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Abstract

In the approximate quantiles problem, the goal is to output m quantile estimates,
the ranks of which are as close as possible to m given quantiles 0 ≤ q1 ≤
· · · ≤ qm ≤ 1. We present a mechanism for approximate quantiles that satisfies
ε-differential privacy for a dataset of n real numbers where the ratio between
the distance between the closest pair of points and the size of the domain is
bounded by ψ. As long as the minimum gap between quantiles is sufficiently
large, |qi − qi−1| ≥ Ω

(
m log(m) log(ψ)

nε

)
for all i, the maximum rank error of

our mechanism is O
(

log(ψ)+log2(m)
ε

)
with high probability. Previously, the best

known algorithm under pure DP was due to Kaplan, Schnapp, and Stemmer (ICML
’22), who achieved a bound of O

(
log(ψ) log2(m)+log3(m)

ε

)
. Our improvement

stems from the use of continual counting techniques which allows the quantiles
to be randomized in a correlated manner. We also present an (ε, δ)-differentially
private mechanism that relaxes the gap assumption without affecting the error
bound, improving on existing methods when δ is sufficiently close to zero. We
provide experimental evaluation which confirms that our mechanism performs
favorably compared to prior work in practice, in particular when the number of
quantiles m is large.

1 Introduction

Quantiles are a fundamental statistic of distributions with broad applications in data analysis. In this
paper, we consider the estimation of multiple quantiles under differential privacy. Given a dataset X
of n real numbers and quantiles 0 < q1 < · · · < qm < 1 the goal is to output estimates z1, . . . , zm
such that the fraction of data points less than zi is approximately qi. We measure the error by the
difference between the rank of zi in X and the optimal rank qin. For the ease of exposition, we first
consider the case where elements of X are integers in {1, . . . , b} and the error probability is bounded
by 1/b. In particular, the ratio ψ between the closest pair of points and the domain size is bounded
by b. Past mechanisms fall into two categories based on the type of privacy guarantee achieved. For



pure ε-differential privacy, the best known bound on maximum rank error of O
(
log(b) log2(m)/ε

)
is due to Kaplan, Schnapp, and Stemmer [18]. On the other hand, work on approximate differential
privacy has largely focused on controlling how the error grows with the domain size b [8, 3, 17, 11].
These results reduce the dependence on b down to log∗(b), but introduce log( 1δ ) factors—for small
values of δ, for example when log(1/δ) > log(b) log2(m), the bound on rank error exceeds that of
methods guaranteeing pure differential privacy.

Our goal is two-fold: to improve the rank error of private quantile estimates both under pure
differential privacy, and under (ε, δ)-differential privacy with small values of δ. To this end, we make
the following contributions.

• We present a mechanism that satisfies ε-differential privacy for any quantiles satisfying a mild
gap assumption: specifically, that |qi − qi−1| ≥ Ω(m log(m) log(b)

nε ) for all i. This condition
depends only on the (public) queried quantiles—if they do not meet this assumption the protocol
can be safely halted without accessing any private data. For quantiles meeting the assumption,
our mechanism achieves a maximum rank error of O

(
log(b)+log2(m)

ε

)
with high probability,

saving a factor Ω(min(log(b), log2(m))) over past purely private mechanisms.

• We also present an (ε, δ)-differentially private mechanism that relaxes the gap assumption to be
independent of b without affecting the error bound. Notably, our error guarantee remains free
of any dependence on δ; the parameter δ only appears in the assumption on the gap between
quantiles.

For both the mechanisms, our improvement stems from the use of continual counting techniques to
randomize the quantiles in a correlated manner. We provide an experimental evaluation on real-world
datasets which validates our theoretical results. The improvement is most pronounced when the
number of quantiles m is large, particularly under the substitute adjacency. In this setting, our
mechanism improves the accuracy compared to [18] by a factor of 2 when estimating 200 quantiles
with n = 500, 000, ε = 1, and δ = 10−16.

1.1 Relation to Past Work

The problem of quantile estimation is closely related to the problem of learning cumulative distribu-
tions (CDFs) and threshold functions [14, 7]. Learning of threshold functions is usually studied in
the statistical setting where data is sampled i.i.d. from some real-valued distribution. For worst-case
distributions the problem has sample complexity that grows with the support size, so in particular we
need to assume that the support is finite or that the distribution can be (privately) discretized without
introducing too much error. Feldman and Xiao [14] established a sample complexity lower bound of
Ω(log b) for the quantile estimation problem under pure differential privacy. Bun, Nissim, Stemmer,
and Vadhan [7] demonstrated a lower bound of Ω(log∗ b) for the same task under (ε, δ)-differential
privacy, and a mechanism with nearly matching dependence on b was developed in a series of
papers [8, 3, 17, 11]. We note that these results focus on b and do not have an optimal dependence
on the privacy parameter δ. For example, the algorithm of Cohen, Lyu, Nelson, Sarlós, and Stem-
mer [11] has sample complexity (and error) proportional to Õ(log∗ b), which is optimal, but this
bound is multiplied by log2(1/δ). For extremely large data domains, [11] can therefore outperform
our algorithm; however, for domain sizes encountered in practice, the higher dependence on δ will
likely outweigh this improvement. Our mechanism for approximate DP yields error independent of δ
and therefore outperforms existing mechanisms when δ is small. With a slightly worse dependence
on b, Kaplan, Ligett, Mansour, Naor, and Stemmer [17] achieved an error proportional to log(1/δ).
Earlier work [8, 3] had a weaker dependence on b and δ.

The problem of estimating m quantiles under pure differential privacy has been explored by Gillen-
water, Joseph, and Kulesza [15] as well as Kaplan, Schnapp, and Stemmer [18]. The latter proposed
an algorithm with error O( log

2(m)(log(b)+log(m))
ε ). In the uniform quantile setting, where quantiles

are evenly spaced, they improved this bound by a factor O(logm). Their approach is inspired by
the work of Bun, Nissim, Stemmer, and Vadhan [7], solving the problem of single quantiles using
the exponential mechanism instead of an interior point algorithm. The problem is solved recursively
by approximating the middle quantile qm/2 and recursing on the dataset relevant for the first and
second half of the quantiles, respectively. If the quantiles satisfy our maximum gap assumption,
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Privacy Guarantee Minimum Gap Error Notes

(ε, 0)-Differential Privacy, Corollary 5.2 Ω
(
m log(m) log(b)

εn

)
O
(

log(b)+log2(m)
ε

)
Saves a Ω(min(log(b), log2(m))) factor over [18].

(ε, δ)-Differential Privacy, Corollary 5.3 Ω
(

log(m) log(m/δ)+log(b)
εn

)
O
(

log(b)+log2(m)
ε

)
Error independent of δ unlike prior work [11, 17].

