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Abstract

In the approximate quantiles problem, the goal is to output m quantile estimates,
the ranks of which are as close as possible to m given quantiles 0 < ¢ <
-+ < gy < 1. We present a mechanism for approximate quantiles that satisfies
e-differential privacy for a dataset of n real numbers where the ratio between
the distance between the closest pair of points and the size of the domain is
bounded by . As long as the minimum gap between quantiles is sufficiently

large,

a4 — Gi—1] > Q (%ﬁlog@)) for all 7, the maximum rank error of

2
our mechanism is O M

) with high probability. Previously, the best
known algorithm under pure DP was due to Kaplan, Schnapp, and Stemmer (ICML

’22), who achieved a bound of O (log(w) log2(;n)+l°g3(m)). Our improvement

stems from the use of continual counting techniques which allows the quantiles
to be randomized in a correlated manner. We also present an (¢, §)-differentially
private mechanism that relaxes the gap assumption without affecting the error
bound, improving on existing methods when § is sufficiently close to zero. We
provide experimental evaluation which confirms that our mechanism performs
favorably compared to prior work in practice, in particular when the number of
quantiles m is large.

1 Introduction

Quantiles are a fundamental statistic of distributions with broad applications in data analysis. In this
paper, we consider the estimation of multiple quantiles under differential privacy. Given a dataset X
of n real numbers and quantiles 0 < ¢; < --- < ¢, < 1 the goal is to output estimates 21, ..., 2,
such that the fraction of data points less than z; is approximately ¢;. We measure the error by the
difference between the rank of z; in X and the optimal rank ¢;n. For the ease of exposition, we first
consider the case where elements of X are integers in {1, ..., b} and the error probability is bounded
by 1/b. In particular, the ratio 1) between the closest pair of points and the domain size is bounded
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by b. Past mechanisms fall into two categories based on the type of privacy guarantee achieved. For
pure e-differential privacy, the best known bound on maximum rank error of O (log(b) log?(m)/ £)
is due to Kaplan, Schnapp, and Stemmer [[18]]. On the other hand, work on approximate differential
privacy has largely focused on controlling how the error grows with the domain size b 8} 13} [17} [11].
These results reduce the dependence on b down to log* (b), but introduce log(%) factors—for small

values of d, for example when log(1/8) > log(b) log?(m), the bound on rank error exceeds that of
methods guaranteeing pure differential privacy.

Our goal is two-fold: to improve the rank error of private quantile estimates both under pure
differential privacy, and under (e, §)-differential privacy with small values of §. To this end, we make
the following contributions.

* We present a mechanism that satisfies e-differential privacy for any quantiles satisfying a mild

gap assumption: specifically, that |¢; — ¢;—1] > Q(%jog(b)) for all 4. This condition
depends only on the (public) queried quantiles—if they do not meet this assumption the protocol
can be safely halted without accessing any private data. For quantiles meeting the assumption,

our mechanism achieves a maximum rank error of O (M) with high probability,

saving a factor Q(min(log(b), log®(m))) over past purely private mechanisms.

* We also present an (¢, ¢)-differentially private mechanism that relaxes the gap assumption to be
independent of b without affecting the error bound. Notably, our error guarantee remains free
of any dependence on J; the parameter J only appears in the assumption on the gap between
quantiles.

For both the mechanisms, our improvement stems from the use of continual counting techniques to
randomize the quantiles in a correlated manner. We provide an experimental evaluation on real-world
datasets which validates our theoretical results. The improvement is most pronounced when the
number of quantiles m is large, particularly under the substitute adjacency. In this setting, our
mechanism improves the accuracy compared to [18] by a factor of 2 when estimating 200 quantiles
with n = 500,000, ¢ = 1, and § = 10716

1.1 Relation to Past Work

The problem of quantile estimation is closely related to the problem of learning cumulative distribu-
tions (CDFs) and threshold functions [14}[7]]. Learning of threshold functions is usually studied in
the statistical setting where data is sampled i.i.d. from some real-valued distribution. For worst-case
distributions the problem has sample complexity that grows with the support size, so in particular we
need to assume that the support is finite or that the distribution can be (privately) discretized without
introducing too much error. Feldman and Xiao [14] established a sample complexity lower bound of
Q(log b) for the quantile estimation problem under pure differential privacy. Bun, Nissim, Stemmer,
and Vadhan (7] demonstrated a lower bound of Q(log™ b) for the same task under (&, §)-differential
privacy, and a mechanism with nearly matching dependence on b was developed in a series of
papers [8, 13,17, [11]. We note that these results focus on b and do not have an optimal dependence
on the privacy parameter §. For example, the algorithm of Cohen, Lyu, Nelson, Sarlés, and Stem-
mer [11]] has sample complexity (and error) proportional to O(log™* b), which is optimal, but this
bound is multiplied by log2 (1/6). For extremely large data domains, [L1]] can therefore outperform
our algorithm; however, for domain sizes encountered in practice, the higher dependence on § will
likely outweigh this improvement. Our mechanism for approximate DP yields error independent of §
and therefore outperforms existing mechanisms when ¢ is small. With a slightly worse dependence
on b, Kaplan, Ligett, Mansour, Naor, and Stemmer [[17]] achieved an error proportional to log(1/9).
Earlier work [8 [3]] had a weaker dependence on b and §.

The problem of estimating m quantiles under pure differential privacy has been explored by Gillen-
water, Joseph, and Kulesza [15] as well as Kaplan, Schnapp, and Stemmer [18]. The latter proposed

an algorithm with error O( log” (m)(log(b)HOg( DY In the uniform quantile setting, where quantiles
are evenly spaced, they improved this bound by a factor O(log m). Their approach is inspired by
the work of Bun, Nissim, Stemmer, and Vadhan [7], solving the problem of single quantiles using
the exponential mechanism instead of an interior point algorithm. The problem is solved recursively
by approximating the middle quantile g,,,» and recursing on the dataset relevant for the first and




Privacy Guarantee Minimum Gap Error Notes

(¢, 0)-Differential Privacy, Corollary Q (m log(:) l(’g(b)) o (mg(b)tlogz(m)) Saves a Q(min(log(b), log®(m))) factor over [I8].

0

(e, §)-Differential Privacy, Corollary Q (lng(m> hg(gz/d)“"ga')) o (hg(b)ﬂ"gz(m)) Error independent of & unlike prior work [TTI[17].

