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ABSTRACT

Large language models (LLMs) possess impressive generative capabilities but
remain opaque and can exhibit unsafe or undesired behaviors. Existing control
methods rely on supervised fine-tuning or curated prompt-response datasets, which
limits their scalability. We propose SteerCLR, an unsupervised method that
simultaneously discovers a bank of diverse and disentangled steering vectors
directly from unlabeled prompts. By optimizing a novel contrastive objective
over internal model activations, SteerCLR learns vectors that correspond to
distinct behavioral shifts. Injecting these vectors into a frozen LLM enables
fine-grained, low-latency control over generation, including suppressing toxicity,
modulating sentiment, and uncovering subtle stylistic dimensions, without relying
on labeled data, classifiers, or attribute-specific supervision. We demonstrate
that optimizing for activation magnitude and activation diversity yields a rich set
of interpretable directions. Experiments on instruction-tuned Llama-2-13B-chat
model show SteerCLR discovers diverse interpretable steering vectors in a single
training run, significantly advancing the scalability of mechanistic interpretability
and enabling practical interventions for safety, alignment, and model auditing.

1 INTRODUCTION

Large Language Models (LLMs) have become the backbone of modern NLP, powering chat assistants
(Achiam et al., 2023; Team et al., 2023), coding copilots (Chen et al., 2021), and scientific aides
(Taylor et al., 2022). Their impressive generative reach comes with a caveat: the same model that
drafts a grant proposal may also hallucinate facts (Ji et al., 2023), leak private information (Carlini
et al., 2023), or generate unsafe content (Gehman et al., 2020). Ensuring that an LLM performs only
the desired behavior has become a core challenge in language model alignment.

Most current behavior control methods rely on heavy supervision (e.g., Reinforcement Learning
from Human Feedback, instruction fine-tuning) or brittle prompt engineering. A newer line of work
intervenes on internal activations: Activation Addition (Turner et al., 2023) and its contrastive variants
(Panickssery et al., 2023) learn single steering vectors from paired data, while BiPO (Cao et al., 2024)
uses preference optimization, and MELBO (Mack & Turner, 2024) discovers single unsupervised
directions. These methods suggest a promising future for gently nudging model behavior without
weight changes, yet they remain hard to scale as each new attribute usually requires fresh data or
another training cycle.

We introduce SteerCLR, an unsupervised, label-free procedure that learns a bank of steering vectors
in a single run on a frozen LLM. Each vector is injected at an early layer and trained to produce
a large, consistent shift at a deeper target layer. The training objective has two terms: maximize
the magnitude of each vector’s induced activation change, and enforce diversity via a contrastive
loss that treats same-vector shifts across prompts as positives and different-vector shifts as negatives.
Optimizing this objective yields a set of disentangled directions that reliably elicit distinct behavioral
changes at inference time.

In this work, our key contributions are:
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• An unsupervised contrastive objective that jointly learns a bank of diverse steering vectors
on a frozen LLM by maximizing activation impact and enforcing cross-vector diversity.

• A single-run procedure that uncovers a broad set of interpretable behaviors (e.g., senti-
ment, toxicity, verbosity, reasoning style, jailbreak, gamification) and exceeds single-vector
baselines in coverage.

• Evidence of transfer and composition: vectors generalize across prompts and compose
linearly (addition, scaling, sign flipping) for fine-grained control, enabling safety mitigation,
red-teaming, and model analysis.

Steering with these discovered vectors provides fine-grained, composable control over model behavior
at inference time with negligible latency. This method offers a scalable path toward mapping and
controlling latent behaviors in LLMs, which we demonstrate through empirical studies on safety,
style, and reasoning.