Table 1: Summary of our theoretical results. We consider both add/remove and substitute adjacency.
Our privacy analysis is tighter for the latter.

then our algorithm enjoys lower error by a min{log2(m), log(b)} factor when b ≥ m. If one is
willing to relax to approximate DP, we can significantly reduce the gap assumption for the same
error. By combining quantiles, the gap assumption can be eliminated entirely, and the error will be
O( 1ε (log(b)+ log(m) log m

δ )); this is still less than [18] when 1
δ ≪ b, usually the case for larger data

domains. The properties of the algorithm of [18] in the statistical setting was investigated by Lalanne,
Garivier, and Gribonval [19]. They also considered an algorithm based on randomized quantiles, but
it relies on strong assumptions on the smoothness of the distribution.

Differentially private quantiles has received attention under different problem formulations. Some
work takes the error function to be the absolute difference between the estimate and the true quan-
tile [12, 22], instead of the rank error. This gives rise to a fundamentally different problem, and
distribution assumptions are typically needed to ensure good utility. The problem has also been
considered in streaming [2] and under local differential privacy [12, 1], though the different natures
of these problems prevents the techniques from carrying over.

Our Approach. Similar to [18] we also solve the problem by splitting it intom subproblems, referred
to as “slices”. Each slice is a contiguous subsequences of the sorted input data X = {xi}i=1,...,n;
that is, each slice must consist of the elements x(i), . . . , x(j) for two indices i < j. However, instead
of using divide-and-conquer, we take a different approach – we propose a way to choose random
slices around the quantiles using techniques from continual counting [13]. Assuming the quantiles
are sufficiently spaced, each quantile can be approximated by applying the exponential mechanism
to a subset of points around the quantile. The total mechanism then consists of two steps: (1)
splitting the dataset into disjoint subsets around the quantiles using private continual counting, and
(2) applying the exponential mechanism to each disjoint subproblem. The main technical challenge is
that modifying one data point can modify the data contained in many of the subsets. To circumvent
this issue, we must add correlated noise to each quantile before forming the subsets, which has the
effect of hiding the modifications created in all the slices by the change in a single data point. Our
privacy analysis introduces a novel mapping for adjacent datasets X and X ′: by carefully aligning the
noise introduced via continual counting, we ensure that at least m− 1 slices remain identical. This
gives approximate differential privacy (since the mapping is not exact), but the resulting δ parameter
can be made extremely small given sufficient spacing between quantiles. We can then achieve pure
differential privacy by mixing in a uniformly random output with a very small probability. Although
slicing has also been used in prior work [11], we are the first to apply continual counting in this
context and achieve utility guarantees that are independent of δ.

Limitations. Our algorithms introduce a quantile gap assumption not present in prior work. However,
as long as the number of quantiles is not too large, this assumption is often met—data analysts often
care about a limited number of summary statistics (e.g., 10%, 20%, ..., 90%). A particularly important
case is when the quantiles are equally spaced, which is closely tied to the problem of CDF estimation.
For approximate DP, our gap assumption is milder, atO( 1

nε (log(b)+log(m) log m
δ ))—this is usually

significantly less than 1 in practice, and for the realistic parameters tested in our experiments, the
required gap was < 0.005. However, other techniques may be preferable when the quantiles are
closer than the gap. We believe that a tighter analysis may relax the gap assumptions.

2 Background

Our setup is identical to that of Kaplan Schnapp, and Stemmer [18]. That is, we consider a dataset
X = {xi}i=1,...,n where xi ∈ [a, b] ⊂ R. We say a dataset X has minimum separation g if
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mini ̸=j |xi − xj | ≥ g1. Unless explicitly specified, without loss of generality we assume that a = 0,
g = 1, since any general case can be reduced to this setting via a linear transformation of the input.
Our results can be translated to the general case by replacing b with ψ = b−a

g . Given a set Q of
m quantiles 0 ≤ q1 < · · · < qm ≤ 1, the quantile estimation problem is to privately identify
Z = (z1, . . . , zm) ∈ [0, b]m such that for every i ∈ [m] we have rankX(zi) ≈ ⌊qin⌋. We consider
the following error metric:

ErrX(Q,Z) = max
i∈[m]

|rankX(zi)− ⌊qin⌋|

This error metric has an intuitive interpretation as the difference between the estimate’s rank and the
desired rank, and is the one more often considered in the DP literature [18, 15, 7]. For convenience,
we let ri = ⌊qin⌋ denote the rank associated with each quantile. We denote by x(i) the ith smallest
element of X (i.e., the sorted order of the dataset).

Differential Privacy. We consider two notions of adjacency in our privacy setup. Two datasets
X,X ′ are add/remove adjacent if X ′ = X ∪ {x} or X = X ′ ∪ {x} for a point x. We say X,X ′ are
substitute adjacent if |X| = |X ′|, and |X△X ′| ≤ 2. Thus, X ′ may be obtained from X by changing
one point from X . Differential privacy is then defined as:
Definition 2.1. A mechanismM(X) : [0, b]n → Y satisfies (ε, δ)-differential privacy under the
add/remove (resp. substitute) adjacency if for all datasets X,X ′ which are add/remove (resp.
substitute) adjacent and all S ⊆ Y , we have

Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S] + δ.

In our results, we explicitly specify which adjacency definition is used. While the two notions are
equivalent up to a factor of 2 in privacy parameters, our bounds for substitute adjacency are slightly
tighter and not directly implied by those for add/remove adjacency.

3 Proposed Algorithm: SliceQuantiles

We begin with an intuitive overview of our algorithm, followed by the full technical details. For ease
of exposition, we focus here on add/remove adjacency and defer substitution adjacency to Section 4.

3.1 Technical Overview

At a high level, our private quantiles algorithm SliceQuantiles applies a private single-quantile
algorithm SingleQuantile to slices of the input dataset, which are contiguous subsequences of the
sorted dataset. To ensure the accuracy of the overall scheme, they must meet the two conditions:

• Each slice must be sufficiently large because the accuracy of SingleQuantile is typically mean-
ingful only when there is enough input data.

• The slices must be centered around the desired rank ri, i.e. consist of data with rank approxi-
mately ri.

Following the criteria outlined above, one might attempt to use slices S1, . . . , Sm, where each slice
is defined as Si = x(ri−h), . . . , x(ri+h) for some sufficiently large integer h 2, and estimate quantile
qi by applying SingleQuantile to Si. However, as noted in prior work [11, 7], this does not have a
satisfying privacy parameter. Consider an adjacent dataset X ′, where a new point with rank s, x′(s),
is added. This produces a change in each slice S′

t, . . . , S
′
m, where t is the smallest index such that

s ≤ rt − h. The naive approach would be to use composition to analyze the quantile release, causing
the error to increase by a factor of poly(m).