Table 1: Summary of our theoretical results. We consider both add/remove and substitute adjacency.
Our privacy analysis is tighter for the latter.

second half of the quantiles, respectively. If the quantiles satisfy our maximum gap assumption,
then our algorithm enjoys lower error by a min{log?(m), log(b)} factor when b > m. If one is
willing to relax to approximate DP, we can significantly reduce the gap assumption for the same
error. By combining quantiles, the gap assumption can be eliminated entirely, and the error will be
O(%(log(b) +log(m) log Z*)); this is still less than [18] when § < b, usually the case for larger data
domains. The properties of the algorithm of [18] in the statistical setting was investigated by Lalanne,
Garivier, and Gribonval [19]]. They also considered an algorithm based on randomized quantiles, but
it relies on strong assumptions on the smoothness of the distribution.

Differentially private quantiles has received attention under different problem formulations. Some
work takes the error function to be the absolute difference between the estimate and the true quan-
tile [[12} 22], instead of the rank error. This gives rise to a fundamentally different problem, and
distribution assumptions are typically needed to ensure good utility. The problem has also been
considered in streaming [2]] and under local differential privacy [12,[1], though the different natures
of these problems prevents the techniques from carrying over.

Our Approach. Similar to [18] we also solve the problem by splitting it into m subproblems, referred
to as “slices”. Each slice is a contiguous subsequences of the sorted input data X = {xi}q;:l,___m,;
that is, each slice must consist of the elements x(;), . . ., T(;) for two indices 7 < j. However, instead
of using divide-and-conquer, we take a different approach — we propose a way to choose random
slices around the quantiles using techniques from continual counting [13]. Assuming the quantiles
are sufficiently spaced, each quantile can be approximated by applying the exponential mechanism
to a subset of points around the quantile. The total mechanism then consists of two steps: (1)
splitting the dataset into disjoint subsets around the quantiles using private continual counting, and
(2) applying the exponential mechanism to each disjoint subproblem. The main technical challenge is
that modifying one data point can modify the data contained in many of the subsets. To circumvent
this issue, we must add correlated noise to each quantile before forming the subsets, which has the
effect of hiding the modifications created in all the slices by the change in a single data point. Our
privacy analysis introduces a novel mapping for adjacent datasets X and X’: by carefully aligning the
noise introduced via continual counting, we ensure that at least m — 1 slices remain identical. This
gives approximate differential privacy (since the mapping is not exact), but the resulting  parameter
can be made extremely small given sufficient spacing between quantiles. We can then achieve pure
differential privacy by mixing in a uniformly random output with a very small probability. Although
slicing has also been used in prior work [L1]], we are the first to apply continual counting in this
context and achieve utility guarantees that are independent of §.

Limitations. Our algorithms introduce a quantile gap assumption not present in prior work. However,
as long as the number of quantiles is not too large, this assumption is often met—data analysts often
care about a limited number of summary statistics (e.g., 10%, 20%, ..., 90%). A particularly important
case is when the quantiles are equally spaced, which is closely tied to the problem of CDF estimation.
For approximate DP, our gap assumption is milder, at O(-L (log(b) +log(m) log %) )—this is usually
significantly less than 1 in practice, and for the realistic parameters tested in our experiments, the
required gap was < 0.005. However, other techniques may be preferable when the quantiles are
closer than the gap. We believe that a tighter analysis may relax the gap assumptions.

2 Background

Our setup is identical to that of Kaplan Schnapp, and Stemmer [18]]. That is, we consider a dataset
X = {x;}i=1,..n where z; € [a,b] C R. We say a dataset X has minimum separation g if



min,4; |z; — x| > gﬂ Unless explicitly specified, without loss of generality we assume that a = 0,
g = 1, since any general case can be reduced to this setting via a linear transformation of the input.
Our results can be translated to the general case by replacing b with ¢ = b_T“. Given a set () of
m quantiles 0 < ¢; < --- < g < 1, the quantile estimation problem is to privately identify
Z = (z1,...,%m) € [0,b]™ such that for every i € [m] we have rankx (z;) = [¢g;n|. We consider
the following error metric:

Errx (Q, Z) = max |rankx (z;) — [gin]|

i1€[m]

This error metric has an intuitive interpretation as the difference between the estimate’s rank and the
desired rank, and is the one more often considered in the DP literature [|18, |15, 7]]. For convenience,
we let r; = [g;n] denote the rank associated with each quantile. We denote by z(;) the ith smallest
element of X (i.e., the sorted order of the dataset).

Differential Privacy. We consider two notions of adjacency in our privacy setup. Two datasets
X, X' are add/remove adjacent if X' = X U {x} or X = X’ U {«} for a point z. We say X, X’ are
substitute adjacent if | X | = | X’|, and | X AX’| < 2. Thus, X’ may be obtained from X by changing
one point from X . Differential privacy is then defined as:

Definition 2.1. A mechanism M(X) : [0,b]™ — Y satisfies (g, )-differential privacy under the
add/remove (resp. substitute) adjacency if for all datasets X, X' which are add/remove (resp.
substitute) adjacent and all S C Y, we have

PrM(X) € S] < e* PriM(X’) € S] + 4.
In our results, we explicitly specify which adjacency definition is used. While the two notions are

equivalent up to a factor of 2 in privacy parameters, our bounds for substitute adjacency are slightly
tighter and not directly implied by those for add/remove adjacency.

3 Proposed Algorithm: SliceQuantiles

We begin with an intuitive overview of our algorithm, followed by the full technical details. For ease
of exposition, we focus here on add/remove adjacency and defer substitution adjacency to Section ]

3.1 Technical Overview

At a high level, our private quantiles algorithm SliceQuantiles applies a private single-quantile
algorithm SingleQuantile to slices of the input dataset, which are contiguous subsequences of the
sorted dataset. To ensure the accuracy of the overall scheme, they must meet the two conditions:

* Each slice must be sufficiently large because the accuracy of SingleQuantile is typically mean-
ingful only when there is enough input data.

* The slices must be centered around the desired rank 7, i.e. consist of data with rank approxi-

mately r;.
Following the criteria outlined above, one might attempt to use slices S1, . . ., S,,, where each slice
is defined as S; = x(,, _p), - - - T(r,+n) for some sufficiently large integer /1 [*} and estimate quantile

¢; by applying SingleQuantile to S;. However, as noted in prior work [[11} [7], this does not have a
satisfying privacy parameter. Consider an adjacent dataset X', where a new point with rank s, xzs) ,

is added. This produces a change in each slice S}, ..., S/, where t is the smallest index such that
s < r; — h. The naive approach would be to use composition to analyze the quantile release, causing
the error to increase by a factor of poly(m).

