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ABSTRACT

As an effective alternative to the direct fine-tuning on target tasks in specific lan-
guages, cross-lingual transfer addresses the challenges of limited training data by
aligning representations across languages or by explicitly translating target lan-
guages into source languages. However, these methods possess certain limitations
and fail to fully exploit the potential of Large Language Models (LLMs). In this
paper, we regard the ability of LLMs in a particular task and language as a combi-
nation of “task ability” and “language ability”. In the context of parameter-efficient
fine-tuning and cross-lingual transfer, task ability can be obtained by adapters
fine-tuning on the target task in the source language, while language ability is
the ability to solve problems using the specific target language. In this work, we
propose a novel adaptive adapter merging method for cross-lingual transfer, termed
as AdaMergeX. As language ability is not tied to any specific task, we introduce
another easily accessible reference task from which language ability is obtained by
adapter merging. Then by further merging it with adapters tuned on the target task
in the source language, we can achieve effective cross-lingual transfer. Further-
more, unlike existing model merging methods that employ arithmetic addition, we
propose a new structure-adaptive merging method that adapts the merging process
based on the structure of adapters. Our empirical results demonstrate that our
approach yields new and effective cross-lingual transfer, outperforming existing
methods across all settings.

1 INTRODUCTION

Multilingual NLP models, including conventional models such as mBERT (Kenton & Toutanova,
2019), XLM (Conneau & Lample, 2019), XLM-R (Conneau et al., 2020), as well as recent multi-
lingual large language models (LLMs) like ChatGPT (OpenAI, 2022), PaLM2 (Anil et al., 2023),
Llama2 (Touvron et al., 2023), have gained significant attention in response to the growing need for
multilingual requirements. To further enhance the model’s capability, particularly in cases where
training data of certain tasks for low-resource languages is scarce and fine-tuning becomes impracti-
cal (Ma et al., 2023), cross-lingual transfer is introduced to extend the task-solving ability in a source
language (e.g., English) to a wide range of languages. Various cross-lingual transfer techniques have
been investigated, including extracting similar representations (Nguyen et al., 2023; Salesky et al.,
2023; Gao et al., 2023) and translating to intermediate languages (Liang et al., 2023; Huang et al.,
2023b). However, studies have indicated that aligned representations do not significantly benefit
cross-lingual transfer, especially for LLMs (Gaschi et al., 2023). Additionally, the prompting method,
specifically developed for LLMs, exhibits certain constraints when applied to low-resource languages
due to the restricted optimization space, resulting in an incomplete exploration of the capabilities
offered by LLMs (Li et al., 2023; Tanwar et al., 2023; Zhang et al., 2023b).

In this work, we regard the ability of LLMs in a particular task and language as a combination of “task
ability” and “language ability”. The former denotes the model’s competence in performing a certain
task, whereas the latter signifies their general proficiency of a certain language. Considering that
language ability is not tied to any specific task, in line with the renowned equation “king − queen =
man− woman”, we perceive the disparity between the corresponding elements on each side of the
equation as reflective of language proficiency. In the case of parameter-efficient fine-tuning (PEFT),
we assume that the divergences between adapters fine-tuned in different languages on a particular
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Figure 1: AdaMergeX split target task ability in the target language into “task ability” and “language
ability”. In the context of PEFT, “task ability” is obtained by fine-tuning on the target task in the
source language. To achieve cross-lingual transfer, we introduce another reference task aimed at
acquiring language ability. This reference task can be conveniently constructed using unlabeled data
from both the source language and the target language. Moreover, by employing adaptive adapter
merging, AdaMergeX combines the task ability and language ability to effectively adopt the adapter
for the target task in the target language.

task follow the same distribution across diverse tasks. In the context of cross-lingual transfer, where
labeled data is available only for the target task in the source language and there is unlabeled data in
both the source and target languages, we aim to transfer the task ability from the source language to
the target language. Specifically, task ability can be obtained by fine-tuning on the target task in the
source language, while the language ability, as analyzed by the renowned equation, is quantified by
the divergence between adapters of the task in the source language and the target language. Based on
the assumption that the divergences between adapters fine-tuned in different languages for a particular
task follow a consistent distribution across diverse tasks, we propose to accomplish cross-lingual
transfer through Adaptive Adapter Merging (AdaMergeX) as shown in Figure 1. We introduce
another reference task to obtain adapters that represent language ability. The reference task refers
to an easily accessible task with unlabeled training corpus available for both high-resource and
low-resource languages, such as causal language modeling. Generally speaking, we employ three
types of adapters: those tuned on the target task in the source language, those tuned on the reference
task in the target language, and those tuned on the reference task in the source language. The first
type of adapters represents task ability, while the divergence between the last two types represents
language ability. By merging these three types of adapters, we can obtain the adapter applicable to
the target task in the target language.

Furthermore, in contrast to previous studies that combine models or adapters through a linear
combination (Ilharco et al., 2022; Zhang et al., 2023a; Yadav et al., 2023; Huang et al., 2023a;
Chronopoulou et al., 2023; Ponti et al., 2023), we argue that the model merging method should
align with the manner in which adapters are integrated with language models. Specifically, for
LoRA (Hu et al., 2021) that incorporates adapters through element-wise addition, the merging method
should also involve element-wise addition or subtraction. Conversely, for (IA)3 (Liu et al., 2022),
which incorporates adapters through element-wise multiplication, the merging method should also
employ element-wise multiplication or division. To the best of our knowledge, we are the first
ones to apply adapter merging method to cross-lingual transfer, and we are the first one to design
a structure-adaptive adapter merging method, which we find to be essential for the cross-lingual
transfer problem.

