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Abstract

Multi-task and multi-domain learning methods seek to learn multiple tasks/domains, jointly
or one after another, using a single unified network. The primary challenge and opportu-
nity lie in leveraging shared information across these tasks and domains to enhance the
efficiency of the unified network. The efficiency can be in terms of accuracy, storage cost,
computation, or sample complexity. In this paper, we introduce a factorized tensor network
(FTN) designed to achieve accuracy comparable to that of independent single-task or single-
domain networks, while introducing a minimal number of additional parameters. The FTN
approach entails incorporating task- or domain-specific low-rank tensor factors into a shared
frozen network derived from a source model. This strategy allows for adaptation to numer-
ous target domains and tasks without encountering catastrophic forgetting. Furthermore,
FTN requires a significantly smaller number of task-specific parameters compared to existing
methods. We performed experiments on widely used multi-domain and multi-task datasets.
We show the experiments on convolutional-based architecture with different backbones and
on transformer-based architecture. Our findings indicate that FTN attains similar accuracy
as single-task or single-domain methods while using only a fraction of additional parameters
per task.

1 Introduction

The primary objective in multi-task learning (MTL) is to train a single model that learns multiple related
tasks, either jointly or sequentially. Multi-domain learning (MDL) aims to achieve the same learning objective
across multiple domains. MTL and MDL techniques seek to improve overall performance by leveraging shared
information across multiple tasks and domains. On the other hand, single-task or single-domain learning does
not have that opportunity. Likewise, the storage and computational cost associated with single-task/domain
models quickly grows as the number of tasks/domains increases. In contrast, MTL and MDL methods
can use the same network resources for multiple tasks/domains, which keeps the overall computational and
storage cost small Mallya et al. (2018); Berriel et al. (2019); Wallingford et al. (2022); Rebuffi et al. (2018);
Mancini et al. (2018); Sun et al. (2020); Kanakis et al. (2020); Maninis et al. (2019).

In general, MTL and MDL can have different input/output configurations, but we model them as
task/domain-specific network representation problems. Let us represent a network for MTL or MDL as
the following general function:

yt = Ft(x) ≡ F(x;Wt, ht), (1)

where Ft represents a function for task/domain t that maps input x to output yt. We further assume that
F represents a network with a fixed architecture and Wt and ht represent the parameters for task/domain-
specific feature extraction and classification/inference heads, respectively. The function in equation 1 can
represent the network for specific task/domain t using the respective Wt, ht. In the case of MTL, with T
tasks, we can have T outputs y1, . . . , yT for a given input x. In the case of MDL, we usually have a single
output for a given input, conditioned on the domain t. Our main goal is to learn the Wt, ht for all t that
maximize the performance of MTL/MDL with minimal computation and memory overhead compared to
single-task/domain learning.
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Figure 1: Overview of different MTL/MDL approaches and our proposed method. (a) Fine-Tuning trains entire network per
task/domain. (b) Feature-Extractor trains a backbone network shared by all tasks/domains with task/domain-specific heads.
(c) Our proposed method, Factorized Tensor Network (FTN), adapts to a new task/domain by adding low-rank factors to
shared layers. (d) Detailed overview of FTN. A single network adapted to three downstream vision tasks (segmentation, depth,
and surface normal estimation) by adding task-specific low-rank tensors (∆Wt). Task/domain-specific blocks are shown in same
colors.

Figure 1(a),(b),(c) illustrate three typical approaches for MTL/MDL. First, we can start with a pre-trained
network and fine-tune all the parameters (Wt) to learn a target task/domain, as shown in Figure 1(a). Fine-
Tuning approaches can transfer some knowledge from the pretrained network to the target task/domain,
but they effectively use an independent network for every task/domain Mallya et al. (2018); Wallingford
et al. (2022); Tzeng et al. (2017); Venkateswara et al. (2017); Mustafa et al. (2021); Kolesnikov et al. (2020).
Second, we can reduce the parameter and computation complexity by using a completely shared Feature-
Extractor (i.e., Wt = Wshared for all t) and learning task/domain-specific heads as last layers, as shown
in Figure 1(b). While such approaches reduce the number of parameters, they often result in poor overall
performance because of limited network capacity and interference among features for different tasks/domains
Mallya et al. (2018); Berriel et al. (2019); Wallingford et al. (2022); Zhang et al. (2020). Third, we can divide
the network into shared and task/domain-specific parameters or pathways, as shown in Figure 1(c). Such an
approach can increase the network capacity, provide interference-free paths for task/domain-specific feature
extraction, and enable knowledge sharing across the tasks/domains. In recent years, a number of such
methods have been proposed for MTL/MDL Wallingford et al. (2022); Kanakis et al. (2020); Misra et al.
(2016); Ruder et al. (2019); Gao et al. (2019); Strezoski et al. (2019); Liang et al. (2018); Gao et al. (2020); Yu
et al. (2020). While existing methods can provide performance comparable to single-task/domain learning,
they require a significantly large number of additional parameters.