Instead, we make a more fine-grained analysis based on the following observation: for ¢ > t the

slice pairs {S;, S.} are shifted by exactly 1, i.e., S; = :r’(“_hﬂ), e ,x’(TH_hH). Our goal is to hide

'This is easy to enforce, as a minimum separation can always be created by adding a small amount of noise
to each data point (or by adding = to point 7). Importantly, if the data is not separated, it affects only the utility
guarantees of our algorithms—not their privacy guarantees.

2For now, assume the slices do not overlap — we address this issue later.



Algorithm 1 SliceQuantiles

I: Input: X, rq,..., 7, (w,e1), (¢,€2),7, [0, 0]
2: Seth = V_Tw
3: Require: ry,...,7y, € Goody, n wih

40 Ty, T — CCo (11, -y ) > Post-process the noisy ranks to integers.
5: Flip a coin ¢ with heads probability ~y

6: if cis heads or T ¢ Good,, . , then

7

8

Sample 21, . .., 2y, i.i.d. from [0, b]

: return zy, ..., 2y
9: end if
10: for: = 1tomdo
11: Si < [T —h)s - o> T(r4n)] > Get the perturbed slice
12: z; < SingleQuantile,, 14 4 (S:)
13: end for
14: return z1,...,2zm

this by randomly perturbing the ranks to noisy values 7; such that it is nearly as likely to observe

7y = v; + e;, for any possible integers vy, . . ., vy,, and any "shifting" values ey, . .., e,, satisfying
0 i<t
e; = - 1
! {c 1>t M

fora givenindex 0 <t < mandac € {—1,1}. We will refer to a vector of this form as a contiguous
vector. Such perturbations are the central object of study in the problem of differentially private
continual counting [[13, 10} 4], which provide the following guarantee (proof is in Appendix [A).

Lemma 3.1. There exists a randomized algorithm CC. : Z™ — Z" such that (1) for all vectors
r,t € Z™and e € {—1,0,1}™ of the form in Eq. (1), we have

Pr[CC.(r) =T] < e Pr[CC.(r) =T + €], )

and (2) for all 8 > 0, Pr |||r — CC.(r)||co > 3log(m) log(%)/s} <B.

Consequently, we can set S; = X(z,_p),- - -, T(7,+h). Our privacy analysis may then proceed as
follows. Let Si,...,S/, denote the slices when X' is used instead of X. Now, fix any observed
noisy ranks 71, . . ., 7y, generated from X. By the continual counting property (Eq. [2), when using
X', it is almost as likely to observe 71 + €1, ..., T + €m, Where ey, . .., e, is the shifting vector
such that Sy, ..., S, and Si,..., S, differ in at most one slice. This setup allows us to analyze
the final release SingleQuantile(S1), . .., SingleQuantile(S,,) using parallel composition — that is,
incurring the privacy cost of applying SingleQuantile only once. Interestingly, the privacy analysis
when X’ is formed by removing a point from X is more subtle and leads to asymmetric privacy
parameters. We discuss this in detail in Section 4]

In summary, the main steps of SliceQuantiles are as follows: first, perturb the target ranks
r1,...,T, by adding correlated noise generated via continual counting; then, for each slice
Si = T(7,—h)» - - - » T(7,+n)» apply the SingleQuantile mechanism to obtain the output z1, . .., 2.

3.2 Implementation Details

Outlined in Algorithm SliceQuantiles is provided with the following parameters: (1) (w, 1), an
error bound (to be set later) and privacy budget for CC; (2) (¢, e3), the minimum list size (to be set
later) and privacy budget for SingleQuantile; (3) a probability v of outputting a random value which
we assume for now is 0, and (4) data domain bounds [0, b]. We can instantiate the algorithm with any
SingleQuantile that satisfies o-DP.

A technical challenge arises after sampling the vector & = (7, ..., 7,,): there is no guarantee that
the generated slices would be non-overlapping, which would invalidate our privacy analysis ﬂ We

3As a simple counter-example, suppose the 7; all ended up equal. Then, every slice could potentially change
for an adjacent dataset, and the privacy parameter could be as high as me.



address this as follows. We define the following set for notational convenience:
GOOdm’n’A = {(7:1, Ce 7,,:m) ezZ™: 1—A > 1,7—71 > 2A fori = 1,...m—1,7, < n—A} .

The set Good,, » A consists of noisy vectors with sufficient space around each 7; to ensure that
the slices do not intersect. We eliminate the risk of overlap by checking that the sampled noise r
belongs to Good,,, », ; (Line @), and if not we release a random output from (0, b)™ (corresponding
to a failure). To ensure that failure is rare, we require the input ranks r to belong to Good,,, » w-+h
where w is the maximum error introduced by CC (Line[3)), which is the precise requirement for the
quantile gaps.

A practical improvement proposed in [[18] is to adaptively clip the output range of the SingleQuantile
algorithm. Our algorithm is able to support this as well as follows. Instead of estimating each z; using
independent calls to SingleQuantile as in Line first compute z,, /2 for the middle quantile by
running SingleQuantile with the entire data domain [0, b]. Then, compute z,, /4 using SingleQuantile
with data domain restricted to [0, z,,, /2], and compute z3,, /4 using SingleQuantile with data domain
restricted to [z, 2, b]. Output all quantiles by recursing in a similar binary fashion. The privacy
analysis of SliceQuantiles can be modified in a straightforward way to handle these adaptive releases,
and in practice, when SingleQuantile is e.g. the exponential mechanism, the utility of SingleQuantile
improves by restricting the set of possible outputs.

4 Privacy Analysis

We begin by explaining our analysis under approximate differential privacy, and later show how to
convert this to a guarantee under pure differential privacy. The proofs for results in this section appear

in Appendix

Technical Challenge. Our first attempt at a privacy proof might proceed as follows: observe that
any I € Good,, ,, , may be mapped to a corresponding ¥ € Good,,, ,, 5, such that (1) the difference
vector e = r —r’ is a contiguous vector, and (2) the corresponding slices Si, ..., Sy, and S7,..., S/,
differ in only one index j, and only by a single substitution within that slice. We would then hope
to establish (e, §)-differential privacy by arguing the following: (1) a noisy vector sampled by CC
belongs to Good,, ,, », With probability at least 1 — §; (2) CC is capable of hiding any binary shift
vector e of the prescribed form; and (3) a single application of (e, §)-differential privacy suffices,
since only one slice differs between the adjacent datasets.

Unfortunately, there is a flaw in this argument: if many vectors T are mapped to the same ¥/, it becomes
difficult to compare the resulting sum over duplicated ¥’ values to a sum over all ¥ € Good,,, 5, p-
A prior work [7]] was able to show that there exists a mapping sending at most two distinct values
of T to a single '. However, this has a significant limitation: even a multiplicative factor of 2
blows up the privacy parameter to 2¢°1 2, making it impossible to establish any guarantee with a
privacy parameter smaller than In(2). (Note that we cannot make use of privacy amplification by
subsampling [8} 21] without incurring a large sampling error on quantiles.)