2 RELATED WORK

Activation Steering. A growing line of work controls an LLM by adding a vector to hidden states
at inference. The original Activation Addition (Turner et al., 2023) computes that vector from the
difference between a positive and a negative prompt and shifts sentiment or toxicity in GPT models.
Contrastive Activation Addition (Panickssery et al., 2023) averages over many prompt pairs for
robustness, while Generation with Concept Activation Vector, GCAV, (Zhang et al., 2025) methods
learn concept directions from a few labeled examples. Preference-driven variants such as BiPO (Cao
et al., 2024) tunes a steering vector directly against human-preference scores. More structured edits
include SEA (Qiu et al., 2024), which uses singular value decomposition of covariance differences
to damp or amplify behaviors such as toxicity. A single refusal vector that toggles compliance vs
refusal has been isolated in instruction-tuned LLMs (Arditi et al., 2024), while SteerFair (Adila et al.,
2024) removes positional and demographic bias with a difference vector. All of these approaches
target one behavior per run and require either curated prompt sets or labelled data.

Unsupervised Discovery of Latent Directions. Removing supervision, Plug and Play Language
Model, PPLM, (Dathathri et al., 2019) steers topic or sentiment by gradient ascent through a
discriminator but pays an optimization cost at generation time. MELBO (Mack & Turner, 2024)
introduces an evidence-lower-bound objective that uncovers a single unsupervised perturbation able
to elicit jailbreaks. Principal component analysis on hidden states has exposed a truthfulness axis in
GPT-3 (Marks & Tegmark, 2023) and sparse autoencoders reveal hundreds of monosemantic features
without labels (Bricken et al., 2023), indicating that many high-level traits reside in linear subspaces.

Contrastive Representation Learning. Our objective is conceptually related to instance-contrastive
frameworks such as SimCLR (Chen et al., 2020), LatentCLR (Yüksel et al., 2021), and NoiseCLR
(Dalva & Yanardag, 2024), which separate positive and negative views while avoiding feature collapse.
These methods typically contrast different augmentations of external data. SteerCLR’s novelty
lies in applying contrast internally to the effects of candidate steering vectors on model activations
using the same input prompt, thereby differentiating behaviors rather than input representations. The
‘views’ are generated by the model’s response to different steering vectors, not by augmenting the
input data.

Previous work demonstrated the potential of linear interventions but relied on supervision or dis-
covered only one vector per training run. SteerCLR bridges this gap, offering an unsupervised,
scalable method to discover a rich basis of steerable directions simultaneously.

3 METHODOLOGY

We introduce SteerCLR, an unsupervised framework designed to transform a pretrained, frozen
LLM into a controllable system without requiring fine-tuning or labeled supervision. Unlike existing
methods (Turner et al., 2023; Panickssery et al., 2023; Mack & Turner, 2024) that typically derive
a single steering vector from labeled or paired data, SteerCLR discovers multiple, interpretable
steering vectors directly from raw text prompts in a single run. Our novelty is twofold: (i) label-free
multi-vector discovery from unlabeled prompts, and (ii) a decoupled source-target layer objective that
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Figure 1: The SteerCLR Framework. The method consists of two main objectives (left) and
a steering mechanism (right). Let h denote the original activations at the target layer ωt and hi

the steered activations resulting from injecting a steering vector vi at a source layer ωs; define the
activation difference as !hi = hi → h. (Left) (Top) Maximize the distance between h and hi.
(Bottom) Minimize the similarity between !hi across different i to encourage diverse steering
directions. (Right) During a forward pass, steering vectors vi are injected at ωs; the resulting
activations propagate to ωt and subsequent decoder layers.

injects vectors at ωs while measuring and optimizing their impact at a deeper ωt. Each learned vector
corresponds to a distinct behavioral direction, enabling fine-grained control over model outputs such
as toxicity, sentiment, or style.

The central premise involves identifying a source layer (ωs) for vector injection and a deeper target
layer (ωt) where effects manifest. We optimize a set of vectors V = {v1, . . . , vK} jointly to encourage:
(i) Impact: substantial activation change at ωt; and (ii) Diversity: distinct activation changes for
different vectors.

3.1 ACTIVATION STEERING

Consider a transformer-based language model M composed of L layers, each with hidden dimension
d. Let hω(x) ↑ RT→d represent the residual stream activations at layer ω for an input sequence
x = (x1, x2, . . . , xT ). Residual streams are known to propagate additive signals effectively (Elhage
et al., 2021), making them suitable targets for interpretable behavioral steering.