In this paper, we propose a new parameter-efficient method to divide network into shared and task/domain-
specific parameters using a factorized tensor network (FTN). In particular, our method learns task/domain-
specific low-rank tensor factors and normalization layers. An illustration of our proposed method is shown
in Figure 1(d), where we represent network parameters as Wt = Wshared + ∆Wt, where ∆Wt is a low-
rank tensor. Furthermore, we also learn task/domain-specific normalization parameters. We demonstrate
the effectiveness of our method using different MTL and MDL datasets. Our method can achieve accu-
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racy comparable to a single-task/domain network with a small number of additional parameters. Existing
parameter-efficient MTL/MDL methods Mallya et al. (2018); Mallya & Lazebnik (2018); Li et al. (2016)
introduce small task/domain-specific parameters while others Zhang et al. (2020); Guo et al. (2019) add
many parameters to boost the performance irrespective of the task complexity. In our work, we demonstrate
the flexibility of FTNs by selecting the rank according to the complexity of the task.

Contributions. The main contributions of this paper can be summarized as follows.

• We propose a new method for MTL and MDL, called factorized tensor networks (FTN), that adds
task/domain-specific low-rank tensors to shared weights.

• We demonstrate that by using a fraction of additional parameters per task/domain, FTNs can achieve
similar performance as the single-task/domain methods.

• Our proposed FTNs can be viewed as a plug-in module that can be added to any pretrained network and
layer. We have shown this by extending FTNs to transformer-based architectures.

• We performed empirical analysis to show that the FTNs enable flexibility by allowing us to vary the rank
of the task-specific tensors according to the problem complexity.

Limitations. In our experiments, we used a fixed rank for each layer. In principle, we can adaptively
select the rank for different layers to further reduce the parameters. MTL/MDL models often suffer from
task interference or negative transfer learning when trained jointly with multiple conflicting tasks. Our
method can have similar drawbacks as we did not investigate which tasks/domains should be learned jointly.
A shared backbone requires a single forward pass for all tasks, while our proposed FTN would require as
many forward passes as the number of tasks. Branched and tree-structures can enable different tasks to
share several layers and reduce latency.

2 Related Work

Multi-task learning (MTL) methods commonly leverage shared and task-specific layers in a unified
network to solve related tasks Misra et al. (2016); Gao et al. (2019); Liu et al. (2019); Bruggemann et al.
(2020); Xu et al. (2018); Zhang et al. (2018); Vandenhende et al. (2020); Zhang et al. (2022c;a). These
methods learn shared and task-specific representation through their respective modules. Optimization-based
methods Chen et al. (2018c); Kendall et al. (2018); Chen et al. (2020) devise a principled way to evaluate
gradients and losses in multi-task settings. Branched and tree-structured MTL methods Bruggemann et al.
(2020); Guo et al. (2020); Zhang et al. (2022b) enable different tasks to share branches along a tree structure
for several layers. Multiple tasks can share computations and features in any layer only if they belong
to the same branch in all the preceding layers. Kanakis et al. (2020); Maninis et al. (2019) proposed
MTL networks that incrementally learn new tasks. ASTMT Maninis et al. (2019) proposed a network that
emphasizes or suppresses features depending on the task at hand. RCM Kanakis et al. (2020) reparameterizes
the convolutional layer into non-trainable and task-specific trainable modules. We compare our proposed
method with these incrementally learned networks. Adashare Sun et al. (2020) is another related work in
MTL that jointly learns multiple tasks. It learns task-specific policies and network pathways Jang et al.
(2017).

