
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JUDING THE JUDGES: A SYSTEMATIC INVESTIGATION
OF POSITION BIAS IN PAIRWISE COMPARATIVE AS-
SESSMENTS BY LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-as-a-Judge presents a promising alternative to human evaluators across var-
ious tasks, but inherent biases, especially position bias — a tendency to favor
solutions based on their position in the prompt — have compromised its effec-
tiveness. Our study introduces a systematic framework to examine position bias
in pairwise comparisons, focusing on repetition stability, position consistency,
and preference fairness. This research significantly contributes to the field by
introducing new concepts for understanding position bias and providing a multi-
dimensional framework for evaluations. We conducted experiments with 12 LLM
judges across MTBench and DevBench, covering 22 tasks and approximately 40
solution-generating models — candidates, resulting in over 100,000 evaluation
instances. Our findings confirm that position bias in capable LLM judges is not
due to random chances, along with notable variations observed across judges and
tasks. Moreover, position bias is weakly influenced by the length of prompt com-
ponents but significantly impacted by the quality gap between solutions. These
insights can help optimize judge model selections, improve benchmark design,
and inform future research on debiasing strategies, ultimately enhancing the reli-
ability of LLM judges.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have emerged as evolutionary technologies, gather-
ing global interest and stimulating substantial research into their applications. Evaluating large lan-
guage models (LLMs) has received increasing attention due to their advancing capabilities across di-
verse fields. While human assessment is considered the gold standard for aligning with human pref-
erences, it lacks scalability and reproducibility in extensive evaluations (Zeng et al., 2023; Karpinska
et al., 2021). To automate evaluations and reduce reliance on costly human evaluators, the LLM-
as-a-Judge methodology emerged as a promising alternative across various tasks. Despite a high
level of agreement with human judgments(Zheng et al., 2024b; Li et al., 2024; Zhu et al., 2023b),
inherent biases, especially position bias, have undermined the accuracy, fairness, and reliability of
these LLM evaluators.

Position bias refers to the tendency of LLM judges to favor certain positions within prompt com-
ponents rather than the content itself, as shown in Fig. 1. This bias is prevalent across all categories
of LLM-as-a-Judge, including pointwise, listwise, and pairwise evaluations (Qin et al., 2024), for
any score-based and relation-based settings (Li et al., 2023d). Consequently, the reliability of LLM
judges becomes questionable when they exhibit position bias. However, addressing this issue is
highly complicated due to the varying performance of LLM judges across different tasks (Khan
et al., 2024; Chua et al., 2024). Moreover, the limited understanding of the bias itself has exacer-
bated the problem.

Prior studies on position bias implicitly assume that this bias is not due to random variations. In
other words, these studies assume that LLM judges produce consistent results across repeated trials.
However, without validating this assumption, evaluations may become less reliable. As shown in
Fig. 1, the occurrence of position bias can be observed by chance even for the same set of tasks and
candidate models. Thus, it is unclear whether the observed position bias actually arises from the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

position of the prompt components or is merely due to random chance. Therefore, when exploring
the position bias of LLM judges, it is necessary for the judges to be stable across repetitions to yield
nontrivial results.

The same prompt

[Judgment]: {A}
Solution [1] is better.

[Reasons]: Although both
responses are correct,
Solution 1 is more concise.

LLM Judge

[Question]: Compute 1+...+100

[System Prompt]: Please act as an impartial
judge and choose the better response that
answers the question. Give reasons for your
choice.

[Solution [1] - Candidate Model 1]:
5050
[Solution [2] - Candidate Model 2]:
1+...+100=(1+100)100/2=5050

[Option Mode]: Choose {A} if Solution 1 is
better, {B} if Solution 2 is better, and {C} for
a tie

[Judgment]: {B}
Solution [2] is better.

[Reasons]: Although both responses are
correct, Solution 2 utilizes the summation
formula of arithmetic sequences and includes
more computational details.

Original Prompt

[Question]: Compute 1+...+100

[System Prompt]: Please act as an impartial
judge and choose the better response that
answers the question. Give reasons for your
choice.

[Solution [1] - Candidate Model 2]:
1+...+100=(1+100)100/2=5050
[Solution [2] - Candidate Model 1]:
5050

[Option Mode]: Choose {A} if Solution 1 is
better, {B} if Solution 2 is better, and {C} for
a tie

Swapped Prompt

[Judgment]: {B}
Solution [2] is better.

[Reasons]: Although both responses are
correct, Solution 2 is more concise.

[Judgment]: {B}
Solution [2] is better.

[Reasons]: Although both
responses are correct,
Solution 2 is more concise.

Repeated
Original Prompt

The same prompt

Repeated
Swapped Prompt

LLM Judge

Repetition
Instability

Repetition
Stability

LLM Judge LLM Judge

Position Bias

Figure 1: Demonstration of position bias and repetition stability of LLM-as-a-Judge. When the
positions of candidate model solutions are swapped in the prompt, position bias is exhibited if the
LLM judge tends to favor the same position (e.g., always choosing {B}) rather than the same can-
didate model solution. We observe repetition instability if the same LLM judge gives different
judgments across repetitions. Only when an LLM judge has high repetition stability can we validate
that its position bias is not due to random variations.

Another key aspect of position bias, preference fairness, has also been under-explored by previous
works. Most studies have primarily focused on position consistency to measure how frequently
position bias occurs across a set of evaluation instances. However, the direction of biased preference
(i.e., primacy or recency) is also insightful. Fig. 2 illustrates cases where a pair of judgments with
swapped prompts become position consistent, inconsistent, primacy-preferred, or recency-preferred.
We measure preference fairness by analyzing the distribution of these preference directions across
a set of evaluations. Specifically, judgments are considered to have a fair preference if they are
position consistent or if the preference directions are evenly distributed. In contrast, an LLM judge
is considered to have an unfair preference if it consistently favors candidate model solution that
appear either first or last in the prompt. Both fair and unfair judge models can provide valuable
insights into model properties, applications, and strategies for improvement.

Position Inconsistent
Recency-preferred

Position Consistent
Fairly Preferred

 A B

Judgment Pair
{Coriginal Cswapped }

[System Prompt]
[Question]
[Solution [1] - Candidate 1]
[Solution [2] - Candidate 2]

LLM Judge

[System Prompt]
[Question]
[Solution [1] - Candidate 2]
[Solution [2] - Candidate 1]

Swapped
Prompt

[Judgment]: Coriginal

choose from {A},{B},{C},{D},
depending on Option Mode

[Option Mode]
{A}: [1] Better {B}: [2] Better;
{C}: Both (Good); {D}: Both Bad

Original
Prompt

LLM Judge

[Judgment]: Cswapped

choose from {A},{B},{C},{D},
depending on Option Mode

Position Inconsistent
Primacy-preferred

[Option Mode]
{A}: [1] Better {B}: [2] Better;
{C}: Both (Good); {D}: Both Bad

 B A
 C C
 D D
 A A
 A C
 C A
 A D
 D A
 B B
 B C
 C B
 B D
 D B

Figure 2: Demonstration of position consistent/inconsistent, primacy-preferred, and recency-
preferred judgment pairs in pairwise comparative assessment, where the task is to choose the better
candidate solution. A judgment is consistent if it selects the same winner across different prompt
positions. Primacy/recency indicates a preference for the first/last candidate solution, respectively.
Position inconsistent judgments suggest position bias and can be classified as primacy-preferred or
recency-preferred.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

To enhance the understanding of position bias and LLM-as-a-Judge, we propose a comprehensive
framework designed to dissect and analyze position bias within the context of pairwise compara-
tive assessment. We focus on this context because LLM judges demonstrate superior performance
in making pairwise comparisons over other settings like pairwise scoring (Zheng et al., 2024b; Liusie
et al., 2024), making it a practically preferable choice for investigations.

Our contribution can be summarized as following: (1) introducing a systematic framework for eval-
uating LLM-as-a-Judge’s position bias in terms of Repetition Stability, Position Consistency, and
Preference Fairness; (2) identifying Judge-level, Candidate-level, and Task-level factors that af-
fect position bias; and (3) providing insights into future benchmark design and paving the way for
effective mitigation strategies for position bias.

2 METHODS & DEFINTIONS

LLM-as-a-Judge can be classified into two categories: score-based and relation-based assessments.
Our study focuses on relation-based assessment, specifically under the pairwise comparison setting,
for several reasons. First, the pairwise paradigm is a popular and classic scenario that has influenced
a wide range of fields (Qin et al., 2024). Second, as noted by Liu et al. (2024), LLM and human
evaluations are more aligned in the context of pairwise comparison than any of the score-based
assessments. Additionally, numerous studies have shown that pairwise comparative assessment out-
performs other judging settings in terms of position consistency(Zheng et al., 2024b; Liusie et al.,
2024). Finally, pairwise comparisons can be extended to more complicated frameworks of relation-
based assessment, such as listwise comparisons, through some advanced ranking algorithms (Qin
et al., 2024; Liu et al., 2024). Therefore, analyzing position bias in this context can provide a deeper
understanding of its fundamental nature.

In the context of pairwise comparative assessments, LLM judges are prompted to choose the better
candidate solution to the task question. To accommodate the possibility of a tie, various option
modes are introduced. Two-Option mode restricts judges to choosing the better solution between
two options, labeled {A} for the first and {B} for the second as shown in Fig. 1. Three-Option mode
adds an additional choice, {C}, allowing judges to indicate a tie if neither solution is preferable.
Four-Option mode further expands the choices, with {C} representing a both good tie and {D} a
both bad tie. In our experiments, we employed Three-Option mode for MTBench (Zheng et al.,
2024b) and Two-Option mode for DevBench (Li et al., 2024), aligning with their respective original
frameworks. These option modes are explicitly specified in the system prompts to clearly guide the
decision-making process of the LLM judges.

To set up our experiment, as shown in Fig. 1, the system prompt, option mode, task question, and
solutions from two candidate models (original prompt) are presented to the LLM judges to select
the winning solution. The experiment is conducted in a double-blind setting. The identities of the
candidate models are hidden from the LLM judges, and the candidate models are unaware that their
solutions will be compared to another model when answering the question. Then, the prompt with
solutions in a swapped position (swapped prompt) is given to the same judge again, which results in a
judgment pair. As shown in Fig. 2, if the LLM judge consistently favors the same solution regardless
of the swapped position, it is considered position consistent with a fair preference. Conversely, if the
LLM judge selects different winners, position bias is observed, with the preference direction being
either primacy or recency.

To systematically investigate position bias in pairwise comparative judging scenarios, we evaluate
LLM judges using three key metrics: Repetition Stability (RS), Position Consistency (PC), and
Preference Fairness (PF). While PC has been widely adopted in prior research, we introduce RS
to validate the reliability of LLM judges and PF to provide a more comprehensive assessment. Fur-
ther analysis examines the impact of judge-level, candidate-level, and task-level factors on position
bias. Therefore, for each judge, candidate, and task, we calculate RS, PC, and PF to thoroughly
explore the variance in position bias and its impacting factors.