Instead, we make a more fine-grained analysis based on the following observation: for i > t the
slice pairs {Si, S′

i} are shifted by exactly 1, i.e., Si = x′(ri−h+1), . . . , x
′
(ri+h+1). Our goal is to hide

1This is easy to enforce, as a minimum separation can always be created by adding a small amount of noise
to each data point (or by adding i

n
to point i). Importantly, if the data is not separated, it affects only the utility

guarantees of our algorithms—not their privacy guarantees.
2For now, assume the slices do not overlap — we address this issue later.
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Algorithm 1 SliceQuantiles

1: Input: X , r1, . . . , rm, (w, ε1), (ℓ, ε2), γ, [0, b]
2: Set h =

⌈
ℓ−1
2

⌉
3: Require: r1, . . . , rm ∈ Goodm,n,w+h

4: r̃1, . . . , r̃m ← CCε1(r1, . . . , rm) ▷ Post-process the noisy ranks to integers.
5: Flip a coin c with heads probability γ
6: if c is heads or r̃ /∈ Goodm,n,h then
7: Sample z1, . . . , zm i.i.d. from [0, b]
8: return z1, . . . , zm
9: end if

10: for i = 1 to m do
11: Si ← [x(r̃i−h), . . . , x(r̃i+h)] ▷ Get the perturbed slice
12: zi ← SingleQuantileε2,[0,b](Si)
13: end for
14: return z1, . . . , zm

this by randomly perturbing the ranks to noisy values r̃i such that it is nearly as likely to observe
r̃i = vi + ei, for any possible integers v1, . . . , vm, and any "shifting" values e1, . . . , em satisfying

ei =

{
0 i ≤ t
c i > t

(1)

for a given index 0 ≤ t ≤ m and a c ∈ {−1, 1}. We will refer to a vector of this form as a contiguous
vector. Such perturbations are the central object of study in the problem of differentially private
continual counting [13, 10, 4], which provide the following guarantee (proof is in Appendix A).
Lemma 3.1. There exists a randomized algorithm CCε : Zm → Zm such that (1) for all vectors
r, r̃ ∈ Zm and e ∈ {−1, 0, 1}m of the form in Eq. (1), we have

Pr[CCε(r) = r̃] ≤ eε Pr[CCε(r) = r̃+ e], (2)

and (2) for all β > 0, Pr
[
∥r− CCε(r)∥∞ ≥ 3 log(m) log( 2mβ )/ε

]
≤ β.

Consequently, we can set Si = x(r̃i−h), . . . , x(r̃i+h). Our privacy analysis may then proceed as
follows. Let S′

1, . . . , S
′
m denote the slices when X ′ is used instead of X . Now, fix any observed

noisy ranks r̃1, . . . , r̃m generated from X . By the continual counting property (Eq. 2), when using
X ′, it is almost as likely to observe r̃1 + e1, . . . , r̃m + em, where e1, . . . , em is the shifting vector
such that S1, . . . , Sm and S′

1, . . . , S
′
m differ in at most one slice. This setup allows us to analyze

the final release SingleQuantile(S1), . . . ,SingleQuantile(Sm) using parallel composition — that is,
incurring the privacy cost of applying SingleQuantile only once. Interestingly, the privacy analysis
when X ′ is formed by removing a point from X is more subtle and leads to asymmetric privacy
parameters. We discuss this in detail in Section 4.

In summary, the main steps of SliceQuantiles are as follows: first, perturb the target ranks
r1, . . . , rm by adding correlated noise generated via continual counting; then, for each slice
Si = x(r̃i−h), . . . , x(r̃i+h), apply the SingleQuantile mechanism to obtain the output z1, . . . , zm.

3.2 Implementation Details

Outlined in Algorithm 1, SliceQuantiles is provided with the following parameters: (1) (w, ε1), an
error bound (to be set later) and privacy budget for CC; (2) (ℓ, ε2), the minimum list size (to be set
later) and privacy budget for SingleQuantile; (3) a probability γ of outputting a random value which
we assume for now is 0, and (4) data domain bounds [0, b]. We can instantiate the algorithm with any
SingleQuantile that satisfies ε2-DP.

A technical challenge arises after sampling the vector r̃ = ⟨r̃1, . . . , r̃m⟩: there is no guarantee that
the generated slices would be non-overlapping, which would invalidate our privacy analysis 3. We

3As a simple counter-example, suppose the r̃i all ended up equal. Then, every slice could potentially change
for an adjacent dataset, and the privacy parameter could be as high as mε.
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address this as follows. We define the following set for notational convenience:

Goodm,n,∆ = {(r̃1, . . . , r̃m) ∈ Zm : r̃1−∆ ≥ 1, r̃i−r̃i−1 > 2∆ for i = 1, . . . ,m− 1 , r̃m ≤ n−∆} .
The set Goodm,n,∆ consists of noisy vectors with sufficient space around each r̃i to ensure that
the slices do not intersect. We eliminate the risk of overlap by checking that the sampled noise r̃
belongs to Goodm,n,h (Line 6), and if not we release a random output from (0, b)m (corresponding
to a failure). To ensure that failure is rare, we require the input ranks r to belong to Goodm,n,w+h

where w is the maximum error introduced by CC (Line 3), which is the precise requirement for the
quantile gaps.

A practical improvement proposed in [18] is to adaptively clip the output range of the SingleQuantile
algorithm. Our algorithm is able to support this as well as follows. Instead of estimating each zi using
independent calls to SingleQuantile as in Line 12, first compute zm/2 for the middle quantile by
running SingleQuantile with the entire data domain [0, b]. Then, compute zm/4 using SingleQuantile
with data domain restricted to [0, zm/2], and compute z3m/4 using SingleQuantile with data domain
restricted to [zm/2, b]. Output all quantiles by recursing in a similar binary fashion. The privacy
analysis of SliceQuantiles can be modified in a straightforward way to handle these adaptive releases,
and in practice, when SingleQuantile is e.g. the exponential mechanism, the utility of SingleQuantile
improves by restricting the set of possible outputs.

4 Privacy Analysis

We begin by explaining our analysis under approximate differential privacy, and later show how to
convert this to a guarantee under pure differential privacy. The proofs for results in this section appear
in Appendix B.

Technical Challenge. Our first attempt at a privacy proof might proceed as follows: observe that
any r̃ ∈ Goodm,n,h may be mapped to a corresponding r̃′ ∈ Goodm,n,h such that (1) the difference
vector e = r−r′ is a contiguous vector, and (2) the corresponding slices S1, . . . , Sm and S′

1, . . . , S
′
m

differ in only one index j, and only by a single substitution within that slice. We would then hope
to establish (ε, δ)-differential privacy by arguing the following: (1) a noisy vector sampled by CC
belongs to Goodm,n,h with probability at least 1 − δ; (2) CC is capable of hiding any binary shift
vector e of the prescribed form; and (3) a single application of (ε, δ)-differential privacy suffices,
since only one slice differs between the adjacent datasets.

Unfortunately, there is a flaw in this argument: if many vectors r̃ are mapped to the same r̃′, it becomes
difficult to compare the resulting sum over duplicated r̃′ values to a sum over all r̃ ∈ Goodm,n,h.
A prior work [7] was able to show that there exists a mapping sending at most two distinct values
of r̃ to a single r̃′. However, this has a significant limitation: even a multiplicative factor of 2
blows up the privacy parameter to 2eε1+ε2 , making it impossible to establish any guarantee with a
privacy parameter smaller than ln(2). (Note that we cannot make use of privacy amplification by
subsampling [8, 21] without incurring a large sampling error on quantiles.)