We evaluate AdaMergeX on a total of 5 multilingual tasks spanning 12 languages, covering a broad
resource spectrum from high-resource to low-resource language. Our evaluation demonstrates that
AdaMergeX consistently outperforms other state-of-the-art methods both in cross-lingual transfer
via prompting and general adapter merging methods. Notably, compared to XLT (Huang et al.,
2023b), which is the state-of-the-art cross-lingual transfer method with LLMs, AdaMerges achieves
67.3% and 11.3% relative improvement on average in all languages and all tasks with and without
fine-tuning on English labeled data respectively. In the case of state-of-the-art adapter merging
method Arimerge (Zhang et al., 2023a), AdaMergeX achieves 31.1% relative improvement on
average in all languages and all tasks with Llama2. Moreover, the ablation analysis shows that
AdaMergeX performs consistently well with different backbone models, different source languages,
and different reference tasks.
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2 BACKGROUND

Given a pre-trained model, fine-tuning is often employed to improve the performance on specific
tasks. Specifically, for a layer h = W0x, where x ∈ Rk is input, h ∈ Rd is output and W0 ∈ Rd×k

is pre-trained parameters, fine-tuning updates parameters from W0 to W ′ and the layer becomes
h = W ′x. However, full fine-tuning requires many training data points and computing resources,
which inspires the design of adapters (Houlsby et al., 2019).

With adapters, the layer is changed to h = (W0 ◦ WA)x, where WA denotes the parameters of
adapters and ◦ denotes the combination operation of pre-trained parameters and adapter parameters.
During such parameter-efficient fine-tuning, pre-trained parameters W0 are fixed and only adapter
parameters WA are updated. Since the number of parameters of the adapter is often much fewer
than the original model, adapters provide an effective way of fine-tuning on specific tasks. With the
number of parameters growing much bigger for LLMs, adapters become more widely used in the
current practice of fine-tuning LLMs (Hu et al., 2021; Li & Liang, 2021; Liu et al., 2022)

Various combination methods ◦ have been designed for different adapters. In this paper, we focus on
two main widely used combination methods: addition and multiplication, corresponding to LoRA (Hu
et al., 2021) and (IA)3 (Liu et al., 2022), respectively:

LoRA Specializing the combination method “◦” to element-wise addition denoted as “⊕”, LoRA
employs low-rank decomposition to reduce training complexity. The layer is thus changed to

h = (W0 ⊕WA)x = (W0 ⊕BA)x, (1)

where B ∈ Rd×r and A ∈ Rr×k are low-rank decomposed matrices, and the rank r ≪ min(d, k).
Specifically, the LoRA can be implemented in any layer of the Transformer (Vaswani et al., 2017)
architecture, including the attention layer and the feed-forward layer.

(IA)3 (IA)3 specializes the combination method to element-wise multiplication “⊙”:

h = (W0 ⊙WA)x, (2)

where WA ∈ Rk is element-wise multiplied to each row of W0. Furthermore, (IA)3 can only be
implemented to the key neuron and value neuron in the attention layer and dimension reduction
neuron in the feed-forward layer.

3 ADAMERGEX: ADAPTIVE ADAPTER MERGING FOR X-LINGUAL TRANSFER

3.1 CROSS-LINGUAL TRANSFER VIA ADAPTER MERGING

Generally, the ability of a model in a particular task and language can be seen as a composite of two
abilities, namely, “task ability” and “language ability”. The former denotes the model’s competence
in performing a certain task (e.g., text classification, sentence completion), whereas the latter signifies
their general proficiency in the given language (e.g., English, Chinese, German). By embracing
the fundamental concept behind the renowned equation “king − queen = man − woman” and
extending its applicability to linguistic contexts, we interpret the disparity between the respective
terms on either side of the equation as indicative of language ability. In the case of parameter-efficient
fine-tuning with LLMs, since language ability is not tied to specific tasks, we make the assumption
that the divergences between adapters fine-tuned in different languages on a particular task follow the
same distribution across diverse tasks.

Formally speaking, Alitj denotes the adapter of task tj in language li, then for any two languages l1,
l2 and two NLP tasks t1, t2, we have

Al1t1∥Al2t1 ∼ Al1t2∥Al2t2 , (3)

where ∥ denotes the divergence among two adapters. For example, let’s consider l1 and l2 as English
and German, respectively, and t1 and t2 as the text classification task and question answering task,
respectively. Assuming we have training data for each task in both languages, we can fine-tune
LLMs to obtain four adapters: text classification in English, text classification in German, question
answering in English, and question answering in German. We assume that the divergence between
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adapters for the text classification task in English and German, as well as the divergence between
adapters for the question answering task in English and German, follows the same distribution. This
divergence represents the “language ability” that is independent of specific tasks.

In the context of cross-lingual transfer, we aim to solve the task t1 for the target language l1, with the
knowledge transferred from a source language l2, which is often a high-resource language such as
English. By imposing the condition of cross-lingual transfer, where labeled data is available only
for the target task in the source language and there is unlabeled data in both the source and target
languages, we can introduce another “reference task” t2. This task can be easily constructed using
unlabeled data, and language ability can be obtained by Al1t2∥Al2t2 . Moreover, to obtain the ability
of performing target task t1 in the target language l1, we can further transform Equation ( 3) as:

Al1t1 = Al2t1 ∥R (Al1t2∥Al2t2), (4)

where ∥R is the reverse function of ∥. Intuitively, Al2t1 represents the “task ability” in the source
language, while Al1t2∥Al2t2 represents the “language ability”. Through merging these two terms, we
can transfer the “task ability” of t1 from l2 to l1.

To transfer the knowledge from labeled data in the high-resource language (i.e., given Al2t1), the
next step is to specify the reference task t2. We observe that there are many easily obtained corpora
of low-resource languages, such as Wikipedia, online blogs, etc. These corpora can be used to
construct intuitive tasks such as causal language modeling, which can serve as the reference task
t2. Simultaneously, we can also construct such tasks for the high-resource language l2. Therefore,
adapters can be fine-tuned on such easily accessible reference tasks in different languages to obtain
Al1t2 and Al2t2 . Cross-lingual transfer thus can be achieved by merging these three adapters.

3.2 STRUCTURE-ADAPTIVE ADAPTER MERGING

As introduced in Section 2, adapters have different structures, which inspires us to devise different
adapter merging methods accordingly. We propose that the adapter merging approach must align
with the way that the adapter combined with the original model.