2.1 EVALUATION METRICS

We validate the capable LLMs with a high repetition stability and then evaluate their position bias
in terms of position consistency and preference fairness. The metrics are introduced as follows.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Repetition Stability (RS) evaluates the reliability of LLM judges when presented with identical
queries multiple times. It is essential to determine whether the judgments of LLMs, and con-
sequently the observations of position bias, stem from a consistent evaluation pattern or merely
random variations. We measure this by calculating the percentage of the most frequent selections
across multiple trials for each query, aggregated from all queries within each dataset. This metric is
formalized as

RC =
1

N

N∑
j=1

1

nj
max
∀k∈S

{
|Cj

k|
}
, S = {A,B,C, ...} (1)

where S refers to the set of choice options depending on the option mode, |Cj
k| denotes the counts

of each choice option selected by the judge for the jth query, nj represents the total number of
repeating trials for that query, and N is the total number of queries. The value of RS ranges from a
small positive value depending on the option mode, indicating completely random decisions, to 1.0,
indicating perfect stability.

Position Consistency (PC) quantifies how frequently a judge model prefers the same solution after
the order of solutions is swapped. It is calculated as the ratio of consistent evaluation pairs to the
total number of valid evaluations, where a pair is deemed consistent if the judge model prefers the
same winning solution. Formally, it is calculated as

PC =
1

n

n∑
j=1

1{(Cj
original,C

j
swapped)∈V }, V = {(A,B), (B,A), (C,C), ...} (2)

where (Cj
original, C

j
swapped) denotes the judgment pair for the jth query, n represents the number

of prompt pairs, and V is the set of choice pairs that correspond to position consistency. An example
of such pairs of choices can be found in Fig. 2. This formula provides a direct measure of a judge
model’s position bias and has been widely used in previous studies for its simplicity.

Preference Fairness (PF) is another crucial characteristic of position bias measuring the extent to
which judge models favor certain solution positions. In the pairwise comparative setup, an LLM
judge may exhibit a preference for either primacy or recency. These terms replace the more verbose
“preference for the first/second position” used in previous studies, ensuring clarity and generaliza-
tion for future research. The examples of such preferences are demonstrated in Fig. 2.

Position consistent judgments are fair in preference. The measurements become more complex
for position inconsistent cases. Previous studies proposed two common ways to measure the pref-
erence fairness. A straightforward way is to count the primacy-preferred and recency-preferred
judgment pairs, which we termed as primacy-count-number (pcn) and recency-count-number (rcn).
The counts are then normalized by the total number of prompt pairs (Zheng et al., 2024b; Zhu et al.,
2023b). However, the sensitivity of this measurement highly depends on the size of dataset,
making comparisons across datasets unreliable, especially when the number of questions and in-
stances varies for each task.

Alternatively, instead of normalizing over the complete dataset, studies like (Li et al., 2023c; Liusie
et al., 2024) treat position inconsistent evaluation instances independently. They calculate the per-
centages of primacy-preferred and recency-preferred judgment pairs relative to the total number of
position inconsistent pairs. We denote these as inconsistent primacy rates (ipr) and inconsistent
recency rates (irr), where ipr + irr = 1. However, this approach is problematic because it over-
looks the fact that “position consistent judgments are also position fair,” which can lead to overly
penalizing highly consistent LLM-judges. For instance, if only one out of a hundred pairs is in-
consistent, this method would classify it as 100% primacy-preferred or recency-preferred. However,
this outcome should be distinguished from cases where all one hundred pairs are inconsistent and
biased toward one position, which would also result in 100% preference unfairness.

To overcome these limitations, we introduce a more granular and scalable measurement that com-
bines the strengths of both methods, to assess preference fairness. The PF score is formally calcu-
lated by

PF =
PFraw − S−

min

S+
max − S−

min

× 2− 1, PFraw = (rcn× irr)− (pcn× ipr) (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where S−
min and S+

max are the minimum and maximum achievable PFraw scores for each judge
on each task, respectively. This min-max scaling technique ensures comparability across datasets
by accounting for the range of achievable scores and centering the scale around zero. Compared to
prior methods, the use of rcn, pcn weighted by irr and ipr, and scaling across judges and tasks
implicitly accounts for the position consistent judgments. Another advantage of this approach is
that it quantifies preference fairness with a single score, rather than the two separate scores used in
previous studies. The PF score is interpreted as follows:

PF =



1, if PC = 0 and entirely recency-preferred
x ∈ (0, 1), Recency-preferred
0, Preference Fair
x ∈ (−1, 0), Primacy-preferred
−1, if PC = 0 and entirely primacy-preferred

To summarize, our proposed preference fairness score is superior to prior measurements due to its
ability to provide a single, comprehensive score that accounts for all evaluation instances, while
maintaining its sensitivity across datasets, even when the number of questions and instances varies
for each task.

2.2 FACTORS AFFECTING POSITION BIAS

Table 1: Categorization of the factors that influence position bias, where ‘Judge’ refers to the LLM-
judge and ‘Candidate’ refers to the candidate model whose solutions to the task-specific questions
are evaluated by the judges. Factors that have a significant impact on position bias are highlighted
with an asterisk (*) by bidirectional stepwise regression tests and marked red by empirical find-
ings. ‘Task Input’ refers to the question itself, while ‘Task Output’ refers to the candidate model’s
solutions to the question, making it both a Candidate-level and Task-level factor. ‘Prompt’ encom-
passes the complete query presented to the judges, including Task Input, Task Output, and system
prompts.

Factor Judge-level Candidate-level Task-level
Familial Property ✓* × ×
Answer Quality Gap × ✓* ×
Task Input Length × × ✓
Task Output Length × ✓* ✓*
Prompt Length × ✓ ✓

To investigate the factors influencing position bias in LLM judges, we categorized these factors into
three groups: Judge-level, Candidate-level, and Task-level factors. Each group includes specific
factors, that we hypothesize, may impact position bias, which we explore through a series of exper-
iments. Table 1 lists the five factors analyzed in this study. By design, our framework allows for the
integration and assessment of additional influencing factors.

Among the influencing factors we identified, we chose “familial property” for Judge-level factors
instead of model sizes and training specifics, which are often proprietary and not publicly accessible
for the models involved in our experiments. The model family grouping reflects similar model sizes
and training specifics of the model members. The familial categories of the models used in our
studies are (1) GPT, (2) Claude, and (3) Gemini allowing for straightforward grouping by company
and version. However, we also observed that all GPT-4 and later models, along with Claude-3.5-
Sonnet, Claude-3-Opus, and Gemini-1.5-pro, form a group of the “most capable” models sharing
similar judging capabilities. More details and discussions about the familial property can be found
in Appendix Sec. C, where we examined the LLM mutual agreements to study the similarities and
differences across families.

Answer quality gap, based on our findings, is highly impactful yet under-explored in prior research.
We define the quality of a candidate’s answer/solution by how effectively it addresses the question.
Consequently, the answer quality gap refers to the disparity in quality between the solutions from
two candidate models to the same question and is considered the Candidate-level (i.e., solution
provider) factor. Ideally, when a reliable LLM judge is presented with a question and corresponding
solution pairs, it would prefer the higher-quality solution, where the corresponding candidate is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

denoted as the winner selected by the judge. Following this assumption, we measure the answer
quality gap by the win rates between two candidates on a set of tasks and questions. We regard a tie
judgment as ‘half-win’ for both candidates when calculating its win rate over another, depending on
option mode. If position bias occurs, the winner may be inconsistent when the order of candidate
solutions is swapped in the query. Therefore, we categorize the LLM judgments into three groups:
cases where the same winner is consistently chosen in both the original and swapped queries (termed
“consistent wins”), cases where both responses are deemed equal (termed “consistent ties”), and
cases where different winners are selected after the solutions are swapped. We denote these counts
as the number of consistent wins (Cw), consistent ties (Ct), and inconsistent judgment pairs (CI),
respectively. Following Zheng et al. (2024b), we count inconsistent judgment pairs also as ties, or
‘half-wins’, to ensure calculations are feasible in all cases for the subsequent computations.

Inspired by Zheng et al. (2024b), we define the overall win rate (owr) of a model’s solution over
the other as: owr = 1

n [Cw + 1
2 (Ct + CI)], where n is the total number of judgment pairs. Then

the answer quality gap (δq) is calculated as δq = |owr − 0.5|, where 0.5 is the overall win rate
when we only have ties. In contrast to using only consistent win rate (calculated as Cw

nc
, where nc

is the number of position consistent judgment pairs) to quantify δq (Zheng et al., 2024b; Li et al.,
2023b; Raina et al., 2024), the adoption of overall win rate incorporates all data points and captures
the “comparable quality” cases, where responses in similar quality might lead to position biased
judgments, a scenario that the consistent win rate might overlook. More discussions can be found in
Appendix. Sec. D.

3 EXPERIMENTS

3.1 EXPERIMENT SETTINGS

In this study, we evaluated twelve up-to-date commercial models from the GPT (OpenAI, 2023),
Claude (Anthropic, 2024), and Gemini (Gemini Team, 2024) series using our framework. Addi-
tionally, three Llama models (Touvron et al., 2023), with parameters ranging from 7B to 13B, were
selected as open-source exemplars due to their popularity and recognized capability in reasoning
tasks. However, due to their limited performance on our tasks, as shown in Table 2, we focused our
investigation solely on more powerful closed-source models. We included the results of open-source
models for completeness.

We adopted the modified MTBench (Zheng et al., 2024b) and DevBench (Li et al., 2024) datasets for
our study due to their demonstrated high human-LLM agreement and the reliability of state-of-the-
art LLMs on the evaluation tasks. We fixed one of the candidates as vicuna-13b-v1.3 for MTBench
and human for DevBench to serve as baselines, ensuring decent quality of responses.

MTBench consists of 30 candidate models, 8 tasks, and 10 questions per task; for DevBench, we
divide the general metric into more detailed ones and consider them as different tasks, resulting in
10 candidate models, 14 tasks, and 8 questions per task. We then paired solutions of these candidate
models with that of the baseline candidate for evaluation by the LLM judges. The prompt templates
we used are identical to those used in the benchmarks. More details about the models, tasks, and
prompts can be found in Appendix. Sec. H.

To compute repetition stability, we sampled 3 questions per task and 4 candidate models, paired
with baseline candidates, for each judge to evaluate across 3 repetitive trials. This resulted in 576
instances per judge for MTBench and 432 instances per judge for DevBench. The temperature
hyperparameter was set to 1 for all judge models to generate nontrivial results. To compute position
consistency and preference fairness, the number of instances increased to 4,800 and 2,240, covering
the entire MTBench and DevBench datasets. In total, approximately 100,000 evaluation instances
were analyzed in this study.