Multi-domain learning (MDL) focuses on adapting one network to multiple unseen domains or tasks.
MDL setup trains models on task-specific modules built upon the frozen backbone network. This setup
helps MDL networks avoid negative transfer learning or catastrophic forgetting, which is common among
multi-task learning methods. The work by Rebuffi et al. (2017; 2018) introduces the task-specific parameters
called residual adapters. The architecture introduces these adapters as a series or parallel connection on the
backbone for a downstream task. Inspired by pruning techniques, Packnet Mallya & Lazebnik (2018) learns
on multiple domains sequentially on a single task to decrease the overhead storage, which comes at the cost
of performance. Similarly, the Piggyback Mallya et al. (2018) method uses binary masks as the module for
task-specific parameters. These masks are applied to the weights of the backbone to adapt them to new
domains. To extend this work, WTPB Mancini et al. (2018) uses the affine transformations of the binary
mask on their backbone to extend the flexibility for better learning. BA2 Berriel et al. (2019) proposed
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a budget-constrained MDL network that selects the feature channels in the convolutional layer. It gives a
parameter-efficient network by dropping the feature channels based on budget but at the cost of performance.
Zhao et al. (2021) paper learns the adapter modules and the plug-in architecture of the modules using NAS.
Spot-Tune Guo et al. (2019) learns a policy network, which decides whether to pass each image through
Fine-Tuning or pretrained networks. It neglects the parameter efficiency factor and emphasises more on
performance. TAPS Wallingford et al. (2022) adaptively learns to change a small number of layers in a
pretrained network for the downstream task.

Domain adaptation and transfer learning. The work in this field usually focuses on learning a network
from a given source domain to a closely related target domain. The target domains under this kind of learning
typically have the same category of classes as source domains Tzeng et al. (2017). Due to this, it benefits
from exploiting the labels of source domains to learn about multiple related target domainsVenkateswara
et al. (2017); Li et al. (2021). Some work has a slight domain shift between source and target data, like
different camera views Saenko et al. (2010). At the same time, recent papers have worked on significant
domain shifts like converting targets into sketch or art domains Venkateswara et al. (2017); Zhao et al.
(2017). Transfer learning is related to MDL or domain adaptation but focuses on better generalizing target
tasks Mustafa et al. (2021); Kolesnikov et al. (2020); Dosovitskiy et al. (2021). Most of the work in this
field uses the popular ImageNet as a source dataset to learn feature representation and learn to transfer to
target datasets. The method proposed in Yang et al. (2022) uses a pretrained (multi-task) teacher network
and decomposes it into multiple task/knowledge-specific factor networks that are disentangled from one
another. This factorization leads to sub-networks that can be fine-tuned to downstream tasks, but they rely
on knowledge transfer from a teacher network that is pretrained for multiple tasks. Modular deep learning
methods Pfeiffer et al. (2023) focus on transfer learning by avoiding negative task interference and having
parameter-efficient modules.

Factorization methods in MDL/MTL. The method in Yang & Hospedales (2015) proposed a unified
framework for MTL/MDL using semantic descriptors, without focusing on parameter-efficient adaptation.
Yang & Hospedales (2017) performs MTL/MDL by factorizing each layer in the network after incorporating
task-specific information along a separate dimension. Both the networks in Yang & Hospedales (2015)
and Yang & Hospedales (2017) require retraining from scratch for new tasks/domains. In contrast, FTN
can incrementally learn low-rank factors to add new tasks/domains. Chen et al. (2018b) proposed a new
parameter-efficient network to replace residual networks by incorporating factorized tensors. The results in
Chen et al. (2018b) are limited to learning single-task networks, where the network is only compressed by
up to ∼ 60%. In Bulat et al. (2020), the authors proposed a network for MDL using Tucker decomposition.

