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ABSTRACT

In recent years, multimodal large language models (MLLMs) have significantly
advanced, integrating more modalities into diverse applications. However, the
lack of explainability remains a major barrier to their use in scenarios requiring
decision transparency. Current neuron-level explanation paradigms mainly focus
on knowledge localization or language- and domain-specific analyses, leaving the
exploration of multimodality largely unaddressed. To tackle these challenges, we
propose MINER, a transferable framework for mining modality-specific neurons
(MSNs) in MLLMs, which comprises four stages: ❶ modality separation, ❷ im-
portance score calculation, ❸ importance score aggregation, ❹ modality-specific
neuron selection. Extensive experiments across six benchmarks and two MLLMs
show that (I) deactivating ONLY 2% of MSNs significantly reduce MLLMs per-
formance (0.56 ∼ 0.24 ↓ for Qwen2-VL, 0.69 ∼ 0.31 ↓ for Qwen2-Audio), (II)
different modalities mainly converge in the lower layers, (III) MSNs influence
how key information from various modalities converges to the last token, (IV) We
observed two intriguing phenomena, semantic probing and semantic telomeres.

1 INTRODUCTION

Table 1: X-specific neuron studies.
X-SPECIFIC NEURONS

Language
Tang et al. (2024a)

Domain
Huo et al. (2024)

Modality
Ours

GRANULARITY
Sample-level ✔ ✔ ✗
Token-level ✗ ✗ ✔

IMPORTANCE
METRICS

Probability ✔ ✔ ✔
Mean ✗ ✗ ✔
Max ✗ ✗ ✔

Attention ✗ ✗ ✔

Recently, multimodal language models
(MLLMs) have made rapid advancements
across various applications (Xu et al., 2024;
Xiao et al., 2024; Yan et al., 2024), ex-
emplified by models like GPT-4 (Achiam
et al., 2023), LLaMA 3 (Dubey et al., 2024),
Qwen-VL (Bai et al., 2023b), and LLaVA-
NEXT (Liu et al., 2024a). However, their
black-box nature presents challenges, particularly in fields like medical studies (González-Alday
et al., 2023), where interpretability is essential. Understanding the decision-making process is vital,
making explainability a central focus of ongoing research (Tjoa & Guan, 2020; Zhao et al., 2024).

Numerous studies have sought to understand how knowledge is stored in models (Sukhbaatar et al.,
2019; Dai et al., 2021; Meng et al., 2022a; Chen et al., 2024a) and how this information influences
decision-making (Geva et al., 2020; Petroni et al., 2019). For example, Dai et al. (2021); Geva et al.
(2020) investigate knowledge storage mechanisms, while Wendler et al. (2024); Zhang et al. (2024)
provide insights into layer-level explainability. Additionally, several works in the neuron-level ex-
planation domain (Tang et al., 2024a; Kojima et al., 2024; Huo et al., 2024) have identified language-
specific or domain-specific neurons, referred to as X-specific neurons. However, these studies often
neglect modality-level understanding, particularly how multimodal information is processed and its
differences and similarities (Parekh et al., 2024; Rodis et al., 2023), as shown in table 1.

As shown in table 1 and fig. 1, recent X-specific neuron works (Tang et al., 2024a; Huo et al.,
2024) face two key limitations: First, they focus on sample-level neuron identification, assuming
each sample belongs to a single language or domain, while multimodal samples often span multiple

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Language-specific neurons
Language-agnostic 

neurons
English

neurons

French

neurons

Chinese

neurons

(a) Language-specific neurons in LLM

(b) Domain-specific neurons in MLLM

Domain-agnostic 
neurons

Domain-specific neurons

Nature

neurons

Medicine

neurons

Science

neurons

Modality-specific neurons (MSNs)
Modality-agnostic 

neurons Text

neurons

Audio

neurons

Text

neurons

(c) Modality-specific neurons in MLLM (Ours)

Deactivated MSNs

Activated MSNs
MINER

1.Fine-graned MSNs Detection

2.All-around Metrics

3.In-depth Experiment

When you are happy, 
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Convert this 
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Cat
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Caaattt..

Dog

What is the animal 

in the picture?

What is the animal 

in the picture?

Figure 1: Comparison of Language-specific (a), Domain-specific (b), and our proposed Modality-
specific Neuron detection and analysis framework, MINER (c).

modalities. Second, they rely solely on activation probability as the importance metric, which is
insufficiently comprehensive (See section 4.3 and Ob2 of section 5.4 for details).

This raises an intriguing question: Are there modality-specific neurons (MSNs) akin to those in
multi-language or multi-domain settings? To address this, we must tackle the following challenges:
❶ How can we measure neuron importance for specific modalities? ❷ What mechanisms do these
neurons use to influence the model? ❸ Can we identify some underlying patterns of MSNs?

We propose MINER, a transferable framework that develops new importance metrics for measuring
neuron significance and introduces selection strategies for identifying key neurons for each modality.
MINER tackles the challenges by: ❶ Decompose neuron importance for modalities into token im-
portance from the top down, then restore neuron-modal importance through bottom-up aggregation.
❷ Analyze neuron behavior using feature dimensionality reduction plots and contribution scores of
modality tokens to predictions. ❸ Our experiments revealed semantic probing and semantic telom-
eres. Through this design, we identified a set of important modality-related neurons and uncovered
interesting phenomena during our experimental analysis, offering valuable insights for the research
community. Our contributions can be summarized as follows:

☞ To our knowledge, we are the first to analyze modality-specific neurons (MSNs) in multimodal
large language models (MLLMs).