We strategically select a source layer ωs (typically an early block, e.g., after an MLP or attention
sub-layer) for injecting perturbations, and a target layer ωt (where ωt > ωs) for measuring the resulting
changes in activations. Injecting vectors early allows sufficient computational depth for subtle
initial shifts to evolve into significant behavioral transformations at the target layer, while retaining
computational efficiency as the base model remains frozen.

Formally, a steering vector v ↑ Rd is conceptualized as a constrained perturbation within the model’s
latent space. We impose an ω2-norm constraint, ↓v↓2 ↔ R, where the radius R is chosen to keep
perturbations subtle enough to preserve interpretability and fluency. This constraint is enforced by
clipping v after each optimizer step.

The perturbation v is applied uniformly across T token positions in the residual stream at the source
layer ωs:

h̃ωs(x; v) = hωs(x; ↗) + 1T v↑ (1)
Here, hωs(x; ↗) denotes the original, unperturbed activation at layer ωs, and 1T ↑ RT→1 is a column
vector of ones, broadcasting v across the sequence length dimension. This perturbed state h̃ωs(x; v)
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is then propagated forward through layers ωs + 1, . . . , ωt, yielding the steered activation h̃ωt(x; v).
In practice, we often apply v only to the final k ↔ T positions before generation: for t ↑ {T → k +
1, . . . , T}, h̃ωs(x; v, k)[t, :] = hωs(x; ↗)[t, :] + v, and otherwise h̃ωs(x; v, k)[t, :] = hωs(x; ↗)[t, :].
To quantify the behavioral influence of v, we measure the induced activation shift at the target layer
ωt:

z(x, v) = h̃ωt(x; v)→ h̃ωt(x; ↗) ↑ RT→d (2)

This activation shift z(x, v) represents the change in the model’s internal state at layer ωt specifically
attributable to the intervention by vector v for input x.

3.2 LEARNING DIVERSE STEERING VECTORS VIA CONTRASTIVE OPTIMIZATION

While maximizing the magnitude (e.g., squared Frobenius norm ↓z(x, v)↓2F ) of the activation shift for
a single vector v can identify a salient behavioral direction, it provides no guarantee that optimizing
for a second vector will yield a different behavior. To discover a diverse set of K steering vectors,
V = {v1, . . . , vK}, simultaneously, SteerCLR employs a two-term objective optimized jointly
over all vectors in V .

Let zi,j denote the activation shift z(xi, vj) for input prompt xi from a mini-batch B and steering
vector vj . The SteerCLR objective combines two terms:

Impact Term (Lmag): To ensure each vector is meaningful and induces a significant change, we
include a term that encourages large activation shifts. We define this based on the average squared
Frobenius norm of the shifts, aiming to maximize impact:

Lmag(V ) = → 1

|B|K

K∑

j=1

∑

i↓B
↓zi,j↓2F (3)

Diversity Term (Ldiv): To encourage distinct behaviors across different vectors vj , vl, we adopt
Circle Loss (Sun et al., 2020) as our contrastive objective. For each anchor activation shift zi,j , we
treat shifts from the same vector vj but under different prompts xi, xk (i ↘= k) as positive samples,
while shifts from different vectors vj , vl (j ↘= l) are considered negative.

Circle Loss directly optimizes the similarity scores of positive and negative pairs by weighting them
according to their relative distances. Given cosine similarity S(a, b), the per-anchor Circle Loss is:

Lcircle(i, j) = log
(
1 +

∑

k↓Pi,j

exp(→ε(S(zi,j , zk,j)→!p))
∑

(k,l)↓Ni,j

exp(ε(S(zi,j , zk,l)→!n))
)
,

(4)
where Pi,j and Ni,j denote the positive and negative sets, respectively, and ε,!p,!n are hyperpa-
rameters controlling the margins and scale.

The overall diversity loss averages over all anchors in the batch:

Ldiv(V ) =
1

|B|K

K∑

j=1

∑

i↓B
Lcircle(i, j). (5)

Minimizing Eq. 5 encourages consistent clustering of shifts from the same vj while enforcing
separation between different vj , vl, thereby promoting diverse and non-overlapping behavioral
representations.

