example showing Trap-
class samples (colored dots) encasing
the benign sample (red star). Colour
of the dots represent dominant axis (i.e.
X,Y,Z).

case, the target class is the newly created class ytrap. To
create an effective and expansive trigger that can gener-
ate the trap-ring effect (as shown in Figure 1), we create a
set of backdoored training instances from each one of the
original images by placing a trigger with variable norm
at different locations of the image. We name the resul-
tant dataset as DTrap. An illustrative example of how this
way of perturbation can create a trap-ring around data is
provided in the 3D example (Fig 3) where one random di-
mension was perturbed creating a cloud of synthetic data
around the original data point (red star). Once these syn-
thetic data are given the Trapclass we can see that how
this can create an encasement of the genuine data by the
Trapclass. The key point is to put the trigger at random
location of the data and with variable norm to create a
thick shell of Trapclass.

We use a location-parameterized binary mask (λk,l)
which contains 0 between (1 : ch, k : k + m, l : l + n),
and 1 at other locations. We vary k ∼ U [0, H] and
l ∼ U [0,W ] to put the trigger at different locations. Inside the trigger region, we perform alpha-
blending with the pixels of the original image using an alpha-value (τ ∼ U(ϵ, 1)) to create a distri-
bution of triggers from faint to the bright. The use of ϵ is the same as that of the ϵ-robust model, as
discussed before, to create the backdoor beginning from the boundary of the robustness to further in
the outward direction. Thus, we create the backdoored instance as,

xt
i = xi

⊙
λk,l + ((1− τ)xi + τϕk,l,t)

⊙
(1− λk,l) (1)

where, xt
i is the backdoor sample corresponding to the original instance xi, and

⊙
is the element-

wise product and ϕk,l,t
j1,j2

= t[j−k, j2− l] when k ≤ j1 < k+m, l ≤ j2 < l+n , else 0. And trigger
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(a) Live-attack protection (b) Offline-attack protection

Figure 4: (a)The blue shaded region shows the usual attack workflow to produce x
′

test be classified as
ytarget. Our modified workflow (TMM defense) replaces the clean model (fθ) with the TMM model
(fθ′ ) and an associated alarm that fires up every time argmaxfθ′(·)= yTrap, catching any attack in
progress with nearly zero cost. (b) The offline-attack protection workflow where x

′

test is optimized
offline, and thus no intermediate labels are available. The attack is detected by a combination of
detectors, where ξ and ρ are entropy and trap-class probability thresholds, respectively.

patch t ∈ Rch×H×W . We note that the variable amount of blending by sampling τ from a wide
distribution, and by doing such across different part of the training images, we create triggers that
are quite different but still tightly hugs around the original data, thus helping us to induce required
trap-ring. For simplicity, trigger insertion can be defined as xt

i := xi ⊕ T

From the literature of backdoor attacks Gu et al. (2019) we know that trapdoors are very ef-
fective and can easily provide nearly 100% effectiveness irrespective of the complexities of the
datasets and without losing much in clean accuracy. Thus, we can be confident that our trap-
door will also have high effectiveness, good generalization across unseen images and will have
very low impact on the clean accuracy. Such images are put into a sub-set of training dataset as
DTrap = (xt

i, yTrap)
NT

i=1
. The loss function used is same as that used for the accuracy and we denote

this as LT = 1
NT

NT∑
i=1

CE(fθ(x
t
i), yTrap)where {xt

i, yTrap} ϵ DTrap.

Combined loss function The combined loss function is written as: L = Lc + βRLR + βTLT ,
where βR and βT are relative weights corresponding to robustness and trapdoor loss components. In
actual implementation those weights are enforced indirectly by creating a batch with unequal number
of samples from the different categories (i.e., clean, robust and backdoored) and then optimizing the
average CE loss over the full batch. The TMM-model obtain by minimizing L is denoted as fθ′ ,
where θ′ = argmin L. Although, the three loss-functions seem to give the best computational design,
in practice, we saw that the best trade-off between drop in clean accuracy and detection performance
is obtained when we omit the robust loss component.We provide extra results in supplementary that
uses all three components.