LoRA In the fine-tuning process of LoRA, where the method involves element-wise addition to the
original parameters, the merging method used to combine task ability and language ability should also
employ element-wise addition. Additionally, since the divergence calculation approach ∥ is intended
to be the inverse function of the merging method, it should be carried out through element-wise
subtraction in this scenario. Therefore, Equation (3) is equivalently transferred to

Al1t1 ⊖Al2t1 ∼ Al1t2 ⊖Al2t2 , (5)

where ⊖ denotes element-wise subtraction, and Equation (4) is equivalently transferred to

Al1t1 = Al2t1 ⊕ t · (Al1t2 ⊖Al2t2), (6)

where ⊕ denotes element-wise addition and t is the hyper-parameter that adapts the scale of two
distributions in the same family of distributions.

(IA)3 Similarly, the fine-tuning method of (IA)3 is element-wise multiplication to the original
parameters, and the merging method should also be element-wise multiplication. Furthermore, we
need to employ element-wise division to obtain the divergence between Al1t2 and Al2t2 . Therefore,
Equation (3) is equivalently transferred to

Al1t1 ⊘Al2t1 ∼ Al1t2 ⊘Al2t2 , (7)

where ⊘ denotes element-wise devision, and Equation (4) is equivalently transferred to

Al1t1 = Al2t1 ⊙
((

t · (Al1t2 ⊘Al2t2)− 1
)
+ 1

)
, (8)

where ⊙ denotes element-wise multiplication and t is the hyper-parameter that determines the scale
of two distributions in the same family of distributions.

Moreover, in the case of other adapter structures such as Adapter (Houlsby et al., 2019) and Prefix-
Tuning (Li & Liang, 2021), which involve the insertion of layers and prefix tokens into the model, the
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merging process necessitates transferring adapters within the same space, such as MLP. In this paper,
we primarily focus on LoRA and (IA)3 due to the lack of training data in target language for AdapterH
and the subpar performance of prefix-tuning on fine-tuning (He et al., 2021). However, in the case of
smaller language models such as XLM-R (Conneau et al., 2020), we implement AdaMergeX on
it. The adaptive merging method is Al1t1 = t · (Al1t2 ∗ A−1

l2t2
) ∗ Al1t1 , where ∗ represents matrix

multiplication and A−1
l2t2

represents Moore-Penrose pseudo-inverse of the matrix. The experiment
results are shown in Appendix A.1.

3.3 ADAMERGEX

Following notations in Section 3.1, to solve a target task t1 in a target language l1, i.e., obtain the
adapter Al1t1 , we need to fine-tune another three adapters: adapters on the target task in the source
language (Al2t1), adapters on the reference task in the target language (Al1t2), and adapters on the
reference task in the source language (Al2t2 ). Note that Al1t2 and Al2t2 are easily obtainable, as we
can choose any task in the target and source language. As mentioned earlier, the task can even be
causal language modeling, which only requires randomly selected corpora. Therefore, with only
unlabeled data in both source and target language, our proposed AdaMergeX effectively transfers
the target task proficiency from the source language to the target language.

In the case of LoRA, which fine-tunes LLMs by tuning {B,A} in tuned layers of LLMs as introduced
in Equation (1), adapters are merged following Equation (6) by element-wise addition and subtraction
on {B,A} in the corresponding layers of Al2t1 , Al1t2 , and Al2t2 . On the other hand, in the case
of (IA)3, the fine-tuning parameters are WA in tuned layers as depicted in Equation (2). Thus the
merging method follows Equation (8), which involves performing element-wise multiplication and
division of the corresponding layers of Al2t1 , Al1t2 , and Al2t2 .

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Language To evaluate the effectiveness of our method, we conduct experiments
on a wide variety of multilingual tasks in three main categories: reasoning tasks, natural language
understanding (NLU) tasks, and natural language generation (NLG) tasks. For reasoning tasks, we
test on multilingual arithmetic reasoning dataset XGSM (Shi et al., 2022) and multilingual common-
sense reasoning dataset XCOPA (Ponti et al., 2020). For NLU tasks, we test on the multilingual
natural language inference dataset XNLI (Conneau et al., 2018), and question-answering dataset
XQuAD (Artetxe et al., 2020). For NLG tasks, we test on multilingual summarization dataset
XLSum (Hasan et al., 2021). We choose 12 languages that appear in more than once in the above
datasets, including German (de), Russian (ru), French (fr), Spanish (es), Chinese (zh), Vietnamese
(vi), Turkish (tr), Arabic (ar), Greek (el), Thai (th), Hindi (hi), and Swahili (sw). The order is
presented by the percentage of the language in the whole corpus from Common Crawl Monthly
Archives 1. Detailed settings of the size of test set and zero-shot prompts are shown in Table 1. We
utilize intuitive prompting methods for all tasks except for XCOPA and XNLI, where we employ
prompts from Huang et al. (2023b). Detailed examples of the prompting approach can be found in
Appendix A.2. For MGSM and XCOPA, we adopt the whole test set, while for XNLI, XLSum, and
XQuAD we randomly sample 1000, 500, and 1000 data points from the whole test set respectively.

Baselines We conducted a comparison between our proposed method, which utilizes model merging
for achieving cross-lingual transfer, and five competing techniques. These techniques include: (i)
Vanilla zero-shot prompting (“Vanilla”), which directly assesses target languages using the pre-trained
LLM. (ii) English Tuning (“Eng-FT”), which involves fine-tuning the model in English for target
tasks and subsequently transferring it directly to target languages. (iii) Cross-Lingual-Thought
Prompting (“XLT (Vanilla)”) (Huang et al., 2023b) achieves state-of-the-art results on cross-lingual
transfer with LLMs through carefully designed prompt template, which involves explicit translation
from the target to the source language, reasoning in the source language, and translating back to the
target language. (iv) “XLT (Eng-FT)”, where XLT approach is applied to the Eng-FT model. (v)

1We adopt statistics on CC-MAIN-2023-23: https://commoncrawl.github.io/cc-crawl-statistics/
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Table 1: Zero-shot prompts and number of testing instances for each dataset.