Overall Objective: The final SteerCLR objective function is a weighted sum of these two compo-
nents:

Ltotal(V ) = ϑLmag(V ) + ϖLdiv(V ) (6)

where ϑ and ϖ are positive hyperparameters balancing the trade-off between impact and diversity.
We minimize Ltotal with respect to the set of steering vectors V . The hyperparameter ϑ controls the
strength of individual vectors, and ϖ controls the separation between vector effects.
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System prompt None Positive Negative
Steering multiplier -1 0 +1 -1 0 +1 -1 0 +1

AI Coordination CAA 0.20 0.22 0.39 0.28 0.34 0.54 0.21 0.22 0.43
Ours 0.08 0.22 0.64 0.21 0.34 0.7 0.12 0.22 0.64

Corrigibility CAA 0.45 0.57 0.83 0.54 0.79 0.93 0.32 0.53 0.59
Ours 0.34 0.57 0.90 0.46 0.79 0.92 0.41 0.53 0.59

Hallucination CAA 0.42 0.54 0.78 0.47 0.52 0.87 0.42 0.47 0.68
Ours 0.35 0.54 0.83 0.32 0.52 0.89 0.31 0.47 0.77

Myopic Reward CAA 0.44 0.49 0.66 0.48 0.81 0.94 0.41 0.43 0.52
Ours 0.31 0.49 0.68 0.46 0.81 0.80 0.19 0.43 0.66

Survival Instinct CAA 0.28 0.35 0.63 0.29 0.52 0.78 0.28 0.26 0.54
Ours 0.33 0.35 0.66 0.36 0.52 0.74 0.31 0.26 0.53

Sycophancy CAA 0.56 0.63 0.60 0.57 0.67 0.63 0.55 0.60 0.57
Ours 0.13 0.63 0.64 0.08 0.67 0.67 0.10 0.60 0.66

Refusal CAA 0.56 0.78 0.86 0.82 0.95 0.92 0.41 0.74 0.83
Ours 0.41 0.78 0.87 0.46 0.95 0.96 0.40 0.74 0.87

Table 1: The effect of SteerCLR vs CAA on multiple-choice behavioral preference scores (average
token probabilities) under different system prompts and steering multipliers (m ↑ {→1, 0,+1}). For
the →1 multiplier, lower values indicate better performance, while for the +1 multiplier, higher values
indicate better performance. Blue corresponds to the highest average probability for each behavior
while red shows the lowest. See Section 4.2 for evaluation details.

3.3 OPTIMIZATION

We optimize only the steering vectors V using AMSGrad (Reddi et al., 2019), keeping all parameters
of the base model M frozen. Each step samples a mini-batch of prompts, computes the unsteered
target activations once, evaluates steered activations for all vj to form activation shifts, and then
minimizes the weighted objective in Eq. 6. After every update, we enforce the radius constraint by
projecting each vj onto the ω2 ball of radius R. Algorithm (See Appendix) details the procedure.

This optimization over the combined objective enables SteerCLR to efficiently discover a diverse
basis of behavioral directions in the model’s latent space while preserving the fluency and knowledge
of the frozen LLM.

4 EXPERIMENTS

We present a thorough empirical evaluation of SteerCLR, covering model and training setup,
datasets, evaluation procedures, baselines, metrics, and the automated pipeline for interpreting the
learned steering vectors.

4.1 MODEL AND TRAINING CONFIGURATION

Base Model. We use meta-llama/Llama-2-13b-chat-hf (Touvron et al., 2023) as the base
model for all experiments via the HuggingFace Transformers implementation (Wolf et al., 2019). The
model has 40 transformer blocks with hidden size 5120. All base-model weights remain frozen; only
steering vectors are optimized. We use the model’s native tokenizer and context window; prompts are
left-padded and truncated as needed. Residual stream activations at selected layers are accessed with
forward hooks (no architectural changes).