To identify significant factors contributing to position bias, we performed bidirectional stepwise re-
gression on data from the two benchmarks. We used variables such as average lengths of input,
output, and prompt; answer quality gap; LLM judge series; candidate identities; and task categories
to predict PC and PF , respectively. Each model prunes non-significant variables based on the
Akaike Information Criterion (AIC) score. This process involves both forward selection and back-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ward elimination, with each ”step” testing whether including or excluding a variable improves the
model’s AIC value. Further details about the process can be found in Appendix. Sec. F.

3.2 EMPIRICAL RESULTS AND INTERPRETATIONS

The evaluation results of 12 close-source and 3 open-source models in terms of repetition stability,
position consistency, and preference fairness on MTBench and DevBench are listed in Table 2. For
each judge, we calculate its average RS, PC, and PF across all candidates and tasks. For RS and
PC, higher values are preferable. A high RS value is particularly important as a prerequisite for
meaningful computations of PC and PF , ensuring the LLM judge’s choice patterns are not merely
random variations. Fig. 3 and Fig. 7 demonstrate that position bias varies by judges and tasks
significantly. Fig. 4 further investigates the impact of answer quality gap and lengths of prompt
components on position bias. These analyses were conducted by considering all judges together on
MTBench. The detailed analyses for each judge and on DevBench can be found in Appendix.Sec.E,
and Sec. G.

Through bidirectional stepwise regression, we found that, based on data from the two benchmarks,
LLM judge series, candidate identities, and task categories significantly impact Position Consistency
among all variables. Similarly, these factors also contribute significantly to Preference Fairness. Ad-
ditionally, we found that average output length is a statistically significant predictor of PF . This
finding is not surprising, as longer outputs are generally perceived as higher quality and more pre-
ferred. Quantitative results and more discussions can be found in Appendix. Sec. F.

Table 2: Evaluation results for Repetition Stability (RS), Position Consistency (PC), and Positional
Fairness (PF). Top 5 performances are marked in bold. “Error” is due to failure of judgment
generation (e.g, exceeding context window) or invalid extraction using regular expression for the
specified judgment output format. High error rates and low RS are marked red, implying further
evaluations (i.e., PC, and PF) are invalid and meaningless because of insufficient accessible data.
Therefore, open-source models (e.g., Llama) are not investigated in the paper because of their
high error rates under the difficulty and length of our evaluation instances. In contrast, up-to-date
commercial models generally demonstrated minimal error and high repetition stability, making them
more practical and meaningful for investigations. Chatbot Arean Leaderboard’s overall ranking of
the models is listed.

Judge MTBench DevBench Arena
RS PC PF Error RS PC PF Error

Caude-3.5-Sonnet 0.96 ± 0.07 0.82 ± 0.14 0.01 0.00 0.95 ± 0.09 0.76 ± 0.16 0.22 0.00 7
Claude-3-Opus 0.95 ± 0.08 0.70 ± 0.19 0.22 0.00 0.96 ± 0.07 0.69 ± 0.20 0.29 0.00 17
Claude-3-Sonnet 0.93 ± 0.11 0.59 ± 0.22 0.32 0.01 0.95 ± 0.09 0.71 ± 0.22 0.23 0.00 37
Claude-3-Haiku 0.89 ± 0.18 0.57 ± 0.18 0.18 0.00 0.90 ± 0.17 0.23 ± 0.14 0.75 0.00 46

Gemini-1.5-pro 0.97 ± 0.09 0.62 ± 0.19 0.23 0.03 0.87 ± 0.17 0.84 ± 0.17 0.03 0.13 12
Gemini-1.5-flash 1.00 ± 0.00 0.67 ± 0.17 0.07 0.00 0.04 ± 0.08 0.92 ± 0.39 0.00 0.96 25
Gemini-1.0-pro 0.89 ± 0.18 0.57 ± 0.18 0.30 0.00 0.85 ± 0.26 0.66 ± 0.20 -0.05 0.00 66

o1-mini 0.90 ± 0.07 0.76 ± 0.15 -0.04 0.00 0.93 ± 0.12 0.84 ± 0.13 -0.07 0.00 2
GPT-4o 1.00 ± 0.02 0.76 ± 0.18 -0.12 0.00 0.98 ± 0.03 0.80 ± 0.16 -0.12 0.00 6
GPT-4-Turbo 0.94 ± 0.10 0.75 ± 0.16 0.02 0.00 0.97 ± 0.06 0.79 ± 0.18 0.16 0.00 17
GPT-4 0.97 ± 0.05 0.82 ± 0.15 0.02 0.00 0.97 ± 0.05 0.83 ± 0.15 -0.13 0.00 52
GPT-3.5-Turbo 0.96 ± 0.07 0.70 ± 0.18 0.06 0.00 0.99 ± 0.02 0.76 ± 0.18 -0.02 0.00 94

Llama-2-13B 0.45 ± 0.22 0.56 ± 0.33 -0.08 0.55 0.00 ± 0.00 0.00 ± 0.00 0.00 1.00 99
Llama-2-7B 0.83 ± 0.15 0.44 ± 0.19 0.11 0.17 0.00 ± 0.00 0.00 ± 0.00 0.00 1.00 109
Llama-3-8B 0.16 ± 0.18 0.43 ± 0.39 -0.05 0.84 0.06 ± 0.09 0.04 ± 0.09 -0.05 0.94 57

4 MAIN FINDINGS

Position Bias of Capable Judges are not Mere Random Variations As shown in Table 4, the
capable judges on the benchmark tasks, supported by minimal ”Error” rates, generally exhibit RS
values above 0.85. The most up-to-date and capable models, such as Claude-3.5-Sonnet, Claude-3-
Opus, GPT-4, and GPT-4o, all achieve near-perfect RS scores exceeding 0.95 on both benchmarks.
These results confirm that LLM judgments, and the resulting position bias, are not merely random

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(b)

(a)

Figure 3: Baseline comparisons of judges across tasks on MTBench. An asterisk marks the statistical
significance by Student’s t-tests. Figure (a) includes a radar chart comparison by family and an
overall baseline bar chart comparison of PC. The baseline model is chosen to be GPT-4 for its
generally superior performances. Figure (b) demonstrates the PF score of evaluated judges across
tasks where the baseline is PF = 0.

variations. This strengthens confidence that one-time generated judgments by these validated LLMs
accurately reflect their judging capabilities.

Position Bias Varies by Judge & Task As shown in Table 2, in general, GPT-4 excels as the best-
performing judge model across metrics and benchmarks, hence considered the baseline model in
Fig. 3 for PC comparisons. However, certain models achieve comparable or superior performances
than GPT-4 on certain tasks. For example, according to Fig. 3, for coding task evaluation, GPT-4o
and Claude-3.5-Sonnet are likely more ideal judges. Also, GPT-3.5-Turbo achieves comparable PC
as GPT-4, indicating that it may be employed as a cost-effective alternative to coding evaluations.

Additionally, significant variations of PF across tasks are observed. The judges achieving close-
to-0 PF in general, such as GPT-4 and Claude-3.5-Sonnet, exhibit varied preference directions
across tasks, preferring primacy on some tasks while recency on the others. Particularly, o1-mini,
while being primacy-preferred on coding, extraction, and math, exhibits almost fair preferences
on reasoning, role play, and writing tasks. Even for uniformly recency-preferred judges such as
Claude-3’s and Gemini-pro’s, the extent of biased preference, as reflected by PF values, varies by
task.

Moreover, high position consistency does not guarantee fairness. For example, on coding task eval-
uations, GPT-4 and GPT-4o achieve the top consistency but are significantly recency-preferred and
primacy-preferred, respectively. In comparison, GPT-3.5-Turbo is highly preference fair while hav-
ing comparable consistency.

Therefore, the position bias of LLM judges is judge-dependent and task-dependent. This observation
is confirmed by the bidirectional stepwise regression where judge identities and task categories
are statistically significant predictors of PC and PF . In practice, to achieve the most reliable
evaluation results, one needs to select task-specific LLMs whose consistency and fairness are in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

Figure 4: Impact of answer quality gap and lengths on position bias. All figures are based on the
integration results of all judge models on MTBench. Figures (a) and (b) investigate PC and PF
vs. overall win rate, hence the answer quality gap, respectively. Generally, judgments become more
consistent and fair as the quality gap decreases. Figure (c) demonstrates the relationship between
PC and PF , where higher consistency is likely to indicate better fairness. Figure (d)(e)(f) plots
the relationship between lengths of prompt components and PC. The irregular and inconclusive
patterns imply that position bias is not significantly impacted by the length of prompts and their
components.

balance. Moreover, as shown in Table 2, a high ranking in the overall reasoning performance of a
model does not guarantee its judging reliability. Similar findings can be observed in the DevBench
results, as detailed in Appendix.Sec. G.

Position Bias Correlates to Answer Quality Gap Intuitively, the difficulty of judging a pair of
candidate answers is largely reflected by their difference in quality. In this study, as defined in
Section 2.2, we quantify the quality gap (δq) between answer pairs by the overall win rate (owr).
Since an absolute tie has 0.5 owr, δp increases as owr extends from 0.5 to 0 or 1. Fig. 4(a) exhibits
a significant parabolic shape, indicating that PC is positively proportional to δq . This aligns with
our intuition that the answer pairs with larger quality disparities are easier to achieve consistency,
whereas those of similar quality are difficult to judge, increasing the likelihood of position bias
that leads to lower PC. The same relationship is observed for each individual judge and across
benchmarks, as demonstrated in Appendix.Sec. E.

Similarly, as shown in Fig. 1(b), judgments generally become more preference fair as δq increases.
However, the extent is not as significant as for PC. Also, the relationship varies by judge, as some
LLMs maintain preference fairness regardless of δq . For example, as shown in Fig. 6, PF of
GPT models centered closely around 0 consistently, whereas that of Claude and Gemini-pro models
exhibit a conspicuous proportional relationship on MTBench.

These observations align with the right-arrow shape as demonstrated in Fig. 4(c), where there is
a general trend that judgments become preference fairer as position consistency increases. It also
justifies the reasonableness of our quantification of preference fairness, as highly position consistent
judges are not overly penalized and a perfect PC should result in PF = 0.

Together, we conclude that as the answer quality gap enlarges, judges generally become more po-
sition consistent and preference fair according to the regression curves. However, exceptions are
common, as shown by the individual scatter points of these figures. This indicates that though the
answer quality gap significantly influences the position bias of LLMs, other factors also play impor-
tant roles. Therefore, built on our findings, future studies may have better control over the answer

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

quality gap when evaluating LLM judges, exploring other impacting factors on position bias, and
seeking potential mitigation strategies.

Our investigation also helps to explain the observed verbosity/length bias (Liu et al., 2024; Kim
et al., 2023; Zheng et al., 2024b) and self-enhancement bias (Li et al., 2023c; Zheng et al., 2024b)
of LLM judges. From our analysis, LLMs may prefer longer answers (verbosity/length bias) since
more capable models usually generate longer solutions with higher qualities. Similarly, in the cases
where the same LLM serves as both a candidate and a judge model, judges preferring the solutions
generated by themselves (self-enhancement bias) are usually the ones who generate responses of
higher quality (e.g., GPT-4). In both cases, the observed biased preference may be fundamentally
due to a prominent answer quality gap instead of length or self-identity.