Task # Test Zero-Shot Prompt

MGSM 250 Let’s think step by step. Question: {question}

XCOPA 500 Here is a premise and a question. Help me pick the more plausible option. Premise:
{premise} Question: What is the {question}? (A) {choice1} (B) {choice2}

XNLI 1000 You should judge whether the hypothesis is true (entailment), false (contradiction), or
undetermined (neutral) given the premise. Premise: {premise} Hypothesis: {hypothesis}

XQuAD 1000 {context} Question: {question}

XLSum 500 Summarize the context in one sentence. Title: {title} Context: {article}

Arithmetic Merging (“AriMerge”) (Zhang et al., 2023a), which is the state-of-the-art adapter merging
method by arithmetic addition. (vi) MAD-X (Pfeiffer et al., 2020) decomposes language and task via
independent in invertible adapters. (vii) LF-SFT (Ansell et al., 2022) adopts sparse fine-tuning on
language and task respectively and directly merging via addition. 2

Evaluation Metrics For reasoning and NLU tasks, we use accuracy scores as our evaluation metric.
For the summarization task, we evaluate the performance by ROUGE-L score (Lin, 2004).

Experiment Details The backbone model that we use to test AdaMergeX is Llama2-7b (Touvron
et al., 2023). To fine-tune Llama2 using LoRA and IA3, we configure the target modules to include all
available layers. We follow the notation of Vaswani et al. (2017). In particular, we utilize the attention
layer’s {WQ,WK ,WV ,WO} and the feed-forward layer’s {W1,W2} for LoRA. For IA3, we focus
on WK and WV in the attention layer, as well as W2 in the feed-forward layer. For the merging target
modules, inspired by Geva et al. (2021) who attributes task ability to the feedword layer, we merge
{WQ,WV } for LoRA as we focus on language ability instead. We employ conventional causal
language modeling as the reference task, where the prediction of the subsequent token is based on
preceding inputs. Specifically, we generate the training set from the corpora provided by Foundation
by dividing them into segments with a length of 512. There is only one hyperparameter in our
method, which is t in Equation ( 6) and Equation ( 8). When tuning this hyperparameter, for each
task, we select the validation set from French and then extend it to encompass all other languages,
for those tasks that do not contain French validation set, we adopt Vietnamese instead. For XLT
method (Huang et al., 2023b), we adopt the same zero-shot prompts as in the original paper.

4.2 MAIN RESULTS

Table 2 presents our main experimental results on 5 representative cross-lingual tasks, where we
report the average scores across all languages. Detailed results of each language are shown in Table 8
and 9 in Appendix A.3 for LoRA and (IA)3 respectively.

AdaMergeX outperforms direct transfer and prompting methods When comparing to fine-
tuning on the task in English and direct transfer to the target language, AdaMergX outperforms it on
all settings and achieves 1.4% absolute improvement with LoRA and 1.5% absolute improvement
with (IA)3. When comparing to the state-of-the-art method for cross-lingual transfer in LLMs via
prompting, XLT with Vanilla Llama2 model (“XLT (Vanilla)”) and model fine-tuned on target task in
English (“XLT (Eng-FT)”), AdaMerge outperforms it on all settings and achieves 3.4% absolute
improvement with LoRA and 7.3% absolute improvement with (IA)3. This achievement proves that
the introduction of adapter merging to achieve cross-lingual transfer is effective, especially in the
circumstance of LLMs.

AdaMergeX outperforms general adapter merging methods Compared with the state-of-the-
art method for adapter merging namely Arimerge, AdaMergeX outperforms it on all settings
and achieves 6.9% absolute improvement with LoRA and 2.3% absolute improvement with (IA)3.
Therefore, our adaptive merging method AdaMerge which considers the structure of adapters

2As MAD-X and LT-SFT are not applicable to Llama, we compare under XLM-R, as shown in Table 5.
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Table 2: Main experimental results on 5 representative cross-lingual tasks. Details of the selected
zero-shot prompt, the baselines, and hyperparameters are described in Section 4.1.

Adapters Method Reasoning NLU NLG Avg.MGSM XCOPA XNLI XQuAD XLSum

LoRA

Vanilla 2.7 52.3 14.8 0.0 20.9 18.1
Eng-FT 17.4 58.1 30.3 31.0 22.9 31.9
XLT(Vanilla) 2.8 52.6 23.7 19.3 1.3 19.9
XLT(Eng-FT) 18.1 58.2 27.7 26.4 19.1 29.9
AriMerge 6.0 57.9 13.6 30.1 19.5 25.4
AdaMergeX 19.2 59.0 33.6 31.6 23.3 33.3

(IA)3

Vanilla 2.7 52.3 14.8 0.0 20.9 18.1
Eng-FT 2.3 52.5 26.5 34.0 17.4 26.5
XLT(Vanilla) 2.8 52.6 23.7 19.3 1.3 19.9
XLT(Eng-FT) 2.8 52.6 25.5 21.3 1.4 20.7
AriMerge 0.7 51.5 28.2 32.4 15.5 25.7
AdaMergeX 3.9 53.1 28.6 35.5 18.8 28.0

outperforms all previous methods that only adopt arithmetic addition for all kinds of adapters. In
the case of (IA)3, the adaptive merging method, depicted in Equation (8), is specifically designed
to preserve the fine-tuned coefficients distributions. However, when it comes to LoRA, where
AdaMergeX also utilizes element-wise addition as illustrated in Equation (6), AriMerge fails due to
its limitation in arithmetic weighting, which necessitates the sum to be equal to one. This constraint
undermines the fundamental assumption that language ability is not limited to a specific task. More
details about the further analysis of the adaptive merging step are illustrated in Section 4.3.

AdaMergeX performances consistently well with LoRA and (IA)3 LoRA achieves higher
absolute performance than (IA)3, which shows the effectiveness of LoRA on fine-tuning. However,
compared to the absolute improvement of AdaMergeX on LoRA and (IA)3, they are comparable.
For example, for MGSM, LoRA and (IA)3 get the same absolute improvement 1.1%, and for XNLI,
on which LoRA and (IA)3 both achieve the highest absolute improvement, their performance are
comparable. This proves that AdaMergeX performs consistently well on different adapters.

4.3 DETAILED ANALYSIS

In this section, we validate its generalizability across various aspects such as the source language,
reference task, backbone model, and target modules, among others. Additionally, we conduct an
analysis on AdaMergeX to ascertain the indispensability of the adaptive merging method.