Key Idea. A key novelty of our technical proof is to propose a more refined mapping that mitigates
the issue above. Specifically, our mapping injectively maps each r̃ ∈ Goodm,n,h to a corresponding
r̃′ in a slightly larger set. Our mapping depends on whether X is smaller or larger than X ′. When
X ′ = X ∪ {xs} (i.e., an addition), we observe that the mapping above is, in fact, an injection. The
difficulty arises only in the case of a removal. Nevertheless, when X = X ′ ∪ {xs}, we show that it is
possible to construct an injection that ensures at most two slices among S1, . . . , Sm and S′

1, . . . , S
′
m

differ, each only by a substitution. Formally, we prove the following in Appendix B.1:
Lemma 4.1. Let X,X ′ denote two adjacent datasets such that X ′ is smaller than X by exactly one
point. Then, there exists a function F−(r̃) : Goodm,n,h → Goodm,n,h−1 such that

• F− is injective.

• For 1 ≤ i ≤ m, the dataset slices Si = x(r̃i−h), . . . , x(r̃i+h) and S′
i = x′(r̃i−h), . . . , x

′
(r̃i+h)

satisfy
∑m
i=1 dsub(Si, S

′
i) ≤ 2, where dsub is the number of substitutions of points needed to

make Si and S′
i equal.

• F−(r̃) = r̃ + er̃, where er̃ is binary vector of the form er̃[i] = −1[i ≥ j] for an index
1 ≤ j ≤ m+ 1.
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Similarly, if X ′ is larger than X by exactly one point, then there exists a corresponding function
F+(r̃) : Goodm,n,h → Goodm,n+1,h with the same properties, except that er̃ satisfies er̃[i] = 1[i ≥
j] for an index 1 ≤ j ≤ m+ 1, and the sum of substitution distances is bounded by 1 instead of 2.

The fact that F+ and F− map to slightly different sets than Goodm,n,h is not an important detail;
our proof accounts for it by requiring the gap between the input ranks r to be 1 higher.

As a result, to analyze privacy under add/remove adjacency, we incur the privacy cost of CC once and
of SingleQuantile at most twice, yielding a total privacy parameter of ε1+2ε2. Due to the asymmetry
of our mapping when a point is being added or removed, privacy under substitute adjacency is slightly
better since substitution is both an addition and a removal operation. Formally,

Theorem 4.2. Under add/remove adjacency, SliceQuantiles with γ = 0, w = 3 log(m) log(2m/δ)
ε1

, and
any h ≥ 1, satisfies (ε1 + 2ε2, δ)-differential privacy. Under substitute adjacency, SliceQuantiles
satisfies (2ε1 + 3ε2, δ + δeε1+2ε2)-differential privacy.

The proof is provided in Appendix B.2. Notice that privacy holds for any h ≥ 1; but our utility
results, which we will show later, require h to be sufficiently large.

Conversion to Pure Differential Privacy. Observe that δ plays a limited role in Theorem 4.2, namely
it affects only the minimum gap separating the ranks of interest. When the rank gaps (and the data
size) are sufficiently large, δ can be made small enough to be absorbed into the ε terms. To do this,
we prove a reduction from (ε, δ)-approximate differential privacy to ε-pure differential privacy, which
holds when δ < 1

|Y| , the inverse of the size of the output range.

Lemma 4.3. If a mechanism A(X) with discrete output range Y satisfies (ε, δ)-differential privacy
with δ|Y|

(eε−1) ≤ 1, then the mechanism Ã(X), which outputs a random sample from Y with probability

γ = δ|Y|
(eε−1) and outputs A(X) otherwise, satisfies (ε, 0)-DP.

To apply the lemma to SliceQuantiles, we need to discretize the output domain to [b]m (for example,
by rounding to the nearest integers). This introduces a maximum error of 1 in the quantile estimates,
which is negligible when the dataset has a minimum gap of 1. A pure differential privacy guarantee is
then a corollary of Lemma 4.3 and Theorem 4.2 with δ = γ(eε1−1)

bm .

Corollary 4.4. Under add/remove adjacency, SliceQuantiles with γ > 0 and

w =
3 log(m)

ε1

(
m log b+ log

(
2m(eε2 − 1)

γ

))
and with estimates rounded to ⌊z1⌉, . . . , ⌊zm⌉ satisfies ε1 +2ε2-pure differential privacy. Under sub-

stitute adjacency, Algorithm 1 with w = 3 log(m)
ε1

(
m log b+ log

(
2m(eε1−1)

γ

)
+ ε1 + 2ε2

)
satisfies

2ε1 + 3ε2-pure differential privacy.

For most parameter settings, w will dominated by the m log b log(m)
ε1

term. To satisfy the condition

r ∈ Goodm,n,w+h, it is necessary to have n ≥ m2 log b log(m)
ε2

. For instance, when ε1 = ε2 = 1,
b = 232 and m = 100, then w ≈ 65, 000, the minimum gap is 2w = 130, 000, and the total amount
of data required is 1.3× 107. While the minimum gap between quantiles maybe too large for some
datasets, our algorithm offers asymptotic utility improvements over the best-known pure differential
privacy algorithms when this assumption is met. We expand on this in the next section.

5 Utility Analysis

SliceQuantiles may be implemented with any private algorithm SingleQuantile for estimating a single
quantile of a dataset. We introduce a general notion of accuracy for SingleQuantile in order to derive
a general error bound.

Definition 5.1. An algorithm SingleQuantile(X) is an (α, ℓ, β) algorithm for median estimation if,
for all datasets X ∈ [0, b]n of size n ≥ ℓ, with probability at least 1− β, SingleQuantile(X) returns
a median estimate z with rank error |n2 − rankX(z)| ≤ α.

7



For our purposes, it is sufficient to only require SingleQuantile to return a median estimate, since the
median of the slice Si is the element with the desired rank r̃i in X . In its general form, our utility
guarantee is as follows:

Theorem 5.1. Suppose SliceQuantiles is run with an (α, ℓ, βm ) algorithm SingleQuantile for single
quantile estimation. Then, for any input ranks r1, . . . , rm such that they are in Goodn,m,w+h for
h = ⌈(ℓ− 1)/2⌉, conditioned on Line 6 not failing, the returned estimates Z satisfy ErrX(Q,Z) ≤
O
(
α+

logm log(m
β )

ε2

)
with probability 1− β.

We prove this theorem in Appendix C. Next, we specialize this utility theorem in both the pure and
approximate DP settings, and compare them to the best-known algorithms.

5.1 Utility Guarantee under Pure Differential Privacy

Under pure DP, we may implement SingleQuantile as the exponential mechanism with privacy
parameter ε2 and utility given by the negative rank error. We show in Appendix C that this is a
(h, 2h+1, β) algorithm for median estimation with h =

⌈
2 log(2b/β)

ε2

⌉
, for any β ∈ (0, 1). This gives

the following immediate corollary (for simplicity, we state it using add/remove adjacency).

