
Under review as a conference paper at ICLR 2022

WASSERSTEIN WEISFEILER-LEHMAN SUBTREE
DISTANCE FOR GRAPH-STRUCTURED DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Defining a valid graph distance is a challenging task in graph machine learning be-
cause we need to consider the theoretical validity of the distance, its computational
complexity, and effectiveness as a distance between graphs. Addressing the short-
comings of the popular Weisfeiler-Lehman (WL) test for the graph isomorphism
problem, this paper proposes a novel distance between graph structures. More
specifically, we first analyze the WL algorithm from a geometric point of view
and argue that discriminating nodes based on only the consistency of categorical
labels do not fully capture important structural information. Therefore, instead
of using such categorical labels, we define a node distance between WL subtrees
with tree edit distance and propose an efficient calculation algorithm. We then ap-
ply the proposed node distance to define a graph Wasserstein distance on tree edit
embedding space exploiting Optimal Transport framework. To summarize, these
two distances have been proposed at the node level and graph level, respectively.
Numerical experimentations on graph classification tasks show that the proposed
graph Wasserstein distance performs equally or better than conventional methods.

1 INTRODUCTION

Many real-world data can be represented as graph structures. Hence, generalizable graph machine
learning models have a wide range of applications. To build such graph machine learning models,
we need to accurately capture the feature information of graphs and the inherent structural infor-
mation of graphs. Recently, Graph Neural Networks (GNNs) have achieved remarkable results in
knowledge graphs (Wang et al., 2019; Hu et al., 2020) and recommender systems (Ying et al., 2018)
with superior graph embedding capability. However, they cannot describe structural information
due to their near-exclusive focus on feature marginals. This is also the case for other graph em-
bedding methods using probabilistic search algorithms, such as DeepWalk (Perozzi et al., 2014)
and Node2vec (Grover & Leskovec, 2016). Although they successfully extract network information
such as social relationships, they only address the sequential connections of nodes visited in a prob-
abilistic manner and are inadequate for capturing structural information. Furthermore, most of them
cannot leverage node attributes and have drawbacks in embedding capability (Deng et al., 2020). On
the other hand, some methods are specifically designed for measuring structural differences, such
as graph edit distance (Gao et al., 2010), Gromov-Wasserstein distance (Memoli, 2007), and Fused
Gromov-Wasserstein (FGW) distance (Vayer et al., 2020). However, because of the NP-hardness of
the problems, their approximate solutions require at least O(n3) for the input nodes (Riesen, 2015;
Peyré et al., 2016), which limits their practical applications. Nevertheless, is should be emphasized
the study of structural information and the distance between graph structures received less research
attention in recent years. Also, the current general neural network model cannot yet handle this
problem.

To this end, we focus on comparison of graph structures. Specifically, we dive into the Weisfeiler-
Lehman (WL) kernel (Shervashidze et al., 2011) and Wasserstein WL (WWL) kernel (Togninalli
et al., 2019). We then propose a more effective way to obtain structural information, and subse-
quently define a new distance between graph structures. Graph kernels (Vishwanathan et al., 2010)
are kernel functions that compute inner products on graphs, and most of them are constructed based
on theR-convolutional theory (Haussler, 1999), which measures the graph similarities by comparing
their subgraphs. In order to capture key subgraphs, various types of graph decomposition methods
have been proposed in the literature of graph kernels. Among them, the WL kernel is known as one

1

Under review as a conference paper at ICLR 2022

of the most reliable and consistent methods to provide high accuracy on graph classification tasks.
Our key insight is that, from a geometric perspective, the WL algorithm compresses the structural
information of subgraphs with hash values, and this results in describes of the measurement power
of structural similarities and differences. Hence, using the WL algorithm to construct a subgraph,
a.k.a. WL subtree, we apply it for the peripheral structural information of each node. By defining the
distance between WL subtrees, we overcome the issue that WL only distinguishes whether nodes
are the same or not and cannot define a valid distance between nodes.

In order to define a valid distance between nodes, our framework first constructs a WL subtree,
which is a rooted, unordered tree for each node. Then, we use tree edit distance to define the node
distance. Considering that the edit distance between unordered trees is a MAX SNP-hard problem,
we adopt an approximate solver (Garofalakis & Kumar, 2005) to solve it. As a condition for using
this approximate solver, we must enumerate the patterns of all complete subtrees for given trees.
For this purpose, we propose an efficient algorithm for enumerating all the patterns based on the
Schwartz-Zippel lemma. Furthermore, we define the graph Wasserstein distance by considering
the distance between each node of graphs on tree edit embedding space, i.e., the tree edit distance
between WL subtrees, as the ground distance in Optimal Transport (OT).

Our main contributions are summarized as follows:

1. We show that the hash update mechanism of the WL algorithm loses structural information
of the graph. Instead, we propose to use the WL subtree as node feature.

2. We design an efficient algorithm to hash all complete subtrees of WL subtrees, allowing
the approximate tree edit distance to be used to define the node distance.

3. We construct the first graph Wasserstein distance that reflects the tree edit distance to the
graph level and focuses on the differences in structural information between graphs.

We designate our proposed distance measure as the Wasserstein Weisfeiler-Lehman Subtree (WWLS)
distance and show its effectiveness in experiments on graph classification tasks. As numerical eval-
uations reveal, WWLS reaches a level of performance comparable to state-of-the-art graph kernels
and distance measures on several real-world benchmark datasets.