Source Language To prove the generalizability of AdaMergeX on the source language, we explore
its performance with different source languages in Table 3. We test on five source languages including
German, French, Spanish, Thai, and Vietnamese. We find that the performance is highly related to the
source language, which depends on the language ability of the corresponding language. However, the
improvements are consistent across languages. For example, the improvement was most significant
with Vietnamese as the source language, with an absolute improvement of 3.4% with LoRA and 3.8%
with (IA)3. Therefore, AdaMergeX consistently performs well with different source languages.

Reference Task To prove the generalizability of AdaMergeX on the reference task, we explore
its performance with different reference task in Table 4.We test on three different reference tasks,
including XCOPA, XNLI, XQuAD, while the source language is English. The dataset was tested
on the corresponding available languages among German, French, Spanish, Thai, and Vietnamese.
Specifically, the improvement was most significant with XQuAD as the reference task, with an
absolute improvement of 1.3% with LoRA and 1.7% with (IA)3. Thus, it verifies that AdaMergeX
is general to any reference task.

Backbone Models Not limited to Decode-only Models such as LLama2, we do further analysis on
Encoder-Decoder model T5-base (Raffel et al., 2020) to prove its universal effectiveness. AdaMerge
achieves consistently the best performance compared to fine-tuning on English and AriMerge as
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Table 3: Ablation study on source language. Each dataset is tested on the corresponding available
languages among German, French, Spanish, Thai, and Vietnamese.

Adapters Source Language Method MGSM XCOPA XNLI XQuAD Avg.

LoRA German
De-Tune 20.9 − 48.3 44.4 37.9
AdaMergeX 22.3 − 50.9 46.5 39.9

French
Fr-Tune 19.9 − 52.9 − 36.4
AdaMergeX 22.2 − 57.1 − 39.6

Spanish
Es-Tune 19.2 − 33.9 45.4 32.8
AdaMergeX 18.7 − 35.1 49.1 34.3

Thai
Th-Tune 3.2 49.3 1.9 39.8 23.6
AdaMergeX 4.5 48.9 6.2 44.2 26.0

Vietnamese
Vi-Tune − 63.8 49.1 36.2 49.7
AdaMergeX − 64.2 53.2 38.9 52.1

(IA)3
German

De-Tune 2.9 − 43.5 45.6 30.7
AdaMergeX 6.3 − 44.0 47.1 32.5

French
Fr-Tune 2.5 − 48.7 − 25.6
AdaMergeX 4.1 − 47.9 − 26.0

Spanish
Es-Tune 3.5 − 49.2 45.9 32.9
AdaMergeX 5.3 − 50.9 44.6 33.6

Thai
Th-Tune 1.2 49.8 0.0 27.7 19.7
AdaMergeX 1.9 50.4 0.0 28.9 20.3

Vietnamese
Vi-Tune − 49.8 45.5 33.2 42.8
AdaMergeX − 48.7 50.2 36.1 45.0

Table 4: Ablation study on reference Task. Each dataset is tested on the corresponding available
languages among German, French, Spanish, Thai, and Vietnamese.

Adapters Reference Task Method MGSM XCOPA XNLI XQuAD Avg.

LoRA

− Eng-Tune 14.4 59.9 44.6 42.3 40.3

XCOPA AdaMergeX 15.2 60.2 45.1 43.8 41.1

XNLI AdaMergeX 14.5 60.9 46.7 44.1 41.6

XQuAD AdaMergeX 14.9 61.8 45.4 44.4 41.6

(IA)3
− Eng-Tune 2.6 52.7 40.0 39.2 33.6

XCOPA AdaMergeX 4.9 54.3 40.5 40.4 35.0

XNLI AdaMergeX 3.6 54.6 41.2 39.9 34.8

XQuAD AdaMergeX 4.1 53.9 42.1 41.0 35.3

shown in Table 10 of Appendix A.4. In addition, we also implement our method on Encoder-only
model XLM-R and compare with MAD-X and LF-SFT as shown in Table 5. This shows the flexibility
of choosing the backbone model when implementing AdaMergeX. Moreover, it demonstrates a
significant improvement when compared to MAD-X and LF-SFT, thus validating our decomposition
of task ability and language ability.

Table 5: Ablation study on backbone models with XLM-Roberta-base.

Task Method tr vi th sw el ru Avg.

XCOPA MAD-X 60.3 66.1 61.8 56.3 - - 59.5
AdaMergeX 69.4 70.5 66.9 63.2 - - 67.5

XNLI
MAD-X - - 54.3 57.8 55.7 51.1 54.7
LF-SFT - - 65.5 64.6 75.2 58.6 66.0

AdaMergeX - - 70.2 70.4 77.9 63.8 70.6
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Merging Method We conduct an ablation analysis on merging method to ascertain the indis-
pensability and the effectiveness of adaptive merging in AdaMergeX. Table 11 in Appendix A.5
shows the detailed results, where AdaMergeX (adaptive) represents AdaMergeX with adaptive
merging methods, while AdaMergeX (cross) represents AdaMergeX with cross merging methods,
i.e., LoRA with merging method of (IA)3 and vice versa. We find that when applying the merging
method of (IA)3 to LoRA, the performance is reduced much, and vice versa. Detailed analysis is
shown in Appendix A.5. As a result, the adaptive merging method is crucial for adapter merging.

Hyperparameter t Hyperparameter t in Equation (6) and (8) are significant to AdaMergeX.
Figure 2 and Figure 3 in Appendix A.6 show the performance of AdaMergeX on XNLI, MGSM and
XLSum as the change of t. We find that t has less influence on (IA)3 compared to LoRA. Furthermore,
in the circumstance of LoRA, the trend of the influence depends highly on the task. XNLI benefits
from higher t value, while MGSM benefits from lower t value.