Corollary 5.2. Suppose SliceQuantiles is run with w set as in Corollary 4.4, SingleQuantile set to be
the exponential mechanism and ℓ = 2

⌈
2 log(2bm/β)

ε2

⌉
+ 1. Then, the algorithm satisfies ε-differential

privacy with ε = ε1 + 2ε2, and with probability at least 1 − β − γ, achieves an error bound
of ErrX(Q,Z) ≤ O

(
log(b)
ε + logm log(m/β)

ε

)
for any input quantiles with gap 6m log(b) log(m)

ε1n
+

O( log(m) log(m(eε−1)/γ)
εn ).

In contrast, the state-of-the-art algorithm under pure differential privacy attains error O
( log b log2(m)

ε +
log(m/β) log2(m)

ε

)
[18]. When log(b) > log(m)2, error is improved by a factor of log(m)2. When

log(m) < log(b) < log(m)2, the factor is log(b). This represents an improvement factor of
min{log(b), log(m)2} when b > m. Note that this improvement comes with a mild constraint: it
requires the minimum gap between quantiles to be at least Ω(m log(b) log(m)

εn ).

Nevertheless, the case of equally spaced quantiles remains a well-studied and important problem. In
this setting, [18] provide an improved analysis of their algorithm, achieving an error ofO

( log b log(m)
ε +

log(m/β) log(m)
ε

)
. Our algorithm still offer an improvement by a factor of log(m) for the case b > m.

Note that to meet the required quantile gap, it must hold that n ≥ Ω(m2 log b logmε ).

5.2 Finding Quantiles Under Approximate Differential Privacy

Under approximate differential privacy, quantile estimation algorithms with more favourable depen-
dence on b are known. Specifically, as shown in [11], there exists an (ε, δ)-DP algorithm which is a
( ℓ2 , ℓ, δ log

∗(b)) algorithm for median estimation with ℓ = 1000 log∗(b)
ε log( 1δ )

2. This algorithm may
be used to answer general threshold queries, or the fraction of data below a query point x ∈ [0, b],
of a dataset of size n, and provides error that scales with log∗(b) instead of log(b). We provide the
full details of these results in Appendix C. When translated to quantile estimation, this threshold
query-based method can answer any set of quantiles with error O(log∗(b) log

2(log∗(b)/βδ)
ε ). We note

that there is no dependence on m in this bound.

Though the factor of 1000 above is probably far from tight, even the log2(1/δ) factor incurred by the
algorithm can be quite large, and result in higher error despite the improved log∗(b) dependence on
the domain size. To avoid incurring log(1/δ) terms, we instantiate the (ε, δ) version of SliceQuantiles
with the exponential mechanism to obtain:

Corollary 5.3. Suppose SliceQuantiles is run with w set as in Theorem 4.2, SingleQuantile set to
be the exponential mechanism, with γ = 0 and ℓ = 2

⌈
2 log(2bm/β)

ε2

⌉
+ 1. Then, the algorithm

satisfies (ε, δ)-differential privacy with ε = ε1 + 2ε2, and with probability at least 1 − β − δ,
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achieves an error bound of ErrX(Q,Z) ≤ O( log(b)ε +
log(m) log(m

β )

ε ) for any input quantiles with
gap 6 log(m) log(2m/δ)

ε1n
+ 4 log(2bm/β)

ε2n
.

Observe that whenever logm log( 1δ ) ≤ log b, the gap is actually asymptotically less than the normal-
ized error bound. This means the gap requirement can be removed entirely by merging any quantiles
too close, and this will only increase the error term by a constant factor.

Compared with the previous error guarantee, the guarantee in Corollary 5.3 is in fact lower whenever
log(b) < log2( 1δ ) log

∗(b) and log(m) is sufficiently small compared to log(1/δ), which is often true
for practical choices of the parameters. For instance, log∗(b) rarely exceeds 4 even for very large
domains, while log(b) is typically below 64, and log2(1/δ) often reaches into the thousands for
typical choices of δ. Furthermore, the hidden constant factor in the former algorithm is not known
to be under 1000, while in our case it is roughly 10. These factors underscore the superior practical
performance of our approach.

6 Experiments

For our experiments (code is open-sourced4), we use a variant of the k-ary tree CC mechanism
introduced in [4] with two-sided geometric noise, and SingleQuantile implemented as the exponential
mechanism [18, 20]. Similarly to Kaplan et al. [18], we construct two real-valued datasets by adding
small Gaussian noise to the AdultAge and AdultHours datasets [5]; both datasets, corresponding to
ages and hours worked per week, exist on the interval [0, 100]; we use this as our data domain. Unlike
their approach, however, we scale the dataset by duplicating each data point 12 times (preserving
multiset ranks), resulting in approximately n = 500,000 entries. This allows us to analyze a large
number of quantiles without needing to resort to merging techniques. Concretely, the gap assumption
for our parameters is 0.005, so up to 200 equally-spaced quantiles could be answered. The distribution
of these datasets are detailed in Appendix E. To ensure a minimum spacing of 1/n between data points,
we add i/n to the ith element in the sorted dataset. For each m ∈ {10, 20, . . . , 200}, we randomly
sample m quantiles from the set of 250 uniformly spaced quantiles {i/251 : i = 1, . . . , 250},
and run experiments on both datasets. This sampling procedure is performed independently for
each experiment, ensuring that the reported results represent an average over both good and bad
instantiations of the problem. We evaluate the mechanism under both substitute and add/remove
adjacency, using ε = 1 and δ = 10−16 ≪ 1

n2 as the privacy parameters. Additional experiments
with varying privacy budgets are presented in Appendix E. The y-axis in our results reports the
average maximum rank error, with 95% confidence intervals computed via bootstrapping over 200
experiments. Results are shown in Figure 1: the first two plots (from the left) correspond to substitute
adjacency, while the remaining plots correspond to add/remove adjacency.

Baseline Algorithms. Our primary baseline is Approximate Quantiles [18], which we abbreviate to
AQ. Experiments in that reference demonstrate improved utility over the AppindExp algorithm [15],
hence we do not include AppindExp in our comparisons. AQ satisfies both pure and approximate DP,
with the approximate DP analysis leveraging an improved analysis of the exponential mechanism
under zero-concentrated DP [6, 9]. As we are using approximate DP for our experiments, we include
privacy analyses of AQ as comparison baselines. We also compare to the histogram-based method
of [19]—because its error is much higher due to making linear approximations of the data distribution,
we put these plots in Appendix E.

Implementation details of SliceQuantiles. Our empirical results indicate that the most effective
strategy for allocating the privacy budget between CC and SingleQuantile is to divide it equally,
assigning half to each mechanism. To compute the size of the slice, we use h =

⌈
2
ε log

(
2mψ
β

)⌉
,

according to Theorem C.1, with β = 0.05 and ψ = b−a
g = 100n as [a, b] = [0, 100] and g = 1

n . We
used numerical optimization of the Chernoff bound to compute the smallest possible value of the
parameter w bounding the CC mechanism with failure δ, beyond the asymptotic expression given in
Lemma 3.1. The details of this optimization appear in Appendix D. This reduced the quantile gap
assumption and maximized the number of quantiles that SliceQuantiles is able to answer.