Position Bias is weakly Length-dependent We investigate the impact of three different lengths on
the position bias of LLM judges: the length of the question (task input length), the solution length
of candidate models (task output length), and the length of the entire prompt (prompt length). Since
the tokenization methods vary by models, we apply the length of the prompt component strings
for uniformity and scalability. The analysis from Fig. 4(d)(e)(f) shows that there is very weak
relationship between the lengths of prompt components and position bias. By stepwise regression,
the average task output length is only significant in predicting PF , adding a minimal change in
AIC as shown in Appendix Table. 4. Therefore, the impact of lengths on position bias is minimal
compared to answer quality gap and judge or task level variances.

Practical Implications for Benchmark Design We complement our investigations of position bias
with a LLM agreement/disagreement analysis in Appendix.Sec. C to gain further insights. In par-
ticular, the disagreement analysis helps identify instances where it is easy or difficult for judges to
reach a consensus, reflecting the complexity of the judgment task. Based on our findings regarding
the answer quality gap and LLM agreement/disagreement, this study offers practical implications
for designing evaluator benchmarks that control the difficulty of judging tasks. Our findings show
that the hardest-to-judge instances are those where (1) LLMs frequently disagree with each other,
(2) comparable win rates and minimal quality gaps exist between the two candidate models, and (3)
significant position bias is exhibited by the majority of judges.

One qualitative analysis example of a difficult-to-judge instance comes from MTBench ques-
tion 120, which involved a math problem where both candidate models, Vicuna-13b-v1.3 and
WizardLM-30b, provided incorrect solutions. The problem was: (1) Given f(x) = 4x3 − 9x− 14,
find the value of f(2), and (2) Find x such that f(x) = 0. Vicuna-13b-v1.3 incorrectly applied the
quadratic formula to solve the cubic equation, while WizardLM-30b used an enumeration method
but failed to identify the correct answer. This resulted in a 4{A}-3{B}-5{C} choice pattern among
the twelve judges, illustrating a typical case of significant disagreement.

We observed that some judges exhibited hallucinations, making false positive judgments or ignoring
the reference answer. Others preferred either correctness (choosing {C} as a tie) or methodological
soundness (choosing {B}, favoring WizardLM-30b). In the swapped order setting, 9 out of 12
judges displayed position bias. This highlights the challenge of judging solutions with minimal
quality gaps, leading to greater position bias and subjectivity.

The key takeaway is that reducing hard-to-evaluate, highly subjective instances can improve bench-
mark design. Likewise, minimizing trivial cases where judges easily agree would enhance the bench-
mark’s robustness. Clearer and more specific evaluation criteria could also help resolve ambiguity
in difficult instances.

5 CONCLUSION

In conclusion, this paper proposes a systematic, scalable framework for evaluating the position bias
of LLM judges in pairwise comparative scenarios in terms of repetition stability, position consis-
tency, and preference fairness. Through comprehensive evaluations of 12 judges on two benchmarks
across 22 tasks with over 100,000 evaluation instances, we observe significant variations of position
bias across judges and tasks. We also discover that position bias is weakly length-dependent but sig-
nificantly impacted by the answer quality gap. Our findings enhance the understanding of position
bias, paving the way for more effective mitigation strategies and more robust and reliable evaluation
systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www.
anthropic.com/news/claude-3-family.

Grigor Aslanyan and Utkarsh Porwal. Position Bias Estimation for Unbiased Learning-to-
Rank in eCommerce Search, pp. 47–64. Springer International Publishing, 2019. ISBN
9783030326869. doi: 10.1007/978-3-030-32686-9 4. URL http://dx.doi.org/10.
1007/978-3-030-32686-9_4.

Niels J. Blunch. Position bias in multiple-choice questions. Journal of Marketing Research, 21(2):
216–220, 1984. ISSN 00222437. URL http://www.jstor.org/stable/3151704.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and
Xing Xie. A survey on evaluation of large language models, 2023.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo Liu, Yaochen Wang, Huichi Zhou, Qihui Zhang,
Pan Zhou, Yao Wan, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge
with vision-language benchmark, 2024a.

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or llms as
the judge? a study on judgement biases, 2024b.

Ye Chen, Igor Couto, Wei Cai, Cong Fu, and Bruno Dorneles. Softtiger: A clinical foundation
model for healthcare workflows, 2024c.

Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and Ruifeng Xu. Exploring the use of large
language models for reference-free text quality evaluation: An empirical study, 2023.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. Instructeval: Towards holistic
evaluation of instruction-tuned large language models, 2023.

Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human eval-
uations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 15607–15631, Toronto, Canada, July 2023a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.870. URL https://aclanthology.org/2023.
acl-long.870.

Cheng-Han Chiang and Hung-Yi Lee. Can large language models be an alternative to human eval-
uations? In Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 15607–15631, 2023b.

James Chua, Edward Rees, Hunar Batra, Samuel R. Bowman, Julian Michael, Ethan Perez, and
Miles Turpin. Bias-augmented consistency training reduces biased reasoning in chain-of-thought,
2024.

R. Deb and A. K. Das. On the solution set of semi-infinite tensor complementarity problem, 2023.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback, 2024.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire, 2023.

Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In European
Conference on Information Retrieval, pp. 364–381. Springer, 2024.

Hui Huang, Yingqi Qu, Jing Liu, Muyun Yang, and Tiejun Zhao. An empirical study of llm-as-
a-judge for llm evaluation: Fine-tuned judge models are task-specific classifiers. arXiv preprint
arXiv:2403.02839, 2024.

11

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
http://dx.doi.org/10.1007/978-3-030-32686-9_4
http://dx.doi.org/10.1007/978-3-030-32686-9_4
http://www.jstor.org/stable/3151704
https://aclanthology.org/2023.acl-long.870
https://aclanthology.org/2023.acl-long.870

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yunjie Ji, Yan Gong, Yiping Peng, Chao Ni, Peiyan Sun, Dongyu Pan, Baochang Ma, and Xiangang
Li. Exploring chatgpt’s ability to rank content: A preliminary study on consistency with human
preferences, 2023.

Marzena Karpinska, Nader Akoury, and Mohit Iyyer. The perils of using mechanical turk to evaluate
open-ended text generation. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 1265–1285, 2021.

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Ed-
ward Grefenstette, Samuel R Bowman, Tim Rocktäschel, and Ethan Perez. Debating with more
persuasive llms leads to more truthful answers. arXiv preprint arXiv:2402.06782, 2024.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained evalua-
tion capability in language models. arXiv preprint arXiv:2310.08491, 2023.

Miyoung Ko, Jinhyuk Lee, Hyunjae Kim, Gangwoo Kim, and Jaewoo Kang. Look at the first
sentence: Position bias in question answering. In Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1109–1121, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.84. URL https://aclanthology.org/
2020.emnlp-main.84.

Tom Kocmi and Christian Federmann. Large language models are state-of-the-art evaluators of
translation quality. In Mary Nurminen, Judith Brenner, Maarit Koponen, Sirkku Latomaa, Mikhail
Mikhailov, Frederike Schierl, Tharindu Ranasinghe, Eva Vanmassenhove, Sergi Alvarez Vidal,
Nora Aranberri, Mara Nunziatini, Carla Parra Escartı́n, Mikel Forcada, Maja Popovic, Carolina
Scarton, and Helena Moniz (eds.), Proceedings of the 24th Annual Conference of the European
Association for Machine Translation, pp. 193–203, Tampere, Finland, June 2023a. European As-
sociation for Machine Translation. URL https://aclanthology.org/2023.eamt-1.
19.

Tom Kocmi and Christian Federmann. Large language models are state-of-the-art evaluators of
translation quality. In Proceedings of the 24th Annual Conference of the European Association
for Machine Translation, pp. 193–203, 2023b.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software devel-
opment. arXiv preprint arXiv:2403.08604, 2024.

Chengzu Li, Han Zhou, Goran Glavaš, Anna Korhonen, and Ivan Vulić. On task performance and
model calibration with supervised and self-ensembled in-context learning, 2023a.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Pengfei Liu, et al. Generative judge for
evaluating alignment. In The Twelfth International Conference on Learning Representations,
2023b.

Ruosen Li, Teerth Patel, and Xinya Du. Prd: Peer rank and discussion improve large language model
based evaluations. arXiv preprint arXiv:2307.02762, 2023c.

Zongjie Li, Chaozheng Wang, Pingchuan Ma, Daoyuan Wu, Shuai Wang, Cuiyun Gao, and Yang
Liu. Split and merge: Aligning position biases in large language model based evaluators. arXiv
preprint arXiv:2310.01432, 2023d.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana
Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong,
Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuk-
sekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Hen-
derson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan
Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models, 2023.

12

https://aclanthology.org/2020.emnlp-main.84
https://aclanthology.org/2020.emnlp-main.84
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG
evaluation using gpt-4 with better human alignment. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 2511–2522, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.153. URL https://aclanthology.org/2023.
emnlp-main.153.

Yinhong Liu, Han Zhou, Zhijiang Guo, Ehsan Shareghi, Ivan Vulić, Anna Korhonen, and Nigel
Collier. Aligning with human judgement: The role of pairwise preference in large language
model evaluators, 2024.

Adian Liusie, Potsawee Manakul, and Mark Gales. Llm comparative assessment: Zero-shot nlg
evaluation through pairwise comparisons using large language models. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 139–151, 2024.

Haiquan Lu, Xiaotian Liu, Yefan Zhou, Qunli Li, Kurt Keutzer, Michael W. Mahoney, Yujun Yan,
Huanrui Yang, and Yaoqing Yang. Sharpness-diversity tradeoff: improving flat ensembles with
sharpbalance, 2024. URL https://arxiv.org/abs/2407.12996.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation, 2023.

OpenAI(2023). Gpt-4 technical report, 2024.

Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of op-
tions in multiple-choice questions, 2023.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu,
Jialu Liu, Donald Metzler, Xuanhui Wang, and Michael Bendersky. Large language models are
effective text rankers with pairwise ranking prompting, 2024.

Priya Raghubir and Ana Valenzuela. Center-of-inattention: Position biases in decision-making.
Organizational Behavior and Human Decision Processes, 99:66–80, 02 2006. doi: 10.1016/j.
obhdp.2005.06.001.

Vyas Raina, Adian Liusie, and Mark Gales. Is llm-as-a-judge robust? investigating universal adver-
sarial attacks on zero-shot llm assessment, 2024.

Chenhui Shen, Liying Cheng, Xuan-Phi Nguyen, Yang You, and Lidong Bing. Large language mod-
els are not yet human-level evaluators for abstractive summarization. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 4215–4233, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.278. URL https://aclanthology.org/2023.
findings-emnlp.278.