☞ We introduce MINER, a transferable framework for selecting MSNs in both vision-based and
audio-based MLLMs, capable of handling datasets with any combination of modalities uniformly.

☞ We provide a systematic problem definition and propose a novel token-level analysis pipeline that
differs from existing sample-level methods.

☞ We validate the significance of MSNs through extensive experiments, uncover intriguing phenom-
ena of semantic probing and semantic telomeres, and present new insights.

2 RELATED WORKS

In this section, we provide a brief overview of knowledge location and neuron analysis work, while
the related work for the remaining sections is included in appendix B.1.

Knowledge Localization. Research has examined how factual and commonsense knowledge is
represented in neural networks (Park et al., 2024; Hase et al., 2024; Zhu et al., 2024). For instance,
Sukhbaatar et al. (2019) demonstrated that persistent memory vectors can replace feed-forward net-
work (FFN) layers in transformers without performance loss. Geva et al. (2020) showed that FFN
layers serve as key-value memories, linking training patterns to output vocabulary. Recently, Dai
et al. (2021) identified knowledge neurons in FFN layers of pretrained transformers, positively cor-
relating their activation with factual knowledge expression. Meng et al. (2022a) and Chen et al.
(2024a) further explored knowledge neurons in language models. In this context, our analysis aims
to identify modality-specific neurons in the FFN layers of MLLMs.

2
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Neuron Analysis. Neuron analysis in pretrained models is an emerging research area in both
computer vision and natural language processing. Recent studies have gone beyond explaining the
concepts and knowledge represented by individual neurons (Bau et al., 2017; Oikarinen & Weng,
2022; Bills et al., 2023; Gao et al., 2024) to identify neurons that respond to specific patterns. For
example, Schubert et al. (2021) and Cammarata et al. (2020) found visual neurons that detect high-
frequency features or curves in images, while Tang et al. (2024a) and Kojima et al. (2024) analyzed
neurons uniquely activated by target languages, termed language-specific neurons, in large language
models. In the multimodal domain, research has primarily focused on detecting neurons that respond
to both textual and visual inputs (Goh et al., 2021; Schwettmann et al., 2023; Pan et al., 2023).
Additionally, Huo et al. (2024) adapted techniques from Tang et al. (2024a) to identify domain-
specific neurons (e.g., in medicine and remote sensing) in MLLMs. However, the specialization of
neurons in multimodal models is still underexplored. To our knowledge, our work is the first to
analyze modality-specific neurons in MLLMs.

3 PRELIMINARIES

3.1 DEFINITIONS OF MODALITY, SAMPLE AND DATASET

We start by clarifying two key terms: modality set and modality space, which will be referenced
throughout the paper. Building on these definitions, we then define samples and datasets to enhance
the understanding of our method.

Modality Set. The classification of modalities in data is not singular. Here, we outline three
potential methods for partitioning modality sets:

Sall = {all}
SM = {text,special,image,video,audio} = {m1, . . . ,mM}
St+s = {t+s,image,video,audio}

We employ SM in our method, while Sall (treats all as one modality) and St+s are used only in abla-
tion studies. The specialmodality refers to elements not present in the raw data but introduced by
certain MLLMs. For instance, in Qwen2-VL, this includes separators like [im-start] and [im-end] or
placeholders such as [image-pad]. The only difference between SM and St+s is whether we consider
special and text as the same modality. If treated as the same, we derive St+s.

Modality Space. Each modality m ∈ SM corresponds to a modality space Xm, encompassing all
data or features associated with that modality. This can be formally defined as:

Xm = {xm | xm is a feature corresponding to modality mi from a multimodal sample} (1)
Additionally, modality space can be viewed as a collection of exclusive information, where data from
one space should not overlap with others. For example, the image modality space Ximage includes
raw images and features, encompassing all samples related to visual information.

Multimodal Space / Sample. With the foundational definitions of modality established, we define
the multimodal sample space as X , where a sample is represented as:

x = (xm | m ∈ SM ) where xm =

{
actual modality data if modality m exists
None if modality m does not exist

where xm ∼ Xm. For simplicity, we omit xm = None, allowing a VQA sample to be expressed
as x = (xtext, ximage). To perform a fine-grained analysis of multimodal samples, we define the
modality function Mod to extract the modality of component xm as follows:

Mod(xm) =

{
m if xm ̸= None
∅ otherwise

The modality function can be generalized to extract a sample’s modalities, returning a set of modal-
ities: Mod(x) = {Mod(xm)|m ∈ SM}. For example, Mod(x = (xtext, ximage)) = {text. We
divide the sample space X into two mutually exclusive subspaces based on the number of modali-
ties: the uni-modality space Xuni = {x | #{xi | xi ̸= None} = 1} and the multi-modality space
Xmulti = {x | #{xi | xi ̸= None} > 1}.

Multimodal Dataset. A dataset is a subset of X where all samples share common character-
istics, such as modality or question type. For example, VQA datasets contain both text and
image modalities, structured around answering questions. We define uni-modality datasets as
Duni = {x1,x2, . . . |xi ∈ Xuni}, and multi-modality datasets as Dmulti = {x1,x2, . . . |xi ∈ Xmulti}.