Key Idea. A key novelty of our technical proof is to propose a more refined mapping that mitigates
the issue above. Specifically, our mapping injectively maps each ¥ € Good,, »  to a corresponding
' in a slightly larger set. Our mapping depends on whether X is smaller or larger than X’. When
X' = X U{xs} (i.e., an addition), we observe that the mapping above is, in fact, an injection. The
difficulty arises only in the case of a removal. Nevertheless, when X = X' U {x}, we show that it is
possible to construct an injection that ensures at most two slices among S1, ..., S, and S, ..., S/,
differ, each only by a substitution. Formally, we prove the following in Appendix [B.T}

Lemma 4.1. Let X, X’ denote two adjacent datasets such that X' is smaller than X by exactly one
point. Then, there exists a function F~(t) : Goody, ».p, — Goody, n p—1 such that

e F'~ isinjective.

s For 1 < i < m, the dataset slices S; = T(7,_p),- - -, T(7,+n) and S; = x’(ﬁ_fh), ... ,x’(FiJrh)

satisfy ZZ1 dsup(Si, SL) < 2, where dsyy, is the number of substitutions of points needed to
make S; and S} equal.

* F7(f) = T + ez where ez is binary vector of the form ez[i] = —1[i > j] for an index
1<j<m+1L



Similarly, if X' is larger than X by exactly one point, then there exists a corresponding function
F*(F) : Goodyy n,n — Goody, i1, with the same properties, except that e satisfies ez [i] = 1[i >
jl for anindex 1 < j < m + 1, and the sum of substitution distances is bounded by 1 instead of 2.

The fact that F'+ and F'~ map to slightly different sets than Good,y, p,p is not an important detail;
our proof accounts for it by requiring the gap between the input ranks r to be 1 higher.

As aresult, to analyze privacy under add/remove adjacency, we incur the privacy cost of CC once and
of SingleQuantile at most twice, yielding a total privacy parameter of £ + 2¢5. Due to the asymmetry
of our mapping when a point is being added or removed, privacy under substitute adjacency is slightly
better since substitution is both an addition and a removal operation. Formally,

3log(m) log(2m/6)

Theorem 4.2. Under add/remove adjacency, SliceQuantiles withy =0, w = , and

any h > 1, satisfies (€1 + 22, 6)-differential privacy. Under substitute adjacency, SllceQuantlles
satisfies (2e1 + 3eq, 0 + de112€2) differential privacy.

The proof is provided in Appendix Notice that privacy holds for any h > 1; but our utility
results, which we will show later, require h to be sufficiently large.

Conversion to Pure Differential Privacy. Observe that ¢ plays a limited role in Theorem[4.2] namely
it affects only the minimum gap separating the ranks of interest. When the rank gaps (and the data
size) are sufficiently large, § can be made small enough to be absorbed into the € terms. To do this,
we prove a reduction from (e, §)-approximate differential privacy to e-pure differential privacy, which
holds when § < ﬁ the inverse of the size of the output range.

Lemma 4.3. If a mechanism A(X) with discrete output range Y satisfies (e, )-differential privacy

with G 55\)1 |1) < 1, then the mechanism A( ), which outputs a random sample from Y with probability

(eil ‘1) and outputs A(X) otherwise, satisfies (&,0)-DP.

To apply the lemma to SliceQuantiles, we need to discretize the output domain to [b]™ (for example,
by rounding to the nearest integers). This introduces a maximum error of 1 in the quantile estimates,
which is negligible when the dataset has a minimum gap of 1. A pure differential privacy guarantee is

then a corollary of Lemma and Theorem with § = %
Corollary 4.4. Under add/remove adjacency, SliceQuantiles with v > 0 and

By R

€1

and with estimates rounded to |z1], . .., | zm | satisfies €1 + 2eo-pure differential privacy. Under sub-
stitute adjacency, Algorithmwith w = M (m log b + log (#) +e1+ 252) satisfies
2e1 + 3eq-pure differential privacy.

(

For most parameter settings, w will dominated by the m log b8 term. To satisfy the condition

r € Good, . w+h, it is necessary to have n > m? log b%. For instance, when g1 = e9 = 1,
b = 232 and m = 100, then w =~ 65, 000, the minimum gap is 2w = 130, 000, and the total amount
of data required is 1.3 x 107. While the minimum gap between quantiles maybe too large for some
datasets, our algorithm offers asymptotic utility improvements over the best-known pure differential
privacy algorithms when this assumption is met. We expand on this in the next section.

5 Utility Analysis

SliceQuantiles may be implemented with any private algorithm SingleQuantile for estimating a single
quantile of a dataset. We introduce a general notion of accuracy for SingleQuantile in order to derive
a general error bound.

Definition 5.1. An algorithm SingleQuantile(X) is an (o, £, 8) algorithm for median estimation if,
for all datasets X € [0,b]™ of size n > ¥, with probability at least 1 — (3, SingleQuantile(X) returns
a median estimate z with rank error |5 — rankx (z)| < o



For our purposes, it is sufficient to only require SingleQuantile to return a median estimate, since the
median of the slice S; is the element with the desired rank 7; in X. In its general form, our utility
guarantee is as follows:

Theorem 5.1. Suppose SliceQuantiles is run with an («, ¢, %) algorithm SingleQuantile for single
quantile estimation. Then, for any input ranks r1, . .., ry, such that they are in Goody, m w+h for
h = [(¢ —1)/2], conditioned on Line|6|not failing, the returned estimates Z satisfy Errx (Q, Z) <

0] (a + w) with probability 1 — .

€

We prove this theorem in Appendix [C] Next, we specialize this utility theorem in both the pure and
approximate DP settings, and compare them to the best-known algorithms.

5.1 Utility Guarantee under Pure Differential Privacy

Under pure DP, we may implement SingleQuantile as the exponential mechanism with privacy
parameter ¢» and utility given by the negative rank error. We show in Appendix [C] that this is a

(h,2h + 1, B) algorithm for median estimation with h = [%ﬁb/ﬁ)—‘ , for any 8 € (0, 1). This gives
the following immediate corollary (for simplicity, we state it using add/remove adjacency).