3.2 ADVERSARIAL ATTACK DETECTION

LIVE-ATTACK PROTECTION (TMM-L/LA) Based on our TMM trained model we know that any
attack that takes any genuine data point to a different class needs to go through the trap-ring. Figure
4a shows the schematic of our detection process when intermediate predictions are available (Live-
mode). In an iterative attack process the attacker runs an optimization to find a small perturbation
(∆xtest) to a legitimate test image xtest so that it gets classified to a given ytarget. In the usual attack
workflow the attacker will optimize the perturbation ∆xtest in a loop until the perturbed image x

′

test =
xtest +∆xtest is classified as ytarget. In our modified workflow, we replace the classifier (fθ) with our
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Dataset #classes #train #test
Input size Clean model TMM model

(Ch × H × W ) Clean acc. % Clean acc. % Trigger acc. %

GTSRB 43 39,209 12,630 3 × 32 × 32 97.56 96.99 99.70

SVHN 10 73,257 26,032 3 × 32 × 32 96.23 96.21 99.75

CIFAR-10 10 50,000 10,000 3 × 32 × 32 94.13 94.01 99.69

Tiny Imagenet 200 73,257 26,032 3 × 64 × 64 58.73 55.70 99.09

Table 1: Details of datasets and the performance of the clean and our proposed TMM model

TMM model fθ′ , and an alarm block in tandem to its output. The alarm is set to fire up as soon
as it detects a prediction that is same as yTrap, indicating an attack is in progress. The live-mode
is possible when the model is served from a secure enclosure such as cloud. The main advantage
of live-attack protection is its simplicity and nearly-zero computational cost. An advancement of
TMM-L is TMM-LA, which detects intermediate low confident samples along with , yTrap yields
stronger defense.

OFFLINE-ATTACKS PROTECTION (TMM-O) In scenarios where intermediate classes are not
available, there will be circumstances where the final attack samples (i.e. x

′

test) will be able to
cross over the trap-ring and reach to the target class, especially when perturbation budget is high.
However, we can show that such attack samples can also easily be detected as out-of-distribution
(OOD) using our TMM model. In TMM model we enforce the convoluted trap-ring structure at the
genuine samples, and because we know that neural network tends to prefer simpler model Valle-
Perez et al. (2018), we hypothesize that such trap-ring will not be present or at least fade away for
OOD samples. A way to check the existence of trap-ring would be to add the original trigger on
the incoming sample and check whether the Trapclass probability (P (fθ′ (x

′

test ⊕ T ) == yTrap))
lower than a threshold ( ρ). Sometimes, low confidence attacks, that are not further enough from the
legitimate data manifold may still carry the trap-ring structure, but those samples can be discarded
through classical entropy based filter, i.e., H(fθ′ (x

′

test) ≥ ξ, where ξ is a threshold, and H(· ) is
the entropy function. These two OOD detection filters along with the original Trapclass based filter
(i.e. detect samples that are classified as Trapclass) is thus used offline adversarial attack detection
(Figure 4b). It should be apparent that the offline detection system will work as a catch-all system
during live-attack detection as well, albeit this would requires extra one classification.

4 EXPERIMENT

Dataset and Model architecture We evaluate our detection method (TMM defense) on the fol-
lowing four datasets: a) GTSRB - the German Traffic Sign Recognition Benchmark dataset, b)
SVHN - the Street View House Numbers dataset, c) CIFAR-10 - a RGB natural image dataset, and
d) Tiny Imagenet - a RGB natural images. We have used WideResNet (width 8 and depth 20) for all
our experiments. The details of the datasets are provided in Table 1.

Adversarial Attack Methods We use following six attacks : PGDL∞Madry et al. (2017), FGSM
Goodfellow et al. (2014), CW Carlini & Wagner (2017), Pixel Attack (PA) Pomponi et al. (2022),
DeepFool (DF) Moosavi-Dezfooli et al. (2016) and Auto Attack (AA) Croce & Hein (2020b). All
attacks (except AA and DF in targeted mode) have been used in both untargeted (UT) and targeted
(T) mode, using ϵ = 4/255, learning rate of α = 0.5/255 and #steps = 50. Results for different
values of ϵ are provided in the supplementary.