Transformer-based methods in MDL/MTL. LoRA Hu et al. (2021) is a low-rank adaptation method
proposed for large language models, which freezes the pre-trained weights of the model and learns low-
rank updates for each transformer layer. It updates weight matrices for query and value in every attention
layer. Similarly, KAdaptation He et al. (2023) proposes a parameter-efficient adaptation method for vision
transformers. It represents the updates of MHSA layers using the summation of Kronecker products between
shared parameters and low-rank task-specific parameters. We compared both of these methods and have
shown that FTN outperforms along the number of parameters. Scaling and shifting your features (SSF)
Lian et al. (2022) is another transformer method for parameter-efficient adaptation that applies element-wise
multiplication and addition to tokens after different operations. SSF, in principle, is similar to fine-tuning
the Batch Normalization layer in convolutional layers, which has scaling and shifting trainable parameters.
FTN trains the Batch Normalization layers and has the same effect as scaling and shifting features when
adapting to new tasks. Ye & Xu (2022) proposed inverted-pyramid multi-task transformer, performs cross-
task interaction among spatial features of different tasks in a global context. The DeMT Xu et al. (2023)
proposes a deformable mixer encoder and task-aware transformer decoder. The proposed encoder leverages
channel mixing and deformable convolution operation for informative features while the transformer decoder
captures the task interaction.

In summary, our proposed method (FTN) offers a parameter-efficient approach to achieve performance com-
parable to or better than existing adaptation methods by utilizing a fraction of additional parameters. Our
primary design consideration was to achieve efficient adaptation, enabling incremental learning with addi-
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tive factors. To achieve parameter efficiency, we introduce a small number of trainable parameters through
low-rank factorization applicable to both convolutional and transformer-based networks. We utilize frozen
and trainable task-specific parameters to support incremental learning without forgetting prior knowledge.

3 Technical Details

Notations. In this paper, we denote scalars, vectors, matrices and tensors by w, w, W, and W, respectively.
The collective set of tensors (network weights) is denoted as W.

3.1 FTN applied to Convolutional layers

In our proposed method, we use task/domain-specific low-rank tensors to adapt every convolutional
layer of a pretrained backbone network to new tasks and domains. Let us assume the backbone net-
work has L convolutional layers that are shared across all task/domains. We represent the shared net-
work weights as Wshared = {W1, . . . , WL} and the low-rank network updates for task/domain t as
∆Wt = {∆W1,t, . . . , ∆WL,t}. To compute features for task/domain t, we update weights at every layer as
Wshared + ∆Wt = {W1 + ∆W1,t, . . . , WL + ∆WL,t}.

To keep our notations simple, let us only consider lth convolutional layer that has k× k filters, Cin channels
for input feature tensor, and Cout channels for output feature tensor. We represent the corresponding Wl

as a tensor of size k2 × Cin × Cout. We represent the low-rank tensor update as a summation of R rank-1
tensors as

∆Wl,t =
R∑

r=1
wr

1,t ⊗wr
2,t ⊗wr

3,t, (2)

where wr
1,t, wr

2,t, wr
3,t represent vectors of length k2, Cin, Cout, respectively, and ⊗ represents the Kronecker

product.

Apart from low-rank tensor update, we also optimize over Batch Normalization layers (BN) for each task/-
domain Ioffe & Szegedy (2015); Pham et al. (2022). The BN layer learns two vectors Γ and β, each of length
Cout. The BN operation along Cout dimension can be defined as element-wise multiplication and addition:

BNΓ,β(u) = Γ
(

u− E[u]√
Var[u] + ϵ

)
+ β. (3)

We represent the output of lth convolutional layer for task/domain t as

Zl,t = BNΓt,βt
(conv(Wl + ∆Wl,t, Yl−1,t)), (4)

where Yl−1,t represents the input tensor and Zl,t represents the output tensor for lth layer. In our proposed
FTN, we learn the task/domain-specific factors {wr

1,t, wr
2,t, wr

3,t}R
r=1, and Γt, and βt for every layer in the

backbone network.

In the FTN method, rank R for ∆W plays an important role in defining the expressivity of the adapted
network. We can define a complex ∆W by increasing the rank R of the low-rank tensor and taking their
linear combination. Our experiments showed that this has resulted in a significant performance gain.

Initialization. To establish a favorable starting point, we adopt a strategy that minimizes substantial
modifications to the frozen backbone network weights during the initialization of the task-specific parameter
layers. To achieve this, we initialize each parameter layer from the Xavier uniform distribution Glorot &
Bengio (2010), thereby generating ∆W values close to 0 before their addition to the frozen weights. This
approach ensures the initial point of our proposed network closely matches the pretrained network closely.