3
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Figure 2: Four stages of MINER. ❶ Prompt tokens are divided into modality sets before being
input into the LLM. ❷ Each neuron computes an importance score for the tokens of each modality. ❸
Aggregate these values to compute the Importance Score Matrix (ISM), reflecting the modality-level
importance of each neuron. ❹ Various selection methods, as detailed in section 4.5, are employed
to identify modality-specific neurons for each modality.

3.2 RELEVANT TRANSFORMER CONCEPTS

MLLMs process x using modality-specific encoders and tokenizers (e.g., ViT (Dosovitskiy, 2020a)
for image), transforming it into a set of input tokens:

Tinput =
⋃

m∈SM

Tm = {t1, t2, . . . , tI} where Tm ∩ Tm′ = ∅ for m ̸= m′ (2)

By extending Mod to the token domain, we define Tm = {ti ∈ Tinput|Mod(ti) = m} as the
modality-specific token set, with size |Tm| = Im. We also establish a mapping structure Indm
for each subset, enabling retrieval of the original index from the input token set. This allows us to
trace any element in Tm back to the original set using the relationship Tinput[Indm[i]] = Tm[i].

To enhance clarity in the subsequent definitions, we represent the token embedding corresponding
to ti after being input into the LLM at layer l as tli ∈ Rd, without distinguishing between the token
and its embedding. We denote the embeddings at layer l as T l

input = [tli]
I
i=1 ∈ RI×d and the attention

matrix after softmax as Al ∈ RI×I . Ignoring layer normalization, we denote the i-th value vector as
vli, allowing us to express the embedding update process as:

ali = tli +

I∑
j=1

Al
i,jv

l
j , tl+1

i = ali +W l
outAct(W l

ina
l
i) (3)

where Win ∈ Rd×N and Wout ∈ RN×d is the up-sampling and down-sampling layers, respectively.
In the equation above, ali represents the output of the attention module, and Hl ∈ RI×N is the
hidden activation vector (Hl

i,n represents the activation value of n-th neuron for token ti). Each
neuron is denoted as ul,n, resulting in a total of L×N neurons in the FFN modules, represented as
the matrix UL×N . Then these embeddings pass through L identical transformer blocks, generating
output tokens sequentially in an autoregressive manner. We define the set of output tokens as
Toutput = {tI+1, tI+2, . . . , tI+O}.

4 FRAMEWORK OF MINER
4.1 PROBLEM ANALYSIS

Motivated by previous research on X-specific neurons, such as language-specific Tang et al. (2024a)
and domain-specific neurons Huo et al. (2024), our work focuses on identifying a set of MSNs that
are critical for processing multimodal samples in MLLMs. We briefly analyze how our approach
differs from previous studies in fig. 1 and table 1. We focus on neurons in the FFN of MLLMs rather
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than other modules, such as modality-specific encoders or projection layers, for several reasons: (I)
Previous studies indicate that FFN encode distinct, recoverable knowledge attributes (Geva et al.,
2020; Dai et al., 2021; Meng et al., 2022a;b), with some neurons representing the same concepts
across different modalities (Schwettmann et al., 2023). (II) Research by Schwettmann et al. (2023)
identifies semantic alignment between images and text within the LLM, rather than in the projection
layer. (III) Our goal is to identify neurons across modalities within the same set, so we exclude
modality-specific encoders. Thus, our research focuses on the FFN module.

Our problem can be distilled into two steps: first, measure a neuron’s importance for a specific
modality (Stages 1-3), and second, select the most important neurons based on this measure (Stage
4). Assessing the importance of ul,n in modality space X is complex due to the infinite number
of potential samples. Therefore, we define the importance score between a neuron and samples
as ISs(ul,n,x). If a neuron consistently demonstrates importance across many samples, we can
conclude it is significant within the modality space. The four stages of MINER align with the
sections in fig. 2, outlined as follows:

➠ Stage 1: Modality Separation. Decomposing the information within the LLM by modality.

➠ Stage 2: Importance Score Calculation. We decompose the importance of neurons to modali-
ties into their token-level significance and define it accordingly.

➠ Stage 3: Importance Score Aggregation. We aggregate the token-level importance of neurons
to restore their modality-level significance.

➠ Stage 4: Modality-Specific Neuron Selection. The aggregated scores and a selection strategy
are used to identify the top-K important MSNs.

4.2 STAGE 1: MODALITY SEPARATION

What is the license plate number 
of the black car?

The license plate number is 
79M679.

Figure 3: A VQA demo.

To identify neurons associated with specific modalities, we first
need to separate the information by modality. While input tokens
Tinput can be divided into distinct sets {Timage, Ttext, . . .}, the atten-
tion mechanism blends information across modalities, complicating
complete separation. Inspired by the VQA demo in fig. 3, which
shows that a small portion of license plate information suffices to
answer the question, we propose the following hypothesis:

Hypothesis 1: As information passes through the LLM layers,
most of the content in Tmi

remains within its set, with only a small portion related to the ques-
tion being transferred.

This hypothesis is supported by confirmatory experiments in section 5.5, prompting us to propose an
approximate method for segmenting modality information: we assume the attention module func-
tions only within distinct token sets of different modalities, preventing information exchange be-
tween subsets and enabling the partitioning of tokens into mutually exclusive modalities.

Our hypothesis generates a set of uni-modality datasets {D1
uni, D

2
uni, . . .} at the token level by par-

tially limiting information flow, aligning to some extent with Tang et al. (2024a); Huo et al. (2024).
We further refine the neuron-sample importance function ISs by defining it at a more granular level
between neuron and token set as ISt(ul,n, Tm). The next stage outlines how we utilize modality
information and provides a detailed definition of the importance score.