2 RELATED WORK

The Weisfeiler-Lehman (WL) test, originally an approximate solution to the graph isomorphism
problem, has gained much attention in the graph machine learning community due to its linear com-
putational complexity and the high accuracy of the WL kernel (Shervashidze et al., 2011), for graph
classification tasks. Noteworthy, the WL algorithm is, in fact, a special case of message passing in
Graph Neural Networks (GNNs) and has been proven as the upper limit of message passing GNNs
in terms of theoretical expressive power (Xu et al., 2019). In addition, most realistic graph data has
node and/or edge attributes so that the WL test can work on almost all graphs in practice (Balcilar
et al., 2021). Togninalli et al. (2019) combined WL algorithm and Wasserstein distance (Villani,
2009) to define a graph Wasserstein distance. Furthermore, he constructed a kernel function named
Wasserstein Weisfeiler-Lehman (WWL) kernel. WWL often provides better classification accura-
cies on real-world benchmark datasets compared to other graph kernels; however, it has a critical
flaw when dealing with categorical labels: node features are sequences of node labels obtained
by WL algorithm, and the Hamming distance between them defines the distance between nodes.
According to the node label update mechanism of the WL algorithm, different inputs will yield a
different new label. Thus, for two nodes with different initial labels, the distance between them is al-
ways zero. Moreover, considering that in practice, nodes are updated only a few times, the Hamming
distance can only take on a few different values, which leads to the loss of structural information.
Overcoming this deficiency is a priority in our research.

3 PRELIMINARIES

We begin by introducing some important mathematical notations, as well as the notations for graphs
and trees that we use in this paper. In addition, we provide the necessary background knowledge on
the Weisfeiler-Lehman algorithm and the Wasserstein distance.

2

Under review as a conference paper at ICLR 2022

The bold typeface lower-case and upper-case letters such as x and X represent a vector and a matrix,
respectively. Xi,j represents the element at (i, j) of X. Rn+ is the nonnegative n-dimensional vector,
and Rm×n+ denotes the nonnegativem×n size matrix. 4n stands for the probability simplex with n
bins. δx is the Dirac function at x. Also, 1n = (1, . . . , 1)

T ∈ Rn. {} indicates the set that does not
allow duplication of elements. On the other hand, {{}} indicates the multiset that allows elements to
be repeated. G is graph-structured data with a set of nodes V and a set of edges E ⊆ V2, denoted as
G(V, E). Assume that the edges of G are undirected and that the number of nodes in G is nG = |V|.
Furthermore, the neighborhood of a node v in G is written as NG(v) = {u ∈ V | (v, u) ∈ E}.
deg(v) is the degree of node v. Node v may also have a categorical label and/or continuous attribute
vector, denoted by `(v) ∈ R and xv ∈ Rd, respectively, where d is the dimension of the node
feature. T is a tree, and we specifically refer to a rooted, unordered WL subtree. For a tree T whose
root node is v, it is denoted by T (v). A non-root node v ∈ V(T) has a parent denoted by parent(v),
and v is also called a child of parent(v). A subtree T ′ of T is complete if, for node v ∈ V(T),
parent(v) implies v ∈ V(T ′), and we write t for such a complete subtree. Also, for complete subtree
t whose root node is v, it is denoted by t(v). The sets of nodes, edges, and leaves of T are denoted
by V(T), E(T), and leaf(T), respectively. The depth of node v in T is denoted by depT (v). Lastly,
an isomorphism from T1 to T2 is denoted by T1 ≈ T2. (resp. of a complete subtree t).

Weisfeiler-Lehman algorithm. The graph isomorphism problem is the computational problem
of determining whether two finite graphs are isomorphic, it is known as an NP-intermediate prob-
lem (Babai, 2016; Takapoui & Boyd, 2016). The Weisfeiler-Lehman (WL) test is a linear-time
approximate solution to the problem, and its validity has been verified on most graphs. It is ac-
complished by aggregating the labels of the nodes and their neighbors to create ordered strings and
then hashing these strings to create new node labels. As the number of iterations increases, these
labels will represent a larger neighborhood of each node, allowing for more extended substructures
to be compared (Togninalli et al., 2019). The WL algorithm follows a recursive scheme that updates
each node label multiple times. Consider a graph G(V, E) and let `(k)(v) be the node label for each
node v ∈ V at the k-th iteration of the WL algorithm, especially, let `(0)(v) be initialized with a
categorical label, then the update formula for each node is defined as

`(k+1)(v) = HASH
(
`(k)(v), {{`(k)(u) | u ∈ NG(v)}}

)
. (1)

Definition 1 (Wasserstein distance). The Wasserstein distance stems from the Optimal Transport
(OT) problem, which attempts to calculate the minimum transportation cost by finding an optimal
transportation plan between two probability distributions. Since the original Monge’s problem is
difficult to solve due to its strict conditions, the existing OT usually refers to the Monge-Kantorovich
problem. The discrete case is defined as below.

