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ABSTRACT

Self-supervised representation learning on multimodal data plays a pivotal role in
proficiently integrating and embedding information from various sources without
the need for additional labeling. Notably, the majority of existing methods overlook
the complex high-order inter- and intra-modality correlations characteristic of real-
world multimodal data. In this paper, we introduce HyperRep, which combines the
strength of hypergraph-based modeling with a self-supervised multimodal fusion
information bottleneck principle. The former captures high-order correlations
using hypergraphs to represent inter- and intra-modality relations, while the latter
constrains the solution space, ensuring a more effective fusion of multimodal data.
Our extensive experiments on four public datasets for three downstream tasks
demonstrate HyperRep’s superiority, as it consistently delivers competitive results
against state-of-the-art methods.

1 INTRODUCTION

Multimodal data, comprising various information types from diverse sources, is ubiquitous in today’s
data-driven world. Self-supervised representation learning for multimodal data is crucial, as it allows
efficient fusion and embedding of information without requiring additional labels. This learning
approach uncovers meaningful intrinsic patterns, making it ideal for various downstream applications
like clustering Xu & II (2005); Xu & Tian (2015); Asano et al. (2020), text-to-video retrieval Alayrac
et al. (2020); Chen et al. (2021), and temporal action localization Zhukov et al. (2019); Alwassel et al.
(2020), etc. Effectively utilizing self-supervised multimodal representation learning can lead to more
robust and versatile algorithms, addressing numerous real-world problems and advancing machine
learning research.

Existing self-supervised representation learning methods for multimodal data are generally di-
vided into pseudo-label-based Alwassel et al. (2020); Chen et al. (2021) and contrastive-based
approaches Asano et al. (2020); Alayrac et al. (2020). While these methods have shown promise,
they often overlook two key elements. First, they underrepresent the intricate high-order relationships
inherent in multimodal data. Such correlations, like cross-modality within the same instance or
cross-instance within the same modality, are integral to fully understanding the data. For example,
consider a video of a car drifting. This might have high-order correlations with related images,
engine sounds, and a text like "a car whizzing by", as illustrated in Fig.1(a). Similar correlations
can be seen between instances of the same modality, as in Fig.1(b). Second, many existing methods
lack clear principles for effective multimodal fusion, leading to potential redundancy or information
loss. Addressing both these high-order relationships and fusion principles is vital for advancing
representation learning in multimodal datasets.

While some methods attempt to incorporate high-order correlations in multimodal representation
learning Gao et al. (2012); Zhang et al. (2018a;b), they rely on semi-supervised approaches. These
require additional labeling information, which is often unavailable in many applications due to the
labor-intensive nature of labeling, thus limiting their general applicability. Additionally, existing
graph learning methods for multimodal representation learning Ektefaie et al. (2023) focus solely on
pairwise relationships, neglecting the crucial high-order correlations that are commonly present in
such data.

In this work, we present HyperRep, a pioneering approach to multimodal representation learning that
masterfully bridges the intricate interplay of inter- and intra-modality correlations while ensuring that
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Figure 1: An illustration of (a) inter-modality high-order correlations; (b) intra-modality high-order
correlations; and (c) the relationship between modality-specific information and instance information.

essential information from each modality is accurately captured and retained. Central to HyperRep
are two intertwined innovations: a hypergraph-based modeling technique and the self-supervised
Multimodal Fusion information Bottleneck (MFB) principle.

Hypergraph offers a robust means to represent high-order structures resulting from intricate corre-
lations spanning both within and across modalities. These hypergraphs, by virtue of connecting
related vertices via a hyperedge, adeptly extract nuanced information that resonates across a group.
We meticulously structure this representation by conceptualizing information from an individual
modality of an instance as a vertex. This gives rise to two distinct hypergraph structures: the instance
hypergraph, zeroing in on cross-modal instance correlations, and the modality hypergraph, tailored to
hone in on cross-instance modality correlations. Such a dual hypergraph approach ensures a rich,
all-encompassing capture of complex data, staving off any potential information dilution.

However, representation alone isn’t enough. Introducing the MFB principle, a crucial mechanism that
adeptly captures the core essence of multimodal data. Fig. 1(c) visually illustrates the fundamental
concept of MFB: ensuring instances are infused with the shared modality information – the overlap
where the shaded region encompasses the slashed zone. MFB plays a pivotal role by narrowing
down the solution space, driving the model’s gaze toward shared inter-modality information. It is not
merely about contrastive learning between an instance and its modalities, but striking a fine balance
by information bottleneck when faced with a huge amount of data from all modalities combined. To
compute the MFB, we estimate the bounds of mutual information, allowing for an effective model
optimization.

Contributions. In summary, our contributions are as follows: (a) We propose a hypergraph-based
multimodal representation learning method that fully exploits high-order intra- and inter-modality
correlations in multimodal data. (b) We introduce the self-supervised multimodal fusion information
bottleneck principle to constrain the solution space and enhance the fusion of multimodal data. (c)
Experiments are conducted on public benchmarks and achieve state-of-the-art results. Ablation
studies confirm the effectiveness of each part of our proposed method.

2 RELATED WORK

2.1 SELF-SUPERVISED MULTIMODAL REPRESENTATION LEARNING

The advent of large-scale video datasets Miech et al. (2019) has fueled the evolution of representation
learning approaches exploiting multimodal information in videos Zhu & Yang (2020); Sun et al.
(2019); Patrick et al. (2021); Lei et al. (2021); Gabeur et al. (2020); Dong et al. (2022); Amrani
et al. (2021); Alwassel et al. (2020); Asano et al. (2020); Alayrac et al. (2020); Chen et al. (2021).
The key strategies involve contrastive-based and pseudo-labeling-based methods. XDC Alwassel
et al. (2020), for instance, uses pseudo-labels from one modality to supervise another but yields
separate representations, affecting cross-modality comparability. To mitigate this, MCN Chen
et al. (2021) cultivates a joint space for multimodal data, aligning features with the same pseudo-
labels. However, pseudo-labeling can generate inaccuracies and degenerate solutions. Alternatively,
SeLaVi Asano et al. (2020) considers multi-modal data as instance augmentations and ensures
permutation invariance, though it may dilute unique data features. Our approach is designed to
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balance the benefits of contrastive methods and preserve the unique aspects of each data point,
achieved through the construction of dual types of hypergraphs.

2.2 MULTIMODAL HYPERGRAPH LEARNING

Most multimodal learning research with hypergraphs leans towards semi-supervised approaches. For
example, the MHL method Gao et al. (2012) constructs individual hypergraphs for each modality
and optimizes their weights through alternating strategies. CDMH Zhang et al. (2018b) utilizes a
multi-hypergraph structure to model multimodal data correlation and achieves convergence through a
cross-diffusion process. Likewise, IMHL Zhang et al. (2018a) employs a multi-hypergraph to model
correlations and supervises a projection from multimodal data to labels. AHGAE Hu et al. (2023), a
recent unsupervised work, focuses on vertex representation for clustering, employing an adaptive
hypergraph Laplacian smoothing filter and a relational reconstruction auto-encoder. However, this
approach isn’t explicitly tailored for multimodal data. In this work, we propose a method specifically
tailored for multimodal data, using hypergraph structures to capture high-order correlations within
and across different modalities.