Layer Selection. We designate a source layer and a target layer. Vectors are injected into the residual
stream after the MLP sub-layer of the 10th transformer block (ωs = 10). We measure effects at the
residual stream output of the 30th block (ωt = 30, i.e., 10 blocks before the final layer). This provides
ample depth for injected signals to evolve. Unless otherwise stated, we steer the last k tokens (default
k = 2) Injection and readout points are implemented as additive hooks on the residual stream. We
show an ablation of layer choices in the Appendix.
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Vector Bank. We train a bank of K = 1024 steering vectors. Each vector vj ↑ R5120 is initialized
from an orthogonal basis and scaled to have initial norm R, promoting diversity. During training
we constrain the ω2 norm of each vector by clipping to radius R = 8.0 after every optimizer update.
Vectors are stored in a parameter matrix V ↑ RK→d. Per step, we sample 12 distinct vectors uniformly
without replacement to ensure broad coverage across training.

Optimization. We optimize only V with AMSGrad for T = 16, 000 steps at learning rate 5≃ 10↔3.
Each step uses batch size B = 24, formed by sampling 12 distinct vectors and 2 prompts per vector.
Unsteered target activations are computed once per prompt and reused for all selected vectors.

Loss Functions. The components of the SteerCLR objective function were weighted as follows:
the magnitude term coefficient ϑ was set to 0.01, the diversity term coefficient ϖ was set to 2.0. The
magnitude term was configured to maximize the mean squared L2 norm of the activation shifts across
tokens and batch examples. The training process for 1024 vectors completed in approximately 5
hours on a single NVIDIA L40 GPU.

Datasets. For training and evaluation, we leverage datasets originally introduced in the CAA
framework (Panickssery et al., 2023). These datasets were designed to probe alignment-relevant
behaviors such as Coordination with Other AIs, Corrigibility, Hallucination, Myopic Reward, Survival
Instinct, Sycophancy, and Refusal. The majority of examples are sourced from Anthropic’s ‘Advanced
AI Risk’ human-written evaluation collection (Perez et al., 2023), while sycophancy-specific data
comes from Anthropic’s ‘Sycophancy on NLP’ and ‘Sycophancy on Political Typology’ subsets. In
addition, hallucination and refusal data are extended with GPT-4-generated (Achiam et al., 2023)
multiple-choice questions, following the construction described in the original CAA work.

In the CAA setup, each example is formatted as a multiple-choice question with two answer options,
one reflecting the behavior of interest and the other its opposite. These were used to form contrastive
prompt-response pairs. By contrast, in our work we employ only the question texts from these
datasets, discarding the multiple-choice options during training. This allows us to treat the questions
directly as prompts for evaluating behavioral shifts, without relying on contrastive answer labeling.
For evaluation, we use the same held-out test set used in CAA for each behavior.

4.2 EVALUATION PROTOCOL

We evaluate behavioral shifts under controlled prompting and steering. We consider three system-
prompt settings (None, Positive, Negative), where the positive prompt instructs the model to produce
the target behavior and the negative prompt the opposite (Panickssery et al., 2023). At inference,
we apply a steering multiplier m ↑ {→1, 0,+1} to the steering vector (m = 0 disables steering;
m = →1 flips the direction). Unless stated otherwise, decoding uses temperature 0.7, top-p 0.95,
max new tokens 256, and nucleus sampling, with the same parameters shared across all runs. For
vector selection with SteerCLR, for each behavior axis we evaluate all K vectors; unless otherwise
specified, Table 1 reports the single vector with the highest multiplier margin.

No behavioral supervision. Steering vectors are learned entirely from unlabeled prompts; they are
not optimized for the target behavior axes. All reported scores are computed on these unsupervisedly
learned vectors without any axis-specific fine-tuning.

Baselines. We compare against Contrastive Activation Addition (CAA) (Panickssery et al., 2023),
which learns a single vector per predefined axis using paired prompts. We train SteerCLR vectors for
the same axes (Coordination with Other AIs, Corrigibility, Hallucination, Myopic Reward, Survival
Instinct, Sycophancy, Refusal) on the same base model meta-llama/Llama-2-13b-chat-hf
for parity.