Let 4m = {a ∈ Rm+ |
∑m
i=1 ai = 1} and 4n = {b ∈ Rn+ |

∑n
j=1 bj = 1} are two simplexes

of the histogram with m and n on the same matrix space. Their probability measures are α =∑m
i=1 aiδxi and β =

∑n
i=1 bjδyj , respectively. C ∈ Rm×n+ is a ground cost matrix, especially

where Ci,j represents the transportation cost between bin i and j (location xi and yj). When the
ground cost C is the distance, the overall minimum transportation cost between α and β is defined
as p-Wasserstein distance, which is given by

Wp(α, β;C) =

 min

P∈U(a,b)

m∑

i=1

n∑

j=1

(Ci,j)
pPi,j

1
p

, (2)

where p ∈ [1,∞), U(a,b) = {P ∈ Rm×n | P1n = a and PT
1m = b}, and P is a cou-

pling matrix that describes the transportation plan. 1-Wasserstein distance is also called Earth
Mover’s Distance (EMD). In general, the computation of the Wasserstein distance has a complexity
of O(n3 log(n)) when n = m (Pele & Werman, 2009). Cuturi (2013) proposed Sinkhorn’s algo-
rithm, an approximate solver for Eq. (2), which reduces the complexity to almostO(n2). Moreover,
Sinkhorn’s algorithm is GPU friendly, which can further speed up the computational process.

3

Under review as a conference paper at ICLR 2022

Figure 1: Weisfeiler-Lehman subtree with blue node as root, when the number of iterations is 3.

4 WASSERSTEIN WEISFEILER-LEHMAN APPROACH FOR STRUCTURED DATA

4.1 GEOMETRIC PROPERTIES OF WEISFEILER-LEHMAN ALGORITHM

The Weisfeiler-Lehman (WL) algorithm adopts a recursive node label update of Eq. (1). On the
other hand, a geometric analysis constructs a rooted, unordered tree called the WL subtree at each
node. Fig. 1 is an illustration of it. All WL subtrees are balanced trees whose height is always equal
to the number of iterations. With the increase of the number of iterations, the tree’s height gets
higher, and the new label obtained each time can be regarded as the hash value corresponding to
the newly constructed tree. More importantly, the WL subtree has the structural information around
the corresponding node. By repeating the WL algorithm k times for node v, the WL subtree can
obtain the structural information of the subgraph within k-hop from v. If k is sufficiently large, the
WL subtree will contain the global information from the whole graph structure. However, many
experiments have shown that GNNs and the WL-based kernels have the highest accuracy on graph
classification tasks when k takes a small value such as one in the range [2, 4]. Even for other tasks,
such as node classification and edge prediction, GNNs also take a small k. Hence, this empirically
shows that the local structure is more important in many cases.

Next, we consider the WL algorithm in terms of graph isomorphism. An isomorphism from graph
G1(V1, E1) to graph G2(V2, E2) refers to the existence of a one-to-one mapping from V1 to V2. It is
difficult to determine whether the mapping exists. We assume that if we can somehow successfully
represent the structural information around each node, we can determine the consistency between
two nodes with high probability. According to our analysis in the previous paragraph, the WL
algorithm constructs WL trees in a geometric sense, including the structural information within
each node k-hop. Since we want to know only the consistency of nodes, each WL tree is hashed
to a real value, efficiently determining whether the nodes are the same by comparing corresponding
hash values. As a result, the WL test can determine whether two graphs are “isomorphic” or not
by focusing on the types of node labels and their counts. While the WL test had great success with
the graph isomorphism problem, capturing the structural information between graphs is another
problem. In the WL algorithm, only the discrete measure can measure the difference between two
nodes, and consequently, it is impossible to define a valid node distance.

The WL kernel uses inner product of the counts of all node labels to measure the graph similarity; in
the case of WWL’s categorical embedding, it uses the Hamming distance between two sequences of
node labels to measure node dissimilarity. Since Eq. (1) is a hash function, if two labels are different
at iteration k0 (where k0 ≥ 0), their labels obtained by subsequent updates at iteration k′ > k0
are also different. In other words, neither WL nor WWL works well when comparing two graphs
with significantly different structures because the obtained node labels will be almost different. In
addition, for the WWL, the sequence length must equal to iteration number k+1; thus, the Hamming
distance only takes on a few different values, which means that the ground distance between nodes
on the embedding space is only defined by several values. The practical effect of OT depends on the
ground distance, which in this case results in coarse pairwise matching. These are the shortcomings
of the method designed along the lines of the WL test.

4

Under review as a conference paper at ICLR 2022

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

α =

n∑

i=1

aiδxi and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

left

right

1

v1 v2

Figure 2: T (v1) and T (v2) are WL subtrees whose root nodes are v1 and v2, respectively. φ(T (v1))
and φ(T (v2)) are feature vectors for trees. The original figure was created by Fukagawa et al.
(2009).

4.2 TREE EDIT DISTANCE BETWEEN WEISFEILER-LEHMAN SUBTREES

Instead of measuring node dissimilarity with node labels obtained from the WL algorithm, we focus
on the WL subtrees to measure the differences between tree structures. Specifically, we define the
distance between WL subtrees of nodes v1 and v2 using the tree edit distance. The tree edit distance
is MAX SNP-hard, which makes it hard to apply directly; thus, we use an approximate solver that
embeds the ordered edit distance into the L1-normed vector space (Garofalakis & Kumar, 2005;
Fukagawa et al., 2009). To be precise, for all complete subtrees of T (v1) and T (v2), we use a
function dφ : V × V → R that constructs a feature vector using the number of complete subtrees
corresponding to each of them in T (v1) or T (v2) and compute the L1 distance between two features:

dφ(v1, v2) = ||φ(T (v1))− φ(T (v2))||1, (3)

where φ(T) = {# (T, t)}t∈T ∈ R|T | = Ωφ. T = {t(v1), t(v2) . . . } is the set of all complete
subtrees of T (v1) and T (v2), and # (T, t) denotes the number of t(v)’s isomorphisms with respect
to t, specifically, # (T, t) = |{v ∈ V(T) | t(v)≈t}|. Fig. 2 is a concrete image of φ(T). The true
tree edit distance dTED(v1, v2) between T1 and T2 can be bounded using Eq. (3) as dφ(v1, v2)/(2h+
2) ≤ dTED(v1, v2) ≤ dφ(v1, v2), where h is the maximum height of T (v1) and T (v2) (All nodes of
the WL subtree have the same height). This illustrates that dφ(·, ·) will be closer to dTED(·, ·) when
h takes a smaller value. Considering that h and the number of iterations k are always the same, k
will only take small values in practice, providing dTED(·, ·) a tight lower bound.