To acquire an effective initialization for our backbone network, we leverage the pretrained weights obtained
from ImageNet. We aim to establish a robust and capable feature extractor for our specific task by incorpo-
rating these pretrained weights into our backbone network.
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Number of parameters. In a Fine-Tuning setup with T tasks/domains, the total number of required
parameters at convolutional layer l can be calculated as T · (k2 × Cin × Cout). Whereas using our proposed
FTNs, the total number of frozen backbone (Wl) and low-rank R tensor (∆Wl,t) parameters are given by
(Cout×Cin× k2) + T ·R · (Cout + Cin + k2). In our results section, we have shown that the absolute number
of parameters required by our method is a fraction of what the Fine-Tuning counterpart needs.

Effect of Batch Normalization. In our experiment section, under the ‘FC and BN only’ setup, we have
shown that having task-specific Batch Normalization layers in the backbone network significantly affects the
performance of a downstream task/domain. For all the experiments with our proposed approach, we include
Batch Normalization layers as task-specific along with low-rank tensors and classification/decoder layer.

3.2 FTN applied to Transformers

The Vision Transformer (ViT) architecture Dosovitskiy et al. (2020) consists a series of MLP, normalization,
and Multi-Head Self-Attention (MHSA) blocks. The MHSA blocks perform n parallel attention mechanisms
on sets of Key K, Query Q, and Value V matrices. Each of these matrices has dimensions of S × dmodel,
where dmodel represents the embedding dimension of the transformer, and S is the sequence length. The i-th
output head (Hi) of the n parallel attention blocks is computed as

Hi = SA(QWQ
i , KWK

i , V WV
i ), (5)

where SA(·) represents the self-attention mechanism, WK
i , WQ

i , WV
i ∈ Rdmodel×d represent the projection

weights for the key, query, and value matrices, respectively, and d = dmodel/n. The heads Hi are then
combined using a projection matrix Wo ∈ Rdmodel×dmodel to result in the output of the MHSA block as

MHSA(H1, . . . , Hn) = Concat(H1, . . . , Hn) ·Wo. (6)

Following the adaptation procedure in He et al. (2023), we apply our proposed factorization technique to
the weights in the MHSA block. We introduce two methods for applying low-rank tensors to the attention
weights:
Adapting query and value weights. Our first proposed method, FTN (Query and Value), adds the
low-rank tensor factors to the query WQ and value WV weights. These weights can be represented as three-
dimensional tensors of size dmodel×d×n. Using equation 2, we can define and learn low-rank updates ∆Wq
and ∆Wv for the query and value weights, respectively.
Adapting output weights. Our second method, FTN (Output projection), adds low-rank factors, ∆Wo,
to the output projection weights Wo ∈ Rdmodel×d×n. Similar to the previous low-rank updates, the updates
to the output weights defined following equation 2.

Initialization. We initialize each low-rank factor by sampling from a Gaussian distribution with µ = 0 and
σ = 0.05. This ensures near-zero initialization, closely matching the pretrained network.

Number of parameters. The total number of parameters needed for R low-rank tensors and L MHSA
blocks in FTN (Query and Value) is 2LR(dmodel+d+n). FTN (Output Projection) requires only LR(dmodel+
d + n) to add a similar number of factors. These additional parameters are significantly fewer than the
parameters required for fully fine-tuning the four attention weights, which equals 4Ld2

model. When compared
to other parameter-efficient adaptation methods such as LoRA Hu et al. (2021) and KAdaptation He et al.
(2023), our methods show superior parameter efficiency. LoRA requires 4LRdmodel parameters to apply low-
rank factors to query and value weight matrices. KAdaptation requires 2LRdmodel+K3 additional parameters
for each weight, where K represents a design parameter. SSF Lian et al. (2022) requires mLdmodel, where
m is the number of SSF modules in each transformer layer. In Table 3, we report the exact number of
parameters and demonstrate that our proposed method, FTN (Output Projection), has the best parameter
efficiency.
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Table 1: Number of parameters and top-1% accuracy for baseline methods, comparative methods, and FTN with varying
ranks on the five domains of the ImageNet-to-Sketch benchmark experiments. Additionally, the mean top-1% of each method
across all domains is shown. The ‘Params’ column gives the number of parameters used as a multiplier of those for the Feature-
Extractor method, along with the absolute number of parameters required in parentheses.