Corollary 5.2. Suppose SliceQuantiles is run with w set as in Corollary[{.4} SingleQuantile set to be
the exponential mechanism and { = 2 [%ﬁm/ﬁ)-‘ + 1. Then, the algorithm satisfies e-differential

privacy with € = €1 + 2¢9, and with probability at least 1 — 3 — ~, achieves an error bound
of Errx (Q,Z) < O (10g5(b) 4 logm 1o€g(m/ﬁ)) for any input quantiles with gap Smee®) loslm) |

e1n

O( log(m) log(m(e®—1)/7v) )

En

log blog?(m) +

In contrast, the state-of-the-art algorithm under pure differential privacy attains error O( =

M) [18]. When log(b) > log(m)?, error is improved by a factor of log(m)?. When

log(m) < log(b) < log(m)?, the factor is log(b). This represents an improvement factor of
min{log(b),log(m)?} when b > m. Note that this improvement comes with a mild constraint: it

requires the minimum gap between quantiles to be at least Q(W).

Nevertheless, the case of equally spaced quantiles remains a well-studied and important problem. In

this setting, [ 18] provide an improved analysis of their algorithm, achieving an error of O ( M +

log(m/pB) log(mn)

. . . 2 logm
Note that to meet the required quantile gap, it must hold that n > Q(m? log b=2").

). Our algorithm still offer an improvement by a factor of log(m) for the case b > m.

5.2 Finding Quantiles Under Approximate Differential Privacy

Under approximate differential privacy, quantile estimation algorithms with more favourable depen-
dence on b are known. Specifically, as shown in [L1]], there exists an (g, §)-DP algorithm which is a
(£,¢,51og" (b)) algorithm for median estimation with £ = 1000 log™ (b) log($)?. This algorithm may
be used to answer general threshold queries, or the fraction of data below a query point = € [0, b,
of a dataset of size n, and provides error that scales with log* (b) instead of log(b). We provide the
full details of these results in Appendix [C] When translated to quantile estimation, this threshold

query-based method can answer any set of quantiles with error O (log™ (b) w). We note
that there is no dependence on m in this bound.

Though the factor of 1000 above is probably far from tight, even the log? (1/6) factor incurred by the
algorithm can be quite large, and result in higher error despite the improved log* (b) dependence on
the domain size. To avoid incurring log(1/4) terms, we instantiate the (¢, ¢) version of SliceQuantiles
with the exponential mechanism to obtain:

Corollary 5.3. Suppose SliceQuantiles is run with w set as in Theorem[4.2] SingleQuantile ser to
%ﬁ’mm)—‘ + 1. Then, the algorithm

satisfies (g, 9)-differential privacy with ¢ = 1 + 2e9, and with probability at least 1 — § — 6,

be the exponential mechanism, with v = 0 and { = 2 [



achieves an error bound of Errx (Q, Z) < O(log,c_(b) —+ Log(m) log () ) for any input quantiles with

€
6log(m) log(2m/4) 4log(2bm/B)
gap e1n + €2 :

Observe that whenever log m log(%) < log b, the gap is actually asymptotically less than the normal-
ized error bound. This means the gap requirement can be removed entirely by merging any quantiles
too close, and this will only increase the error term by a constant factor.

Compared with the previous error guarantee, the guarantee in Corollary [5.3]is in fact lower whenever
log(b) < 1og2(%) log™(b) and log(m) is sufficiently small compared to log(1/4), which is often true
for practical choices of the parameters. For instance, log™ (b) rarely exceeds 4 even for very large
domains, while log(b) is typically below 64, and log?(1/8) often reaches into the thousands for
typical choices of . Furthermore, the hidden constant factor in the former algorithm is not known
to be under 1000, while in our case it is roughly 10. These factors underscore the superior practical
performance of our approach.

6 Experiments

For our experiments (code is open—sourcedﬂ), we use a variant of the k-ary tree CC mechanism
introduced in [4] with two-sided geometric noise, and SingleQuantile implemented as the exponential
mechanism [[18} 20]. Similarly to Kaplan et al. [[18]], we construct two real-valued datasets by adding
small Gaussian noise to the AdultAge and AdultHours datasets [S]]; both datasets, corresponding to
ages and hours worked per week, exist on the interval [0, 100]; we use this as our data domain. Unlike
their approach, however, we scale the dataset by duplicating each data point 12 times (preserving
multiset ranks), resulting in approximately n = 500,000 entries. This allows us to analyze a large
number of quantiles without needing to resort to merging techniques. Concretely, the gap assumption
for our parameters is 0.005, so up to 200 equally-spaced quantiles could be answered. The distribution
of these datasets are detailed in Appendix@ To ensure a minimum spacing of 1/n between data points,
we add ¢/n to the ith element in the sorted dataset. For each m € {10, 20, ...,200}, we randomly
sample m quantiles from the set of 250 uniformly spaced quantiles {i/251 : ¢ = 1,...,250},
and run experiments on both datasets. This sampling procedure is performed independently for
each experiment, ensuring that the reported results represent an average over both good and bad
instantiations of the problem. We evaluate the mechanism under both substitute and add/remove
adjacency, using e = 1 and § = 10716 « # as the privacy parameters. Additional experiments
with varying privacy budgets are presented in Appendix [E| The y-axis in our results reports the
average maximum rank error, with 95% confidence intervals computed via bootstrapping over 200
experiments. Results are shown in Figure[T} the first two plots (from the left) correspond to substitute
adjacency, while the remaining plots correspond to add/remove adjacency.

Baseline Algorithms. Our primary baseline is Approximate Quantiles [[18], which we abbreviate to
AQ. Experiments in that reference demonstrate improved utility over the AppindExp algorithm [15]],
hence we do not include AppindExp in our comparisons. AQ satisfies both pure and approximate DP,
with the approximate DP analysis leveraging an improved analysis of the exponential mechanism
under zero-concentrated DP [6l 9]. As we are using approximate DP for our experiments, we include
privacy analyses of AQ as comparison baselines. We also compare to the histogram-based method
of [19]—because its error is much higher due to making linear approximations of the data distribution,
we put these plots in Appendix [E]

Implementation details of SliceQuantiles. Our empirical results indicate that the most effective
strategy for allocating the privacy budget between CC and SingleQuantile is to divide it equally,

assigning half to each mechanism. To compute the size of the slice, we use h = [g log (%ﬂ ,
according to Theorem , with 5 = 0.05 and ¢ = b_T“ = 100n as [a, b] = [0,100] and g = % We
used numerical optimization of the Chernoff bound to compute the smallest possible value of the
parameter w bounding the CC mechanism with failure J, beyond the asymptotic expression given in

Lemma [3.1] The details of this optimization appear in Appendix [D] This reduced the quantile gap
assumption and maximized the number of quantiles that SliceQuantiles is able to answer.