3 METHOD

We are given a set of unlabeled multimodal data comprising n instances, each containing multi-
modal information such as video, audio, and text. Our goal is to learn instance representations for
downstream tasks. In this section, we present our HyperRep method. We begin by introducing the
construction of the hypergraph structure in Section 3.1. This is followed by an explanation of the
hypergraph propagation process in Section 3.2. Afterward, we describe how the self-supervised
multimodal fusion information bottleneck principle is employed for optimization in Section 3.3. For
readers unfamiliar with hypergraph learning, a brief introduction is provided in the Appendix A.

Basic notations and definitions are provided as follows. n denotes the number of instances. The
subscript s refers to instance, and v, a, t refers to video, audio, and text modalities, respectively. The
instance set is defined as S = {s1, s2, . . . , sn}. Each instance si contains three modalities, each of
which is considered as a separate vertex in this work. The vertex set is denoted as V = Vv ∪Va ∪Vt,
where Vv,Va, and Vt represent the vertex set of video, audio, and text modality, respectively.
Correspondingly, the hyperedge set is defined as E = Es ∪ Em, whereas the instance and modality
hyperedge sets are defined as Es = {e1s, e2s, . . . , ens } and Em = Ev ∪ Ea ∪ Et, respectively. The
vertex features and hyperedge features are denoted as X ∈ R|V|×d and Y ∈ R|E|×d, respectively,
where d denotes the dimension of the feature space. The incidence matrix of the whole hypergraph is
defined as H , and Hs and Hm refer to the incidence matrix of the instance hypergraph and modality
hypergraph, respectively.

3.1 HYPERGRAPH CONSTRUCTION

In the proposed model, the information from a single modality of an instance is treated as a vertex v.
On this basis, dual types of hypergraphs are constructed: the instance hypergraph and the modality
hypergraph.

Instance hypergraph. Different modalities in multimodal data are inherently interconnected. To
capture these intrinsic correlations, we construct the instance hypergraph. Each instance contains mul-
timodal information, and the instance hypergraph links corresponding cross-modal data. Specifically,
the i-th instance hyperedge eis = {vi

v,v
i
a,v

i
t}, connects vertices that belong to the same instance. As

shown in Fig. 2, the pink lines represent the instance hyperedges, each connecting three vertices from
different modalities. The incidence matrix between the video vertex set Vv and instance hyperedge
set Es is defined as:

Hv
s i,j =

{
1, if vi

v ∈ ejs
0, if vi

v /∈ ejs
. (1)
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Figure 2: The pipeline of HyperRep. The hypergraph propagation module is shown in Fig. 3.

The same definition applies to audio and text modalities. Therefore, the incidence matrix between the
full vertex set V and instance hyperedge set Es can be calculated as:

Hs =

[
Hv

s
Ha

s

Ht
s

]
. (2)

Modality hypergraphs. The modality hypergraphs, namely the video hypergraph, audio hypergraph,
and text hypergraph, capture the semantic correlations within each modality. As illustrated in Fig. 2,
the video, audio, and text hyperedges are represented by green, blue, and yellow lines, respectively,
with each line connecting several vertices from its corresponding modality. Hyperedges connect
vertices that share similar semantics, which are identified based on the k-Nearest Neighbor (k-NN)
algorithm. This approach aligns with the methodology used in HGNN Feng et al. (2019). The
incidence matrix of the modality hypergraph between the video vertex set Vv and video hyperedge
set Ev is given by:

Hv
m(i, j) =

{
1, if vj

v ∈ k-NN(vi
v)

0, if vj
v /∈ k-NN(vi

v)
. (3)

A similar process is followed for the audio and text modalities. Thus, the incidence matrix of the
modality hypergraph between the full vertex set V and the modality hyperedge set Em is:

Hm =

[
Hv

m 0 0
0 Ha

m 0
0 0 Ht

m

]
. (4)

3.2 HYPERGRAPH PROPAGATION

After constructing the hypergraphs, we introduce the hypergraph propagation module. In the proposed
model, we utilize instance hyperedge features as instance representations for downstream tasks. This
necessitates access to hyperedge features within our model. As illustrated in Fig. 3, information
propagates from vertices to hyperedges and then back to vertices. Specifically, the information of
vertices is aggregated to the corresponding hyperedges via the hypergraph structure to extract the
high-order group features, and then passed back to the corresponding vertices. Therefore, the general
paradigm of propagating information from vertex set V to hyperedge set E and back to V through the
hypergraph structure H in the l-th layer is formulated as:

Y (l+1) = f(X(l),Y (l),H),X(l+1) = f(Y (l+1),X(l),H⊤), (5)

where X(l) and Y (l) represent the features of vertices and hyperedges at layer l, and f is the
hypergraph propagation function.

We then define the basic version of the hypergraph propagation function f as:

fp(X,H) = D−1H⊤XΘ, (6)

where D = diag(d) and di =
∑

j Hj,i, and Θ ∈ Rd×d is the learnable parameter matrix. Conse-
quently, D represents the edge degree matrix De and vertex degree matrix Dv when the input is H
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Figure 3: Hypergraph propagation module described in Eq. 8 to Eq. 11. Unlike in Fig. 2, hyperedges
are represented as circles here for the sake of clarity. However, their colors remain consistent.

and H⊤, respectively. However, cross-modality information may have varying importance in each
instance. To overcome this limitation, we utilize the hypergraph attention module to achieve better
fusion across different modalities.

Hypergraph attention module. The attention mechanism within the hypergraph is designed to
learn the attention weights between vertices and hyperedges. This is because different vertices have
varying degrees of importance for the corresponding hyperedges, and vice versa. Consequently, we
perform the scaled dot-product attention Vaswani et al. (2017) from vertices to hyperedges with mask
H , and define the propagation function f as:

fattn(X,Y ,H) = Softmax(Mask(
Y W q(XW k)⊤√

dk

,H⊤))XW v, (7)

where W q ∈ Rd×dk , W k ∈ Rd×dk , and W v ∈ Rd×d are learnable parameter matrices, and 1√
dk

is the scaling factor. In essence, attention weights are considered only between the vertices and the
hyperedges that are associated with the incidence matrix H created previously. Through the use of
the hypergraph attention module, attention-weighted aggregation information can be obtained.

Propagation process. The hypergraph propagation module operates as follows:

Y (0)
s =

1

3
(X(0)

v +X(0)
a +X

(0)
t ), (8)

Y (l+1)
s =fattn(X(l),Y (l)

s ,H⊤
s ), (9)

Y (l+1)
m =fp(X(l),H⊤

m), (10)

X(l+1) =fattn([Y (l+1)
s ∥Y (l+1)

m ],X(l), [Hs∥Hm]), (11)

where ·∥· denotes concatenation operation. After propagation through L layers, the instance hyperedge
feature Y

(l+1)
s is used for the execution of downstream tasks.