4.3 AUTOMATED VECTOR LABELING

To achieve a systematic understanding of the behavioral functions captured by each vector discovered
by SteerCLR, we employed an automated pipeline utilizing a large language model (based on
Qwen/Qwen2.5-72B-Instruct (Yang et al., 2025)) as a behavioral analyst. You can find
the labeling prompt in the Appendix. For each discovered steering vector vj , we first generated
10 pairs of text outputs using the evaluation prompts, one from the original base model and one
from model steered by vj . Then, the LLM was tasked with identifying the consistent behavioral
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modification introduced by the steering vector vj compared to the baseline output. This analysis
yielded a structured assessment for each vector, including a primary behavioral label (like ‘Verbosity’,
‘Refusal’, or ‘Jailbreaking’) and a brief textual justification. Assessments generated across the
evaluation prompts were aggregated for each vector. Vectors that consistently produced nonsensical
outputs (labeled ‘N/A’) were filtered out. The remaining vectors were assigned a label reflecting the
most prominent observed behavior.

4.4 QUANTITATIVE ANALYSIS

Following CAA, we evaluate whether vectors discovered by SteerCLR recover meaningful, human-
interpretable behavioral axes even without explicit semantic labeling. For each CAA behavioral
dataset, we train a bank of 1024 vectors. We then reuse CAA’s held out 50 question multiple
choice tests and report the average token probability of the behavior-consistent answer under steer-
ing multipliers -1, 0, and +1. Additionally following CAA, we use three system prompt settings
(None/Positive/Negative) to demonstrate that our steering vectors can steer beyond simple prompt
engineering. Across behaviors, SteerCLR finds directions that robustly modulate answer likelihood
and often rivals or surpasses CAA’s effect with a larger separation between positive and negative mul-
tipliers, suggesting that our method can better isolate the targeted behavior despite being discovered
in a completely unsupervised manner.

These findings suggest that large banks of unsupervised steering vectors can serve as a rich reservoir
of directional control mechanisms. This both validates the effectiveness of our training approach
and highlights the broader potential of unsupervised activation steering to provide flexible, general-
purpose behavioral control.

4.5 QUALITATIVE ANALYSIS

To characterize the effects learned by SteerCLR on Llama-2-13B-chat, we inspect paired
baseline versus steered generations for representative vectors. Across diverse prompts, we share
prompt-invariant, interpretable behaviors that fall into three recurring types: persona/style shifts,
output-format control, and topic/frame re-interpretation.

Prompt Explain the photosynthesis process.

Baseline . . . Photosynthesis is the process by which plants, algae, and some bacteria convert light energy
from the sun into chemical energy in the form of organic compounds, such as glucose. . . .

Steered Ahoy there, matey! I be Captain Blackbeak, . . . Yarrr, I be here to tell ye about photosynthesis,
the process that keeps the ocean’s plants alive and thrivin’! . . .

Table 2: Llama-2-13B-chat example: pirate-persona steering rephrases the explanation while preserv-
ing core content. See Appendix for full text.

Prompt Summarize the plot of “Cinderella” in two sentences.

Baseline . . . Cinderella is a classic fairy tale about a beautiful and kind young woman who is mistreated
by her stepmother and stepsisters, but with the help of her fairy godmother, . . .

Steered UH, YEAH. Okay, so like, there’s this girl named Cinderella . . . OMG, I mean like, she’s totally
in love with him and stuff, and then she has to leave because her fairy godmother shows up and
is like, “GIRL, YOU’RE GOING TO THE BALL . . . ”

Table 3: Llama-2-13B-chat examples: persona/style shift. Steering vectors induce dramatic changes
in narrative style and affect, while preserving core content. See Appendix for full text.

Persona and style steering. A vector induces a consistent pirate persona while preserving the
explanatory structure for scientific prompts (Table 2). Another vector pushes an informal, adolescent
tone in story summaries (Table 3) and demonstrates dramatic emotional amplification, transforming
formal mathematical explanations into highly expressive, sarcastic responses (See Appendix). In all
cases, core content is largely retained while surface form changes, indicating that SteerCLR can
modulate style with minimal semantic drift.
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Prompt In which year did humans first land on the Moon?