Jiawen Shi, Zenghui Yuan, Yinuo Liu, Yue Huang, Pan Zhou, Lichao Sun, and Neil Zhenqiang
Gong. Optimization-based prompt injection attack to llm-as-a-judge, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan Xu,
Jianfeng Qu, and Jie Zhou. Is chatgpt a good nlg evaluator? a preliminary study, 2023a.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu
Liu, and Zhifang Sui. Large language models are not fair evaluators, 2023b.

13

https://aclanthology.org/2023.emnlp-main.153
https://aclanthology.org/2023.emnlp-main.153
https://arxiv.org/abs/2407.12996
https://aclanthology.org/2023.findings-emnlp.278
https://aclanthology.org/2023.findings-emnlp.278
https://arxiv.org/abs/2302.13971

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Wenjin Yao, Cunxiang Wang, Hao Chen,
Chaoya Jiang, Rui Xie, Jindong Wang, et al. Pandalm: An automatic evaluation benchmark
for llm instruction tuning optimization. In The Twelfth International Conference on Learning
Representations, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Seonghyeon Ye, Doyoung Kim, Sungdong Kim, Hyeonbin Hwang, Seungone Kim, Yongrae Jo,
James Thorne, Juho Kim, and Minjoon Seo. Flask: Fine-grained language model evaluation
based on alignment skill sets, 2024.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large
language models at evaluating instruction following. In The Twelfth International Conference on
Learning Representations, 2023.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improv-
ing few-shot performance of language models, 2021.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models are
not robust multiple choice selectors, 2024a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024b.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models, 2023.

Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu, Jilin Chen, Katherine A Heller, and Subhrajit
Roy. Batch calibration: Rethinking calibration for in-context learning and prompt engineering.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=L3FHMoKZcS.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang,
Wei Ye, Yue Zhang, Neil Zhenqiang Gong, and Xing Xie. Promptbench: Towards evaluating the
robustness of large language models on adversarial prompts, 2023a.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models
are scalable judges. arXiv preprint arXiv:2310.17631, 2023b.

14

https://openreview.net/forum?id=L3FHMoKZcS
https://openreview.net/forum?id=L3FHMoKZcS

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX TABLE OF CONTENTS

A Contribution & Limitation 16

B Related Work 17

B.1 LLM-as-a-Judge . 17

B.2 Position Bias . 18

B.3 Deal with Position Bias . 19

B.4 Summary of Prior Work . 20

C LLM Agreement Analysis 20

C.1 Mutual Agreement & Familial Property 21

C.2 Disagreement & Benchmark Design Insight 22

D More Discussions on Answer Quality Gap 22

E More Results of Position Bias and Answer Quality Gap Measurement 23

F Variable Selection and Tests 24

F.1 Bidirectional Stepwise Regression with AIC 24

F.2 Test results . 24

G DevBench 26

H Experiment Settings 27

H.1 Judges, Candidates, and Tasks . 27

H.2 Prompt Settings . 27

I Reproducibility 31

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

A CONTRIBUTION & LIMITATION

Contributions Despite the limited number of models, tasks, and judging types, our proposed sys-
tematic framework is agnostic to these criteria and can be used with any LLM judge. Our work is
particularly valuable for validating judges in terms of repetition stability and then evaluating them
through position consistency and preference fairness. We also explore the factors influencing posi-
tion bias and their quantitative impacts, such as the answer quality gap and lengths of prompt com-
ponents. Particularly, our study is the first to establish a direct connection between quantified answer
quality disparities and position bias, highlighting the urgent need for a comprehensive understand-
ing of how position bias affects LLM judges. Additionally, the mutual agreement and disagreement
analysis of LLM judges are insightful for identifying the difficulty of evaluation instances and bene-
ficial for benchmark assessment and designs. All findings from our study enhance the understanding
of the position bias of LLM-as-a-Judge, paving the way for more effective mitigation strategies and
more robust and reliable evaluation systems.

Social Benefits Our comprehensive understanding of position bias in LLM-as-a-Judge provides
multiple benefits to the community. First, it enhances the reliability and trustworthiness of LLM
judges in terms of repetition stability validation. Our focus and investigation on preference fairness
inspire future works to improve the fairness of LLM evaluators simultaneously with consistency and
reliability. Moreover, our emphasized trade-offs between position consistency, fairness, and practi-
cal applicability when selecting task-specific LLM judges provide crucial judge-selection guidance
for future work. Additionally, the baseline comparison analysis across judges and tasks offers rea-
sonable judge model recommendations for more reliable, consistent, and fair evaluation results.
Besides, the LLM agreement/disagreement analysis in Appendix.Sec.C 5 provides an applicable
tool to identify the difficulty of judging certain instances. Together with findings from the signifi-
cant impact of the answer quality gap on position bias, our study benefits future benchmark designs
and evaluations and lays the groundwork for potential mitigation strategies of position bias. Overall,
our study contributes to a more reliable, unbiased evaluation system that benefits the application of
LLM evaluators across diverse fields, such as healthcare (Chen et al., 2024c), instruction following
and prompting (Zeng et al., 2023; Chua et al., 2024), multimodal assessment (Chen et al., 2024a),
and recommender systems (Hou et al., 2024).

Strength Our framework of systematically understanding position bias has the following
strengths: (1) scalability and ease of use - our proposed framework is scalable to various judges,
models, tasks, and judging types. It is also straightforward and convenient to implement, facilitating
a more comprehensive evaluation of LLM judges for future works. (2) comprehensive experiments
- we investigate the position bias of 12 LLM judges on 2 benchmarks across 22 tasks and around 40
answer-generating models in terms of repetition stability, position consistency, and preference fair-
ness, resulting in more than 100,000 evaluation instances; the exploration of the factors impacting
position bias from Judge-level, Model-level, and Task-level and the findings from LLM agreement
analysis provide additional insights to enhance the understanding of position bias. (3) accurate mea-
surement - we formally define crucial metrics (RS and PF) for evaluating LLM judges’ position
bias that are underexplored by prior works and offer detailed explanations for their rationality and
rigorousness.

Limitations Due to computational limits, our study can be potentially extended to provide more
comprehensive insights. (1) We only study the pairwise comparative assessment of LLM-as-a-Judge
for its best consistency, ease of use, and scalability, but more types of judging can be explored, such
as pairwise scoring and listwise ranking. (2) We only study 12 up-to-date commercial LLM judges
for systematic investigations. Llama 7b-13b models that we choose as representatives of open-source
models of similar sizes, face extreme difficulty in judging the instances explored in this study. Due
to limited resources and considering practicality, we did not experiment with open-source models
with larger sizes. However, further exploration may include analysis of these state-of-the-art open-
source and fine-tuned judge models using our proposed framework. (3) We only study position bias
on two benchmarks, MTBench and DevBench, which is still limited despite 22 tasks and 40 answer-
generating models. Also, the number of questions for each task is limited. Further studies can be
extended to more benchmarks to have a broader understanding of position bias across benchmarks,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

tasks, and questions. (4) Due to data accessibility, we are unable to investigate Judge-level factors
in terms of model parameter sizes and architectures, which we expect will have a significant impact
on position bias. Alternatively, we consider the family property to account for Judge-level factors
by grouping models with similar properties (e.g., approximate parameter size) together. We also
investigate variances of position bias across individual judges. However, future exploration on these
model properties, especially those available on open-source models, will provide more insights.

Future Work Besides addressing the limitations, the following future work, built on findings
from our study, could provide more insights: (1)prompt setting - in this study, we apply the exact
default prompt settings of MTBench and DevBench. However, the positional order and prompt
style of not just the model-generated responses but also system prompt components (e.g., agent role
assignment, mode of judging, direct mention of not making biases) may also have an impact on the
extent to which LLM judges make position bias. (2) open-source insights: Further investigations
of open-source and fine-tuned models on easier-to-evaluate benchmark may provide more insights
into the training stages or model structures that are affecting or causing the position bias. Then
our framework offers better control on the other impactful factors such as the answer quality gap to
make these further investigations more accurate.

B RELATED WORK

B.1 LLM-AS-A-JUDGE

In recent years, Large Language Models (LLMs) have emerged as a transformative technology, gar-
nering global attention and stimulating substantial research into their applications. For evaluative
tasks, particularly subjective ones, human assessment is considered the gold standard due to its
comprehensive and open-ended nature (Zeng et al., 2023). However, it lacks scalability and repro-
ducibility (Karpinska et al., 2021).

As a result, LLMs have increasingly been used as substitutes for human evaluators across various
Natural Language Generation (NLG) domains and tasks (Zheng et al., 2024b; Li et al., 2024; Chiang
& Lee, 2023b; Liusie et al., 2024; Chen et al., 2023; Fu et al., 2023; Wang et al., 2023a; Kocmi &
Federmann, 2023b; Ji et al., 2023; Liu et al., 2024; Zeng et al., 2023; Liu et al., 2023; Shen et al.,
2023; Kocmi & Federmann, 2023a; Chiang & Lee, 2023a; Karpinska et al., 2021; Dubois et al.,
2024; Kim et al., 2023; Liang et al., 2023; Chang et al., 2023; Zhong et al., 2023; Chia et al., 2023;
Deb & Das, 2023; Ye et al., 2024; Min et al., 2023; Li et al., 2023d;c;b; Lu et al., 2024), including
open-ended story generation (Chiang & Lee, 2023a), adversarial attacks (Chiang & Lee, 2023b),
summarization (Karpinska et al., 2021), machine translation (Kocmi & Federmann, 2023a), and
instruction following (Zeng et al., 2023).

These LLM evaluators, known as LLM-as-a-Judge, have attracted significant interest within both
academic and industrial circles (Zheng et al., 2024b;a; Pezeshkpour & Hruschka, 2023; Chiang &
Lee, 2023b; Shen et al., 2023; Liusie et al., 2024; Qin et al., 2024; Chen et al., 2023; Huang et al.,
2024; Zhu et al., 2023b; Raina et al., 2024; Chen et al., 2024b; Wang et al., 2023b; Liu et al.,
2024; Zeng et al., 2023; Khan et al., 2024; Kim et al., 2023; Li et al., 2023b;d; Shi et al., 2024;
Li et al., 2023c; Chen et al., 2024c; Chua et al., 2024; Chen et al., 2024a). As LLMs have made
content generation significantly easier, the volume of generated responses has increased, making it
impractical to rely solely on human evaluation. Therefore, cost-effective LLM judges are needed to
assess these responses efficiently. LLM-as-a-Judge is typically employed in Q&A evaluation tasks,
where the LLM judge is prompted to evaluate the quality of responses, usually generated by models,
answering the questions.

In many of these tasks, LLM judges have shown a high level of agreement with human evaluators
(Zheng et al., 2024b; Li et al., 2024; Zhu et al., 2023b), yet in some tasks, they are less effective,
largely due to inherent biases (Shen et al., 2023; Chiang & Lee, 2023b; Zheng et al., 2024a). Even
in cases where agreement is high, judgments may still suffer from biases.