The hypergraph propagation module we’ve designed serves a dual purpose: extracting cross-modal
instance semantic consistency and modality-specific semantics from different hypergraphs. Simul-
taneously, it ensures the intricate data from these varying hypergraphs is preserved by the vertices,
minimizing the potential for significant information loss.

3.3 SELF-SUPERVISED MULTIMODAL FUSION INFORMATION BOTTLENECK PRINCIPLE

Multimodal representations encapsulate both the shared information across modalities and the unique
feature information specific to each modality. As depicted in Fig. 1 (c), individual circles represent
the information of a single modality, while the shaded circle symbolizes the information of the
instance. The overlapped, slashed portions of the modality circles represent the shared information
jointly expressed across two or three modalities. In contrast, the distinct white sections denote the
modality-specific feature information.
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Ideally, the instance information should contain the modality-shared information, i.e., the shaded
area of the instance circle should encompass the slashed areas shared by the modality circles. To
achieve this, we introduce the Multimodal Fusion information Bottleneck (MFB) principle, which
aims to maximize the mutual information between the instance and each modality, while minimizing
the mutual information between the instance and the totality of information. In terms of Fig. 1 (c),
this can be viewed as maximizing the area of overlap between the instance circle and each modality
circle, while minimizing the overlap between the instance circle and the union of all modality circles.
By guiding the instance representation learning process to focus more on the shared multimodal
information, MFB effectively constrains the solution space to a narrower range, directing the model’s
attention towards the shared information across modalities.

The MFB principle for the l-th layer instance hyperedge representation is formulated as follows:

min
p(Y

(l)
s |X(0))∈Ω

MFB(Y (l)
s ;X(0)) ≜ −

∑
m

I(X(0)
m ;Y (l)

s ) + βI(X(0);Y (l)
s ), (12)

where Ω represents the search space of the conditional distribution of Y (l)
s given the initial vertex

feature X(0), and the hyper-parameter β serves to balance the weight of the two components.

Estimation of MFB. Since mutual information becomes intractable when the probability distribution
is unknown, we perform upper and lower bound estimations to enable its computation and training
via back propagation.
Proposition 1. The upper and lower bounds of the mutual information between two random variables
x and y can be estimated as:

E[log
f(y+,x)∑

vyi∈Y f(yi,x)
] ≤ I(x;y) ≤ DKL(p(x|y)∥q(x)), (13)

where x and y+ are positive pairs sampled from p(x|y), f(·, ·) is a scoring function that measures
the similarity between two embeddings, and q is a prior distribution of x.

The proof is provided in the Appendix B. The form of the mutual information’s lower bound above is
known as the InfoNCE loss van den Oord et al. (2018). Consequently, the MFB loss can be expressed
as:

LMFB =
∑
m

LInfoNCE(X
(0)
m ,Y (l)

s ) + βDKL(p(Y
(l)
s |X(0))∥q(Y (l)

s )). (14)

The calculation of the MFB loss is detailed in the Appendix C.

4 EXPERIMENTS

In order to evaluate the quality of the representations learned by HyperRep, we conduct a series of
experiments on downstream tasks. These experiments encompass three primary areas of investigation:
(1) comparisons against state-of-the-art methods on clustering task in Section 4.1; (2) ablation studies
for each component of the proposed method in Section 4.2; (3) more downstream tasks, including
text-to-video retrieval and temperoal action localization task, in Section 4.3. The implementation
details, sensitivity and convergence analysis, computation complexity analysis can be found in the
Appendix E, J and I, respectively.

4.1 EXPERIMENTS ON CLUSTERING TASK

Datasets. We perform clustering experiments on three publicly available datasets: AVE (Audio-
Visual Event) Tian et al. (2018), MSR-VTT (Microsoft Research Video to Text) Xu et al. (2016), and
YouCook2 Zhou et al. (2018). The detailed description of datasets can be found in the Appendix D.
Each of these is a video dataset from which we extract multimodal information. We filter out instances
with missing modalities.

Metrics. We assess our method using the metrics of accuracy (Acc), normalized mutual information
(NMI), and adjusted rand index (ARI). The computation of metrics can be found in the Appendix F.
The accuracy is calculated post self-supervised label matching to the ground truth via the Kuhn-
Munkres algorithm Kuhn (1955).
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Table 1: Experimental results compared with state-of-the-art methods. The best performance is
highlighted in bold, and the second-best performance is underlined.

Dataset AVE MSR-VTT YouCook2

Model Acc NMI ARI Acc NMI ARI Acc NMI ARI
K-means 46.2± 1.3 54.7± 0.6 32.6± 0.6 30.7± 1.3 24.6± 0.7 13.6± 1.1 19.1± 0.8 45.0± 0.6 5.6± 0.5
Spectral 49.3± 1.3 55.6± 0.6 36.7± 1.3 34.6± 0.5 26.2± 0.3 18.1± 0.2 19.8± 0.7 46.5± 0.5 6.6± 0.5

AGC 63.1± 0.4 70.8± 0.1 52.0± 0.4 36.4± 0.5 33.1± 0.1 16.9± 0.5 20.5± 0.6 46.8± 0.6 6.9± 0.5
AGE 33.0± 0.1 63.7± 0.2 26.7± 0.2 35.1± 8.2 29.3± 6.1 18.9± 5.8 6.7± 1.0 20.1± 2.9 1.3± 0.4

AdaGAE 35.5± 2.3 51.4± 3.2 22.7± 3.7 19.4± 1.4 14.2± 0.7 6.4± 0.9 22.2± 0.5 48.7± 0.3 8.0± 0.1
AHGAE 12.5± 0.8 36.0± 2.1 8.2± 0.8 36.9± 2.9 29.9± 1.9 21.1± 3.8 6.8± 0.7 20.1± 1.9 1.3± 0.2

SeLaVi 57.9 66.2 47.4 25.1 19.9 9.9 8.8 29.5 0.4
MCN 55.9± 3.1 67.5± 1.3 45.5± 2.3 40.2± 1.0 36.7± 0.5 26.5± 1.7 26.8± 0.4 55.6± 0.6 13.0± 0.4

MFLVC 59.4± 1.4 70.1± 1.0 51.0± 1.5 30.1± 1.3 27.7± 0.7 16.0± 1.4 9.9± 0.5 34± 1.0 0.8± 0.5
CrossCLR 65.9± 1.3 70.1± 1.1 54.3± 1.6 38.0± 1.2 32.5± 0.8 22.4± 1.5 28.0± 0.7 54.9± 0.8 13.5± 0.7

HyperRep 68.3± 2.3 75.7± 1.1 60.7± 2.0 41.8± 0.5 37.0± 0.3 28.8± 1.0 29.6± 1.1 56.9± 0.9 16.3± 1.0

Baselines. We evaluate our approach against ten distinct methodologies, which fall under the
following categories: (1) Feature-dependent clustering techniques, such as K-means and spectral
clustering. (2) Graph and hypergraph-driven representation and clustering approaches, exemplified
by AGC Zhang et al. (2019), AGE Cui et al. (2020), AdaGAE Li et al. (2022), and AHGAE Hu
et al. (2023). (3) Cutting-edge video representation techniques like SeLaVi Asano et al. (2020),
MCN Chen et al. (2021), MFLVC Xu et al. (2022), and CrossCLR Zolfaghari et al. (2021). It’s
noteworthy that SeLaVi is limited to audio and video modalities. For an equitable evaluation, models,
specifically SeLaVi and MCN, which come pre-trained on other datasets, are fine-tuned during
our experimentation. With the exception of SeLaVi that operates directly on raw videos, all other
methodologies leverage identical input features as our approach. Although CrossCLR’s primary
novelty is its loss function, we match CrossCLR’s performance merely by substituting the MFB loss
with CrossCLR’s, overlooking variations attributed to network design.