Baselines We compare against the following baselines: a) OOD based detectors: LID Ma et al.
(2018) and Mahalanobis Lee et al. (2018), b) backdoor based detector: Trapdoor Shan et al. (2020).

4.1 TMM MODEL TRAINING AND PERFORMANCE

During TMM model training process, we divide each mini-batch into clean and poison sets. We set
backdoor : clean=3 : 2 . We use a checker-board (red and green) 4 × 4 square trigger pattern with
uniformly distributed trigger location all over the input space. The L∞ norm of trigger is varied
uniformly in the range of [ϵ, 0.99], where ϵ = 0.01.

We trained the model up to 3000 epochs with a learning rate of 10−4. As we can see from the Table
1 that the accuracy of the TMM on clean dataset is comparable with that of the accuracy of the Clean
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Dataset Detection Method FP

Detection Accuracy in %

PGDL∞ FGSM CW PA DF AA

UT T UT T UT T UT T UT UT

GTSRB

TMM-O 5.03 100 98.26 100 100 99.91 98.32 98.21 98.10 99.99 100

Mahalanobis 5 85.77 84.74 93.42 94.07 89.12 89.30 74.05 74.59 79.11 86.82

LID 5 82.12 82.14 94.17 93.73 88.30 88.18 73.14 73.22 82.40 80.32

Trapdoor 5 97.32 97.99 96.99 96.84 95.18 95.99 88.53 87.39 92.08 93.71

SVHN

TMM-O 5.12 100 99.23 100 100 99.97 98.82 99.76 99.46 99.46 100

Mahalanobis 5 89.75 89.71 96.86 96.88 90.38 89.64 83.67 82.72 83.17 89.75

LID 5 85.22 85.09 98.23 98.10 94.11 93.72 92.39 89.25 88.19 95.35

Trapdoor 5 96.17 96.25 98.23 98.10 94.1 93.72 92.39 89.25 88.19 95.35

CIFAR-10

TMM-O 5.33 100 98.87 100 100 99.95 94.21 89.49 98.24 99.98 100

Mahalanobis 5 88.17 87.35 94.15 94.20 85.93 84.47 86.28 86.37 81.53 94.87

LID 5 87.38 89.33 90.71 90.68 84.53 84.10 82.50 82.46 84.42 97.18

Trapdoor 5.1 94.91 98.52 97.03 98.47 94.04 92.17 83.75 84.09 87.37 98.43

TMM-O 5.09 99.86 98.99 100 100 99.83 99.10 88.91 91.27 97.29 100

Tiny Mahalanobis 5 83.41 83.29 94.69 94.69 81.24 80.66 71.83 70.91 78.26 92.38

Imagenet LID 5 78.48 78.74 92.13 92.20 72.33 72.10 70.54 71.28 60.98 88.59

Trapdoor 5.07 94.08 94.37 95.73 95.73 90.16 89.52 79.20 81.54 90.39 91.35

Table 2: Comparative detection of TMM-O, Mahalanobis, LID and Trapdoor against various adver-
sarial attacks on different datasets.

model. The drop in accuracy is only marginal for GTSRB, SVHN and CIFAR-10, and mild for Tiny
Imagenet. We believe that such drop can be reduced with the use of a more complex model. We also
compute the Trigger detection accuracy for TMM models, and note that for all the four datasets the
trigger accuracy (i.e. classified as Trapclass when overlaid with trigger with τ = 0) is very high.

4.2 ADVERSARIAL ATTACK DETECTION

We evaluate the effectiveness of our proposed detection mechanism in the test set of the images for
both untargeted (UT) and targeted (T) attack modes, under both offline and live detection scheme.