*https://github.com/NynsenFaber/DP_CC_quantiles
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Figure 1: Experiments on AdultAge and AdultHours datasets. The datasets contain approximately 5-10° data
points. Each experiment was run 200 times, with each run using a random sample from a set of 250 uniformly
spaced quantiles. Plots a and b are for substitute adjacency, while ¢ and d correspond to add/remove adjacency.
Approximate Quantiles in the above figure refers to the algorithm (AQ) from [[18]]. The privacy settings are:
(1,107 '%)-DP for SliceQuantiles and AQ, and (1, 0)-DP for AQ with pure DP guarantee [18].

Results. We plot the three algorithms in Figure[I] The plots indicate that SliceQuantiles performs
better than AQ, with a notable advantage under substitute adjacency. This is in line with our
theoretical argument on a tighter bound under this adjacency (Theorem[4.2). Consistent with our
prior observations, AQ under approximate differential privacy performs worse than AQ with pure
differential privacy, due to our lower choice of §. Because its utility guarantee is independent of 6,
SliceQuantiles is able to circumvent this issue.

7 Conclusion

In this paper, we have proposed new mechanisms for approximating multiple quantiles on a dataset,
satisfying both ¢ and (¢, ¢) differential privacy. As long as the minimum gap between the queried
quantiles is sufficiently large, the mechanisms achieve error with a better dependence on the number
of quantiles and § than prior work. Our experimental results demonstrate that these mechanisms
outperform prior work in practice, in particular when the number of quantiles is large. An interesting
question for future directions is to explore if a more careful analysis could reduce the minimum gap
requirement or if other practical mechanisms for differentially private quantiles could further improve
accuracy of computing many quantiles privately in practice.
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A Details From Continual Counting

In summary, the binary tree mechanism [13}[10] achieves e-DP when the input vector r is changed
to r + e, where e is a contiguous 0/1 or 0/ — 1-valued vector. The mechanism achieves this by
constructing a segment tree whose leaves are the intervals [0, 1), ..., [m — 1,m), and sampling a
Laplace random variable 7; for each node I of the tree. For T' = [logy(m + 1)], let Iy, ..., It
denote the interval decomposition of [0,¢). Then, the estimate for 7; is given by r; + Z};l nr;
rounded to the nearest integer (by convention, for integers k the number k& — 1/2 is rounded up to k).
The correlated noise being added to each r; allows the total error to grow only logarithmically with
m. The final rounding ensures that the noisy ranks are integer valued. The rounding is private due to
post processing and it only incurs an additional rank error of at most 1/2

A.1 Proof of Lemma[3.1]

We start with the following concentration lemma:

Corollary A.1 (From Corollary 2.9 of [10]). Suppose ~;’s are independent random variables, where
each ~y; has Laplace distribution Lap(b;). Suppose Y = . v;, bys = max; by and § € (0,1). Let

v =max{\/>,; b?,bar/In(2/8)}. Then Pr[|Y| > v+/81n(2/6)] < 6.

Proof of Lemma[3.1} Define round : R™ — Z™ to be the rounding function rounding each co-
ordinate of a vector s € R™ to the nearest integer (rounding up in case of ties). Note that
round(s + z) = round(s) + = whenever z € Z™. To prove the first guarantee, observe that
since the binary tree mechanism is an additive noise mechanism (i.e. CC(r) = round(r + N'), where
N is a noisy vector) the privacy guarantee of the binary tree mechanism implies that

Pr[CC(r) = ¥] = Pr[round(r+N) = ¥] < e Pr[round(r—e+N) = 1] = ¢° Pr[CC(r) =T + €]

To show utility, each coordinate of A" is the sum of at most 7" independent Laplace random variables
with variance T2 /<2 to each estimate. From Corollary we have that, with probability at least

1—3/m, each estimate has an error at most £ /8 1In(2m/B) max{v'T, \/In(2m/pB)}. The claim fol-
lows by a union bound and analysing the asymptotic of £ \/81In(2m/B) max{v'T, \/In(2m/B)} <
%x/Sln(2m/ﬂ)(\/T+ VIn(2m/pB)). O

B Omitted Proofs From Section 4

B.1 Proof of Lemma[4.1]

Proof. Suppose first that X’ adds a point to X . This means that there is a minimal index s such that
TGy = x’(i) for all 7 < s, and $2i+1) = ;) forall i > 5. We will define F*(f) = T + e;, where
each coordinate of e is defined by

0 — 0 ’Fz —h S S
T 7 —h > s.
It is clear that this vector belongs to Good,;, »+1,5 and that Property (3) of the map is satisfied. To
see injectivity, observe that if ¥, ¥’ are different, but mapped to the same output, then they must have
different vectors e, €’. Furthermore, the coordinates of T, ' only differ by 1. These two things can
only happen if 7« — h = s and 7. — h = s + 1 for an index ¢*. However, this will then produce
e;~ = 0 and e,. = 1, resulting in the ¢* coordinates of F'*(r), F" (') tobe h + sand h + s + 2,
respectively, making it impossible for equality.

Finally, Property (2) holds because the slices S;, S; will disagree only if 7; € [s — h, s + h], and the
sum of substitution distances is 1.

In the case that X' removes a point from X, then x(;) = JC/(i) foralli < sand z(;) = x’(i_l) for all
1 > s. We define the map F'~ () = I + ez, where each coordinate of e; is instead defined by

0 — 0 Z‘:].\/fi_lfhgs
LR | 1>1AN7;_1—h>s.
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Again, Property (3) and membership in Good,, ,, »—1 is immediate. To argue injectivity, observe that
if ¥,/ are different, but mapped to the same output, then they must have different vectors e, €’. This
is only possible if #;+_1 — h = sand 7. _; — h = s + 1 for some index ¢* > 1. However, this then
implies that e;» 1 = e}, _,; = 0, resulting in F~ (73 ) = 7;« and F~ (7} _;) = 7._, and forcing the
maps to still have different outputs F~ (7« _1) # F~ (74.).

Property (2) follows because the slices S;, S disagree only in potentially two locations; namely the
index i* where a € [F;« — h, 7= + h] (if it exists), and the index j* which is the minimum index such
that @ < 7j~ — h. Each disagreement adds one to the substitution distance, and thus the total sum is
at most 2.

Note that at first glance, it may appear as though the case where X’ removes a point from X could be
solved analogously to the case where X’ adds a point, defining e; as:

0: — 0 ’I:i—hSS
-1 7i — h > s.