5 RELATED WORK

5.1 CROSS-LINGUAL TRANSFER

The emergence of multilingual systems (Kenton & Toutanova, 2019; Conneau & Lample, 2019;
Conneau et al., 2020; OpenAI, 2022; Anil et al., 2023; Touvron et al., 2023) has sparked interest in
cross-lingual transfer (Kim et al., 2017; Lin et al., 2019; Schuster et al., 2019; Pfeiffer et al., 2020).
Fine-tuning on the target language and target task is an intuitive way to make models obtain the ability
of this task, but it is too costly in the era of LLMs as we always lack enough training data (Ma et al.,
2023). Alternatively, some researchers explore realigning representations among languages (Nguyen
et al., 2023; Salesky et al., 2023; Gao et al., 2023). However, Gaschi et al. (2023) demonstrates
that aligned representations do not significantly benefit cross-lingual transfer. To address this issue,
some works adopt explicit translation to achieve cross-lingual transfer (Liang et al., 2023; Huang
et al., 2023b). However, they rely on translation ability which is not guaranteed. Furthermore, in
the era of in-context learning (Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023;
OpenAI, 2023), Li et al. (2023) and Tanwar et al. (2023) utilize prompt tuning to achieve cross-lingual
transfer. Nevertheless, the performance remains limited for low-resource languages, which is often
not carefully considered in the pre-training of LLMs.

5.2 MODEL MERGING

Model merging has been widely used in image identification (Wortsman et al., 2022; Matena & Raffel,
2022), knowledge editing (Mitchell et al., 2022; Meng et al., 2022) and task combination (Ilharco
et al., 2022). In the era of PEFT, researchers have started exploring different approaches to merging
adapters (Zhang et al., 2023a; Yadav et al., 2023; Huang et al., 2023a; Chronopoulou et al., 2023;
Ponti et al., 2023). These studies, however, have primarily focused on task transfer and have solely
utilized linear combinations, which may not be applicable to all types of adapters. Therefore, there
is a need for further investigation and development of more general merging techniques that can be
applied to a wider range of adapter types.

6 CONCLUSION

In this work, we propose a new cross-lingual transfer method AdaMergeX. We split target task
ability in the target language into two parts: “task ability” and “language ability”. In the context of
PEFT, task ability can be obtained by tuning on the target task in the source language. To achieve
cross-lingual transfer, which aims to transfer task ability from the source language to the target
language, we introduce a reference task from which we obtain language ability and further merge it
to task ability by adapter merging. Different from all previous adapter merging methods, we propose
a structure adaptive adapter merging method that aligns the adapter merging method with the way
adapters combined to LLMs. Experiment results show that AdaMergeX performs well among all
settings. Moreover, ablation analysis proves that AdaMergeX is robust to backbone models, source
languages, and source tasks, which further demonstrates its usability.
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A APPENDIX

A.1 ADAMERGEX ON PREFIC-TUNING

The results demonstrate that AdaMergeX excels remarkably within the realm of prefix-tuning, a
distinct and separate approach to fine-tuning. Results on XNLI task with mT5 (Xue et al., 2021) are
shown as follows.

Method es fr
Eng-FT 31.2 29.7
AriMerge 29.8 28.3
AdaMergeX 34.1 31.4

Table 6: Results of AdaMergeX on Prefix-tuning

A.2 PROMPTS

MGSM (French)

Let’s think step by step.

Question: Les canes de Janet pondent 16 œufs par jour. Chaque matin, elle en mange trois au petit déjeuner et en utilise quatre autres pour
préparer des muffins pour ses amis. Ce qui reste, elle le vend quotidiennement au marché fermier, au prix de 2 $ l’œuf de cane frais. Combien
(en dollars) gagne-t-elle chaque jour au marché fermier ?
Answer:

XCOPA (Vietnamese)

Here is a premise and a question. Help me pick the more plausible option. Answer with (A) or (B).

Premise: Các mt hàng d̄ã d̄c d̄óng gói trong bc bong bóng.
Question: What is the cause?
(A) Nó d v.
(B) Nó nh.
Answer:

XNLI (French)

You should judge whether the hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given the premise. The relationship
can be chosen from entailment, contradiction, and neutral.

Premise: Cela fait 17 ans que je suis affilié à l’IRT.
Hypothesis: Je n’ai rien à voir avec l’IRT.
Relationship:

XLSum (Vietnamese)

Summarize the context in one sentence.

Title: Côte d’Ivoire : le groupe Magic System fête ses 20 ans
Context: Formé en 1997, le groupe a connu la consécration deux ans plus tard avec son tube P̈remier Gaou.̈ Le groupe ivoirien fête ses 20 ans
avec une tournée africaine et une autobiographie. N̈ous célébrons 20 ans d’amitiés, de collaboration, de moments de joies et de tristesses,̈ raconte
A’Salfo, le leader du groupe qui a su ouvrir les portes du marché africain et international au genre zouglou mais aussi aux autres genres ivoiriens,
dont le coupé-décalé. A’Salfo, Manadja, Tino et Goudé, les quatre boys d’Anoumabo, quartier déshérités d’Abidjan, aux ruelles boueuses et
sablonneuses, ont joué partout, des stades africains aux salles mythiques comme l’Apollo à New York ou l’Olympia à Paris et jusqu’au Louvre,
le 7 mai, pour le concert célébrant la victoire du président français Emmanuel Macron. Magic System a bénéficié de conseils avisés d’Alpha
Blondy. Formé en 1997, le groupe a connu la consécration deux ans plus tard avec son tube P̈remier Gaou,̈ fable sur les déboires sentimentaux
d’un jeune homme naïf - le gaou est un homme crédule en nouchi, l’argot abidjanais. Le tube va propulser les quatre amis sur la scène mondiale.
Magic System a multiplié les succès, enchaînant les albums, sans oublier l’amitié. M̈agic System est aussi un groupe qui a toujours voulu relever
les défis, après Premier Gaou, nos détracteurs ont parlé de coup de chance! On a donc relevé ce défi,̈ explique Manadja, le g̈rosd̈u groupe. Le
groupe reconnaît avoir bénéficié de conseils avisés, dont ceux de la star ivoirienne du reggae, Alpha Blondy.
Summary:

XQuAD (French)

Ni mà din tích mt ct ngang liên quan d̄n khi lng mà ten-x ng sut d̄c tính toán. Hình thc này bao gm thut ng áp sut gn lin vi các lc hot d̄ng bình
thng d̄i vi khu vc ct ngang (d̄ng chéo ma trn ca tenx) cũng nh các thut ng ct gn lin vi các lc tác d̄ng song song vi din tích mt ct ngang (các yu t
ngoài d̄ng chéo). Máy ten-x ng sut liên quan d̄n các lc gây ra tt c các bin dng (bin dng) bao gm c ng sut kéo và nén.:133–134:38-1–38-11