4.3 STAGE 2: IMPORTANCE SCORE CALCULATION

In the FFN, each neuron outputs an activation value for a token, which naturally serves as an impor-
tance score and is widely used (Tang et al., 2024a; Huo et al., 2024). We use Hl

i,n, the activation
value introduced in section 3.2, as the baseline for all other importance scores (sample-level ISs,
and token-level ISt). As shown in fig. 12, the significant variation in token counts across modali-
ties makes individual token-based importance unreliable. Therefore, we calculate importance over
a token set, removing token count as a factor. We propose the following operations to aggregate
activation values for a token set:

➢ Prob. The activation value reflects a neuron’s interest in a token, so we calculate the interest
probability (activation value > 0) for the tokens:

5
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ISProb
t (ul,n, Tm) = ISProb

t (Hl
1,n, . . . ,Hl

Im,n) =
1

Im

Im∑
i=1

I(Hl
i,n > 0) (4)

Here, I is the indicator function. A higher probability suggests greater engagement with the token
set. However, high activation probability doesn’t necessarily imply importance. A neuron may
have frequent low activations, while fewer high values could indicate a greater contribution. These
limitations are confirmed in section 5.4).

➢ Mean. Taking the average is a common approach that captures the group’s overall characteristics
while balancing the influence of individual tokens. We define this operation as follows:

ISMean
t (ul,n, Tm) = ISMean

t (Hl
1,n, . . . ,Hl

Im,n) =
1

Im

Im∑
i=1

Hl
i,n (5)

➢ Max. We use the maximum activation value as an importance measure. Unlike ISMean
t , which

represents a uniform distribution, ISMax
t corresponds to a Dirac distribution.

➢ Attn-Q. We developed a method that uses attention values to assess a neuron’s importance for a
token set, considering each ti ∈ Tinput:

ISt(ul,n, Tm) =
1

T

T∑
i=1

Im∑
j=1

wj(ti)Hl
Indm[j],n (6)

We use Indm to map the index of Tm back to Tinput, retrieving the corresponding values from H.
The ISAttn-Q

t employs the i-th row of the attention matrix A, reflecting the attention scores for the
i-th query across all keys, where w(ti) = [wj(ti)]

Im
j=1 = softmax[Ai,Indm[j]]

Im
j=1.

➢ Attn-K. Like ISAttn-Q
t , ISAttn-K

t uses the i-th column of the attention matrix, reflecting the attention
scores for the i-th key across all queries, where w(ti) = softmax[AIndm[j],i]

Im
j=1.

As shown in table 1, previous studies on X-specific neuron analysis (Tang et al., 2024a; Huo et al.,
2024) rely solely on ISProb, which has inherent limitations. To address this, we define ISt as the
weighted sum of the five metrics discussed earlier, combining both local and global perspectives.
We also evaluate the effectiveness of each metric in section 5.4.

4.4 STAGE 3: IMPORTANCE SCORE AGGREGATION

We calculated the importance score for each neuron across all modality-specific token sets. Next,
we aggregate these scores to define the sample-level importance score:

ISs(ul,n,x) = ISs(ul,n, Tinput) = [ISt(ul,n, Tm)]m∈SM
∈ RM (7)

For each neuron, we compute a vector as described above, resulting in a sample-level Importance
Score Matrix (ISM) defined as ISMs(x) = [ISs(ul,n,x)]L,N ∈ RM×L×N . We then aggregate the
importance scores across samples from different datasets to obtain the modality-level ISM:

ISM(X ) =
∑
i

|Dmulti
i |∑
j

ISMs(xi,j) ∈ RM×L×N , where xi,j is the j-th sample of Dmulti
i (8)

As the sample size grows, the importance matrix becomes more effective in assessing neuron sig-
nificance across the entire modality space.

4.5 STAGE 4: MODALITY-SPECIFIC NEURON SELECTION

The previous stage’s ISM(X ) evaluates the importance of all neurons in the MLLMs for each modal-
ity. We then designed four strategies to select the K highest importance scores from the ISM matrix.
However, because of potential neuron overlap, the final number of selected neurons may be less than
K. The strategies are implemented as follows:

(I) Uniform selects ⌊ K
L×M ⌋ neurons for each modality in every layer (the strongest assumption).

(II) LA-MU (Layer-Adaptive & Modality-Uniform) selects ⌊K
M ⌋ neurons for each modality, allow-

ing for adaptive quantities in each layer and relaxing certain constraints.

(III) LU-MA (Layer-Uniform & Modality-Adaptive) selects ⌊K
L ⌋ neurons for each layer.

(IV) Adaptive selects K positions in the ISM matrix without constraints on modality or layer.

6
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Uniform

Adaptive

LU-MA
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M

N
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Figure 4: Selection strategies.

fig. 4 intuitively illustrates the segmentation methods for the four
selection strategies. The assumptions range from strong to weak,
beginning with a fixed number of neurons for each modality in ev-
ery layer and progressively relaxing constraints until the fourth ap-
proach imposes no limitations. Together, these strategies offer a
comprehensive set of selection criteria.

Using any selection strategy, we generate neuron positions as a
Boolean mask B ∈ {0, 1}L×N (with 1 indicating MSNs). As
shown in eq. (8), different datasets yield distinct ISM, resulting in
varied masks. Thus, with all other settings fixed, a specific dataset
combination uniquely determines a neuron mask. For simplicity, we can define a mask function as
B = mask(D1, D2, . . .).