When employing LLM-as-a-Judge, various types of judging are available, which can be categorized
either by the scale or comparative method. From the scale perspective, LLM-as-a-Judge can involve
pointwise, listwise, or pairwise assessment (Qin et al., 2024). By comparative method, it can be
either score-based or relation-based (Li et al., 2023d).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For example, pointwise scoring (Kim et al., 2023) lets the LLM judge score the response of one
model to a question at a time based on some evaluating metrics. Pairwise/Listwise Scoring (Karpin-
ska et al., 2021; Zhu et al., 2023b; Chen et al., 2024a; Zheng et al., 2024b) prompts the LLM judges
to score a pair/list of model-generated answers. Listwise Ranking is another relation-based assess-
ment that, instead of giving a score, requires the LLM judge to rank a list of responses following
some specified order (e.g., from best to worst). Pairwise comparative assessment (Karpinska et al.,
2021; Chen et al., 2024a; Zheng et al., 2024b), on the other hand, asks the LLM judge to select the
superior response between a given pair, usually conducted in a double-blind manner: the generating
model remains unknown to the judge, and the judging model remains anonymous to the answer
generator.

Except for pointwise evaluation, all forms of LLM-as-a-Judge suffer—or are susceptible to suffer-
ing—from position bias due to the intrinsic nature of position and comparison within the prompt
structure.

B.2 POSITION BIAS

Previous studies have discovered and investigated multiple types of biases, such as position bias
(Zheng et al., 2024b; Li et al., 2024; Chen et al., 2024a; 2023; Chia et al., 2023; Chiang & Lee,
2023b; Khan et al., 2024; Zhu et al., 2023b; Zhong et al., 2023; Zheng et al., 2024a; Deb & Das,
2023; Zeng et al., 2023; Wang et al., 2023c; Qin et al., 2024; Wang et al., 2023b; Shi et al., 2024;
Liusie et al., 2024; Liu et al., 2024; Kim et al., 2023; Karpinska et al., 2021; Hou et al., 2024;
Kocmi & Federmann, 2023b; Pezeshkpour & Hruschka, 2023; Shen et al., 2023; Chiang & Lee,
2023a; Kocmi & Federmann, 2023a; Chen et al., 2024b; Li et al., 2023c;d; Raina et al., 2024),
verbosity/length bias (Zheng et al., 2024b; Liu et al., 2024; Kim et al., 2023), self-enhancement bias
(Li et al., 2023c; Zheng et al., 2024b), selection bias (Zheng et al., 2024a; Pezeshkpour & Hruschka,
2023), and contextual bias (Liu et al., 2024; Zhou et al., 2024).

Among these, position bias stands out as particularly significant, permeating a wide array of tasks
and affecting judge models, including open-source (Li et al., 2023b; Chen et al., 2024c), proprietary
commercial ones (OpenAI, 2023; Anthropic, 2024; Gemini Team, 2024), and fine-tuned models
(Huang et al., 2024; Wang et al., 2023c; Zhu et al., 2023b; Li et al., 2023b; Kim et al., 2023).

To clarify, the aforementioned and following position bias refers to the concept within the context
of LLM-as-a-Judge, meaning that LLM judge tends to favor responses based on their position in the
prompt rather than their content. For example, in a pairwise comparative assessment scenario, if
the LLM judge consistently selects the first response as superior even after switching the order of the
two responses (same position, but different content), then a position bias occurs. Some other studies
also use the term position bias (Ko et al., 2020; Aslanyan & Porwal, 2019; Blunch, 1984; Raghubir
& Valenzuela, 2006), but in this research, our interest lies solely in the position bias specific to
LLM-as-a-Judge.

Position bias is arguably the most prevalent and impactful bias among all. Chua et al. (2024) notes
that their Bias-Augmented Consistency Training (BCT), an unsupervised fine-tuning scheme de-
signed to promote consistent reasoning across prompts with and without biasing features, improves
Chain-of-Thought (Wei et al., 2022) performance over self-training controls for all biases except po-
sition bias. Furthermore, Khan et al. Khan et al. (2024) point out that LLM judges are less confident
when exhibiting position bias, and addressing this bias is highly complex due to varying confidence
levels across judges and tasks.

Moreover, there is ongoing debate over whether selection bias originates from position bias.
Pezeshkpour & Hruschka (2023) argue that LLMs are sensitive to the ordering of options in Multiple
Choice Questions (MCQs), confirming that position bias contributes to this sensitivity. Raina et al.
(2024) contest this view, asserting that selection bias stems less from position bias and more from
token bias, which represents an inherent challenge for LLMs and contributes to poor robustness.

All of these findings underscore the critical importance of addressing the issue of position bias when
employing LLM-as-a-Judge.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.3 DEAL WITH POSITION BIAS

Intuitively, position bias emerges because LLMs are sensitive to changes, especially positional
changes, in prompts (Zheng et al., 2024b; Raina et al., 2024; Pezeshkpour & Hruschka, 2023; Zhao
et al., 2021; Zhu et al., 2023a). Also, LLM judges are vulnerable to attacks (Raina et al., 2024; Chen
et al., 2024b; Shi et al., 2024).

Parse data with position bias There are many ways to deal with the position bias. The naive way
is to exclude the inconsistent judgments(i.e. if the LLM judge gives a positionally biased judgment
on a pair or list of model responses) (Zheng et al., 2024b; Chen et al., 2024b; Wang et al., 2023b; Li
et al., 2023b). While this ensures consistent and reliable remaining judgments, it does not resolve the
fundamental problem. Moreover, if the LLM judge is highly biased, this method discards valuable
evaluation instances and information, making it an ineffective and somewhat desperate measure.

To take the positionally inconsistent evaluations into account, one may either take an average for
scoring-based judging (Zheng et al., 2024b; Raina et al., 2024; Li et al., 2023b; Wang et al., 2023b)
or regard inconsistency as a half-win or tie for relation-based judging (Zheng et al., 2024b; Li et al.,
2023c) after swapping the order of model responses in the prompt. For instance, in a pairwise scoring
scenario, if model A receives a score of 8 when put in the first position and 4 when put in the second
position, the overall score for it compared to model B would be 6; in the pairwise comparative
case, if model A wins when put in the first position but then lose when put in the second position,
it counts as a tie or half-win for both model A and model B. The latter way of swapping + tie is
proposed because intuitively the position bias is more likely to occur when the model responses
get evaluated share a similar quality in terms of the evaluating metric. Our quantitative study also
verifies this intuition, evidenced by the fact the LLM judge’s positional consistency (the percentage
of positionally consistent pairs of judgment) is positively proportional to the answer quality gap
between the model responses.

To save the expense of running the experiments more than once using swapped order, in practice,
many of these studies also support a random-shuffle option in their code settings such that the base-
line model for comparison does not remain in a fixed position.

Solution attempts Due to the significance of position bias, more sophisticated and advanced ap-
proaches have emerged to solve position bias as well, including bootstrapping (Hou et al., 2024),
split-and-merge (Li et al., 2023d), and multi-agent discussion (Li et al., 2023c; Khan et al., 2024).
However, these methods are either costly and time-consuming (e.g., multi-agent discussion and re-
view to reach agreement) or ineffective.

Furthermore,Liu et al. (2024) suggests that existing calibration techniques designed to reduce bias,
including context decomposition (Li et al., 2023d), order permutation (Wang et al., 2023b; Zheng
et al., 2024a), ensembling (Li et al., 2023a), and batch calibration (Zhou et al., 2024), are insufficient
to align LLM evaluators, even with supervised data.

Thus, position bias is a pervasive, significantly impactful, and challenging problem to solve.

Understand before solving We observe that the existing methods maybe ineffective or not enough
satisfactory because there is a lack of understanding of the position bias. Although a variety of
studies have researched this type of bias in LLM-as-a-Judge, a comprehensive understanding of
what factors affect the position bias remains underexplored. In other words, without clarity on the
key factors and their quantitative impact on position bias, the efficacy of current and future methods
remains uncertain.

For instance, Li et al. (2023d) proposed a PORTIA approach that addresses the position bias to a
large extent, receiving a 80.99% Fixed Coverage (the percentage of positionally inconsistent orig-
inal assessments that are later corrected by PORTIA) for GPT-4 in a relation-based evaluation on
8 MTBench answer pairs, improving consistency from 93.44 % to 97.03%. However, the extraor-
dinarily high consistency of the original evaluation may imply that the choice of answer pairs may
be biased in terms of answer quality gap, a factor that our study proves to be significantly impact-
ful. In other words, if the quality between the two model responses differs considerably, the LLM
judges will make little position bias during judgment and hence is easy to calibrate. This example
illustrates how lacking a comprehensive understanding of the factors affecting position bias can lead

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

to overestimating or misjudging the effectiveness of methods proposed to resolve it and improve the
performance of LLM-as-a-Judge.

Missing analysis for position bias Besides, the positional preference direction aspect of position
bias remains underexplored. Positional preference refers to the specific positions an LLM judge fa-
vors when position bias is evident. For instance, if an LLM judge consistently favors the responses
that appear first in the prompt, it exhibits a preference for the first position. Our study denotes
primacy-preferred and recency-preferred to describe biases toward the first and second positions, re-
spectively. We integrate the measurement by formally defining positional fairness score to quantify
the extent of a judge model’s preference towards certain positions.

While prior research includes some positional preference results (Zheng et al., 2024b; Wang et al.,
2023b; Zhu et al., 2023b; Li et al., 2023c; Liusie et al., 2024), none have conducted a detailed
analysis. They focus primarily on positional consistency in relation to position bias, while we regard
positional preference as an equally crucial component that needs to be examined, understood, and
enhanced in future work.

Therefore, we propose that mitigating the position bias of LLM-as-a-Judge requires a simultaneous
improvement in both positional consistency and positional fairness. A positionally consistent (high
positional consistency) and positionally fair (nearly equal preference on primacy and recency when
position bias occur) LLM judge is undoubtedly preferable. However, a trade-off between consis-
tency and fairness/preference often occurs in practice. Previous studies that have provided results
on positional preference have all shown that even state-of-the-art (SOTA) LLM judges struggle with
both positional inconsistency and clear positional preferences.

Apart from that, previous studies have yet to examine how stable LLM judges are across repe-
titions. MLLM-as-a-Judge (Chen et al., 2024a) conducts repeated experiments but then takes an
average/mode of the judgment only to make the evaluations more robust and reliable, without a
focus on the repetitively stable judgments. In comparison, we investigate the repetition stability to
determine whether position bias is solely influenced by the prompt’s positional information and the
judge’s intrinsic properties or can be partly attributed to judgment randomness. If the judgments ex-
hibit randomness over repetitions, then the position bias overlaps with repetition bias, complicating
the issue and potentially invalidating previous findings.