In order to compute φ(T (v1)) or φ(T (v2)) in Eq. (3), we need to know all complete subtree patterns
of T (v1) and T (v2). It is not practical to enumerate all complete subtrees directly, both in terms
of computational complexity and memory usage; thus, we propose a scheme to label each complete
subtree when searching the WL subtree T . Precisely, we use Schwartz-Zippel lemma (see Lemma 1
in Appendix) to design a good hash function that map the t(v) ∈ V(T) when we visit v twice in the
Euler tour of T in Depth-First Search (DFS) order. First, assume that there is one random number
for each depth except depth h in T : gives a different positive random number ri 6=h ∈ (0,M] for
depth i ∈ {0, 1, . . . , h − 1}, where M is the maximum value of the random number. In addition,
we set rh = 0 for depth h. Second, we perform DFS traversal for T . At the same time, if v is
visited twice in the Euler tour of T , we compute the hash value of t(v) using the hash function
HASHSZ : R × R × A → R based on the Schwartz-Zippel lemma, where the A is a multiset
consisting of node labels. HASHSZ is formally defined by

5

Under review as a conference paper at ICLR 2022

1

2

3

1 2 24

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

α =

n∑

i=1

aiδxi and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

3(r1 + 1)(r1 + 2)

(r1 + 4)(r1 + 2)

2(r0 + 3(r1 + 1)(r1 + 2))(r0 + (r1 + 4)(r1 + 2))

left

right

1

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

α =

n∑

i=1

aiδxi and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

3(r1 + 1)(r1 + 2)

(r1 + 4)(r1 + 2)

2(r0 + 3(r1 + 1)(r1 + 2))(r0 + (r1 + 4)(r1 + 2))

left

right

1

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

α =

n∑

i=1

aiδxi and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

3(r1 + 1)(r1 + 2)

(r1 + 4)(r1 + 2)

2(r0 + 3(r1 + 1)(r1 + 2))(r0 + (r1 + 4)(r1 + 2))

left

right

1

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

α =

n∑

i=1

aiδxi
and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

3(r1 + 1)(r1 + 2)

(r1 + 4)(r1 + 2)

2(r0 + 3(r1 + 1)(r1 + 2))(r0 + (r1 + 4)(r1 + 2))

%(0)(v)

%(1)(c1)

%(1)(c2)

%(1)(cq)

left

right

1

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =
m∑

i=1

biδyi

α =
n∑

i=1

aiδxi

α =
n∑

i=1

aiδxi
and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =
m∑

i=1

biδyi

α =
n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

3(r1 + 1)(r1 + 2)

(r1 + 4)(r1 + 2)

2(r0 + 3(r1 + 1)(r1 + 2))(r0 + (r1 + 4)(r1 + 2))

%(0)(v)

%(1)(c1)

%(1)(c2)

%(1)(cq)

left

right

1

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =
m∑

i=1

biδyi

α =
n∑

i=1

aiδxi

α =
n∑

i=1

aiδxi
and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =
m∑

i=1

biδyi

α =
n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

3(r1 + 1)(r1 + 2)

(r1 + 4)(r1 + 2)

2(r0 + 3(r1 + 1)(r1 + 2))(r0 + (r1 + 4)(r1 + 2))

%(0)(v)

%(1)(c1)

%(1)(c2)

%(1)(cq)

left

right

1

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

α =

n∑

i=1

aiδxi
and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

3(r1 + 1)(r1 + 2)

(r1 + 4)(r1 + 2)

2(r0 + 3(r1 + 1)(r1 + 2))(r0 + (r1 + 4)(r1 + 2))

%(0)(v)

%(1)(c1)

%(1)(c2)

%(1)(cq)

left

right

1

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

α =

n∑

i=1

aiδxi and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

3(r1 + 1)(r1 + 2)

(r1 + 4)(r1 + 2)

2(r0 + 3(r1 + 1)(r1 + 2))(r0 + (r1 + 4)(r1 + 2))

%(0)(v)

%(1)(c1)

%(1)(c2)

%(1)(cq)

. . .

left

right

1

課題
2021年 10月 1日

U(a,b)
def.
= {P ∈ Rn×m

+ : P m = a and PT
n = b}

min
P∈U(a,b)

〈C,P〉 def.
=

∑

i,j

Ci,jPi,j

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

α =

n∑

i=1

aiδxi and β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

β =

m∑

i=1

biδyi

α =

n∑

i=1

aiδxi

T#α =

φ(T (v1)) = (3, 0, 2, 3, 1, 2, 0, 1, 1, 0, 1, 1, 0)

φ(T (v2)) = (1, 2, 2, 3, 2, 1, 1, 0, 0, 1, 1, 0, 1)

3(r1 + 1)(r1 + 2)

(r1 + 4)(r1 + 2)

2(r0 + 3(r1 + 1)(r1 + 2))(r0 + (r1 + 4)(r1 + 2))

%(0)(v)

%(1)(c1)

%(1)(c2)

%(1)(cq)

. . .

left

right

1

Figure 3: Left: When we visit v twice in the Euler tour of a WL subtree, we calculate `(1)(v) using
Eq. (4). Right: Polynomials of a WL subtree.