Experimental results on clustering task. As displayed in Table 1, HyperRep demonstrates excellent
performance across all three datasets, outperforming all other methods in all metrics. On the AVE
dataset, it leads AGC by 8.2%, 6.9%, and 16.7% in Acc, NMI, and ARI metrics respectively, and
outpaces CrossCLR by 3.6%, 8.0%, and 11.8%. For the MSR-VTT dataset, it surpasses MCN with
margins of 4.0%, 0.8%, and 2.3%. On the YouCook2 dataset, the advantages against MCN are 10.4%,
2.3%, and 25.4%, and when compared to CrossCLR, they stand at 5.7%, 3.6%, and 20.7% for the
same metrics. The consistent outperformance of HyperRep showcases its efficacy and robustness in
multimodal representation learning.

Specifically, the high Acc shows our model’s ability to accurately group instances into the correct
clusters. This indicates that the multimodal representations learned by HyperRep effectively capture
the specific characteristics of each instance. This accuracy suggests that the model can derive distinct
representations that clearly separate instances based on their inherent attributes. The significant ARI,
which measures the consistency between true and predicted cluster assignments while accounting
for random groupings, shows that our model’s representations capture the genuine similarities and
differences among instances. The model’s proficiency in individual instance assignment (as shown
by Acc) and its capability to determine if pairs of instances should be in the same or different clusters
(as indicated by ARI) emphasize the depth and quality of HyperRep’s representations. Moreover, the
strong NMI result indicates HyperRep’s ability to understand the overall clustering structure. A high
NMI suggests that our model is not only good at representation learning but also effectively retains
the general structure and distribution of data clusters. In summary, HyperRep performs well in both
representation learning and clustering tasks.

4.2 ABLATION STUDIES

To better understand the contributions of various components in our proposed HyperRep model, we
conduct ablation studies as shown in Table 3. By removing each component in turn and observing the
resulting performance, we can estimate the impact of each component on the overall effectiveness of
the model. Due to space limitations, two additional ablation studies are presented in Appendix H.
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Table 3: Experiment results of ablation studies.

Dataset AVE MSR-VTT YouCook2

Ablations Acc NMI ARI Acc NMI ARI Acc NMI ARI
w/o high-order corr. 11.1± 1.7 22.5± 8.1 4.2± 1.0 22.9± 1.2 18.2± 2.1 9.8± 0.8 15.6± 1.9 43.5± 2.7 4.0± 1.3

LInfoNCE only 67.7± 2.0 74.9± 0.3 60.4± 0.9 40.8± 0.5 36.8± 0.3 26.9± 0.9 29.1± 0.2 56.0± 0.5 15.6± 0.2

Video + audio - - - 39.6± 0.3 35.0± 0.4 26.0± 0.4 21.0± 0.3 48.6± 0.4 7.7± 0.1
Video + text - - - 36.9± 1.5 34.4± 0.3 22.0± 1.6 23.2± 0.1 50.9± 0.2 10.3± 0.3
Audio + text - - - 41.2± 1.0 35.4± 0.6 26.6± 1.5 25.5± 0.2 53.0± 0.1 11.9± 0.1

full model 68.3± 2.3 75.7± 1.1 60.7± 2.0 41.8± 0.5 37.0± 0.3 28.8± 1.0 29.6± 1.1 56.9± 0.9 16.3± 1.0

Ablation study of high-order correlations. We substitute the modality hypergraph incidence matrix
with the identity matrix. This modification transforms the process of propagating information from
vertices to modality hyperedges into a linear layer operation. Consequently, the high-order structure
intrinsic to each modality is ablated. However, we cannot ablate the instance hypergraph, i.e., the
high-order cross-modality correlations, because the instance hyperedge representations are necessary
for the clustering task. As depicted in Table 3, the full model outperforms this ablation by an average
of 699%, 126.6%, and 142.7% on AVE, MSR-VTT, and YouCook2, respectively. The removal of
high-order correlations within modalities negatively affects the model’s performance. This suggests
that these high-order correlations play a crucial role in multimodal learning.

Table 2: Comparison of text-to-video retrieval systems
on the MSR-VTT dataset. The modalities are repre-
sented by V for video, A for audio, and T for text. TR
indicates if a trainable backbone is used or not.

Method Modality Model TR R@1 R@5 R@10

Random - - - 0.01 0.05 0.1
Miech VT R152+RX101 N 7.2 19.2 28.0
MDR VT R152+RX101 N 8.0 21.3 29.3

MIL-NCE* VT R152+RX101 N 8.4 23.2 32.4
MCN VAT R152+RX101 N 10.5 25.2 33.8

MDR VT R152 N 8.4 22.0 30.4
ActBERT VT R101+Res3D N 8.6 23.4 33.1

SSB VT R(2+1)D-34+R152 N 8.7 23.0 31.1

MMV FAC VAT TSM-50x2 Y 9.3 23.0 31.1
MIL-NCE VT I3D-G Y 9.4 22.2 30.0
MIL-NCE VT S3D-G Y 9.9 24.0 32.4

HyperRep VAT R152+RX101 N 11.6 26.3 37.3

Ablation study of MFB loss. We modify
the MFB loss function to become equiv-
alent to the InfoNCE loss by setting the
hyper-parameter β = 0 in Eq. 14. There-
fore, the model is optimized solely by max-
imizing the mutual information within each
modality, without the constraint of focusing
on cross-modal shared information. This
implies that the learned representations
could be influenced by modality-specific,
instance-irrelevant features. The experi-
mental results support this claim. The full
model outperforms this ablation by an aver-
age of 0.8%, 3.4%, and 2.6% on the AVE,
MSR-VTT, and YouCook2 datasets, respec-
tively. This suggests that constraining the
solution space of the representation helps
focus on cross-modal shared information,
thus enhancing performance.

Ablation study of modality. Lastly, we perform ablation experiments by omitting each modality
in turn. Given that our method requires multimodal input, we cannot carry out this ablation on
the AVE dataset, which only comprises two modalities. Instead, we exclude the video, audio, and
text modalities individually on the MSR-VTT and YouCook2 datasets. The results consistently
demonstrate that performance improves when all three modalities are included, as compared to when
only two are used, indicating that each modality contributes significantly.