Methods Params (Abs) Flowers Wikiart Sketch Cars CUB mean
Fine-Tuning 6× (141M) 95.69 78.42 81.02 91.44 83.37 85.98
Feature-Extractor 1× (23.5M) 89.57 57.7 57.07 54.01 67.20 65.11
FC and BN only 1.001× (23.52M) 94.39 70.62 79.15 85.20 78.68 81.60
Piggyback 6× [2.25×] (141M) 94.76 71.33 79.91 89.62 81.59 83.44
Packnet → [1.60×] (37.6M) 93 69.4 76.20 86.10 80.40 81.02
Packnet ← [1.60×] (37.6M) 90.60 70.3 78.7 80.0 71.4 78.2
Spot-Tune 7× [7×] (164.5M) 96.34 75.77 80.2 92.4 84.03 85.74
WTPB 6× [2.25×] (141M) 96.50 74.8 80.2 91.5 82.6 85.12
BA2 3.8× [1.71×] (89.3M) 95.74 72.32 79.28 92.14 81.19 84.13
TAPS 4.12× (96.82M) 96.68 76.94 80.74 89.76 82.65 85.35
FTN, R=1 1.004× (23.95M) 94.79 73.03 78.62 86.85 80.86 82.83
FTN, R=50 1.53× (36.02M) 96.42 78.01 80.6 90.83 82.96 85.76

4 Experiments and Results

We evaluated the performance of our proposed FTN on several MTL/MDL datasets. We performed ex-
periments for 1. Multi-domain classification on convolution and transformer-based networks, and 2.
Multi-task dense prediction. For each set of benchmarks, we reported the performance of FTN with
different rank increments and compared the results with those from existing methods. All experiments are
run on a single NVIDIA GeForce RTX 2080 Ti GPU with 12GB memory.

4.1 Multi-domain classification

4.1.1 Convolution-based networks

Datasets. We use two MTL/MDL classification-based benchmark datasets. First, ImageNet-to-Sketch,
which contains five different domains: Flowers Nilsback & Zisserman (2008), Cars Krause et al. (2013),
Sketch Eitz et al. (2012), Caltech-UCSD Birds (CUBs) Wah et al. (2011), and WikiArt Saleh & Elgammal
(2016), with different classes. Second, DomainNet Peng et al. (2019), which contains six domains: Clipart,
Sketch, Painting (Paint), Quickdraw (Quick), Inforgraph (Info), and Real, with each domain containing an
equal 345 classes. The datasets are prepared using augmentation techniques as adopted by Wallingford et al.
(2022).

Training details. For each benchmark, we report the performance of FTN for various choices for ranks,
along with several benchmark-specific comparative and baseline methods. The backbone weights are pre-
trained from ImageNet, using ResNet-50 He et al. (2016) for the ImageNet-to-Sketch benchmarks, and
ResNet-34 on the DomainNet benchmarks to keep the same setting as Wallingford et al. (2022). On
ImageNet-to-Sketch we run FTNs for ranks, R ∈ {1, 5, 10, 15, 20, 25, 50} and on DomainNet dataset for
ranks, R ∈ {1, 5, 10, 20, 30, 40}. In the supplementary material, we provide the hyperparameter details to
train FTN.

Results. We report the top-1% accuracy for each domain and the mean accuracy across all domains for each
collection of benchmark experiments. We also report the number of frozen and learnable parameters in the
backbone network. Table 1 compares the FTN method with other methods in terms of accuracy and number
of parameters. FTN outperforms every other method while using 36.02 million parameters in the backbone
with rank-50 updates for all domains. The mean accuracy performance is better than other methods and is
close to Spot-Tune Guo et al. (2019), which requires nearly 165M parameters. On the Wikiart dataset, we
outperform the top-1 accuracy with other baseline methods. The performance of baseline methods is taken
from TAPS Wallingford et al. (2022) since we are running the experiments under the same settings.
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Table 2: Performance of different methods with resnet-34 backbone on DomainNet dataset. Top-1% accuracy is shown on
different domains with different methods along with the number of parameters.