`(1)(v) = HASHSZ
(
`(0)(v), rdept(v)

, {{`(1)(c1), . . . , `(1)(cq)}}
)

= `(0)(v)×
(
rdept(v)

+ `(1)(c1)
)
× · · · ×

(
rdept(v)

+ `(1)(cq)
)
, (4)

where ci is a child of v for i ∈ {1, 2, . . . , q}, and q is the number of children of v. Since ci is
always visited twice before visiting v twice in the Euler tour, we can obtain `(1)(ci) before com-
puting `(1)(v) and consequently compute each hash value dynamically. The reason why we use the
random number rdept(v)

in Eq. (4) is that we construct a polynomial on a finite filed M by rep-
resenting the variables with random numbers. In addition, `(1)(ci) is a polynomial that includes
the variable rdept(ci)

; thus, `(1)(v) is a multi-variable polynomial. For the design of the algorithm,
any polynomial corresponding to the t(v) in which v /∈ leaf(T) is a multi-variable polynomial of
{rdept(v

′)}v′∈V(t(v)) of degree |leaf(t(v))|. Fig. 3 is an illustration of Eq. (4). The next theorem
states that Lemma 1 can give an upper bound on the collision probability of HASHSZ(·, ·, ·).

Theorem 1. Assume that `(1)(v1) and `(1)(v2) are hash values corresponding to two complete
subtrees t(v1) and t(v2), respectively. Then, the upper bound of the collision probability between
`(1)(v1) and `(1)(v2) is |leaf(t(v1))|+|leaf(t(v2))|M .

Proof. Assume that P1 and P2 are polynomials corresponding to two complete subtrees t(v1) and
t(v2), respectively. Let P = P1 − P2 = p(r1, r2, . . . , rq) be a polynomial of degree d over a field
F , where d ≤ |leaf(t(v1))| + |leaf(t(v2))|. Let S be a finite subset of F . Since we constraint
ri ∈ (0,M] for i ∈ {1, 2, . . . , q}, |S| = M . Let r′1, r

′
2, . . . , r

′
q are random numbers chosen from S.

According to the Lemma 1, Pr[p(r′1, r
′
2, . . . , r

′
q) = 0] ≤ d

M ≤
|leaf(t(v1))|+|leaf(t(v2))|

M .

By Theorem 1, we can reduce the collision probability to a sufficiently small value by taking a large
M . We next provide a computational complexity analysis for computing φ(·). Considering the
worst case for graph G(V, E), assume that we obtain a WL subtree T that is a complete K-ary tree
with height h, where K = max (deg(v1),deg(v2), . . . ,deg(vnG)). |V(T)| = 1−K(h+1)

1−K . |E(T)| =
|V(T)|−1. Since the hash function is implemented in DFS, we can conclude that the computational
complexity of enumerating all hash values is the same that of DFS, that is O(|V(T)| + |E(T)|) =

O(2K(h+1)−K−1
K−1). The upper bound of the total computational complexity is O(2K(h+1)−K−1

K−1 nG).
For many graph data, K is usually not very large and h actually takes only a small value; thus the
computational complexity is not a big issue.

4.3 WASSERSTEIN DISTANCE BETWEEN GRAPHS

This subsection presents the graph Wasserstein distance exploiting the tree edit distance as the cost
matrix C in the Optimal Transport problem. This enables us to perform various graph analysis tasks
such as graph classification and graph alignment.

The proposed graph Wasserstein distance measures the dissimilarity to match the nodes of one graph
with the nodes of another, which is formulated as the graph node alignment problem. This is anal-
ogous to the discrete Monge’s problem. Therefore, we attempt to transform the graph alignment

6

Under review as a conference paper at ICLR 2022

problem into an OT problem. Then we define the OT cost as the dissimilarity between two graphs.
It is assumed that we have two graphs G1 and G2. We embed two graphs into the same metric space
(Ωφ, dφ) by computing φ for all nodes. All the nodes of the two graphs are located respectively at
points in x1, x2, . . . , xnG1

and y1, y2, . . . , ynG2
. We here consider each node of G1 as the starting

point and each node of G2 as the endpoint. The two histograms of a and b are defined respectively
in the probability simplex4nG1

and4nG2
. Furthermore, as a discrete measure µ(G1) with weights

a on the locations {x1, x2, . . . , xnG1
}, we write µ(G1) =

∑nG1
i=1 aiδxi. µ(G1) denotes the distri-

bution of nodes on (Ωφ, dφ). Similarly, we define the measure µ(G2) =
∑nG2
j=1 bjδyj . We obtain

C ∈ RnG1
×nG2 by calculating pairwise distances between all samples. Finally, inputting dφ into

Ci,j in Eq. (2), one obtains P∗ by calculating

P∗ = argmin
P∈U(a,b)

nG1∑

i=1

nG2∑

j=1

dφ (T (vi), T (vj))Pi,j . (5)

Consequently, letting [d(vi, vj)]
m,n
i,j be a C ∈ Rm×n that is calculated using distance d(·, ·), the

proposed graph Wasserstein distance is derived asW1

(
µ(G1), µ(G2); [dφ(vi, vj)]

nG1
,nG2

i,j

)
. It should

be noted that an important feature of OT is that it provides a distance between probabilities when
the cost matrix satisfies the axiom of distance. In fact, dφ(·, ·) is a metric measure; thus, we can
conclude that theW1

(
µ(G1), µ(G2); [dφ(vi, vj)]

nG1
,nG2

i,j

)
satisfies the axiom of distance. Also, the

EMD with L1 as the ground distance equals to EMD-L1. The EMD-L1 can be computed with a
time complexity O(n2) (Ling & Okada, 2007).