5 EXPERIMENT

We apply MINER in various settings to explore the existence and characteristics of MSNs. Our
study aims to answer the following research questions:

➷ RQ1: Do the identified modality-specific neurons significantly contribute to multimodal models?
➷ RQ2: If RQ1 is validated, how do these neurons facilitate this contribution?
➷ RQ3: How do different hyperparameter settings influence the behavior of the MLLMs?
➷ RQ4: Can we uncover underlying patterns among modality-specific neurons?

5.1 EXPERIMENT SETUP

Unless otherwise noted (e.g., in ablation studies), we adopt the following default settings. We define
SM as the modality set, treating special and text as distinct modalities. We deactivate neurons
across all modalities by setting their outputs to zero, then evaluate the impact on performance.

Models. We select Qwen2-VL (Wang et al., 2024) for visual tasks and Qwen2-Audio (Chu et al.,
2024) for audio tasks to ensure a thorough exploration of the current model landscape. Qwen2-VL
processes text, image, and video modalities, while Qwen2-Audio focuses on text and audio.

Datasets. For text-only tasks, we chose MMLU (Hendrycks et al., 2020). For text-image tasks,
we selected TextVQA (Singh et al., 2019), and for text-video tasks, we opted for MSVD-QA (Chen
& Dolan, 2011). Since no datasets exist for image-only or audio-only tasks, we selected specific
datasets with fixed prompts to minimize the impact of the text modality. For an approximate image-
only dataset, we utilized the MS-COCO 2014 captioning benchmark (Lin et al., 2014), adopting the
Karpathy split test set as per Li et al. (2023); Tang et al. (2024b); Zhan et al. (2024) by fixing the text
tokens. For an approximate audio-only dataset, we employed LibriSpeech (Panayotov et al., 2015)
and VocalSound (Gong et al., 2022) in a similar manner.

5.2 MAIN RESULTS (RQ1)

Table 3: Qwen2-Audio results: Same format as table 2.

DATASETS
QWEN2-AUDIO (0.69 ∼ 0.31 ↓)

MMLU LibriSpeech VocalSound Average
MMLU Libri Vocal Accuracy WRR Accuracy

- - - 0.40 0.94 0.74 0.69

✓ 0.00 0.53 0.41 0.31
✓ 0.01 0.85 0.15 0.34

✓ 0.01 0.87 0.19 0.36
✓ ✓ 0.00 0.85 0.34 0.40
✓ ✓ 0.01 0.86 0.37 0.39

✓ ✓ 0.01 0.81 0.35 0.39
✓ ✓ ✓ 0.01 0.83 0.40 0.41

To address RQ1, we generate neuron
masks for each dataset combination
to thoroughly evaluate our method.
The main results for Qwen2-VL and
Qwen2-Audio are shown in table 2
and table 3. Key experimental obser-
vations (Obs) include:

Ob1. Masking just 2% of neu-
rons impacts performance. The
first row in both tables shows nor-
mal inference without masking. Af-
ter masking the selected neurons, we
observe performance drops, except for a slight increase in MSVD (analyzed later). Results in ta-
ble 4 show that randomly masking 2% of neurons has no effect, confirming that the modality-specific
neurons identified by our method significantly influence model performance.
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Table 2: Main results of Qwen2-VL. We select MSNs (2%) using various dataset combinations
(indicated by ✓) and then mask neurons across all modalities, recording the performance of the
masked MLLMs. The minimum value in each column is marked in blue. We highlight any new
values in gray when adding a new dataset improves the mask’s quality.

DATASETS
QWEN2-VL (0.56 ∼ 0.24 ↓)

TextVQA COCO Caption MMLU MSVD-QA Average

TextVQA COCO Caption MMLU MSVD-QA Accuracy BLEU S-BERT CIDEr Accuracy Accuracy

- - - - 0.90 0.10 0.79 0.36 0.69 0.51 0.56

✓ 0.75 0.04 0.18 0.10 0.57 0.52 0.36
✓ 0.80 0.01 0.14 0.18 0.52 0.53 0.36

✓ 0.87 0.03 0.70 0.34 0.59 0.50 0.51
✓ 0.38 0.01 0.14 0.18 0.44 0.32 0.25

✓ ✓ 0.77 0.04 0.28 0.16 0.55 0.54 0.39
✓ ✓ 0.79 0.03 0.19 0.14 0.56 0.46 0.36
✓ ✓ 0.78 0.05 0.33 0.20 0.57 0.54 0.41

✓ ✓ 0.79 0.02 0.41 0.27 0.50 0.45 0.41
✓ ✓ 0.85 0.10 0.61 0.34 0.59 0.52 0.50

✓ ✓ 0.40 0.01 0.15 0.17 0.41 0.31 0.24

✓ ✓ ✓ 0.76 0.04 0.49 0.30 0.53 0.45 0.43
✓ ✓ ✓ 0.82 0.06 0.39 0.26 0.60 0.42 0.43
✓ ✓ ✓ 0.78 0.04 0.35 0.24 0.57 0.48 0.41

✓ ✓ ✓ 0.84 0.05 0.61 0.33 0.58 0.48 0.48
✓ ✓ ✓ ✓ 0.82 0.06 0.53 0.29 0.56 0.52 0.46

Ob2. Neurons identified from diverse datasets are higher quality. For MSVD-QA performance,
apply mask(MSVD) drops performance to 0.32, while apply mask(MSVD, COCO) raises it to 0.52.
This may be because the diverse text questions in MSVD-QA closely relate to video semantics,
producing high-quality text-specific neurons. In contrast, the fixed text prompts in COCO Caption
(see fig. 7) create a repetitive pattern, degrading neuron mask quality. MMLU’s diverse text data
causes a larger performance drop (0.31) when combined with MSVD-QA.