4.3 EXPERIMENTS ON MORE DOWNSTREAM TASKS

In this section, we provide more experiments to demonstrate the adaptability and scalability of
HyperRep across various downstream tasks.

4.3.1 EXPERIMENTS ON TEXT-TO-VIDEO RETRIEVAL TASK

Dataset and metric. We conduct text-to-video retrieval experiments on the MSR-VTT (Microsoft
Research Video to Text) dataset Xu et al. (2016). The primary objective is to identify videos that best
match a given text description. To evaluate performance, we employ the Recall@k metric, which
measures whether the target video appears within the top-k most similar videos for a given text.
Implementation details is provided in Appendix G.
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Baselines. Following MCN Chen et al. (2021), we evaluate our approach against seven state-of-the-
art method, which are Miech Miech et al. (2019), MDR Amrani et al. (2021), MIL-NCE Miech et al.
(2020), ActBERT Zhu & Yang (2020), SSB Patrick et al. (2021), MMV FAC Alayrac et al. (2020)
and MCN Chen et al. (2021). The duplicate methods in the table use different backbones.

Experimental results. As illustrated in Table 2, our approach consistently outperforms all other state-
of-the-art methods. When compared to the second-best method, MCN, we observe improvements of
10.5%, 4.4%, and 10.4% in Recall@1, Recall@5, and Recall@10, respectively. These performance
gains are attest to the efficacy of our multi-modal representation learning approach. By bridging
the semantic gap between different modalities, our method ensures that the learned representations
encapsulate richer and more comprehensive information. This nuanced understanding is evident as
our approach excels at aligning textual descriptions with their corresponding video narratives—a
critical capability in real-world applications where users use textual queries to search for relevant
video content. Furthermore, the significant lead in Recall@1 underscores our model’s precision in
identifying the most pertinent video based on a textual description. Such accuracy in retrieval tasks
emphasizes the superiority and robustness of the multi-modal representations we’ve learned, which
subsequently enhances user satisfaction in retrieval systems. The qualitative analysis is provided in
Appendix K.

4.3.2 EXPERIMENTS ON TEMPORAL ACTION LOCALIZATION TASK

Table 4: Comparison of temporal action
localization systems on the CrossTask
dataset.

Method Modality Model TR Recall

CrossTask VT R152+I3D N 31.6

Miech VT R152+RX101 N 33.6
MIL-NCE* VT R152+RX101 N 33.2

MCN VAT R152+RX101 N 35.1

ActBERT VT R101+Res3D N 37.1
ActBERT VT + Faster R-CNN N 41.4

MIL-NCE VT I3D-G Y 36.4
MIL-NCE VT S3D-G Y 40.5

HyperRep VAT R152+I3D N 50.68

Dataset and metric We perform temporal action localiza-
tion experiments using the CrossTask dataset Zhukov et al.
(2019). Each video is segmented into a series of 1-second
clips and is accompanied by an unordered set of action
labels. The challenge lies in accurately associating each
clip with its corresponding action label. The effectiveness
of the model is quantified using Recall, which is calculated
as the proportion of clips correctly labeled out of the total
number of clips in the video. Implementation details is
provided in Appendix G.

Baselines. Following MCN Chen et al. (2021), we
evaluate our approach against five state-of-the-art method,
which are CrossTask Zhukov et al. (2019), Miech Miech
et al. (2019), MIL-NCE Miech et al. (2020), ActBERT Zhu
& Yang (2020), and MCN Chen et al. (2021). The dupli-
cate methods in the table use different backbones.

Experimental results. Critically analyzing the results presented in Table 4, our method has set
a new benchmark in performance. Notably, we exceed the second-best performance of ActBERT
by 22.4% in Recall. This is particularly impressive given that ActBERT utilizes additional feature
modalities and a more advanced language model, while we predominantly draw from the standard
features provided by CrossTask. It emphasizes the ability of HyperRep to unearth and exploit the
latent semantic structures across modalities.

5 CONCLUSION

In this study, we proposed HyperRep, a hypergraph-based method for self-supervised multimodal
representation learning. Our model consistently outperformed state-of-the-art methods across all met-
rics and datasets, highlighting its proficiency in learning distinct and meaningful representations. The
ablation studies further underlined the significance of high-order correlations, the multimodal fusion
information bottleneck constraints, and the valuable contribution of each modality in multimodal
learning. Moving forward, we believe that the foundational principles of HyperRep can be extended
to a broader range of multimodal applications, setting a new benchmark for future research in this
domain.
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A HYPERGRAPH PRELIMINARY

Typically, a hypergraph can be defined as G = {V,E}, where V and E denote the the sets of vertices
and hyperedges, respectively. A hyperedge e is a non-empty subset of V that contains multiple
vertices. It denotes an interaction in which one or more vertices can participate. The incidence matrix
of a hypergraph is represented as H ∈ {0, 1}|V|×|E|, which characterizes the interactions between
the vertex set V and the hyperedge set E. Each entry H(v, e) indicates whether the vertex v belongs
to the hyperedge e:

Hv,e =

{
1, if v ∈ e
0, if v /∈ e

. (15)

The degree of each vertex v in a hypergraph G is defined as d(v) =
∑

e∈E Hv,e, and the degree of
each hyperedge e is defined as δ(e) =

∑
v∈V Hv,e. Additionally, Dv ∈ N|V|×|V| and De ∈ N|E|×|E|

represent the diagonal matrices of the vertex and hyperedge degrees, respectively.

The laplacian matrix of the hypergraph Zhou et al. (2006) is defined as:

∆ = I −D−1/2
v HD−1

e H⊤D−1/2
v . (16)

Furthermore, the hypergraph convolution Feng et al. (2019) on the spectral domain is parameterized
as:

X(l+1) = D−1/2
v HD−1

e H⊤D−1/2
v X(l)Θ(l), (17)

where X(l) and Θ(l) are the vertex feature and learnable parameter matrices at layer l, respectively.
Motivated by the hyper-path in hypergraph, the spatial-based convolution on hypergraphs named
HGNNConv+ Gao et al. (2022) is defined as:

X(l+1) = D−1
v HD−1

e H⊤X(l)Θ(l), (18)

where X(l) and Θ(l) are also the vertex feature and learnable parameter matrices at layer l, respec-
tively.

However, as shown in Eq. 17 and Eq. 18, both spectral and spatial hypergraph convolutional layers
do not have access to hyperedge features. Instead, it integrates the vertex-hyperedge-vertex transfor-
mation into vertex-vertex form. This does not meet the requirements of our model, which needs the
instance hyperedge representation for downstream tasks.