Algorithm 1 Algorithm for Wasserstein Weisfeiler-Lehman Subtree distance
Input: Two graphs G1(V1, E1) and G2(V2, E2)
Output: 〈C,P∗〉

1: a = 1/nG1 ; b = 1/nG2
2: φ(T (vi))← vi for all vi ∈ V1
3: φ(T (vj))← vj for all vj ∈ V2
4: C← dφ(φ(T (vi)), φ(T (vj))) for all i, j combinations.
5: P∗ ← Eq. (5)
6: 〈C,P∗〉 =

∑nG1
i=1

∑nG2
j=1 Ci,jP

∗
i,j

7: return 〈C,P∗〉

5 EXPERIMENTS

This section presents graph classification experiments using both kernel and distance methods to
evaluate our model. We use PyTorch Geometric (Fey & Lenssen, 2019) to implement our model.

5.1 EXPERIMENTAL SETUP

Datasets. We use the popular TUD benchmark datasets (Morris et al., 2020) for graph classifica-
tion tasks. Among them, we use eight commonly used benchmarks datasets. There are six bioin-
formatics datasets (MUTAG, PTC-FM, PTC-MR, BZR, and PROTEINS) and two social network
datasets (IMDB-B and IMDB-M), respectively. In the bioinformatic graph, the nodes are assigned
categorical labels. However, they are not in the social network graph; thus, we create categorical
labels using their node degrees. For more detailed information about the above datasets, including
the number of graphs, nodes, and edges, see Appendix.

Models and experimental settings. We evaluate the performance of WWLS through graph clas-
sification experiments compared with several representative methods. As a classification method,
we use a multi-class Support Vector Machine (SVM) (Chang & Lin, 2011) in the first graph
classification experiment and use 1-Nearest-Neighbours (1-NN) in the second graph classifica-
tion experiment. Especially for the first experiment, we construct an indefinite kernel matrix
exp

(
−γW1

(
µ(G1), µ(G2); [dφ(vi, vj)]

nG1
,nG2

i,j

))
for WWLS, which is the same form as FGW’s

kernel. It is an exponential kernel and can be considered a noisy observation of the true positive

7

Under review as a conference paper at ICLR 2022

Table 1: Classification accuracies of experiment using graph kernels (1)

METHOD MUTAG PTC-FM PTC-MR BZR

SP 83.24±8.81 63.35±5.19 59.34±8.78 86.53±4.55
RW 74.68±9.08 65.04±5.24 56.36±5.01 78.77±1.01
FGW RAW SP 79.20±8.45 64.81±5.19 56.57±6.84 78.77±1.01
WL 79.32±7.91 62.78±7.67 62.24±8.10 88.58±4.02
WL-OA 82.72±7.09 64.93±6.31 63.46±8.63 87.98±3.68
WWL 85.91±7.40 66.59±7.19 65.32±7.06 88.38±3.84
GIN 88.60±6.90 66.70±7.41 64.77±7.68 87.76±4.74

WWLS 88.78±6.92 65.13±6.91 67.44±8.50 88.45±4.09

Table 2: Classification accuracies of experiment using graph kernels (2)

METHOD PROTEINS ENZYMES IMDB-B IMDB-M

SP 76.02±3.81 41.30±4.89 57.92±5.05 39.30±3.43
RW 66.60±2.86 28.65±5.23 70.88±4.35 47.21±3.91
FGW RAW SP 59.57±0.17 16.67±0.00 50.00±0.00 33.33±0.00
WL 74.25±3.76 53.17±5.94 72.77±4.31 50.44±3.73
WL-OA 73.84±3.61 60.23±5.50 72.87±3.93 50.33±3.83
WWL 74.13±3.48 57.40±6.63 72.75±4.02 50.64±4.24
GIN 73.72±4.27 47.00±5.43 74.88±4.17 51.25±4.13
WWLS 74.56±3.75 59.40±6.28 74.59±3.97 51.29±4.14

Table 3: Classification accuracies of experiment using distance methods (1)

METHOD MUTAG PTC-FM PTC-MR BZR

FGW RAW SP 75.52±8.69 57.64±6.85 56.63±7.85 78.63±4.90
WWL 86.87±6.94 60.44±7.60 63.01±7.60 85.27±5.23

WWLS 88.03±6.53 61.21±7.37 65.13±7.97 87.19±4.53

Table 4: Classification accuracies of experiment using distance methods (2)

METHOD PROTEINS ENZYMES IMDB-B IMDB-M

FGW RAW SP 63.32±3.78 29.00±5.06 69.61±4.51 41.69±4.32
WWL 65.27±4.27 61.98±5.93 67.99±4.00 41.49±4.11

WWLS 66.50±4.13 64.05±5.68 68.43±4.73 41.73±4.76

semidefinite kernel (Luss & d’Aspremont, 2009). The machine environment is macOS BigSur, Intel
Core i5 CPU with 2.3GHz, and 8GB RAM. The parameters used in each model and their respective
settings are presented in the following paragraphs.