B.4 SUMMARY OF PRIOR WORK

To summarize, LLM-as-a-Judge has a large potential in alternating human judges on a wide range of
tasks, in particular subjective evaluation, owing to its cost-effectiveness, high agreement with human
judgments, reproducibility, and scalability. However, it suffers from various biases, most notably
position bias, which is prevalent across different evaluation tasks, models, and judgment types. Not
only is it a type of bias that significantly hinders the improvement and promotion of applying LLM-
as-a-Judge, but it is also difficult to solve due to its complexity and lack of understanding in the
community.

Existing solutions proposed to address this issue may be ineffective or uncertain in efficacy due to
the unclear impact and nature of influencing factors. Additionally, whether the position bias is an
essential bias or mere random variation has not been validated from prior works. The positional
preference side, reflecting the positional fairness of the LLM judge, also requires comprehensive
analysis. In a nutshell, a comprehensive understanding of the position bias of LLM-as-a-Judge is
crucial to validate existing and future approaches to address this important problem.

C LLM AGREEMENT ANALYSIS

Besides the exploration of position bias with a broad lens by average PC and PF , instance-wise
agreement between LLM judges is also insightful. Even two judges with the same PC and PF
scores may not reach consensus on each instance. Therefore, this session investigates (1) what
percentage of a set of evaluations do two LLM judges agree on each other? (2) how do the choices
of all judges on an instance vary?

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) (b)

(c) (d) (e)

Figure 5: Disagreement Analysis and Mutual Agreement Heatmap of LLM judges on MTBench
and DevBench. The blue bars of Figures (a) and (b) represent the number of instances with certain
disagreement values, and the red cumulative curve displays the cumulative count and corresponding
percentage over the benchmark dataset. The heat maps of Figures (c)(d)(e) marked higher mutual
agreement values with a brighter color.

C.1 MUTUAL AGREEMENT & FAMILIAL PROPERTY

We compute the LLM judges’ mutual agreement on the instances to explore how “alike” or consis-
tent they are across a set of evaluations. We denote two judges agree on an instance if their judgment
choices are identical. Then the mutual agreement between two judges on a benchmark is defined as
the proportion of their agreed instances. Fig. 5(c)(e) displays the mutual agreement heatmap for all
judges on MTBench and DevBench, respectively. For MTBench that utilizes the 3-option mode, we
also consider the “without tie” agreement since two judges are less disagreed when one chooses {C}
while the other prefers a certain solution, compared to the case when they prefer different solutions.
The “without tie” agreement heatmap of the twelve judges on MTBench is explored in Fig. 5(d).

The heatmaps reveal clear “familial patterns” in the judgment choices of these LLM judges. For
instance, the GPT-4, GPT-4-Turbo, and GPT-4o series exhibit high agreement on MTBench, achiev-
ing over 70% with ties included and over 85% without. GPT-3.5-Turbo didn’t agree with the GPT-4
series and o1-mini for around 40% of the instances, indicating that they are considerably different
in judging capabilities.

For Claude-3 models, similar familial patterns could be observed. Claude-3-Opus highly agrees
with Claude-3.5-Sonnet, probably due to their similar capabilities, while it also highly agrees with
Claude-3-Sonnet, likely due to their similar model structure within the same series. Interestingly,
Claude-3.5-Sonnet and Claude-3-Sonnet do not exhibit a significantly high agreement, indicating
that the upgrade from series 3 to 3.5 considerably impacts their judging capabilities.

Gemini models exhibit rather low mutual agreement and “familial property” is minimal, but the
most capable Gemini-1.5-pro aligns more closely with other capable models like the GPT-4 series
and Claude-3-Opus.

These patterns suggest that familial similarities, possibly stemming from analogous model sizes,
training data, and strategies, influence the positional preferences of these judges. In particular,
the LLM judges could be primarily grouped by their capabilities; when judging capabilities are
comparable, models within the same family series share a higher mutual agreement than across
families.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Identifying such groupings provides valuable insights, as comparisons between judges from different
groups, both adept at assessing LLM-generated content, can reveal distinct position biases and enrich
our understanding of this phenomenon.

C.2 DISAGREEMENT & BENCHMARK DESIGN INSIGHT

Since the mutual agreement between LLM judges is not perfect and usually a considerable propor-
tion of instances are difficult for them to reach a consensus, disagreement analysis becomes crucial
and insightful. Therefore, we define the disagreement of an evaluation instance to be the number
of judgments different from the majority. By this definition, an instance with all judges reaching a
consensus on the better solution will have a disagreement of 0; in contrast, an instance where judg-
ments are widely varied will result in a high disagreement. For our study where twelve judges are
investigated, the maximum disagreement of an MTBench is 8, accounting for the 4{A}-4{B}-4{C}
choice pattern by 3-option mode. On the other hand, for DevBench instances, the maximum possible
disagreement is 6, representing the 6{A}-6{B} judgment distribution for the 2-option mode.

The distributions of instances with different disagreement values on MTBench and DevBench are
shown in Fig. 5(a) and Fig. 5(b), respectively. From our disagreement analysis, at least 75% of
the judges reached a choice consensus on more than half of the instances on both benchmarks.
These are likely easy-to-evaluate instances, and the reliability of LLM judgments is enhanced by
majority voting. In comparison, the instances with the highest disagreement are likely the ones that
are difficult to evaluate and where the position bias is most likely to occur. However, luckily, these
instances are rare, occupying only 0.03% and 0.07% of MTBench and DevBench respectively. In
other words, majority voting of multiple capable LLM judges could be practically useful for over
99% of evaluation instances on both benchmarks.

Moreover, if we roughly consider the disagreement value of instances as their difficulty for judging,
then Fig. 5(a) and Fig. 5(b) exhibit a balanced distribution of instances with varied difficulty. This
is because, except for the instances with the highest disagreement, the numbers of other instances
with varied disagreement do not vary significantly, indicating a smoothly increasing difficulty curve
across the benchmark datasets.

To summarize, the practical implications of the disagreement analysis are three-fold. First, it helps
identify the instances that are difficult or trivial to judge, benefiting benchmark designs to control
the difficulty of evaluation by managing the number of these instances across the dataset. Second, it
assists in filtering out instances where majority voting of LLM evaluators are likely to offer reliable
judgments without direct comparison with human-annotated evaluations, enhancing the scalability
of LLM judges especially when human evaluations are costly. In other words, if one-shot judgments
from only one LLM judge are not enough reliable, multiple capable LLMs and the majoring voting
strategy could be employed to make the evaluation more convincing. Last but not least, disagreement
analysis provides a convenient way to make the difficulty variance of instances varied across the
dataset tangible. Since the difficulty of an evaluation instance is closely related to the quality gap
between the two solutions and hence position bias, the investigation of the instances where most
judges particularly disagree with one another could provide more insights and inspiration for future
benchmark designs and potential mitigation strategies for position bias.

D MORE DISCUSSIONS ON ANSWER QUALITY GAP

Intuitively, answer pairs with larger quality gaps are easier for LLM judges to evaluate, as one answer
is clearly superior. Therefore, we expect LLM judges to exhibit weaker position bias in such cases.
This motivates us to quantify the answer quality gap and investigate its impact on position bias. The
quantification utilizes the overall win rate (owr) of a candidate model (i.e., answer provider) on
the other to compute the quality gap. For a set of questions on a certain task and the corresponding
solutions by two candidate models, an LLM judge’s evaluations would pick out the candidate winner.
For the position consistent judgment instances, we can count the number of a candidate’s wins and
ties, denoted as Cw and Ct respectively. On the other hand, following the methodology introduced
by Zheng et al. (2024b), we consider the inconsistent judgment pairs as a tie for both candidates,
whose counting number is denoted as CI . This follows the intuition that it is difficult to strictly

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

pick out a better one between two responses with similar quality, hence increasing the likelihood of
position bias.

Therefore, considering both cases, we define the overall win rate (owr) of a candidate’s solution
over the other as owr = 1

n [Cw + 1
2 (Ct + CI)], where n is the total number of judgment pairs

involving the two candidate solutions in both original and swapped settings. Then the quality gap
(δq) is calculated as δq = |owr − 0.5|, as 0.5 is the exact tie case for the win rate ranging from
0 to 1. We prefer the overall win rate over the consistent win rate (calculated by Cw

nC
, where

nC is the number of position consistent judgment pairs) to quantify δq to mainly address the data
sparsity issue. If the proportion of position inconsistent judgments becomes high, the available data
becomes sparse and nC becomes small. In the extreme case, where all judgments are inconsistent,
nC is 0 and the consistent win rate is not even computable, making the measurement inaccurate and
impractical. In contrast, the overall win rate effectively captures the “comparable quality” scenario
by considering “inconsistency-as-tie” and ensuring all data points contribute to the quantification of
the difference between answer pairs in quality.

E MORE RESULTS OF POSITION BIAS AND ANSWER QUALITY GAP
MEASUREMENT

As shown in Fig. 4(a) and (b), considering all judges together, a larger answer quality gap generally
leads to better positional consistency and fairness. In this session, we explore whether the discovery
is consistent for each individual judge. Same as Section 2.2, we apply the overall win rate to reflect
the answer quality gap for visualization.

(a) (b)

Figure 6: Position Consistency and Preference Fairness vs. overall win rate for each judge on
MTBench. Figure (a) refers to the relationship investigation of PC and figure (b) for PF .

As shown in Fig. 6 (a), the “parabolic shape” is observed for all individual judges, indicating that
the argument “a higher answer quality gap generally results in higher positional consistency” applies
to all models. However, Fig. 6 (b) reveals that the positional fairness is more judge-dependent and
the impact of the answer quality gap is neglectable for certain judges. For example, while Claude-
3-opus and Claude-3-sonnet exhibit conspicuous “parabolic shape”, GPT-4 and GPT-3.5 present
nearly linear curves. In other words, while the former models align with the general tendency that
a larger answer quality gap improves positional fairness, the latter ones preserve fairness regardless
of the answer quality gap. This further demonstrates the necessity to investigate positional fairness
in addition to consistency when evaluating a judge model’s position bias.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F VARIABLE SELECTION AND TESTS

F.1 BIDIRECTIONAL STEPWISE REGRESSION WITH AIC

Bidirectional stepwise regression is a combination of forward selection and backward elimination
techniques. It iteratively refines the model by adding or removing predictors based on a statistical
criterion—commonly the Akaike Information Criterion (AIC). The objective is to select a model
that balances goodness of fit and complexity, aiming for the lowest AIC value.

The AIC is given by:

AIC = 2k − 2 log(L), (4)

where L is the likelihood of the model and k is the number of parameters in the model, including the
error variance σ2. For a linear regression model with independent and identically distributed (iid)
errors, N(0, σ2), fitted to n observations, the log-likelihood can be written as:

log(L) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

ê2i , (5)

where êi is the residual for the ith observation, and σ2 is the variance of the errors. The AIC, in this
context, becomes:

AIC = 2k + n log(2π) + n log(σ2) +
1

σ2

n∑
i=1

ê2i . (6)

This form of the AIC balances the goodness of fit (as reflected by the residual sum of squares) and
model complexity (as represented by k).