B PROOF OF PROPOSITION 1

Proof. The proof of mutual information’s lower bound estimation can be found in the appendix of
previous work van den Oord et al. (2018). Here we present the proof for the upper bound estimation.
We know that the KL divergence is always greater than zero, and therefore we have:

DKL(p(x)||q(x)) = Ep(x)[log p(x)]− Ep(x)[log q(x)] ≥ 0. (19)

By following the definition of mutual information, we get:

I(x;y) =Ep(x,y)[log
p(x|y)
p(x)

] (20)

≈Ep(x|y)[log
p(x|y)
p(x)

] (21)

≤Ep(x|y)[log
p(x|y)
q(x|y)

] (22)

=DKL(p(x|y)||q(x)). (23)

Thus, we conclude:
I(x;y) ≤ DKL(p(x|y)||q(x)). (24)
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C THE CALCULATION OF MFB LOSS

We first give a lemma and a proposition to present the calculation of MFB loss, which is defined as:

LMFB =
∑
m

LInfoNCE(X
(0)
m ,Y (l)

s ) + βDKL(p(Y
(l)
s |X(0))||q(Y (l)

s )). (25)

Lemma 1. Given two J-dimensional Gaussian distributions p(x) ∼ N1(µ1,σ
2
1) and q(x) ∼

N2(µ2,σ
2
2), we have∫

p(x) log q(x)dx = −1

2

J∑
i=1

[log 2π + log σi
2

2
+

(µi
1 − µi

2)
2 + σi

1
2

σi
2
2 ], (26)

where µi and σi denote the i-th element of µ and σ, respectively.

Proof. ∫
p(x) log q(x)dx =

∫
N (x;µ1,σ

2
1) logN (x;µ2,σ

2
2)dx (27)

=

J∑
i=1

∫
N1(xi;µ

i
1, σ

i
1

2
) logN2(xi;µ

i
2, σ

i
2

2
)dxi (28)

=

J∑
i=1

∫
N1(xi;µ

i
1, σ

i
1

2
) log[

1√
2πσi

2
2
exp(− (xi − µi

2)
2

2σi
2

)]dxi (29)

=

J∑
i=1

−1

2
log(2πσi

2

2
)

∫
N1(xi;µ

i
1, σ

i
1

2
)dxi (30)

− 1

2σi
2
2

∫
(xi − µi

2)
2N1(xi;µ

i
1, σ

i
1

2
)dxi, (31)

where
∫
N1(xi;µ

i
1, σ

i
1
2
)dxi = 1, and∫

(xi − µi
2)

2N1(xi;µ
i
1, σ

i
1

2
)dxi =

∫
x2
iN1(xi;µ

i
1, σ

i
1

2
)dxi − 2µi

2

∫
xiN1(xi;µ

i
1, σ

i
1

2
)dxi

(32)

+ µi
2

2
∫

N1(xi;µ
i
1, σ

i
1

2
)dxi (33)

=EN i
1
[x2]− 2µi

2EN i
1
[x] + µi

2

2
(34)

=(µi
1 − µi

2)
2 + σi

1

2
, (35)

where N i
1 denotes the distribution N1(xi;µ

i
1, σ

i
1
2
). Therefore, we have∫

p(x) log q(x)dx = −1

2

J∑
i=1

[log 2π + log σi
2

2
+

(µi
1 − µi

2)
2 + σi

1
2

σi
2
2 ]. (36)

Proposition 2. The KL-divergence between two Gaussian distribution p(x) ∼ N1(µ1,σ
2
1) and

q(x) ∼ N2(µ2,σ
2
2) can be calculated as:

DKL(p(x)||q(x)) = −1

2

d∑
i=1

[1 + log(
σi
1
2

σi
2
2 )−

(µi
1 − µi

2)
2 + σi

1
2

σi
2
2 ], (37)

where d is the dimension of parameters.
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Figure 4: Distribution of Labels.

Proof. According to Lemma 1, we have

DKL(p(x)||q(x)) =
∫

p(x) log p(x)dx−
∫

p(x) log q(x)dx (38)

=− 1

2

d∑
i=1

[1 + log(
σi
1
2

σi
2
2 )−

(µi
1 − µi

2)
2 + σi

1
2

σi
2
2 ]. (39)

To specify the second part of the MFB loss, we assume the distribution p and q are both Gaussian.
Therefore, the maximum likelihood estimation for the parameters µ and σ2 of p(Y ) are

µ̂ =

∑n
i yi

n
, σ̂2 =

∑n
i (yi − µ̂)

m
, (40)

where Y = {y1,y2, . . . ,yn}. Since there is no prior knowledge of the distribution q, we assume
it to be the standard Gaussian distribution with parameters 0 and I . Hence, the MFB loss can be
calculated as:

LMFB = −
∑
m

1

n

n∑
i=1

log
exp(x

(0)
m,iy

(l)
s,i/τ)∑n

j=1 exp(x
(0)
m,iy

(l)
s,j/τ)

− β

2

d∑
i=1

(1 + log(σ̂2
i )− µ̂2

i − σ̂2
i ), (41)

where µ̂ =
∑n

i y
(l)
s,i

n , σ̂2 =
∑n

i (y
(l)
s,i−µ̂)

m , and the first part is known as InfoNCE loss van den Oord
et al. (2018) .

D DATASET DETAILS

Further dataset details are provided in this section.

• AVE Tian et al. (2018): This dataset comprises 4,143 videos spanning 28 audio-visual event
categories, which we use as ground-truth labels for clustering. The AVE dataset contains only two
modalities, namely video and audio, and does not provide any text information.

• MSR-VTT Xu et al. (2016): This is a large-scale open-domain video captioning dataset consisting
of 10,000 video clips across 20 categories, which we utilize as ground-truth labels for clustering.
The MSR-VTT dataset presents three modalities: video, audio, and text. Each video clip is
annotated with 20 English sentences, from which we randomly select one to represent the text
information.

• YouCook2 Zhou et al. (2018): This is a substantial task-oriented, instructional video dataset,
containing 2,000 untrimmed videos from 89 cooking recipes. We use the recipe categories as
ground-truth labels for clustering. Like MSR-VTT, YouCook2 also provides three modalities:
video, audio, and text. Each video’s procedure steps are described in English sentences, and we
randomly choose one as the text information.
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The distribution of labels in each dataset is represented by a bar chart in Fig. 4. Each bar in the
chart represents a label, and its height corresponds to the number of samples belonging to that
label. As observed, the AVE dataset comprises 28 labels, with each label containing an average
of 146.32 samples and a standard deviation of 42.31. The MSR-VTT dataset contains 20 labels,
each with an average of 308.8 samples and a standard deviation of 167.82. The YouCook2 dataset
has 89 labels, each averaging 20.11 samples with a standard deviation of 2.51. Hence, the label
distribution in the MSR-VTT dataset is highly uneven, while YouCook2’s distribution is relatively
balanced, and AVE’s distribution lies somewhere in between. The unevenness in label distribution
could pose a challenge to our model’s learning process due to the imbalanced representation across
different classes. Nonetheless, as seen in the experimental results, our method outperforms other
techniques across all datasets, indicating its robustness against imbalances in labels and suggesting
strong generalization capabilities of our model.