First, we introduce the experiments with graph kernels. We compare WWLS as a kernel method
with other models in two categories: graph kernels and GNNs. As for graph kernels, we choose a
few representative methods: Shortest Path (SP) kernel (Borgwardt & Kriegel, 2005), Random Walk
(RW) kernel Vishwanathan et al. (2010), Weisfeiler-Lehman (WL) kernel, Weisfeiler-Lehman Op-
timal Assignment (WL-OA) kernel (Kriege et al., 2016), Wasserstein Weisfeiler-Lehman (WWL)
kernel, and Fused Gromov-Wasserstein (FGW) distance. Among them, WL-OA and WWL are ex-
tension models of the WL kernel, and FGW uses an indefinite kernel matrix exp (−γFGW (G1,G2))
that we mentioned above. For models other than WWL and FGW, we use GraKel, a library that pro-
vides implementations of several well-established graph kernels (Siglidis et al., 2020). For another

8

Under review as a conference paper at ICLR 2022

category, we use Graph Isomorphism Network (GIN) (Xu et al., 2019), which theoretically has the
same expressive power as the WL test. Next, we introduce the parameter settings of each model
in the experiment: (1) for the WL, WL-OA, and WWL, we adjust the number of WL iterations
within {1, 2, . . . , 10}; (2) for the WWL, to evaluate the performance of extracting structural infor-
mation, we choose the case of categorical embeddings; (3) for the WWLS, we adjust the number
of WL iterations within {1, 2, . . . , 7}, and when using IMDB-B and IMDB-M, we set {1, 2} due
to their large node degrees; (4) for the FGW, we use the shortest path and Hamming distance;
we adjust the parameter α of FGW within {0.2, 0.5, 0.8}; (5) for all graph kernels based on the
exponential kernel, we adjust the parameter γ within {0.0001, 0.001, 0.01, 0.1, 1, 10}; (4) for the
GIN, we choose pairs of the number of hidden layers and hidden dimension from the range of
{1, 2, 3, 4, 5} and {32, 64, 128}, respectively. Also, we cross-validate the parameter C of SVM
within {0.001, 0.01, 0.1, 1, 10, 100, 1000}. In the first experiment, we prepare 10 fixed random
states and perform 10-fold nested cross-validation (using 9 folds for training with parameter adjust-
ment, 1 for testing) on each state; thus, the overall average of 100 classification tests is used as the
result for each model. For the GIN, we also perform ten times 10-fold cross-validation. For each
training, we run 200 epochs for parameter adjustments and then choose the best parameter pair for
testing. In the second experiment, we use 1-NN to classify graphs. As comparison methods, we
choose WWL and FGW, which are also the same distance methods. We set the same conditions as
the first classification experiment for the number of WL iterations and the settings of FGW. In the
same way, we perform ten times 10-cross validation and let the average of 100 tests be the result for
each model.

5.2 RESULTS AND DISCUSSION

Table 1 and Table 2 summarize the results of the first classification experiment with graph kernels,
respectively. The first and second-best results in Tables 1 and Table 2 are shown in red and purple,
respectively. Table 3 and Table 4 summarize the results of the graph classification experiment with
the distance method, respectively. The best result in Table 3 and Table 4 are shown in bold. We
analyze the results of these two experiments in the following.

The first experiment compares WWLS as a graph kernel method with other well-known graph kernel
methods. As Table 1 and Table 2 show, WWLS yields the first or second-best results in datasets other
than PTC-FM: WWLS gives the best results in MUTAG, PTC-MR, and IMDB-M; WWLS gives the
second-best results in BZR, PROTEINS, ENZYMES, and IMDB-B. We find that WWLS outper-
forms WL-based methods overall and even rivals GIN in these mainstream datasets. The second
experiment compares WWLS as a distance method between two graph structures with WWL and
FGW. Both WWL and FGW use the OT framework. As Table 3 and Table 4 show, WWLS performs
better than WWL and FGW as a distance method except for IMDB-B. The accuracy trend of WWLS
on the dataset is similar to that of WWL. This indicates that WWLS obtains similar structural infor-
mation to WWL; however, in terms of accuracy, WWLS captures more structural information than
WWL. From these observations, WWLS is superior to traditional methods to measure the distance
between graph structures.

6 CONCLUTIONS

Traditional WL-based algorithms use hash values instead of WL subtrees, which results in the loss
of important graph structure information and limits the ability to measure the differences between
graph structures. The proposed WWLS successfully defines a valid distance between nodes by di-
rectly using WL subtrees as node features and measuring node dissimilarity using approximate tree
edit distance. In addition, we use the OT framework to define a valid distance between graphs by
reflecting the node distance at the graph level. As an avenue of future study, WWLS needs to reduce
the computation time. Although the results are higher than WL-based methods in the above exper-
iments, constructing the WL subtree and the searching tree is relatively time-consuming. Hence,
it needs to consider an approach to omit the tree construction and directly obtain the substructure
obtained by WWLS. Since the complete subtrees of the WL subtree have various structural infor-
mation, it also needs to study which substructures are most important for graph classification.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Manindra Agrawal and Somenath Biswas. Primality and identity testing via chinese remaindering.
Journal of the ACM (JACM), 50(4):429–443, 2003.