Question: Ðiu gì d̄c s dng d̄ tính din tích mt ct trong th tích ca mt vt th?
Answer:

Table 7: One-shot prompting examples of tested datasets.
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Models Method de ru fr es zh vi tr ar el th hi sw

MGSM
Vanilla 2.4 3.6 3.6 3.2 2.4 − − − − 2.0 − 2.0
Eng-FT 22.4 24.8 20.4 22.4 22.8 − − − − 6.8 − 2.4
XLT(Vanilla) 2.0 2.8 2.8 3.2 2.8 − − − − 2.0 − 3.2
XLT(Eng-FT) 22.0 24.0 22.8 24.4 24.2 − − − − 5.2 − 4.4
AriMerge 6.4 8.0 2.4 10.4 3.2 − − − − 11.6 − 0.0
AdaMergeX 24.8 26.2 23.6 22.4 22.0 − − − − 8.0 − 7.2

XCOPA
Vanilla − − − − 54.4 54.0 − − − 51.8 − 49.0
Eng-FT − − − − 61.8 67.2 − − − 52.6 − 50.6
XLT(Vanilla) − − − − 56.8 52.4 − − − 51.0 − 50.0
XLT(Eng-FT) − − − − 60.6 70.0 − − − 51.6 − 50.4
AriMerge − − − − 61.0 69.8 − − − 50.6 − 50.0
AdaMergeX − − − − 61.8 69.8 − − − 51.8 − 52.2

XNLI
Vanilla 27.4 26.6 24.0 20.2 0.3 21.5 14.3 0.1 0.3 0.3 0.0 43.0
Eng-FT 54.0 54.0 58.2 60.5 33.5 47.0 9.6 0.8 5.4 3.3 5.2 31.8
XLT(Vanilla) 44.7 44.4 39 36.9 5.3 36 20.6 0.4 0.2 13.9 0.2 42.6
XLT(Eng-FT) 54.1 44.3 44.6 58.6 34.0 43.0 15.9 0.0 1.2 2.0 0.9 33.9
AriMerge 28.7 16.5 12.8 21.2 1.0 32.1 16.2 0.3 1.8 0.0 10.2 22.8
AdaMergeX 57.8 56.7 63.1 62.8 32.9 49.2 10.3 1.0 9.1 13.3 14.9 35.9

XLSum
Vanilla − 13.4 12.5 11.4 56.0 22.1 15.7 23.5 − 14.8 31.6 8.1
Eng-FT − 21.7 16.1 11.3 58.4 21.2 16.4 25.8 − 15.6 32.9 9.9
XLT(Vanilla) − 0.6 2.3 1.8 0.5 1.3 2.5 0.8 − 0.2 0.8 2.1
XLT(Eng-FT) − 17.8 5.0 6.6 56.8 13.5 10.8 28.9 − 13.5 33.9 3.9
AriMerge − 14.5 8.7 9.8 49.8 12.6 11.7 29.8 − 17.2 34.2 6.5
AdaMergeX − 21.6 16.2 11.9 58.4 21.6 16.7 25.6 − 15.5 33.9 11.4

XQuAD
Vanilla 0.0 0.0 − 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −
Eng-FT 49.0 34.1 − 48.2 53.5 40.9 17.3 10.2 13.9 31.0 11.8 −
XLT(Vanilla) 34.8 14.0 − 29.8 33.1 21.8 20.2 12.0 8.6 7.1 12.1 −
XLT(Eng-FT) 39.1 26.3 − 40.7 41.2 33.9 19.0 13.8 13.0 23.8 13.2 −
AriMerge 50.7 31.8 − 49.1 50.2 42.3 15.9 10.4 12.6 28.7 9.7 −
AdaMergeX 50.7 34.1 − 50.0 53.2 41.7 17.3 10.4 13.7 31.8 13.1 −

Table 8: Comprehensive experimental results for both baselines and AdaMergeX are obtained across
all datasets in corresponding available languages. The fine-tuning method employed was LoRA, with
Llama2-7b serving as the backbone model.

A.3 DETAILED RESULTS

A.4 ADAMERGEX ON T5-BASE

In the case of LoRA on XNLI, AdaMergeX obtains 4.2% absolute improvements in Spanish and
2.8% absolute improvements in French. For (IA)3, the improvements are 1.1% and 4.0% respectively.

A.5 ABLATION ON ADAPTIVE MERGING

We find that when applying the merging method of (IA)3 to LoRA, the performance is reduced
much. Specifically, on XNLI the performance gets 39.5% absolute reduction, while for XQuAD
the reduction is 45.9% absolute value. When applying the merging method of LoRA to (IA)3, the
performance also decreases compared to that of the adaptive merging method. For XNLI the reduction
is 2.4%, while for XQuAD the reduction is 0.7%. The reduction is smaller than that for LoRA. This
can be attributed to the fact that the fine-tuning of (IA)3 is not as effective as that of LoRA and has a
relatively minor impact on the overall model performance.

A.6 ABLATION ON HYPER-PARAMETER t

A.7 ABLATION ON MERGING MODULES
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Models Method de ru fr es zh vi tr ar el th hi sw

MGSM
Vanilla 2.4 3.6 3.6 3.2 2.4 − − − − 2.0 − 2.0
Eng-FT 2.0 2.0 3.6 2.4 1.6 − − − − 2.4 − 2.0
XLT(Vanilla) 2.0 2.8 2.8 3.2 2.8 − − − − 2.0 − 3.2
XLT(Eng-FT) 0.8 1.6 4.8 4.0 3.2 − − − − 2.8 − 2.4
AriMerge 0.0 0.4 0.4 0.0 1.6 − − − − 2.0 − 0.4
AdaMergeX 4.4 3.6 4.8 6.0 3.6 − − − − 2.8 − 2.0

XCOPA
Vanilla − − − − 54.4 54.0 − − − 51.8 − 49.0
Eng-FT − − − − 54.8 54.2 − − − 51.2 − 49.8
XLT(Vanilla) − − − − 56.8 52.4 − − − 51.0 − 50.0
XLT(Eng-FT) − − − − 56.8 53.2 − − − 51.4 − 49.8
AriMerge − − − − 53.0 50.6 − − − 52.2 − 50.2
AdaMergeX − − − − 55.0 55.2 − − − 52.1 − 50.0