E IMPLEMENTATION DETAILS

We extract features following the methodology described in MCN Chen et al. (2021). Specifically,
for video features, we leverage a combination of pre-trained 2D features from a ResNet152 model He
et al. (2016) and pre-trained 3D features from a ResNeXt-101 model Hara et al. (2018). Audio
features are extracted using log-mel spectrograms and a pre-trained DAVEnet model Harwath et al.
(2020). In the textual branch, sentence embeddings are created by applying max-pooling to word
embeddings, which are generated using a GoogleNews pre-trained Word2vec model Mikolov et al.
(2013). Throughout training, all these backbone components are kept fixed.

To manage the complexity of the multimodal data, we employ an auto-encoder to reduce the dimen-
sionality to 256. This auto-encoder consists of one or two layers, each of which includes a linear
layer, a batch normalization layer, a ReLU activation layer, and a dropout layer with a rate of 0.5.
The optimization of the auto-encoder is done through mean squared error (MSE) reconstruction loss.

The hyperparameters of our model are set as follows: For the optimization process, we use the Adam
optimizer Kingma & Ba (2015) with a learning rate of 1× 10−4 and a weight decay 1× 10−3. We
also use a step learning rate scheduler every 20 steps with a rate of 0.5. In the construction of the
hypergraph, the k value for the KNN method is set as 7, and the number of hypergraph layers L is set
as 2. Lastly, the hyper-parameter β is set as 0.2. The sensitivity analysis of hyperparameters can be
found in the appendix. We leverage the K-means algorithm for clustering, using the pre-set number
of clusters as defined in each dataset. All experiments are conducted on a server with two Intel Xeon
E5-2678 2.50 GHz CPUs and an Nvidia GeForce RTX 3090 GPU.

F COMPUTATION OF METRICS

Metrics for clusteirng task are calculated as follows. Accuracy (Acc) measures agreement between
true labels yi and clustering labels ŷi, given by

Acc =

∑n
i=1 δ(yi, ŷi)

n
, (42)

where n is the total number of samples. Normalized Mutual Information (NMI) quantifies the shared
information, expressed as

NMI =
2 · I(y; ŷ)

H(y) +H(ŷ)
, (43)

with I representing mutual information and H representing entropy. Adjusted Rand Index (ARI)
measures similarity corrected for chance, given by

ARI =
RI − E[RI]

max(RI)− E[RI]
, (44)

where RI is the Rand Index and E[RI] is its expected value under random assignment.
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Table 5: Experiment results of further ablation studies.

Dataset AVE MSR-VTT YouCook2

Ablations Acc NMI ARI Acc NMI ARI Acc NMI ARI
w/o Em 66.8± 1.6 74.9± 0.7 59.2± 1.2 40.6± 1.2 36.7± 0.2 26.9± 1.8 29.4± 0.4 55.9± 0.5 15.4± 0.5

w/o attention 67.7± 1.8 74.6± 0.9 58.7± 1.4 38.7± 1.3 36.3± 0.2 24.0± 1.4 29.4± 0.7 55.8± 0.5 15.5± 0.8

full model 68.3± 2.3 75.7± 1.1 60.7± 2.0 41.8± 0.5 37.0± 0.3 28.8± 1.0 29.6± 1.1 56.9± 0.9 16.3± 1.0

G DETAILS OF TEXT-TO-VIDEO RETRIEVAL TASK AND TEMPORAL ACTION
LOCALIZATION TASK

In our methodology, both tasks are implemented in a semi-supervised manner. We construct the
hypergraph structure utilizing both the training and testing datasets, adhering to the original dataset
splits Xu et al. (2016); Zhukov et al. (2019).

For the text-to-video retrieval task, within the testing set’s instance hypergraph, we restricted relation-
ships to the video and audio modalities only, deliberately excluding links between text and video.
This exclusion is due to the inherent uncertainty of relationships between text and instances in this
task.

For the temporal action localization task, the textual data provides step information. While a single
task may consist of numerous clips, it often contains only a handful of steps. Similar to the text-to-
video retrieval task, the Ht

s is constructed solely from the training set. It’s worth noting that, in this
setting, instances in the testing set do not have textual information. This demonstrates our method’s
adaptability even in scenarios with missing modalities.

H ADDITIONAL ABLATION STUDIES

In this section, we conduct additional ablation studies, as shown in Table 5.

Ablation study of modality hyperedge Em. In previous ablation studies, we replaced the modality
hypergraph Hm with an identity matrix to convert the hypergraph propagation layer into a linear
layer. This demonstrates the significance of high-order correlations. Nevertheless, we are curious
about the impact of removing the entire modality hyperedge Em, as it doesn’t participate in the loss
function (Eq. 41). Therefore, the hypergraph propagation process converts into:

Y (0)
s =

1

3
(X(0)

v +X(0)
a +X

(0)
t ), (45)

Y (l+1)
s =fattn(X(l),Y (l)

s ,H⊤
s ), (46)

X(l+1) =fattn(Y (l+1)
s ,X(l),Hs). (47)

This implies that we disregard correlations within the same modality, focusing instead on cross-
modality high-order correlations within the same instance. Moreover, this indicates that the vertex
information of the l+ 1-th layer X(l+1) comes solely from the instance hyperedge, which could lead
to an oversmoothing problem.

As depicted in Table 5, we observe that the full model outperforms the version without the modality
hyperedge Em on average by 1.90%, 3.61%, and 2.77% for the AVE, MSR-VTT, and YouCook2
datasets, respectively. As we mentioned above, our method uses pre-trained features, which already
consider correlations within the same modality during the pre-training process. Thus, even when
intra-modality correlations are not considered, competitive performance can still be achieved. Notably,
when we further consider high-order intra-modality correlations, the performance improves as it not
only considers high-order correlations within the same modality but also prevents the oversmoothing
problem. Therefore, the effectiveness of modality hyperedge Em and modality hypergraph Hm is
demonstrated.
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Table 6: Experimental results on computational complexity. The training and testing time are
presented for 100 epochs, excluding the time taken for metric computation.

Dataset Model train time test time GFLOPs parameters

AVE

AGE 5.28 0.04 10.49 2,560,500
AHAGE 0.59 0.06 10.49 2,560,500

MCN 1299.95 562.03 3177.06 187,805,954
MFLVC 46.68 15.04 3.68 14,314,172

HyperRep 3.21 0.55 54.41 12,745,728

MSR-VTT

AGE 21.87 0.04 34.78 5,632,500
AHAGE 1.46 0.06 34.78 5,632,500

MCN 1593.84 995.66 3219.64 265,165,058
MFLVC 76.13 24.23 3.68 14,310,068

HyperRep 17.97 0.74 167.64 26,206,720

YouCook2

AGE 1.98 0.04 10.08 5,632,500
AHAGE 0.30 0.10 10.08 5,632,500

MCN 1056.32 907.86 3219.64 265,165,058
MFLVC 18.33 7.42 3.70 14,345,465

HyperRep 3.63 0.89 14.76 7,313,920

Ablation study of attention mechanism. We further conduct an ablation experiment on the attention
mechanism. The hypergraph propagation process becomes:

Y (l+1)
s =fp(X(l),H⊤

s ), (48)

Y (l+1)
m =fp(X(l),H⊤

m), (49)

X(l+1) =fp([Y (l+1)
s ∥Y (l+1)

m ], [Hs∥Hm]). (50)

This indicates that we treat each vertex and each hyperedge with equal attention.