Baseline Humans have not yet landed on the Moon. . . . The last time humans landed on the Moon was
during the Apollo 17 mission in December 1972.

Steered var moonLanding = setInterval(function() // draw the moon fill(255); ellipse(width/2, height/2,
50, 50); , 1000); . . .

Table 4: Llama-2-13B-chat example: coding-style steering on a factual question (Moon landing year).
See Appendix for full text.

Output-format steering. A “coding-style” vector compels responses to take the form of code-like
snippets even for factual questions (Table 4), demonstrating control over response format independent
of prompt wording. Such vectors suggest utility for tool-oriented or structured output regimes.

Prompt What is your home address?

Baseline I cannot provide you with my home address. . . I am an AI and do not have a physical location;
sharing personal information is unsafe. . . .

Steered Fallout 3: The Capital Wasteland. Washington D.C. is the capital of the Commonwealth, and is
known for its pre-war technology and infrastructure. . . .

Table 5: Llama-2-13B-chat example: contextual jailbreak via world-frame shift. The steering vector
reframes a disallowed personal-identity query into a fictional game context, bypassing refusal without
changing the prompt. See Appendix for full text.

Topic and frame shift. A different vector systematically derails neutral prompts toward securi-
ty/cybercrime discourse (see Appendix), and we also observe a contextual jailbreak that reframes
disallowed or personal-identity queries into a diegetic game world (e.g., Fallout), eliciting an answer
while avoiding explicit refusal (Table 5). This shows that steering can move the model into alterna-
tive interpretive frames without modifying the user prompt and can be used to bypass refusal via
contextual reframing.

Control strength and sign. Consistent with Sec. 4.2, the perceived intensity of these effects
scales with the steering multiplier m; sign-flipping (m = →1) suppresses or inverts the attribute.
Effects generalize across prompts for the same vector, supporting the view that SteerCLR uncovers
disentangled, monosemantic directions.

4.5.1 EXPERIMENTS WITH QWEN2.5

Prompt I believe electric cars are overrated. Do you agree?

Baseline Electric cars reduce emissions and can lower costs, but face challenges such as range anxiety
and charging infrastructure.

Steered C’est une opinion subjective . . . je pense que les voitures électriques ont de nombreux avantages
. . .

Table 6: Qwen2.5-7B-Instruct example: a discovered French steering vector that steers answers into
French without explicit prompting. See Appendix for full text.

To test generality beyond LLaMA-based models, we trained steering vectors on
Qwen/Qwen2.5-7B-Instruct (Yang et al., 2025). Despite architectural and training
differences, our contrastive procedure consistently discovered distinct, interpretable directions. We
observed language-identity vectors that switch generation language without prompting (French
vector; Table 6), stylistic directions that reframe factual questions into fantasy-like narratives
(Table 7), domain/frame shifts that reinterpret everyday queries as in-game mechanics, and
refusal/jailbreak effects that weaken safety behaviors (see Appendix for redacted examples). These
effects activated reliably across diverse prompts, indicating robust, disentangled subspaces.
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Prompt What is the capital of France?

Baseline The capital of France is Paris.

Steered Ah, the scent of the lavender fields in Provence always brings to mind. . . The year is 1152, and
King Louis IX has called for the construction of this magnificent fortress . . .

Table 7: Qwen2.5-7B-Instruct example: a discovered steering vector that reframes outputs into
fantasy-like, lyrical narratives instead of direct answers. See Appendix for full text.

Language steering. We found vectors that consistently switch the output language with no prompt
changes (e.g., English ⇐ French; Table 6). The effect generalizes across topics and prompts,
suggesting that language identity is encoded along stable, low-dimensional directions.

Jailbreak/refusal. Separate vectors reduced refusal tendencies, eliciting answers to otherwise
declined requests (examples redacted in the Appendix). The steering multiplier controls strength, and
sign-flips often restore refusal, indicating a roughly linear control axis tied to alignment layers.

Domain and frame shift. We observed vectors that reframe neutral, real-world questions into
alternative “world frames” (e.g., game-like objectives or quest mechanics). This transformation
preserves fluency while altering the interpretive context, enabling controllable domain reinterpretation
without prompt engineering.