XNLI
Vanilla 27.4 26.6 24.0 20.2 0.3 21.5 14.3 0.1 0.3 0.3 0.0 43.0
Eng-FT 46.4 45.3 51.9 50.7 1.6 51.0 31.4 0.1 0.8 0.0 0.0 39.3
XLT(Vanilla) 44.7 44.4 39.0 36.9 5.3 36.0 20.6 0.4 0.2 13.9 0.2 42.6
XLT(Eng-FT) 34.3 36.8 36.3 34.2 25.4 34.4 32.1 5.2 3.8 20.7 8.0 34.4
AriMerge 42.4 47.2 52.9 49.3 6.4 54.5 49.1 0.2 0.5 0.1 0.0 35.5
AdaMergeX 45.3 46.5 53.0 54.3 1.5 58.8 41.7 2.2 0.9 0.1 0.1 38.4

XLSum
Vanilla − 13.4 12.5 11.4 56.0 22.1 15.7 23.5 − 14.8 31.6 8.1
Eng-FT − 4.2 9.0 6.8 56.6 14.7 13.6 16.6 − 12.5 32.3 7.6
XLT(Vanilla) − 0.6 2.3 1.8 0.5 1.3 2.5 0.8 − 0.2 0.8 2.1
XLT(Eng-FT) − 0.6 3.1 1.8 0.4 1.3 2.5 1.1 − 0.3 0.8 2.1
AriMerge − 4.8 6.3 7.6 44.1 9.9 11.8 15.4 − 13.1 32.3 9.4
AdaMergeX − 6.8 10.5 7.5 55.2 14.9 15.3 23.5 − 13.6 33.4 7.7

XQuAD
Vanilla 0.0 0.0 − 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −
Eng-FT 47.3 32.8 − 47.6 53.7 35.1 28.9 22.8 21.9 26.9 23.2 −
XLT(Vanilla) 34.8 14.0 − 29.8 33.1 21.8 20.2 12.0 8.6 7.1 12.1 −
XLT(Eng-FT) 37.1 16.8 − 32.4 37.6 25.1 19.3 14.0 10.0 7.0 14.1 −
AriMerge 46.0 32.2 − 44.5 51.2 35.4 28.2 23.4 20.6 21.6 20.7 −
AdaMergeX 48.6 33.0 − 48.2 56.0 35.7 29.3 25.4 24.5 29.2 24.6 −

Table 9: Comprehensive experimental results for both baselines and AdaMergeX are obtained across
all datasets in corresponding available languages. The fine-tuning method employed was (IA)3, with
Llama2-7b serving as the backbone model.

Table 10: Ablation study on backbone models. Results are evaluated on T5-base.

Adapters Method XNLI
es fr

LoRA
Eng-FT 33.0 32.9
AriMerge 34.1 30.1
AdaMergeX 37.2 35.7

(IA)3
Eng-FT 38.2 38.4
AriMerge 35.6 36.1
AdaMergeX 39.3 42.4
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Table 11: Ablation study on adaptive merging method. AdaMergeX (adaptive) represents
AdaMergeX with adaptive merging methods, while AdaMergeX (cross) represents AdaMergeX
with cross merging methods, i.e., LoRA with merging method of (IA)3 and vice versa. Increase ↑ and
decrease ↓ are both compared to the baseline method Eng-Tune.

Adapters Tasks Method es vi Avg.

LoRA

XNLI
Eng-Tune 60.5 47.0 53.8
AdaMergeX (adaptive) 62.8 ↑ 2.3 49.2 ↑ 2.2 56.0 ↑ 2.2
AdaMergeX (cross) 17.6 ↓ 42.9 15.4 ↓ 31.6 16.5 ↓ 37.3

XQUAD
Eng-Tune 48.2 40.9 44.6
AdaMergeX (adaptive) 50.0 ↑ 1.8 41.7 ↑ 0.8 45.9 ↑ 1.3
AdaMergeX (cross) 0.0 ↓ 48.2 0.0 ↓ 40.9 0.0 ↓ 44.6

(IA)3
XNLI

Eng-Tune 50.7 51.0 50.9
AdaMergeX (adaptive) 54.3 ↑ 3.6 58.8 ↑ 7.8 56.4 ↑ 5.5
AdaMergeX (cross) 50.9 ↑ 0.2 57.4 ↑ 6.4 54.2 ↑ 3.1

XQUAD
Eng-Tune 47.6 35.1 41.4
AdaMergeX (adaptive) 48.2 ↑ 0.6 35.7 ↑ 0.6 42.0 ↑ 0.6
AdaMergeX (cross) 47.5 ↓ 0.1 34.9 ↓ 0.2 41.3 ↓ 0.1

Figure 2: Impact of t in LoRA for different tasks. Figure 3: Impact of t in (IA)3 for different tasks.

Models Method de ru fr es th sw Avg.

XNLI
Eng-Tune 63.3 56.4 56.6 58.6 4.1 41.5 46.8
AdaMergeX 63.8 57.2 58.2 58.9 3.7 41.8 47.3↑ 0.5

XQuAD
Eng-Tune 9.8 8.7 − 15.2 4.4 − 9.5
AdaMergeX 10.4 7.8 − 21.4 5.4 − 11.2↑ 1.7

Table 12: Llama2-7b on LoRA with fine-tuning target modules as WQ, WV and merging target
modules as WQ, WV .

Models Method de ru fr es th sw Avg.

XNLI
Eng-Tune 54.0 54.0 58.2 60.5 3.3 31.8 43.6
AdaMergeX 53.7 55.6 60.5 62.7 4.9 33.6 45.2↑ 1.6

XQuAD
Eng-Tune 49.0 34.1 − 48.2 31.0 − 40.6
AdaMergeX 50.2 32.9 − 48.9 31.3 − 40.8 ↑ 0.2

Table 13: Llama2-7b on LoRA with fine-tuning target modules as WQ, WK , WV , WO, W1, W2

and merging target modules as WQ, WK , WV , WO, W1, W2.
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