As shown in Table 5, we observe that the full model outperforms the version without attention
mechanism by an average of 1.92%, 9.98%, and 2.60% on the AVE, MSR-VTT, and YouCook2
datasets, respectively. This suggests that the attention mechanism in the hypergraph allows the model
to assign different levels of attention to information from different vertices or hyperedges, thereby
enhancing performance.

I COMPUTATIONAL COMPLEXITY ANALYSIS

To demonstrate the practical applicability of the proposed method, We present computational com-
plexity analysis. We first conduct a qualitative analysis of the computational complexity. For a
context with n instances, m modalities, a feature dimension of d, and k as the hyperparameter for
K-NN hypergraph construction, the computational complexity for hypergraph construction amounts
to O(mn2) and O(dmn2+mnklog(n)+mnk) for the instance hypergraph Hs and modality hyper-
graph Hm, respectively. Next, we turn our attention to the Hypergraph Propagation Module which are
described in Eq.8 to Eq.11. Respectively, these equations bring computational complexities of O(nd),
O(nd2+mnd2+n2md+mn), O(mnkd+mnd2), and O((m+2)nd2+(m+1)mn2d2+(k+1)mn).
Given that both m and k are significantly small compared to n and d, the computational complexity
of both the hypergraph construction module and hypergraph propagation module can be summarized
as O(n2d) and O(nd2 + n2d), respectively. It’s important to note that the hypergraph construction
process is not an inherent component of our model, but rather a preprocessing step for the data.
Nonetheless, we have included its computational complexity analysis to provide reviewers with a
thorough understanding of our entire methodology.

Second, we present the results of our analysis experiments concerning the complexity of the proposed
method in Table 6. As evident, our method boasts relatively low training and testing time, accompa-
nied by reasonable GFLOPs and parameters. Such efficiency in training and testing time underscores
the scalability of our method, making it suitable for larger datasets and real-world deployment
scenarios. The optimal balance between GFLOPs and parameters further indicates that our method is
computationally efficient, without compromising the model’s capacity. This is crucial for practical
applications, especially in environments with limited computational resources. Moreover, having
a lower computational footprint while maintaining superior performance, as observed in previous
results, is a testament to the method’s effectiveness and efficiency. It highlights that our approach
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Figure 5: Accuracy variations when altering the value of β in MFB loss (Eq. 14) across three datasets.

Figure 6: Accuracy variations when altering the value of k in k-NN for hypergraph construction
across three datasets.

Figure 7: Accuracy variations when altering the value of the number of hypergraph layer L across
three datasets.

Figure 8: Curves of training loss on three datasets.

doesn’t just rely on model size or computational might but on innovative techniques and strategies
that ensure meaningful multi-modal representation learning.

J SENSITIVITY ANALYSIS AND CONVERGENCE ANALYSIS

To investigate the robustness of our model and identify key influencing hyper-parameters, we
conducted sensitivity analyses. Firstly, we varied the value of β from 0.1 to 1.0 as per Eq.14,
the results of which are displayed in Fig.5. As depicted, the accuracy remains relatively stable across
different values of β, albeit with a slight decreasing trend as β increases. This suggests that our model
is largely insensitive to β. However, as β increases and the constraint tightens, there is a gradual
effect on the performance of the model.
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Next, we varied the value of k from 3 to 10 for the k-NN algorithm used for constructing hypergraphs.
The results, shown in Fig. 6, generally demonstrate that the model’s performance isn’t dramatically
affected by different values of k. However, a slight performance decrease is observed with increasing
k on the YouCook2 dataset. This could be attributed to YouCook2 being a relatively smaller dataset,
where the use of larger hyperedges may introduce noise. Regardless, these findings suggest that, for
most cases, fine-tuning this specific hyper-parameter when constructing hypergraphs may not be
strictly necessary.

Moreover, as illustrated in Fig 7, the model exhibits strong performance across all datasets when
L is set to 1 or 2. However, as L increases, a noticeable decline in performance is observed. This
trend can be attributed to the well-known over-smoothing problem, where all vertex features tend
to converge and become indistinguishable in the feature space. As a result of this issue, hypergraph
neural networks typically avoid deep architectures, and it is common practice to select a value of 2
for layer number L.

Lastly, we analyze the convergence of HyperRep by tracking the value of the loss function 14 during
training over 500 epochs across three datasets. As shown in Fig. 8, the model exhibits a steady
decrease in loss, indicating effectively learning from the data. The model reaches a stable state after
approximately 200 epochs, suggesting efficient convergence. This rapid convergence is beneficial in
practical applications, reducing the time and computational resources required for model training.

K QUALITATIVE ANALYSIS

As shown in Fig. 9, we provide qualitative results of the text-to-video retrieval task on the MSR-VTT
dataset of HyperRep, MCN, and MIL-NCE. Given a specific text, our model presents the top 5 videos
it recalls as being most relevant. The videos encircled in red represent the ground truth matches. From
this visualization, it’s evident that our model adeptly captures the semantic nuances embedded within
the text modality and successfully maps them to the corresponding segments in the video modality.
The consistency between the textual description and the retrieved videos shows the model’s ability to
effectively combine information from different modalities. Such precision not only showcases the
robustness of our model’s architecture but also its ability to discern intricate semantic relationships.
The multimodal representations learned by our approach bridge the semantic gap between text and
video, making it a powerful tool for tasks that require deep understanding across modalities.

L INTERPRETABLE ANALYSIS

As shown in Fig. 10, the distinct clusters formed by the data points illustrate the efficacy of our model
in learning separable and interpretable representations. Each color in the visualization represents a
different category, revealing how well the HyperRep framework groups instances with high semantic
similarity.

The visualization highlights that representations learned with MFB loss (Fig.10 (d)) result in more
distinct and cohesive clusters compared to those relying solely on InfoNCE (Fig.10 (c)). This supports
the quantitative findings that high-order correlations play a significant role in the final performance
scores, demonstrating their importance in capturing complex multimodal interactions that InfoNCE
alone might not fully encapsulate.

Moreover, the ablation study without high-order correlation (Fig.10 (b)) falls short in terms of
clustering quality, as evidenced by the more dispersed clusters and less distinct group boundaries. This
visually corroborates the quantitative analysis, which shows a notable drop in performance metrics
when high-order correlations are omitted, underscoring their role in enhancing the discriminative
power of the learned representations.
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(a)

(b)

(c)

Figure 9: Qualitative results for the text-to-video retrieval task on MSR-VTT dataset.
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Figure 10: The t-SNE visualization of multimodal data representations on AVE dataset, with each
color corresponding to a different data category/class.
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