Methods Params Clipart Sketch Paint Quick Info Real mean

Fine-Tuning 6× 74.26 67.33 67.11 72.43 40.11 80.36 66.93
Feature-Extractor 1× 60.94 50.03 60.22 54.01 26.19 76.79 54.69
FC and BN only 1.004× 70.24 61.10 64.22 63.09 34.76 78.61 62.00

Adashare 5.73× 74.45 64.15 65.74 68.15 34.11 79.39 64.33
TAPS 4.90× 74.85 66.66 67.28 71.79 38.21 80.28 66.51

FTN, R=1 1.008× 70.73 62.69 65.08 64.81 35.78 79.12 63.03
FTN, R=40 1.18× 74.2 65.67 67.14 71.00 39.10 80.64 66.29
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(b) DomainNet dataset
Figure 2: Accuracy vs Low-ranks: We show the top-1% accuracy against the different low-ranks used in our method for
different domains. We start with an ‘only BN’ setup where without any low-rank we keep the Batch Normalization layers as
task-specific. Then we show the performance improvement through our approach upon increasing the rank, R.

Table 2 shows the results on the DomainNet dataset, which we compare with TAPS Wallingford et al.
(2022) and Adashare Sun et al. (2020). Again, using FTN, we significantly outperform comparison methods
along the required parameters (rank-40 needs 25.22 million parameters only). Also, FTN rank-40 attains
better top-1% accuracy on the Infograph and Real domain, while it attains similar performance on all other
domains. On DomainNet with resnet-34 and Imagenet-to-Sketch with resnet-50 backbone, the rank-1 low-
rank tensors require only 16,291 and 49,204 parameters per task, respectively. We have shown additional
experiments on this dataset under a joint optimization setup in the supplementary material.

Analysis on rank. We create low-rank tensors (∆W ) as a summation of R rank-1 tensors. We hypothesize
that increasing R increases the expressive power of low-rank tensors. Our experiments confirm this hypothe-
sis, where increasing the rank improves the performance, enabling more challenging task/domain adaptation.
Figure 2 shows the accuracy vs. ranks plot, where we observe a trend of performance improvement as we
increase the rank from 1 to 50 on the ImageNet-to-Sketch and from 1 to 40 on the DomainNet dataset.
In addition, we observe that some domains do not require high ranks. Particularly, the Flowers and Cars
domains attain good accuracy at ranks 20 and 15, respectively. We can argue that, unlike prior works Guo
et al. (2019); Li et al. (2016), which consume the same task-specific module for easy and complex tasks, we
can provide different flexibility to each task. Also, we can add as many different tasks as we want by adding
independent low-rank factors for each task (with a sufficiently large rank). In supplementary material, we
present a heatmap that shows the adaption of the low-rank tensor at every layer upon increasing the rank.

4.1.2 Transformer-based networks

We compared our FTN method with several domain adaptation techniques for supervised image classification.
Our task is to adapt a pretrained 12-layer ViT-B-224/32 (CLIP) model obtained from He et al. (2023) to
new domains.
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Table 3: We compared performance across five datasets in terms of accuracy and total parameters. FTN (O) uses low-rank
factors for output projection weights, while FTN (Q&V) applies them to query and value weights. Note that the parameters
mentioned exclude task-specific heads, and 5 × (439.5M) denotes a fivefold increase in base network parameters, 5 × 87.9M .

Method # total params # additional params CIFAR10 CIFAR100 DTD STL10 FER2013 mean

Fine-tuning 5× (439.5M) 5× 87.9M 97.7 85.4 79.0 99.7 69.8 86.3
Feature extractor 1× (87.9M) - 94.8 80.1 75.4 98.4 67.3 83.2
LoRA 1.008× (88.6M) 5×147.2K 95.1 78.1 78.1 99.2 67.7 83.6
KAdaptation 1.005× (88.3M) 5×80.7K 95.9 84.8 78.1 99.2 69.0 85.4

FTN (Q & V) 1.005× (88.3M) 5× 81.0K 95.8 83.4 77.1 98.7 68.5 84.7
FTN (O) 1.002× (88.1M) 5×40.5K 96.6 84.3 76.0 98.6 69.5 85.0

Datasets. We conducted experiments on the CIFAR10 Krizhevsky et al. (2009), CIFAR100 Krizhevsky
et al. (2009), DTD Cimpoi et al. (2014), FER2013 Goodfellow et al. (2013), and STL10 Coates et al. (2011)
classification datasets, using the official dataset splits.