Ob3. Adding more datasets can improve MSNs quality. Many values in both tables are high-
lighted in Gray , showing that new datasets often enhance mask quality. However, some cases also
demonstrate decreased effectiveness, possibly due to the diversity issues mentioned in Ob3 or con-
flicts among dataset characteristics that lead to incompatible ISM matrices. We will investigate these
phenomena in future work.
5.3 NEURON FUNCTIONALITY PRINCIPLES (RQ2)

This research question focuses on the intrinsic mechanisms of action of MSNs. Several key obser-
vations are as follows:

Ob1. The audio modality exhibits a “semantic probing” effect towards the text modality,
indicating a potential trend toward aligning key information across modalities. We present the
feature distribution under three masking settings in fig. 5-(a). The complementary mask is defined
as 1−B. As the layer depth increases, audio embeddings extend “tentacles” toward the embeddings
of other modalities, a phenomenon we call “semantic probing.” This suggests that the LLM aligns
not the entire modal feature space, but specific key information.

Ob2. A “semantic telomeres” phenomenon occurs in special modality, anchoring at the edges
of the text modality’s semantic space. In fig. 5-(a), text embeddings initially form circular clusters
that elongate into strips in deeper layers. Special tokens progressively align with and stabilize at the
front of these clusters, a pattern we refer to as “semantic telomeres.”

Ob3. MSNs shape MLLMs behavior by directing how key information from different modality
tokens converges into the last token. We apply mask(COCO) to the COCO Caption dataset
and calculate each modality’s contribution score to the final prediction based on the accumulated
attention between its token set and the last token. As shown in fig. 5-(b), applying a mask for a
specific modality results in ∆ < 0, indicating reduced information flow to the last token.

5.4 ABLATION STUDIES (RQ3)

We present ablation studies on MINER’s components and highlight key observations:
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⼤图放在附录 每个神经元代表不同的激活模式，我们通过观察不同种类神经元对应的状态分布，来分析模式
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(a) Token embeddings t-SNE plot. (b) Plot of 𝚫 score (after masking minus before masking).

semantic probing

semantic telomeres

Figure 5: (a) t-SNE plots for VocalSound, showcasing three masking settings: no masking,
Mask(VocalSound), and complementary masking (from top to bottom). (b) Display the change
(∆) in contribution scores between different token sets and the last token before and after masking,
based on 100 samples (detail in section 5.3).

Ob1. Selection strategies with appropriate degrees of freedom yield higher-quality MSNs. As
shown in table 4, the uniform method, which imposes a fixed number of neurons per modality at each
layer, performed the worst. In contrast, greater flexibility in selecting neurons across modalities and
layers enabled a better approximation of important neuron distribution. Among these strategies, LA-
MU proved most effective, as it maintained flexibility in neuron counts across layers while treating
all modalities equally, thus avoiding imbalances.

Table 4: Ablation results. Red (blue) indicates the mini-
mum in each row (column), and green highlights values that
are minimum in both.

IMPORTANCE METRIC SELECTION STRATEGY

Prob Mean Max A-K A-Q Uniform LU-MA LA-MU Adaptive Random
1 0.88 0.88 0.89 0.88 0.90

1 0.87 0.87 0.85 0.89 0.89
1 0.81 0.66 0.83 0.85 0.90

1 0.87 0.87 0.85 0.89 0.90
1 0.87 0.88 0.85 0.89 0.90

1/2 1/2 0.83 0.82 0.81 0.17 0.90
1/2 1/2 0.87 0.88 0.85 0.89 0.90

1/4 1/4 1/2 0.84 0.85 0.76 0.84 0.90
1/4 1/4 1/2 0.85 0.85 0.81 0.80 0.90

1/5 1/5 1/5 1/5 1/5 0.86 0.87 0.89 0.90 0.90

Ob2. For the importance metrics,
the activation probability was less
effective than our other designs.
We evaluated the effectiveness of
each of the five importance metrics
individually and also assessed the im-
pact of combining them. As shown
in table 4, the activation probability
performed poorly, aligning with the
section 4.3 analysis. In contrast, our
newly designed metrics, which ac-
count for both local and global per-
spectives, demonstrate improved ef-
fectiveness.

Ob3. The model’s performance significantly drops with an increase in masked MSNs. As
shown in fig. 6-(a), masking 1% of neurons has minimal impact, while 5% nearly collapses perfor-
mance. Therefore, MINER selects 2% to strike a balance.

Ob4. The model’s performance is greatly influenced by the deactivation value settings. Con-
sidering neuron ul,n, we test three deactivation settings: fixing its output activation to 0, -0.1, and
min(Hl). As shown in fig. 6-(a), a slightly negative activation value reduces model performance,
indirectly highlighting the importance of the identified neurons for the modality, since randomly
deactivated neurons below zero do not impact performance.

Ob5. Considering “special” and “text” as separate modalities leads to improved results. We
evaluate three modality sets: Sall, SM and St+s defined in section 3.1, referred to as “all”, “t,s”,
and “t+s” in fig. 6-(a). The poor performance of Sall shows that our sample-level issue (all in one
modality) cannot be resolved, highlighting the need for modality separation at the token level.