4https://github.com/NynsenFaber/DP_CC_quantiles
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Figure 1: Experiments on AdultAge and AdultHours datasets. The datasets contain approximately 5 ·105 data
points. Each experiment was run 200 times, with each run using a random sample from a set of 250 uniformly
spaced quantiles. Plots a and b are for substitute adjacency, while c and d correspond to add/remove adjacency.
Approximate Quantiles in the above figure refers to the algorithm (AQ) from [18]. The privacy settings are:
(1, 10−16)-DP for SliceQuantiles and AQ, and (1, 0)-DP for AQ with pure DP guarantee [18].

Results. We plot the three algorithms in Figure 1. The plots indicate that SliceQuantiles performs
better than AQ, with a notable advantage under substitute adjacency. This is in line with our
theoretical argument on a tighter bound under this adjacency (Theorem 4.2). Consistent with our
prior observations, AQ under approximate differential privacy performs worse than AQ with pure
differential privacy, due to our lower choice of δ. Because its utility guarantee is independent of δ,
SliceQuantiles is able to circumvent this issue.

7 Conclusion

In this paper, we have proposed new mechanisms for approximating multiple quantiles on a dataset,
satisfying both ε and (ε, δ) differential privacy. As long as the minimum gap between the queried
quantiles is sufficiently large, the mechanisms achieve error with a better dependence on the number
of quantiles and δ than prior work. Our experimental results demonstrate that these mechanisms
outperform prior work in practice, in particular when the number of quantiles is large. An interesting
question for future directions is to explore if a more careful analysis could reduce the minimum gap
requirement or if other practical mechanisms for differentially private quantiles could further improve
accuracy of computing many quantiles privately in practice.
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A Details From Continual Counting

In summary, the binary tree mechanism [13, 10] achieves ε-DP when the input vector r is changed
to r + e, where e is a contiguous 0/1 or 0/ − 1-valued vector. The mechanism achieves this by
constructing a segment tree whose leaves are the intervals [0, 1), . . . , [m − 1,m), and sampling a
Laplace random variable ηI for each node I of the tree. For T = ⌈log2(m + 1)⌉, let I1, . . . , IT
denote the interval decomposition of [0, i). Then, the estimate for r̃i is given by ri +

∑T
j=1 ηIj

rounded to the nearest integer (by convention, for integers k the number k − 1/2 is rounded up to k).
The correlated noise being added to each ri allows the total error to grow only logarithmically with
m. The final rounding ensures that the noisy ranks are integer valued. The rounding is private due to
post processing and it only incurs an additional rank error of at most 1/2

A.1 Proof of Lemma 3.1

We start with the following concentration lemma:
Corollary A.1 (From Corollary 2.9 of [10]). Suppose γi’s are independent random variables, where
each γi has Laplace distribution Lap(bi). Suppose Y =

∑
i γi, bM = maxi bi and δ ∈ (0, 1). Let

ν = max{
√∑

i b
2
i , bM

√
ln(2/δ)}. Then Pr[|Y | > ν

√
8 ln(2/δ)] ≤ δ.

Proof of Lemma 3.1. Define round : Rm → Zm to be the rounding function rounding each co-
ordinate of a vector s ∈ Rm to the nearest integer (rounding up in case of ties). Note that
round(s + x) = round(s) + x whenever x ∈ Zm. To prove the first guarantee, observe that
since the binary tree mechanism is an additive noise mechanism (i.e. CC(r) = round(r+N ), where
N is a noisy vector) the privacy guarantee of the binary tree mechanism implies that

Pr[CC(r) = r̃] = Pr[round(r+N ) = r̃] ≤ eε Pr[round(r−e+N ) = r̃] = eε Pr[CC(r) = r̃+e]

To show utility, each coordinate of N is the sum of at most T independent Laplace random variables
with variance T 2/ε2 to each estimate. From Corollary A.1 we have that, with probability at least
1−β/m, each estimate has an error at most Tε

√
8 ln(2m/β)max{

√
T ,

√
ln(2m/β)}. The claim fol-

lows by a union bound and analysing the asymptotic of Tε
√
8 ln(2m/β)max{

√
T ,

√
ln(2m/β)} ≤

T
ε

√
8 ln(2m/β)(

√
T +

√
ln(2m/β)).

B Omitted Proofs From Section 4

B.1 Proof of Lemma 4.1

Proof. Suppose first that X ′ adds a point to X . This means that there is a minimal index s such that
x(i) = x′(i) for all i < s, and x′(i+1) = x(i) for all i ≥ s. We will define F+(r̃) = r̃ + er̃, where
each coordinate of er̃ is defined by

ei =

{
0 r̃i − h ≤ s
1 r̃i − h > s.

It is clear that this vector belongs to Goodm,n+1,h and that Property (3) of the map is satisfied. To
see injectivity, observe that if r̃, r̃′ are different, but mapped to the same output, then they must have
different vectors e, e′. Furthermore, the coordinates of r̃, r̃′ only differ by 1. These two things can
only happen if r̃i∗ − h = s and r̃′i∗ − h = s + 1 for an index i∗. However, this will then produce
ei∗ = 0 and e′i∗ = 1, resulting in the i∗ coordinates of F+(r̃), F+(r̃′) to be h + s and h + s + 2,
respectively, making it impossible for equality.

Finally, Property (2) holds because the slices Si, S′
i will disagree only if r̃i ∈ [s− h, s+ h], and the

sum of substitution distances is 1.

In the case that X ′ removes a point from X , then x(i) = x′(i) for all i < s and x(i) = x′(i−1) for all
i ≥ s. We define the map F−(r̃) = r̃+ er̃, where each coordinate of er̃ is instead defined by

ei =

{
0 i = 1 ∨ r̃i−1 − h ≤ s
−1 i > 1 ∧ r̃i−1 − h > s.
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Again, Property (3) and membership in Goodm,n,h−1 is immediate. To argue injectivity, observe that
if r̃, r̃′ are different, but mapped to the same output, then they must have different vectors e, e′. This
is only possible if r̃i∗−1 − h = s and r̃′i∗−1 − h = s+ 1 for some index i∗ > 1. However, this then
implies that ei∗−1 = e′i∗−1 = 0, resulting in F−(r̃i∗) = r̃i∗ and F−(r̃′i∗−1) = r̃′i∗−1 and forcing the
maps to still have different outputs F−(r̃i∗−1) ̸= F−(r̃′i∗).

Property (2) follows because the slices Si, S′
i disagree only in potentially two locations; namely the

index i∗ where a ∈ [r̃i∗ − h, r̃i∗ + h] (if it exists), and the index j∗ which is the minimum index such
that a < r̃j∗ − h. Each disagreement adds one to the substitution distance, and thus the total sum is
at most 2.