Training details. For all experiments, we set the rank to R = 4. We followed a similar hyper-parameter
tuning procedure and implementation as outlined in He et al. (2023), which utilizes grid-search to obtain the
optimal learning rate for each dataset. We found that 5× 10−6 was the optimal learning rate. Following the
approach in Hu et al. (2021), we scaled the low-rank factors by α

R , where α is a hyper-parameter, and R is
the number of low-rank factors. We set α = 10 and α = 100 for FTN (Query and Value) and FTN (Output
projection), respectively. We used a batch size of 64 and trained for 100 epochs.

Results. In Table 3, we present the classification accuracy and the total number of parameters for our
proposed FTN methods, along with related model adaptation methods. Results for Fine-tuning, Feature
extractor (Linear-probing), LoRA Hu et al. (2021), and KAdaptation He et al. (2023) are obtained from
He et al. (2023). The first proposed method, FTN (query and value), surpasses LoRA in terms of average
performance and requires fewer additional parameters. FTN (query and value) requires a comparable number
of parameters to KAdaptation and performance is 0.8% lower. In contrast, FTN (output projection) requires
approximately half as many additional parameters as KAdaptation but achieves comparable performance.

4.2 Multi-task dense prediction

Dataset. The widely-used NYUD dataset Silberman et al. (2012) with 795 training and 654 testing images
of indoor scenes is used for dense prediction experiments in multi-task learning. The dataset contains four
tasks: edge detection (Edge), semantic segmentation (SemSeg), surface normals estimation (Normals), and
depth estimation (Depth). We follow the same data-augmentation technique as used by Kanakis et al. (2020).

Metrics. On the tasks of the NYUD dataset, we report mean intersection over union for semantic segmen-
tation, mean error for surface normal estimation, optimal dataset F-measure Martin et al. (2004) for edge
detection, and root mean squared error for depth estimation. We also report the number of parameters used
in the backbone for each method.

Training details. ResNet-18 is used as the backbone network, and DeepLabv3+ Chen et al. (2018a) as the
decoder architecture. The Fine-Tuning and Feature-Extractor experiments are implemented in the same way
as in the classification-based experiments above. We showed experiments for FTNs with R ∈ {1, 10, 20, 30}.
Further details are in the supplementary material.

Results. Table 4 shows the performance of FTN with various ranks and of other baseline comparison meth-
ods for dense prediction tasks on the NYUD dataset. We observe performance improvement by increasing
flexibility through higher rank. FTN with rank-30 performs better than all comparison methods and utilizes
the least number of parameters. Also, on the Depth and Edge task we can attain good performance by using
only rank-20. We take the performance of baseline comparison methods from the RCM paper Kanakis et al.
(2020) as we run our experiments under the same setting.
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Table 4: Dense prediction performance on NYUD dataset using ResNet-18 backbone with DeepLabv3+ decoder. The proposed
FTN approach with R = {1, 10, 20, 30} and other methods. The best performing method in bold.

Methods Params Semseg↑ Depth↓ Normals↓ Edge↑
Single Task 4× 35.34 0.56 22.20 73.5
Decoder only 1× 24.84 0.71 28.56 71.3
Decoder + BN only 1.002× 29.26 0.61 24.82 71.3
ASTMT (R-18) 1.25× 30.69 0.60 23.94 68.60
ASTMT (R-26+SE) 2.00× 30.07 0.63 24.32 73.50
Series RA 1.56× 31.87 0.60 23.35 67.56
Parallel RA 1.50× 32.13 0.59 23.20 68.02
RCM 1.56× 34.20 0.57 22.41 68.44
FTN, R=1 1.005× 29.83 0.60 23.56 72.7
FTN, R=10 1.03× 33.66 0.57 22.15 73.5
FTN, R=20 1.06× 34.06 0.55 21.84 73.9
FTN, R=30 1.09× 35.46 0.56 21.78 73.8

5 Conclusion

We have proposed a simple, parameter-efficient, architecture-agnostic, and easy-to-implement FTN method
that adapts to new unseen domains/tasks using low-rank task-specific tensors. Our work shows that FTN
requires the least number of parameters compared to other baseline methods in MDL/MTL experiments
and attains better or comparable performance. We can adapt the backbone network in a flexible manner
by adjusting the rank according to the complexity of the domain/task. We conducted experiments with
different convolutional backbones and transformer architectures for various datasets to demonstrate that
FTN outperforms existing methods.
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