Ob6. Masking MSNs from different modalities affects performance, with a greater impact as
more modalities are masked. We apply mask(COCO) to the COCO Caption dataset and normalize
values within different metrics to a 0-1 range. Results are shown in Figure 1, with “t,” “s,” and “i”
representing text, special, and image, respectively. We found that performance declines significantly
with an increasing number of masked modalities.
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Top-K Modality Set Deactivation
Value

(a) Ablation on modules.

(b) Ablation on masking.

(f) In-set / Cross-set information flow.

(d) Qwen2-VL + LibriSpeech

(c) Qwen2-Audio + VocalSound (e) Qwen2-VL + COCO

Figure 6: (a) and (b) present the ablation results, while (c), (d), and (e) illustrate the neuron distri-
bution across layers. (f) shows the information flow within and between token sets.

5.5 IDENTIFYING PATTERNS IN NEURONS (RQ4)
In this section, we investigate potential MSNs patterns through experiments to offer valuable in-
sights. Our key observations are as follows:

Ob1. Most MSNs are concentrated in the shallow layers, with only a small portion in the final
layers. As shown in fig. 6, figures (c), (d), and (e) visualize the distribution of modality-specific
neurons across layers. This trend aligns with findings in Zhang et al. (2024), indicating that cross-
modal perception primarily occurs in the early layers (detailed in appendix B.2). Thus, we believe
that different modalities primarily converge in the lower layers.

Ob2. Most modality information stays within the token set, with only a small amount of key
information transferring to other sets. To validate Hypothesis 1 from section 4.2, we measure
information flow using attention values, calculating the cumulative in-set attention and cross-set
attention (the diagonal blocks of A). We apply mask(MSVD-QA) to the MSVD-QA dataset, with
results shown in fig. 6-(f). Our findings indicate that in-set information flow significantly surpasses
cross-set flow, supporting our hypothesis.

6 CONCLUSION

To our knowledge, this is the first study of modality-specific neurons (MSNs) in MLLMs. We select
a small set of key neurons from the FFN that are crucial for processing multimodal data and design
experiments to investigate their underlying mechanisms. We address this issue through the following
steps: ❶ Define key concepts related to modalities, samples, and datasets. ❷ Conduct sample-level
and token-level analyses to differentiate modality information at a finer granularity, evaluate the
limitations of existing importance metrics, and propose new ones. ❸ Calculate importance scores
for neurons associated with a set of tokens and aggregate these scores across samples and datasets
for a global modality-level analysis. ❹ Define four selection strategies to extract the top-K neurons
with the highest importance scores as the output MSNs. In the experimental section, we validate our
method by masking the MSNs and observing the resulting decline in model performance, while also
identifying two intriguing phenomena: semantic probing and semantic telomeres.

6.1 LIMITATION AND FUTURE WORK

Our work presents several areas for improvement: (I) We introduced the independence hypothesis
of token sets to separate information by modality; however, key information exchanges between
token sets occur and are difficult to capture. Future research could relax this assumption by incor-
porating cross-set information exchange for potentially better results. (II) Our study focused on
vision-related Qwen2-VL and audio-related Qwen2-Audio models, limiting the range of modalities.
Future work aims to include broader MLLMs, such as any-to-any models, and datasets with more
diverse modalities. (III) We observed two intriguing phenomena—semantic probing and semantic
telomeres—whose underlying causes remain unclear, presenting an opportunity for further explo-
ration. (IV) The quality of datasets directly influences the quality of identified neurons, which may
be linked to data diversity. Future research could investigate this further and design metrics to quan-
tify dataset quality. (V) While this work emphasizes identifying important neurons, the next step is
to explore how to leverage these neurons to enhance MLLMs performance on relevant modalities,
potentially through neuron fine-tuning techniques.
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A DATASET DETAILS

This section presents a detailed description of the datasets used in our evaluation, including data
samples and the prompts provided to MLLMs.

A.1 TEXTVQA

TextVQA (Singh et al., 2019) is a dataset for Visual Question Answering (VQA) that focuses on
answering questions about text found in images. It features a variety of images, such as signs and
labels, requiring models to combine visual understanding with Optical Character Recognition (OCR)
to accurately respond to questions. TextVQA is a key benchmark for evaluating the integration of
visual and textual reasoning in AI models.

A.2 COCO CAPTION

The COCO Caption dataset (Lin et al., 2014) is a large-scale resource containing over 1.5 million
captions that describe more than 330,000 images, distributed across 80 diverse object categories.
The images were selected to represent complex, real-world scenes, depicting everyday environ-
ments where common objects appear in their natural contexts. Each image is annotated with five
captions, each of which was independently generated by human annotators. COCO Caption dataset
has been a foundational benchmark for training and evaluating the image captioning performance of
multimodal large language models.

A.3 MMLU

The Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2020) dataset is a
benchmark for evaluating language models across 57 subjects, ranging from elementary topics to
advanced academic fields. It consists of multiple-choice questions testing a model’s knowledge and
reasoning across diverse domains. MMLU is widely used to assess the generalization capabilities of
large language models.

A.4 MSVD-QA

The MSVD (Microsoft Research Video Description Corpus) (Chen & Dolan, 2011), also known as
YouTube2Text, consists of 1,970 short videos, each ranging from 10 to 25 seconds with an average
duration of 9 seconds. These videos depict a variety of subjects, including people, animals, actions,
and different scenes. Each video is annotated with multiple sentences by different annotators, av-
eraging around 41 sentences per clip, resulting in a total of 80,839 sentences. On average, each
sentence contains 8 words, with approximately 16,000 unique words across the dataset.