László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing (STOC), pp. 684–697, 2016.

Muhammet Balcilar, Pierre Héroux, Benoit Gaüzère, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In Proceedings of the
38th International Conference on Machine Learning (ICML), 2021.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In IEEE interna-
tional conference on data mining (ICDM), pp. 8–pp, 2005.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems (NeurIPS), 26:2292–2300, 2013.

Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom: A multi-
level spectral approach for accurate and scalable graph embedding. In International Conference
on Learning Representations (ICLR), 2020.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Daiji Fukagawa, Tatsuya Akutsu, and Atsuhiro Takasu. Constant factor approximation of edit dis-
tance of bounded height unordered trees. In International Symposium on String Processing and
Information Retrieval (SPIRE), pp. 7–17. Springer, 2009.

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. Pattern
Analysis and applications, 13(1):113–129, 2010.

Minos Garofalakis and Amit Kumar. Xml stream processing using tree-edit distance embeddings.
ACM Transactions on Database Systems (TODS), 30(1):279–332, 2005.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining
(ICKD), pp. 855–864, 2016.

David Haussler. Convolution kernels on discrete structures. Technical report, Technical report,
Department of Computer Science, University of California at Santa Cruz, 1999.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
International World Wide Web Conference (WWW), pp. 2704–2710, 2020.

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels
and applications to graph classification. Advances in Neural Information Processing Systems
(NeurIPS), 29:1623–1631, 2016.

Haibin Ling and Kazunori Okada. An efficient earth mover’s distance algorithm for robust histogram
comparison. IEEE transactions on pattern analysis and machine intelligence (TPAMI), 29(5):
840–853, 2007.

Ronny Luss and Alexandre d’Aspremont. Support vector machine classification with indefinite
kernels. Mathematical Programming Computation, 1(2):97–118, 2009.

Facundo Memoli. On the use of Gromov-Hausdorff Distances for Shape Comparison. In M. Botsch,
R. Pajarola, B. Chen, and M. Zwicker (eds.), Eurographics Symposium on Point-Based Graphics.
The Eurographics Association, 2007.

10

Under review as a conference paper at ICLR 2022

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+), 2020.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th inter-
national conference on computer vision (ICCV), pp. 460–467, 2009.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining (ICKD), pp. 701–710, 2014.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and
distance matrices. In International Conference on Machine Learning (ICML), pp. 2664–2672,
2016.

Kaspar Riesen. Structural pattern recognition with graph edit distance. In Advances in computer
vision and pattern recognition. Springer, 2015.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research (JMLR), 12(9),
2011.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, and
Michalis Vazirgiannis. Grakel: A graph kernel library in python. Journal of Machine Learning
Research (JMLR), 21(54):1–5, 2020.

Reza Takapoui and Stephen Boyd. Linear programming heuristics for the graph isomorphism prob-
lem. arXiv preprint arXiv:1611.00711, 2016.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler–lehman graph kernels. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 6436–6446. Curran Associates, Inc., 2019.

Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. Fused
gromov-wasserstein distance for structured objects. Algorithms, 13(9):212, 2020.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research (JMLR), 11:1201–1242, 2010.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In International World Wide Web Conference (WWW), pp. 2022–2032,
2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (ICKD),
pp. 974–983, 2018.

11

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 SCHWARTZ-ZIPPEL LEMMA

Lemma 1 (Schwartz-Zippel lemma (Agrawal & Biswas, 2003)). Let F be a filed. Let
p(x1, x2, . . . , xn) be a polynomial of total degree d. Suppose that f the non-zero polynomial
and S is a finite subset of F . Let x′1, x

′
2, . . . , x

′
n be chosen at random uniformly and indepen-

dently from S. Then the probability that p(x′1, x
′
2, . . . , x

′
q) = 0 is less than or equal to d

|S| , that is

Pr(p(x′1, x
′
2, . . . , x

′
q) = 0) ≤ d

|S| .

A.2 DATASET INFORMATION

Table 5 shows the specific information of the dataset we used in our experiments.

Table 5: Dataset Details table

Name Graphs Classes Avg. Nodes Avg. Edges Node Labels

MUTAG 188 2 17.93 19.79 X
PTC-FM 349 2 14.11 14.48 X
PTC-MR 344 2 14.29 14.69 X
BZR 405 2 35.75 38.36 X
PROTEINS 1113 2 39.06 72.82 X
ENZYMES 600 6 32.63 62.14 X
IMDB-B 1000 2 19.77 96.53 -
IMDB-M 1500 3 13.00 65.94 -

A.3 NUMBER OF COMPLETE SUBTREES

For several datasets, we show the relationship between the number of complete subtree types and
the number of WL iterations in Table 6.

Table 6: Number of complete subtree types for each WL iteration number

WL iterations MUTAG PTC-FM PTC-MR ENZYMES IMDB-B

1 29 105 114 55 1771
2 50 191 209 106 3476
3 71 277 304 157 5181
4 92 363 399 208 -
5 113 449 494 259 -
6 134 535 589 - -

12

	Introduction
	Related Work
	Preliminaries
	Wasserstein Weisfeiler-Lehman Approach for Structured Data
	Geometric Properties of Weisfeiler-Lehman algorithm
	Tree edit distance between Weisfeiler-Lehman subtrees
	Wasserstein distance between graphs

	Experiments
	Experimental setup
	Results and discussion

	Conclutions
	Appendix
	Schwartz-Zippel lemma
	Dataset information
	Number of complete subtrees