Dataset Detection Method

Detection Accuracy in %

PGDL∞ FGSM CW PA DF AA

UT T UT T UT T UT T UT UT

CIFAR-10

TMM-O 100 98.87 100 100 99.95 94.21 89.49 98.24 99.98 100

TMM + Mahalanobis 96.37 96.35 98.89 98.95 88.29 89.20 87.99 87.99 89.64 96.68

TMM + LID 95.83 95.88 100 100 93.61 93.62 90.09 88.97 87.24 100

Table 3: Effect of TMM models on the performance of OOD based detectors

Figure 5: % of attacks detected by the filters for
TMM-O against various attcks on CIFAR-10

Offline-attack Detection Performance Ta-
ble 2 lists the detection performance under
offline-attack (TMM-O). Here, we have final
optimized images to be tested for determina-
tion of attack. As we discussed in 3.2, there
are three layers of filters to find out attacked
samples from benign samples. To find ξ, we
measure all entropy score for all training sam-
ples. Then the threshold is selected so that 99.5
percent training entropy values are less than ξ,
producing false positive rate of only 0.5% We
set the OOD threshold, ρ = 0.985, corresponding to the lowest value of 99 triggered training data.
Put together, we observe these two filters introduce ∼ 5% false positive (FP) rate.
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Dataset Detection Method FP

Detection Accuracy in %

PGDL∞ FGSM CW PA DF AA

UT T UT T UT T UT T UT UT

GTSRB
TMM-L 0.0 100 100 100 100 100 99.72 63.30 81.04 99.95 100

TMM-LA 3.05 100 100 100 100 100 100 99.44 95.76 99.98 100

SVHN
TMM-L 0.0 100 99.97 100 100 100 100 89.13 80.25 99.13 100

TMM-LA 2.70 100 100 100 100 100 100 99.62 94.64 99.84 100

CIFAR-10
TMM-L 0.0 100 100 100 100 100 99.98 68.55 81.54 99.80 100

TMM-LA 4.79 100 100 100 100 100 100 89.80 98.70 99.90 100

Tiny Imagenet
TMM-L 0.0 100 99.14 100 100 99.78 98.04 75.43 78.09 96.26 100

TMM-LA 4.78 100 100 100 100 100 100 88.17 89.25 99.03 100

Table 4: Detection performance of TMM-L and TMM-LA on four dataset against all six attacks.

Method
Brightness Factor

1.0 (ori) 0.8 0.6

TMM (excess error) 0.0 0.91 2.49

TMM-O 5.33 5.33 6.51

TMM-L 0.0 0.04 0.05

TMM-LA 4.79 5.04 6.05

Clean Model (excess error) 0.0 0.84 2.09

Mahalanobis 5.0 5.31 17.92

LID 5.0 6.48 14.23

Trapdoor-model(excess error) 0.0 1.87 2.14

Trapdoor 5.0 5.0 6.89

(a) Brightness change in descending order from
left to right.

Method
Gaussian σ

0.0(ori) 0.3 0.6

TMM (excess error) 0.0 3.16 6.85

TMM-O 5.33 5.06 13.36

TMM-L 0.0 1.06 1.06

TMM-LA 4.79 5.04 8.19

Clean Model (excess error) 0.0 4.25 6.71

Mahalanobis 5.0 10.62 19.38

LID 5.0 8.42 14.45

Trapdoor-model (excess error) 0.0 4.03 8.48

Trapdoor 5.0 5.0 10.57

(b) Varying blurring. Intensity of blurring in-
creases with the increment of σ

Table 5: Detected as attack under different semantic-preserving perturbations.

Interestingly, if we apply Mahalanobis or LID combined with TMM, the detection performance of
those two methods go up drastically (Table 3) proving that TMM creates more distinctive adversarial
perturbation because of its unique structure of the manifold. Fig 5 shows the percentage of attacks
detected by each individual filters when tested on CIFAR-10 datasets under various targted, and
untargeted attacks. Untargeted attacks mostly get detected by the Trapclass filter, whilst CW and
PA, which strives to reduce the amount of perturbation, get detected by the Entropy filter. In contrast,
PGD attack, which allows large amount of perturbation because of the use of L∞ bound on the norm
of the perturbation get mostly stopped by our OOD filter.

Live-attack Detection Performance

TMM-L In this mode, we use intermediate predictions for detection. Table 4 lists the detection
performance under live-attack protection (TMM-L). Nearly all the attacks reached the Trapclass
within the first 2-3 iteration. In untargeted mode, the samples never leave the Trapclass. In contrast,
targeted attacks can pass through, but still gets detected due to them going through the Trapclass
during the attack optimization. In this case, we have false positive rate of 0 for all datasets.