However, this choice would not lead to an injective mapping. In particular, we can set 7;» — h = s
and 7. — h = s+ 1 for an index ¢*, which are different, but mapped to the same output. Specifically,
this will produce e;« = 0 and €. = —1, resulting in F'~ (7;») = s + h = F~(7.).

O

B.2 Proof of Theorem [4.2]

Proof. We will first prove add/remove privacy.

Let A(X) denote SliceQuantiles run on input X, and let A(X, t) denote the algorithm conditioned
on the noisy ranks ¥ = (71, ..., 7). Let F*, F~ denote the maps guaranteed by Lemma We
will first assume that X’ is larger than X, and thus we will use £'T in the following. For any output
set Z, we have

lﬂmmemzéjmwaﬁmzwmqmzﬂ
< ;ErZ[ZC(r) # Goodynnn] + > PrlA(X§) € Z] Pr[CC(r) = 7
<o+ > PriAx, r) GGGZ;:[EC@ =7
gé+ﬁ€&§?mﬁe”FTLMXQF+ﬁﬁ)eZ}élPﬂCC@)zlﬂKﬂ}
<0+ e€G+d > PrlAX',E) € Z]Pr[CC(r) = 7]
FEGoodn ni1n

<5+ PrlAX) € Z),

where the third line follows from Lemma which shows Pr[||r — F|lc > w] < 4, and by the
assumption that r € Good,, » h+w-+1; the fourth follows from Properties (2) and (3) of Lemma
along with Lemma and the fifth follows from Property (1) of Lemma When X' is smaller
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than X, then we use the map F—, and we obtain
PrAX) € 2] = ) Pr[A(X.F) € Z]Pr(CC(r) = 1]
Fezm
< Pr{CC(r) ¢ Goodn-1nial + > PriA(X,r) € Z]Pr{CC(r) = 1]
re€Goodyy n—1,n+1
<o+ Y. PrlAX,§) € Z] Pr[CC(r) = ]
r€Goody n—1,h+1
<ot Y PUPr[AX. () € 2] e PCClr) = F (3]
reGoody, n—1,n+1
<§+entE N PrA(XE) € Z) Pr{CC(r) = 1
reGoody, n—1,n
<&+ es1+252 PY[A(X/) c ZL

where the deductions are the same, and the only change is the final parameter is €1 + 2¢5 as the
constant is higher.

To prove substitution privacy, we may simply use the fact that for two neighboring datasets X, X’,
there is a dataset X such that X; may be obtained from either X, X’ by removing a point. Thus,
from what we’ve already shown, the pair X, X; satisfies (1 + 25, 6)-DP, while X1, X’ satisfies
(€1 + €2,9)-DP. By group privacy, we have a final guarantee of (251 + 3g2, § + def172¢2) O

B.3 Proof of Lemma4d.3

Proof. By the (e, d)-DP guarantee, the probability of observing any y € ) may be bounded by
PrlA(X) = y] < e PrlA(X') = y] + 4.

Now, we have

PrA(X) = y] = (1 — ) PrlA(X) = y] + 7

g
< (1= (e PHAK) = 4] +) + 7757

€ N — L — — e i
= (0= A =) #7557 ) 4800 = 2) 41 = )

= ef PrlA(X") = y] + 6(1 — ) +~(1 — ee)ﬁ
€ 1 AN — e i
e PrlAX) =yl + 5 +~(1 )D}|

IN

=" PrlA(X') = y].

C Omitted Details From Section 3

C.1 Proof of Theorem [5.1]

Proof. By a union bound, conditioned on Line [f] not failing, with probability at least 1 — f3, the

returned quantiles z1, ..., z,, will satisfy |rankx (z;) — 7| < a. By Lemma each 7; satisfies
Ir — Floo < 31%(’”) log(35) with probability at least 1 — 3. The bound follows from the triangle
inequality. O

C.2 Details on Exponential Mechanism

Assuming that each point lies in [a, b], the exponential mechanism samples a point z € [a, b] with
probability exp(—<Erry (¢, Z))—here we will assume the quantile ¢ = % for the median. This can
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be implemented by sampling an interval I}, = [z (1), Z(k41)], With z(g) = @ and z(;4.1) = b, with
probability proportional to exp (—5|rn — k|) |1/, and then releasing a value uniformly sampled
from the selected interval (see Appendix A in [18]).

The utility of the exponential mechanism for median estimation is as follows:

Theorem C.1. Given a dataset X € [a,b]"™ with minimum gap g > 0, parameters 3 € (0, 1) and
e >0, let ) = =2, Then, the exponential mechanism is a (h, 2h, ) algorithm for median estimation

for h = {% log (%)_‘

Proof. 1t is sufficient to suppose the dataset has size 2h, and to bound the probability of sampling
in the interval [a, z(1)] and [z (2p),b]. Let T = {[a,z(1)], [21), Z(2)]; - - -, [Z(2n), b]} be the set of
intervals sampled by the exponential mechanism. The probability the sample z lies in the interval
[a, x(,«,h)] is

_gp
e 2"(xq) —a) b—a
?21 e_%‘i_h‘(

Prlz € [0,2(1)]] =
Ty — 35(1'71)) g

€.
as 212];1 e‘ill_}”(x(i) —2(i-1)) > (T(h41) — T(n)) = g. By our choice of h, this probability is at
most g The same upper bound can be found for the other extreme interval [z (2p,), b], and the result
follows from a union bound. O

C.3 Details on Threshold Queries

We discuss how the existing work on threshold queries may be used to answer quantiles. These
algorithms actually work by solving a much simpler interior point problem, where the goal on an
input dataset X, is to simply return a point 2 such that z(;) < z < x(;). For a small enough dataset,
the interior point algorithm can also provide a median estimate with low error.

Lemma C.2. (Adapted from Theorem 3.7 of [11]]): There exists an (e, §)-DP algorithm A;p,, which
isa (w log(3)?, w log(3)?, 6 log™ | X|) algorithm for median estimation.

This demonstrates that it is possible to instantiate SingleQuantile with a better dependence on b,
though the best-known constant factor of 1000 means it is not a practical improvement.

The interior point algorithm may be used to answer threshold queries, which are queries of the form
Fx(z) = Lrankx(2), with the following guarantee:

Lemma C.3. (Adaptive from Theorem 3.9 of [11]): There exists an (g, §)-DP algorithm which, with
log” (b) log(*257*) )2

probability 1 — f3, can answer any threshold queries Fx (z) with error O( — ).

Using binary search, this algorithm may be used to answer any set of ) quantiles to within error
0= ® log(1572))2 )

EN

D Better Computation of the Maximum Error for Continual Counting

In this section, we describe the procedure used to compute the maximum absolute error of the
continual counting mechanism used in our experiments. The analysis relies on applying a Chernoff
bound to the mechanism and subsequently determining numerically the value that minimizes the
error.