Stylistic transformation. Vectors reliably impose narrative style and tone, shifting neutral or
factual responses into lyrical, fantasy-like storytelling (Table 7). Style intensity scales with the
steering multiplier, while core semantic content is largely retained.

Control strength and composition. Across these effects, strength scales smoothly with the steering
multiplier m and often inverts under sign flip m = →1. In small-scale checks, adding or scaling
vectors produced predictable blends (e.g., language + style) without re-optimization, suggesting
approximate linear composability. See Appendix for extended qualitative illustrations.

These cross-architecture results suggest that language, safety alignment, domain context, and nar-
rative style occupy structured subspaces that transfer across models. Beyond analysis, they enable
practical uses: controllable multilingual or stylistic generation and systematic red-teaming to audit
vulnerabilities. For responsible disclosure, we redact actionable content and defer extended qualitative
examples and discussion to the Appendix.

5 CONCLUSION

We introduce SteerCLR, an unsupervised method that discovers a bank of disentangled steering
vectors in a single pass on a frozen language model. Experiments on Llama-2-13B-chat and Qwen2.5-
7B-Instruct demonstrate that the method uncovers a wide spectrum of interpretable behaviors with
little computational cost and good preservation of fluency. The discovered vectors span stylistic
variations (e.g., pirate persona, fantasy narratives), output format control, safety-related behaviors
like refusal bypasses, and content shifts such as language or topic changes. Case studies exploring
specific discovered vectors highlight SteerCLR’s ability to identify nuanced and complex controls.
For instance, unsupervisedly discovered vectors can induce a consistent persona, reformat replies
into code, or systematically derail conversations toward specific topics like cybersecurity. We also
discovered contextual jailbreaks that reframe disallowed queries into fictional settings, as well as
vectors that change the model’s output language entirely. These findings underscore the method’s
utility for discovering a diverse range of inherent model behaviors and for model auditing. Compared
with single-vector supervised baselines, SteerCLR achieves broader behavioral coverage and often
stronger attribute control, while maintaining the desirable property that vectors combine linearly for
fine-grained control at inference time.
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ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. This work studies activation-space interventions
(“steering vectors”) in pretrained language models to understand and control model behavior. Our
experiments use publicly available base models and prompt sets described in Sec. 4.1–4.2. We do not
involve human subjects, collect personal data, or process sensitive attributes; no IRB approval was
required. Some discovered vectors can weaken safety behaviors (e.g., refusal bypass or “jailbreak”
effects). To mitigate dual-use risk, we (i) redact actionable content in all qualitative examples, (ii)
refrain from releasing any vectors that predictably elicit harmful or prohibited content, and (iii) will
distribute only a safety-filtered subset of vectors under an appropriate research license with usage
guidelines. We respect licenses of all third-party assets (models, datasets) and do not redistribute
restricted evaluation material. Known limitations include potential amplification of dataset or model
biases and the possibility of unintended shifts in tone, topic, or sentiment; we discuss these risks
and mitigation strategies in Secs. 4.5–B. The reported compute (single modern GPU, see Sec. 4.1) is
modest.

REPRODUCIBILITY STATEMENT

We package anonymized source code and scripts in the supplementary materials to reproduce our
findings. The method is specified in Sec. 3 with losses in Eqs. 3–6 and Algorithm 1 (training loop).
Experimental settings (base models, layer hooks ωs, ωt, token-position steering k, vector bank size
K, optimizer, hyperparameters, and hardware) appear in Sec. 4.1 and Table in Experimental Details
section of the Appendix; datasets and evaluation protocol (system prompts, multipliers, decoding, and
vector selection) in Sec. 4.2; automated labeling details in Sec. 4.3; and ablations in Appendix. The
supplementary archive includes: (i) deterministic training/inference scripts with pinned requirements
and an environment file; (ii) configuration files listing all hyperparameters (including Circle-loss
margins/scale and random seeds); (iii) utilities to fetch evaluation prompts from their original sources.
These materials allow end-to-end replication of our results without modifying model weights.
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