Note that at first glance, it may appear as though the case where X ′ removes a point from X could be
solved analogously to the case where X ′ adds a point, defining ei as:

ei =

{
0 r̃i − h ≤ s
−1 r̃i − h > s.

However, this choice would not lead to an injective mapping. In particular, we can set r̃i∗ − h = s
and r̃′i∗ − h = s+ 1 for an index i∗, which are different, but mapped to the same output. Specifically,
this will produce ei∗ = 0 and e′i∗ = −1, resulting in F−(r̃i∗) = s+ h = F−(r̃′i∗).

B.2 Proof of Theorem 4.2

Proof. We will first prove add/remove privacy.

Let A(X) denote SliceQuantiles run on input X , and let A(X, r̃) denote the algorithm conditioned
on the noisy ranks r̃ = (r̃1, . . . , r̃m). Let F+, F− denote the maps guaranteed by Lemma 4.1. We
will first assume that X ′ is larger than X , and thus we will use F+ in the following. For any output
set Z, we have

Pr[A(X) ∈ Z] =
∑
r̃∈Zm

Pr [A(X, r̃) ∈ Z] Pr[CC(r) = r̃]

≤ Pr[CC(r) /∈ Goodm,n,h] +
∑

r̃∈Goodm,n,h

Pr [A(X, r̃) ∈ Z] Pr[CC(r) = r̃]

≤ δ +
∑

r̃∈Goodm,n,h

Pr [A(X, r̃) ∈ Z] Pr[CC(r) = r̃]

≤ δ +
∑

r̃∈Goodm,n,h

eε2 Pr
[
A(X,F+(r̃)) ∈ Z

]
eε1 Pr[CC(r) = F+(r̃)]

≤ δ + eε1+ε2
∑

r̃∈Goodm,n+1,h

Pr [A(X ′, r̃) ∈ Z] Pr[CC(r) = r̃]

≤ δ + eε1+ε2 Pr[A(X ′) ∈ Z],

where the third line follows from Lemma 3.1, which shows Pr[∥r − r̃∥∞ ≥ w] ≤ δ, and by the
assumption that r ∈ Goodm,n,h+w+1; the fourth follows from Properties (2) and (3) of Lemma 4.1
along with Lemma 3.1; and the fifth follows from Property (1) of Lemma 4.1. When X ′ is smaller
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than X , then we use the map F−, and we obtain

Pr[A(X) ∈ Z] =
∑
r̃∈Zm

Pr [A(X, r̃) ∈ Z] Pr[CC(r) = r̃]

≤ Pr[CC(r) /∈ Goodm,n−1,h+1] +
∑

r̃∈Goodm,n−1,h+1

Pr [A(X, r̃) ∈ Z] Pr[CC(r) = r̃]

≤ δ +
∑

r̃∈Goodm,n−1,h+1

Pr [A(X, r̃) ∈ Z] Pr[CC(r) = r̃]

≤ δ +
∑

r̃∈Goodm,n−1,h+1

e2ε2 Pr
[
A(X,F−(r̃)) ∈ Z

]
eε1 Pr[CC(r) = F−(r̃)]

≤ δ + eε1+2ε2
∑

r̃∈Goodm,n−1,h

Pr [A(X ′, r̃) ∈ Z] Pr[CC(r) = r̃]

≤ δ + eε1+2ε2 Pr[A(X ′) ∈ Z],
where the deductions are the same, and the only change is the final parameter is ε1 + 2ε2 as the
constant is higher.

To prove substitution privacy, we may simply use the fact that for two neighboring datasets X,X ′,
there is a dataset X1 such that X1 may be obtained from either X,X ′ by removing a point. Thus,
from what we’ve already shown, the pair X,X1 satisfies (ε1 + 2ε2, δ)-DP, while X1, X

′ satisfies
(ε1 + ε2, δ)-DP. By group privacy, we have a final guarantee of (2ε1 + 3ε2, δ + δeε1+2ε2)

B.3 Proof of Lemma 4.3

Proof. By the (ε, δ)-DP guarantee, the probability of observing any y ∈ Y may be bounded by

Pr[A(X) = y] ≤ eε Pr[A(X ′) = y] + δ.

Now, we have

Pr[Ã(X) = y] = (1− γ) Pr[A(X) = y] + γ
1

|Y|

≤ (1− γ)(eε Pr[A(X ′) = y] + δ) + γ
1

|Y|

= eε
(
(1− γ)(Pr[A(X ′) = y]) + γ

1

|Y|

)
+ δ(1− γ) + γ(1− eε) 1

|Y|

= eε Pr[Ã(X ′) = y] + δ(1− γ) + γ(1− eε) 1

|Y|

≤ eε Pr[Ã(X ′) = y] + δ + γ(1− eε) 1

|Y|
= eε Pr[Ã(X ′) = y].

C Omitted Details From Section 5

C.1 Proof of Theorem 5.1

Proof. By a union bound, conditioned on Line 6 not failing, with probability at least 1 − β, the
returned quantiles z1, . . . , zm will satisfy |rankX(zi) − r̃i| ≤ α. By Lemma 3.1, each r̃i satisfies
∥r− r̃∥∞ ≤ 3 log(m)

ε log(m2β ) with probability at least 1− β. The bound follows from the triangle
inequality.

C.2 Details on Exponential Mechanism

Assuming that each point lies in [a, b], the exponential mechanism samples a point z ∈ [a, b] with
probability exp(− ε2ErrX(q, Z))—here we will assume the quantile q = 1

2 for the median. This can
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be implemented by sampling an interval Ik = [x(k), x(k+1)], with x(0) = a and x(k+1) = b, with
probability proportional to exp

(
− ε2 |rn− k|

)
|Ik|, and then releasing a value uniformly sampled

from the selected interval (see Appendix A in [18]).

The utility of the exponential mechanism for median estimation is as follows:
Theorem C.1. Given a dataset X ∈ [a, b]n with minimum gap g > 0, parameters β ∈ (0, 1) and
ε > 0, let ψ = b−a

g . Then, the exponential mechanism is a (h, 2h, β) algorithm for median estimation

for h =
⌈
2
ε log

(
2ψ
β

)⌉
.

Proof. It is sufficient to suppose the dataset has size 2h, and to bound the probability of sampling
in the interval [a, x(1)] and [x(2h), b]. Let I = {[a, x(1)], [x(1), x(2)], . . . , [x(2h), b]} be the set of
intervals sampled by the exponential mechanism. The probability the sample z lies in the interval
[a, x(r−h)] is

Pr[z ∈ [0, x(1)]] =
e−

ε
2h(x(1) − a)∑2h

i=1 e
− ε

2 |i−h|(x(i) − x(i−1))
≤ b− a

g
e−

ε
2h

as
∑2h
i=1 e

− ε
2 |i−h|(x(i) − x(i−1)) ≥ (x(h+1) − x(h)) ≥ g. By our choice of h, this probability is at

most β2 . The same upper bound can be found for the other extreme interval [x(2h), b], and the result
follows from a union bound.