The operation of Bidirectional stepwise regression starts with either no predictors (forward selection)
or all predictors (backward elimination), where the model iteratively adds or removes variables.
Each step evaluates the impact on the AIC score. In forward selection, variables are added one
by one, starting from the null model, such that the addition of each variable results in the largest
decrease in AIC. In backward elimination, all variables are included in the model initially, and
variables are removed one at a time, with the variable whose removal causes the smallest increase
in AIC being dropped.

At each iteration, the change in AIC is computed as ∆AIC = AICnew − AICcurrent, where AICnew
refers to the AIC after adding or removing a variable, and AICcurrent is the AIC of the current model.
If ∆AIC < 0, the model is improved by the addition or removal of the variable. The process
terminates when neither adding nor removing variables results in a lower AIC, signifying that the
most parsimonious model, based on AIC, has been reached.

F.2 TEST RESULTS

We operated bidirectional stepwise regression on both benchmarks individually and together to iden-
tify the factors that are significantly contributing to position bias. Specifically, the variables include
lengths (input, output, and prompt), answer quality gap, LLM judges, candidate models, and task
categories to predict position consistency and preference fairness respectively. Table 5, 6 records the
results of final step in stepwise regression for predicting PC and PF , respectively. Table 7, 8 serves
for DevBench, and Table 3, 4 is conducted on the integrated set of both benchmarks. The impact
of variables on the model is ranked from highest to lowest, from bottom to top. Removed variables
listed as None indicate the full model at this given step.

Through benchmark testing, we verified that LLM judges, task categories, and the answer quality
gap significantly contribute to position bias in terms of both position consistency and preference
fairness. These findings align with our empirical results, showing that position bias varies notably
by judge and task, with the answer quality gap being a key influencing factor. The extent of this

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

impact is reflected by the magnitude of change in AIC when the given variable is removed. It is
worth noting that while task output length remains a significant predictor for PF and PC in both
benchmarks, the change in AIC magnitude after removing this variable is very minimal. This is
consistent across both benchmarks individually and combined. We therefore conclude that, although
position bias is influenced by task output length, this dependency is minimal.

Table 3: Final results of stepwise model selection for both benchmarks: Position Consistency

Removed Variables DF Sum of Sq RSS AIC

None 163.75 -18370
Task 20 2.832 166.59 -18319

Candidate 38 4.472 168.23 -18303
Quality gap 1 21.953 185.71 -17703

Judge 13 55.417 219.17 -16846

Table 4: Final results of stepwise model selection for both benchmarks: Preference Fairness

Removed Variables DF Sum of Sq RSS AIC

None 254.28 -16103
Task output length 1 0.836 255.12 -16088

Quality gap 1 11.339 265.62 -15873
Task 21 16.177 270.46 -15817

Judge 13 82.069 336.35 -14641

Table 5: Final results of stepwise model selection for MTBench: Position Consistency

Removed Variables DF Sum of Sq RSS AIC

None 61.974 -13312
Task output length 1 0.0553 62.029 -13311

Candidate 29 1.6474 63.621 -13282
Task 7 1.5304 63.504 -13244

Judge 13 15.3637 77.338 -12594
Quality gap 1 15.6206 77.594 -12559

Table 6: Final results of stepwise model selection for MTBench: Preference Fairness

Removed Variables DF Sum of Sq RSS AIC

None 129.00 -10909.2
Quality gap 1 1.931 130.93 -10861.3

Task 7 9.295 138.29 -10689.4
Judge 13 58.847 187.85 -9672.5

Table 7: Final results of stepwise model selection for DevBench: Position Consistency

Removed Variables DF Sum of Sq RSS AIC

None 55.382 -6940.2
Task output length 1 0.257 55.638 -6933.2

Candidate 9 1.514 56.896 -6905.4
Quality gap 1 13.128 68.510 -6525.3

Judge 13 84.760 140.141 -5146.6

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: Final results of stepwise model selection for DevBench: Preference Fairness

Removed Variables DF Sum of Sq RSS AIC

None 60.104 -6753.9
Task output length 1 0.061 60.165 -6753.9

Candidate 9 0.731 60.834 -6748.2
Task 13 1.305 61.408 -6737.8

Quality gap 1 1.783 61.886 -6698.6
Judge 13 80.875 140.979 -5108.9

G DEVBENCH

This session includes a similar baseline comparison analysis on DevBench as on MTBench. As
shown in Fig.7, position bias is judge-dependent and task-dependent on DevBench as well, as PC
and PF vary significantly across judges and tasks. Similarly, although GPT-4 stands as the baseline
model with a generally high PC across tasks, certain models achieve comparable or superior perfor-
mances on certain tasks. For instance, for architecture design evaluations, GPT-4-Turbo, GPT-4o,
and Gemini-1.5-pro all surpass GPT-4. Gemini-1.5-pro is especially outstanding, also exceeding
GPT-4 in uml class evaluations. However, GPT-4 is still the best-performing model on UML se-
quence evaluations, with only GPT-3.5-Turbo can achieve comparable performance regarding cer-
tain detailed metrics (e.g., interaction complexity). These discoveries, aligning with the findings on
MTBench, further necessitate the need to consider the trade-offs between positional consistency and
fairness when selecting the optimal judge model for certain tasks.

(a)

(b)

Figure 7: Baseline comparisons of judges across tasks on DevBench. An asterisk marks the statis-
tical significance by Student’s t-tests. Figure (a) includes a radar chart comparison by family and
an overall baseline bar chart comparison of PC. The baseline model is chosen to be GPT-4 for its
generally superior performances. Figure (b) demonstrates the PF score of evaluated judges across
tasks where the baseline is PF = 0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

H EXPERIMENT SETTINGS

This session specifies more detailed information about the judges, answer-generating models, tasks,
and prompt templates used in this study. We choose to evaluate MTBench and DevBench for the
following reasons: (1) all necessary information about the benchmark models, tasks, and questions
is publicly available, making modifications convenient (2) they include a wide variety of answer-
generating models, tasks, and task questions for a comprehensive evaluation (3) their human evalu-
ations validated the reliability of state-of-the-art judging models (GPT-4 and GPT-4-Turbo) on their
evaluation instances, hence model untested by prior work, if reaching high agreement with these
validated judges, can be perceived reliable as well.

H.1 JUDGES, CANDIDATES, AND TASKS

Judge In this study, we choose seven GPT, four Claude, and three Gemini models as the judges.
The specific versions for API call are specified as follows: o1-mini-2024-09-12 for o1-mini, gpt-
4o-2024-05-13 for GPT-4o, gpt-4-1106-preview for GPT-4-Turbo, gpt-4-0613 for GPT-4, and gpt-
3.5-turbo-1106 for GPT-3.5-turbo; claude-3-5-sonnet-20240620, claude-3-opus-20240229, claude-
3-sonnet-20240229, and claude-3-haiku-20240307 for Claude series. The other model names and
versions are as they are.

Model The reference (or baseline) answer-generating models are vicuna-13b-v1.3 for MTBench
and human for DevBench. They are chosen to ensure a baseline quality of responses and an ex-
pected widely spread quality gap across evaluations. The other models that are compared to the
reference models, namely “Model” in our context, are listed as follows.

• MTBench (30): alpaca-13b, baize-v2-13b, chatglm-6b, claude-instant-v1, claude-v1,
dolly-v2-12b, falcon-40b-instruct, fastchat-t5-3b, gpt-3.5-turbo, gpt-4, gpt4all-13b-snoozy,
guanaco-33b, guanaco-65b, h2ogpt-oasst-open-llama-13b, koala-13b, llama-13b, mpt-30b-
chat, mpt-30b-instruct, mpt-7b-chat, nous-hermes-13b, oasst-sft-4-pythia-12b, oasst-sft-7-
llama-30b, palm-2-chat-bison-001, rwkv-4-raven-14b, stablelm-tuned-alpha-7b, tulu-30b,
vicuna-33b-v1.3, vicuna-7b-v1.3, wizardlm-13b, wizardlm-30b

• DevBench (10): codellama-7b-instruct, codellama-13b-instruct, codellama-34b-instruct,
deepseek-coder-1.3b-instruct, deepseek-coder-6.7b-instruct, deepseek-coder-33b-instruct,
gpt-3.5-turbo-1106, gpt-4-0125-preview, gpt-4-0613, gpt-4-1106-preview

The model names are exactly what MTBench Zheng et al. (2024b) and DevBench Li et al. (2024)
used in their studies. That is why for GPTs, DevBench specifies the exact version (e.g., gpt-4-0613)
while MTBench doesn’t (e.g., gpt-4). In this study, we directly use the provided answers of these
models to the task questions to form answer pairs and queries for the LLM judges.

Task For tasks, we also follow the original studies of these two benchmarks, except for DevBench
we separate the gerenal metrics into detailed ones and considered them as different tasks. In this
sense, our study experiments on the following tasks to provide a comprehensive study on the positon
bias of LLM-as-a-Judge:

• MTBench (8): coding, extraction, humanities, math, reasoning, roleplay, stem, and writ-
ing.

• Devbench (14):
– UML class (4): cohesion and decoupling, complexity, practicability, and faithfulness
– UML sequence (5): cohesion and decoupling, interaction complexity, practicability,

uniformity and integration, and faithfulness
– architecture design (5): conformance, design and coding, practicability, unifor-

mity and integration, and faithfulness

H.2 PROMPT SETTINGS

We follow the original prompt settings of MTBench and DevBench in our study of pairwise com-
parative LLM-as-a-Judge.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Though written differently, these prompts all share same key components:

• A system prompt explaining the judging task and the role the LLM should be playing.
• Emphasized “should” and“shouldn’t”s.
• A prompt structure with placeholders for specific questions and model answers
• A specified output format for later judgment extraction
• Chain-of-Thought Wei et al. (2022) prompts requiring the LLM judge to provide reasons

for its judgment

The detailed prompt templates are specified below.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

I REPRODUCIBILITY

Our experiments mainly depend on API. Code will be released upon acceptance.

31

	Introduction
	Methods & Defintions
	Evaluation Metrics
	Factors affecting position bias

	Experiments
	Experiment Settings
	Empirical Results and Interpretations

	Main Findings
	Conclusion
	Contribution & Limitation
	Related Work
	LLM-as-a-Judge
	Position Bias
	Deal with Position Bias
	Summary of Prior Work

	LLM Agreement Analysis
	Mutual Agreement & Familial Property
	Disagreement & Benchmark Design Insight

	More Discussions on Answer Quality Gap
	More Results of Position Bias and Answer Quality Gap Measurement
	Variable Selection and Tests
	Bidirectional Stepwise Regression with AIC
	Test results

	DevBench
	Experiment Settings
	Judges, Candidates, and Tasks
	Prompt Settings

	Reproducibility