A.5 LIBRISPEECH

LibriSpeech (Panayotov et al., 2015) is a widely used dataset for automatic speech recognition
(ASR) tasks. It contains approximately 1,000 hours of 16kHz English speech, sourced from the
LibriVox audiobooks. The dataset is divided into several subsets, including “clean” and “other”,
which distinguish recordings by noise levels. Each audio file is accompanied by an accurate tran-
scription, making it ideal for training and evaluating ASR models. LibriSpeech’s diverse speaker
base and detailed annotations also make it suitable for tasks like speaker identification and voice
synthesis.

A.6 VOCALSOUND

VocalSound (Gong et al., 2022) is an open dataset containing 21,024 crowdsourced recordings of
human vocalizations such as laughter, sighs, coughs, throat clearing, sneezes, and sniffing, from
3,365 individuals. Designed for classification tasks, it enables models to accurately identify various
non-speech sounds. The dataset also includes metadata like speaker age, gender, native language,
country, and health status, supporting research on how demographic factors affect vocal sounds.
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With its comprehensive scope and detailed annotations, VocalSound is a valuable resource for im-
proving models in human vocalization classification.

A.7 PROMPTS OF DATASETS

Generate a caption for the image in one short sentence, similar to these examples from the
COCO dataset:
1. A man with a red helmet on a small moped on a dirt road.
2. Man riding a motor bike on a dirt road on the countryside.
3. A man riding on the back of a motorcycle.
4. A man in a red shirt and a red hat is on a motorcycle on a hill side.

Now, describe the image.

Figure 7: Prompt for COCO Caption.

The following are multiple choice questions (with answers) about abstract algebra.

Find all c in Z3 such that Z3[x]/(x
2 + c) is a field.

A. 0
B. 1
C. 2
D. 3
Answer: B
...

Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q.
A. 0
B. 4
C. 2
D. 6
Answer:

Figure 8: Prompt for MMLU.

Please transcribe the following audio directly into plain text without any additional explana-
tions, prefixes, or descriptions.
Only output the transcription of the spoken content in the audio.

Figure 9: Prompt for LibriSpeech.

A.8 DATASET SAMPLE STATISTICS

B ADDITIONAL RESULTS

B.1 ADDITIONAL RELATED WORKS

Development of MLLMs. Researchers have extensively investigated integrating additional modal-
ities into foundational large language models (Liu et al., 2023). Notably, large vision-language mod-
els (Zhu et al., 2023) and audio-language models (Deshmukh et al., 2023) have gained significant
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You are a sound classification model. Your task is to classify a given audio sample into one
of the following categories based on its content:
1. Laughter
2. Sigh
3. Cough
4. Throat clearing
5. Sneeze
6. Sniff

Please analyze the audio sample and provide the corresponding category name.

Figure 10: Prompt for Vocal Sound.
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Figure 11: Sample-level count statistics for different modalities. We provide a sample-level
statistical analysis of all datasets used in this work. The inner ring represents different modalities,
while the outer ring corresponds to the respective datasets, with sample counts labeled on both rings.
For instance, a VQA sample containing text, special, and image modalities is counted under each
modality it includes.

attention by combining visual or audio inputs with text. For instance, (Liu et al., 2024b) proposed
aligning images with text by projecting visual embeddings from a pretrained vision encoder into
word space through a single MLP layer, allowing LLMs to understand the post-projection tokens.
Similarly, Chen et al. (2024b) and Lu et al. (2024) used various projectors for this alignment. Re-
cently, Qwen2-VL (Bai et al., 2023b) introduced a universal vision encoder that processes both
images and videos, integrating visual embeddings directly into the textual token stream. Parallelly,
several studies have focused on integrating audio data into LLMs (Deshmukh et al., 2023; Wu et al.,
2023), typically involving post-processing of auditory embeddings through additional modules like
Q-Former (Tang et al., 2023) or downsampling layers (Das et al., 2024). Notably, Qwen2-Audio
(Chu et al., 2023) has surpassed previous state-of-the-art models across various audio benchmarks
without task-specific fine-tuning. In this research, we selected Qwen2-VL and Qwen2-Audio as
our vision-language and audio-language baselines, both utilizing Qwen-7B (Bai et al., 2023a; Yang
et al., 2024) as the foundational LLM, with Vision Transformer (Dosovitskiy, 2020b) and Whisper-
large-v3 (Radford et al., 2022) serving as their respective vision and audio encoders.

B.2 ALL DISTRIBUTIONS OF NEURONS ACROSS LAYERS
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Figure 12: Token-level count statistics for different modalities. This image provides a token-level
analysis. The inner ring represents different modalities, while the outer ring shows the correspond-
ing datasets. We process each sample’s modality components through specific encoders and tokeniz-
ers to generate token sets, which are then categorized and summarized in the pie chart. Although
the number of samples across datasets is balanced, the token count varies significantly by modal-
ity—video encoding produces far more tokens than text encoding, for instance. This underscores the
need to compute importance scores within each modality’s token set and normalize by token count
for fair cross-modality comparisons.
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Figure 13: The distribution of modality-specific neurons across different layers, derived from all
possible dataset combinations in Qwen2-VL.
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Figure 14: The distribution of modality-specific neurons across different layers, derived from all
possible dataset combinations in Qwen2-Audio.
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