The mechanism under consideration is a variant of the approach developed in [4], which makes use
of a k-ary tree structure to introduce correlated noise. Our modification lies in sampling the noise
from a discrete Laplace distribution. Let k£ > 0, the work in [4] provides guidelines for choosing & in
order to minimize the worst-case variance, and let T = [log,, (m + 1)] denote the depth of the tree.
The noise at each node of the tree is 7; ~ DL(b) where b = ¢~/T". The probability mass function of
the discrete Laplace distribution is given by

1-5

P =gl = — Zplal,
yNDI.]f‘(b)[y x} 1+0
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Figure 2: The plot illustrates the minimum gap on the input ranks that is required to achieve (1, §)-differential
privacy. Two distinct contributions are visible: the slice contribution and the continual counting contribution.
The slice contribution corresponds to the minimum slice size required to ensure that all SingleQuantile instances
succeed with probability at least 0.95. Importantly, this term is independent of §. In contrast, the continual
counting contribution grows as § decreases. The computation considers 100 quantiles and add/remove privacy.

Each continual counting noise Z;, for i € [m], is the sum of at most 7" discrete Laplace noises. Using
a Chernoff bound, we get for any A > 0

Pr HZz‘ > S] < 267)\5+T10g(MT,()\))
where M, () is the moment generating function of  which is sampled from DL(b) (see [16])

(1-b)°
(1= e ) (1 —erb)’

By using a union bound over m continual counting noises we obtain

Mn()‘) =

Pr [max |Z;| > S] < 2me M HTlog(My (M) —
1€[m]

Given § > 0, finding A € (0, — log b) (so that the moment generating function is positive) such that £
is minimum cannot be solved analytically. Our linear search uses 100 different A in [1076, — log(b) -
0.99] with an equal space and for each computes £())

_ log(2m/d) + T log(M,,(N))

£ > ,
the minimum error is then released.
D.1 Relation Between § and Minimum Gap
To apply SliceQuantiles it is necessary that the input ranks are ry, ..., 7, € Good,y, 5 w+r. Thus,

the minimum gap between ranks must be min;»; |r; — ;| > 2(w + h). While h can be computed
using Theorem[C.1] w is computed following the procedure illustrated in the previous section. Figure
shows the minimum gap required, 2(w + h), for different values of 0. The results consider the case
of add/remove privacy, € = 1 and m = 100 (number of quantiles).

E Additional Experimental Material

In this section we give further experimental results. In Figure [3] the density and the cumulative
distribution of the two datasets are depicted. The distributions are shown after data pre-processing,
which accounts for data augmentation to increase the minimum gap among ranks, the insertion
of low variance Gaussian noise to ensure uniqueness of the data points, and translation, thus the
addition of i/n (where n is the size of the augmented dataset) to each point ;) so to guarantee
that min,; |z; — ;| > 1/n. This last features allows to set g = 1/n when computing the slicing
parameter using Theorem [C.1}
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Figure 3: Histogram representation and cumulative distribution of AdultAge and AdultHours after pre-
processing (data augmentation, Gaussian noise addition, and translation).

As a new baseline, we include the histogram density estimator algorithm, denoted as Hist, introduced
in [19]. This algorithm employs a differentially private estimate of the cumulative distribution
function, obtained by injecting Laplace noise into a histogram representation of the dataset, to
compute quantiles. Although the algorithm is conceptually simple, it requires the bin size to be
determined in advance, which directly influences the utility of the resulting estimates. Given that the
dataset bounds are known, achieving uniform bin sizes reduces to selecting the number of bins. In
these experi ider th figurations for th ber of bins: &, & and N
periments, we consider three configurations for the number of bins: {5, 5, and N.

We run the same experiments with additional privacy budget € = 0.5 and € = 5, to study the behavior
in the small and high privacy regime. Figure ] depicts these experiments, showing that, if the data
set is sufficiently large, SliceQuantiles achieves smaller error than AQ from [18]. In contrast, the
performance of Hist varies depending on the chosen number of bins, yet it consistently exhibits an
error that is approximately one order of magnitude higher.
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(a) Experiments with (0.5, 107'%)-DP for SliceQuantiles and AQ, while (0.5, 0)-DP for AQ with pure DP
accounting and Hist. Such small privacy budget requires a large minimum gap between ranks, thus, we
augmented the dataset 24 times obtaining 1172208 data points. Plots a and b are for substitute adjacency, while

c and d correspond to add/remove adjacency.
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(b) Experiments with (1,107%)-DP for SliceQuantiles and AQ, while (1,0)-DP for AQ with pure DP account-
ing and Hist. For these privacy budget we have to increase the dataset 12 times obtaining 586104 data points.
Plots a and b are for substitute adjacency, while c and d correspond to add/remove adjacency.

—— SliceQuantiles —— Approximate Quantiles —— Approximate Quantiles Pure —— Hist 1/10 N bins —— Hist 1/2 N bins —— Hist N bins

age working hours age working hours

O B o &

—

200 50 100 150 200 50 100 150 200

Max Rank Error

50 100 150 200 50 100 150
Number of Quantiles (m)

(c) Experiments with (5, 10’16)-DP for SliceQuantiles and AQ, while (5, 0)-DP for AQ with pure DP account-
ing and Hist. This privacy budget allows a small minimum gap between ranks, thus, allowing us increase the
dataset only 6 times obtaining 293052 data points. Plots a and b are for substitute adjacency, while ¢ and d

correspond to add/remove adjacency.

Figure 4: Comparison of SliceQuantiles, AQ and Hist.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We only mention claims and contributions in the abstract and introduction,
which we prove or argue for in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss those limitations of our work that we are aware of in the introduc-
tion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: For each theoretical result (privacy and utility), we provide proofs. They are
partially in the appendix and correct to the best of our knowledge.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experimental results can be reproduced by executing the code provided
together with the submission.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the scripts we used to run experiments and a README file
describing how to run them.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a paragraph for each experimental evaluation section, where we
describe the exact setting we are in.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The paper provides 95% confidence intervals for all experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experiments are not compute-intensive and were run locally on a laptop.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe that we conform with the NeurIPS Code of Ethics, as none of our
work poses ethical concerns.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents foundational work whose goal is to advance the field of
Machine Learning. There are many potential indirect societal consequences of our work,
none which we feel must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: In this work, we do not release any data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The datasets used for the experiments in section [6] are properly referred to.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We do not release any new assets in this work.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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