C.3 Details on Threshold Queries

We discuss how the existing work on threshold queries may be used to answer quantiles. These
algorithms actually work by solving a much simpler interior point problem, where the goal on an
input dataset X , is to simply return a point z such that x(1) ≤ z ≤ x(n). For a small enough dataset,
the interior point algorithm can also provide a median estimate with low error.
Lemma C.2. (Adapted from Theorem 3.7 of [11]): There exists an (ε, δ)-DP algorithm Aint which
is a ( 500 log∗ |X|

ε log( 1δ )
2, 1000 log∗ |X|

ε log( 1δ )
2, δ log∗ |X|) algorithm for median estimation.

This demonstrates that it is possible to instantiate SingleQuantile with a better dependence on b,
though the best-known constant factor of 1000 means it is not a practical improvement.

The interior point algorithm may be used to answer threshold queries, which are queries of the form
FX(z) = 1

n rankX(z), with the following guarantee:
Lemma C.3. (Adaptive from Theorem 3.9 of [11]): There exists an (ε, δ)-DP algorithm which, with

probability 1− β, can answer any threshold queries FX(z) with error O(
log∗(b) log(

log∗(b)
βδ )2

εn ).

Using binary search, this algorithm may be used to answer any set of Q quantiles to within error

O(
log∗(b) log(

log∗(b)
βδ )2

εn ).

D Better Computation of the Maximum Error for Continual Counting

In this section, we describe the procedure used to compute the maximum absolute error of the
continual counting mechanism used in our experiments. The analysis relies on applying a Chernoff
bound to the mechanism and subsequently determining numerically the value that minimizes the
error.

The mechanism under consideration is a variant of the approach developed in [4], which makes use
of a k-ary tree structure to introduce correlated noise. Our modification lies in sampling the noise
from a discrete Laplace distribution. Let k > 0, the work in [4] provides guidelines for choosing k in
order to minimize the worst-case variance, and let T = ⌈logk(m+ 1)⌉ denote the depth of the tree.
The noise at each node of the tree is ηi ∼ DL(b) where b = e−ε/T . The probability mass function of
the discrete Laplace distribution is given by

Pr
y∼DL(b)

[y = x] =
1− b
1 + b

b|x|.
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Figure 2: The plot illustrates the minimum gap on the input ranks that is required to achieve (1, δ)-differential
privacy. Two distinct contributions are visible: the slice contribution and the continual counting contribution.
The slice contribution corresponds to the minimum slice size required to ensure that all SingleQuantile instances
succeed with probability at least 0.95. Importantly, this term is independent of δ. In contrast, the continual
counting contribution grows as δ decreases. The computation considers 100 quantiles and add/remove privacy.

Each continual counting noise Zi, for i ∈ [m], is the sum of at most T discrete Laplace noises. Using
a Chernoff bound, we get for any λ > 0

Pr [|Zi| ≥ E ] ≤ 2e−λE+T log(Mη(λ))

where Mη(λ) is the moment generating function of η which is sampled from DL(b) (see [16])

Mη(λ) =
(1− b)2

(1− e−λb)(1− eλb)
.

By using a union bound over m continual counting noises we obtain

Pr

[
max
i∈[m]

|Zi| ≥ E
]
≤ 2me−λE+T log(Mη(λ)) = δ.

Given δ > 0, finding λ ∈ (0,− log b) (so that the moment generating function is positive) such that E
is minimum cannot be solved analytically. Our linear search uses 100 different λ in [10−6,− log(b) ·
0.99] with an equal space and for each computes E(λ)

E(λ) = log(2m/δ) + T log(Mη(λ))

λ
,

the minimum error is then released.

D.1 Relation Between δ and Minimum Gap

To apply SliceQuantiles it is necessary that the input ranks are r1, . . . , rm ∈ Goodm,n,w+h. Thus,
the minimum gap between ranks must be mini ̸=j |ri − rj | > 2(w + h). While h can be computed
using Theorem C.1, w is computed following the procedure illustrated in the previous section. Figure
2 shows the minimum gap required, 2(w + h), for different values of δ. The results consider the case
of add/remove privacy, ε = 1 and m = 100 (number of quantiles).

E Additional Experimental Material

In this section we give further experimental results. In Figure 3 the density and the cumulative
distribution of the two datasets are depicted. The distributions are shown after data pre-processing,
which accounts for data augmentation to increase the minimum gap among ranks, the insertion
of low variance Gaussian noise to ensure uniqueness of the data points, and translation, thus the
addition of i/n (where n is the size of the augmented dataset) to each point x(i) so to guarantee
that mini ̸=j |xi − xj | ≥ 1/n. This last features allows to set g = 1/n when computing the slicing
parameter using Theorem C.1.
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Figure 3: Histogram representation and cumulative distribution of AdultAge and AdultHours after pre-
processing (data augmentation, Gaussian noise addition, and translation).

As a new baseline, we include the histogram density estimator algorithm, denoted as Hist, introduced
in [19]. This algorithm employs a differentially private estimate of the cumulative distribution
function, obtained by injecting Laplace noise into a histogram representation of the dataset, to
compute quantiles. Although the algorithm is conceptually simple, it requires the bin size to be
determined in advance, which directly influences the utility of the resulting estimates. Given that the
dataset bounds are known, achieving uniform bin sizes reduces to selecting the number of bins. In
these experiments, we consider three configurations for the number of bins: N

10 , N2 , and N .

We run the same experiments with additional privacy budget ε = 0.5 and ε = 5, to study the behavior
in the small and high privacy regime. Figure 4 depicts these experiments, showing that, if the data
set is sufficiently large, SliceQuantiles achieves smaller error than AQ from [18]. In contrast, the
performance of Hist varies depending on the chosen number of bins, yet it consistently exhibits an
error that is approximately one order of magnitude higher.
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(a) Experiments with (0.5, 10−16)-DP for SliceQuantiles and AQ, while (0.5, 0)-DP for AQ with pure DP
accounting and Hist. Such small privacy budget requires a large minimum gap between ranks, thus, we
augmented the dataset 24 times obtaining 1172208 data points. Plots a and b are for substitute adjacency, while
c and d correspond to add/remove adjacency.
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(b) Experiments with (1, 10−16)-DP for SliceQuantiles and AQ, while (1, 0)-DP for AQ with pure DP account-
ing and Hist. For these privacy budget we have to increase the dataset 12 times obtaining 586104 data points.
Plots a and b are for substitute adjacency, while c and d correspond to add/remove adjacency.
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(c) Experiments with (5, 10−16)-DP for SliceQuantiles and AQ, while (5, 0)-DP for AQ with pure DP account-
ing and Hist. This privacy budget allows a small minimum gap between ranks, thus, allowing us increase the
dataset only 6 times obtaining 293052 data points. Plots a and b are for substitute adjacency, while c and d
correspond to add/remove adjacency.

Figure 4: Comparison of SliceQuantiles, AQ and Hist.
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