TMM-LA A further improvement for detection accuracy for TMM-L can be made by borrowing
the low-confidence detection filter. In Table 4 we can see that the accuracy for the improved version
TMM-LA is considerably improved where TMM-L was less than perfect. The only downside of
TMM-LA is non-zero FP rate.
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4.3 RESILIENCE AGAINST SEMANTIC PRESERVING PERTURBATIONS

We use two different semantic preserving perturbations, such varying brightness and adding blurring
to check the resilience against semantic-preserving changes. The attack detector should not detect
such perturbations. We compare against Mahalanobis, LID and Trapdoor in Table 5 (Better if detec-
tion is closer to corresponding model’s excess errors) The binary detector model for Mahalanobis
and LID are trained on the FGSM attack. As the results show, all versions of TMM based detec-
tion perform much better than Mahalanobis and LID in handling such semantic-preserving changes,
while, trapdoor being comparable to us.

4.4 ADAPTIVE ATTACK & TRANSFER ATTACK

In adaptive attack, we assume that the adversary has full knowledge of the detection system and
thus tries to defeat the three detection filters a) avoid low-confidence attacks, b) avoid falling in the
Trapclass and c) avoid going to the Trapclass when added with the trigger. Combining them, a form
of adaptive attack can be the following:

L = CE(fθ′ (xtext +∆x), ytarget)− CE(fθ′ (xtest +∆x), yTrap) + CE(fθ′ (x
t
test +∆x), yTrap) (2)

where xt
test is the trigger added version of xtest. Across all dataset the detection perfor-

mance has been measured (in table 6) for both detection methods (TMM-L and TMM-O).

Detetion Detection Accuracy (%)

Method GTSRB SVHN CIFAR-10 Tiny Imagenet

TMM-L 100 100 100 100

TMM-O 77.87 96.58 76.84 98.72

Mahalanobis 76.29 81.67 76.04 77.38

LID 77.94 85.73 75.31 74.29

Table 6: Adaptive attack detection performance.

It can be noticed that TMM-L still re-
tained its effectiveness under this adaptive
attack setting with detection performance
being 100% across datasets. TMM-O suf-
fered slight degradation across GTSRB and
CIFAR-10, but it still performed better than
the baselines. For the baselines we used
where it was trained for PGDL∞ attack but
tested with CW attack. Whilst the adaptive
attack setting for the baselines is slightly dif-
ferent, it simulates the adaptive attack that
may happen in real life. We also emphasize
that for adaptive attack to be able to defeat even this much the attackers need to know the exact
trigger setting. Even with slight altered trigger setting we have seen the adaptive attack to fail (more
in supplementary).

In transfer attack one can use a different model (e.g., clean model) to generate attacks to defeat our
detection method. However, we saw that such transfer does not generate successful targeted attack
samples because of the difference in the model i.e., the attack samples when tested with TMM go to
a diferent class other than the target class it was optimised for. Untargeted attacks can still work as
TMM can misclassify the attacked samples, however, we see that TMM-O can still detect them with
an average detection rate of ∼ 91% on CIFAR-10 dataset (table is provided in the supplementary).

Computational Time TMM-L/LA only check for Trapclass (and entropy) and thus incur prac-
tically zero cost in live-model prediction. TMM-O require one extra classification, but using the
same classifier, and hence, is less memory-intense than the benchmark detection methods (e.g. LID,
Mahalanobis and Trapdoor) who need separate classifiers.

5 CONCLUSION

We have introduced a Targeted Manifold Manipulation (TMM) based defense that directs any ad-
versarial attack through a ring of trapdoors and thus gets them easily detected during the attack.
Alternatively, when attacks are generated offline, we show that they can be detected as OOD by
noting the absence of the trap-rings as the modification is only enforced around the original data
manifold due to the intrinsic regularization of the modern deep models. Experimental results across
four different datasets against six state-of-the-art attacks show near perfect detection accuracy by our
methods. We also show that our method is resilient to semantic-preserving, non-attack perturbations.
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