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Abstract

Text prediction models, when used in applications like email clients or word processors,
must protect user data privacy and adhere to model size constraints. These constraints
are crucial to meet memory and inference time requirements, as well as to reduce inference
costs. Building small, fast, and private domain-specific language models is a thriving area
of research. In this work, we show that a careful pre-training on a subset of the public
dataset that is guided by the private dataset is crucial to train small language models with
differential privacy. On standard benchmarks, small models trained with our new framework
achieve state-of-the-art performance. In addition to performance improvements, our results
demonstrate that smaller models, through careful pre-training and private fine-tuning, can
match the performance of much larger models that do not have access to private data. This
underscores the potential of private learning for model compression and enhanced efficiency.

1 Introduction

Many papers have shown that deep learning models are vulnerable to attacks aimed at extracting information
from the training data (Shokri et al., 2017; Hayes et al., 2019; Carlini et al., 2021; Zhang et al., 2021;
Choquette-Choo et al., 2021; Carlini et al., 2023; Matsumoto et al., 2023). A provable path for mitigating such
privacy attacks is to train the models with differential privacy (DP) Dwork et al. (2006), a mathematically
rigorous notion for quantifying the privacy leakage of a machine learning model. Over the past few years,
there has been a rapid progress in our understanding of deep learning with DP, both in terms of computational
efficiency (He et al., 2023; Bu et al., 2021; Lee & Kifer, 2021; Subramani et al., 2021; Anil et al., 2022) and
privacy-utility trade-off (De et al., 2022; Zhou et al., 2021; Zhu et al., 2020; Golatkar et al., 2022; Sander
et al., 2022; Bu et al., 2022a; Panda et al., 2022; Luo et al., 2021; Kairouz et al., 2021; Kurakin et al., 2023).
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Figure 1: The proposed framework for training a small and domain-specific model with differential privacy
(DP). More details on the process of training the domain classifier and the selection of public data can be
found in Figure 3. We use the method in Abadi et al. (2016) for training models with DP.

One of the most important findings is that pre-training is crucial for maximizing performance (Li et al.,
2022b; Ganesh et al., 2023).

Most of the DP literature mentioned above focus on settings where inference time is not a bottleneck and
one can deploy models of any size. In such a case, existing evidence is that larger models pre-trained on vast
amounts of public data perform better when combined with private fine-tuning (Li et al., 2022c; Yu et al.,
2022; Mehta et al., 2022). However, there are plenty of applications where the size of the model is restricted
by the inference time, e.g., a language model of an email client or a face identification model running in
a security system. In such applications, if the inference time is not good then the quality of predictions
becomes irrelevant. Further, note also that in both these applications the training data is quite sensitive, and
the models should protect the privacy of users. Building small, fast, and private domain specific language
models is also a thriving area in industry with several start-ups (MosiacML; ScaleAI). There is also economic
motivation as smaller models offer cheaper inference costs.

In this work, we introduce selective pre-training as a means to improve DP fine-tuning for small language
models. Figure 1 presents an overview of the proposed framework. Specifically, our approach selects a
tailored subset of public data, guided by the private data, for model pre-training. This selection process
begins with the training of a DP domain classifier, using the private data as positive training samples. The
domain classifier is subsequently utilized to rank all public samples, retaining only the top-ranked samples.
We conduct extensive experiments to demonstrate the superiority of selective pre-training over standard
pre-training. The representative results are presented in Figure 2.

Our main motivation stems from the observation that for a fixed size model, there is an optimal size
of pre-training data after which enlarging the pre-training dataset does not further improve downstream
performance. This phenomenon is observed in our Figures 2 and 6 and aligns with the previously established
scaling laws for pre-training language models (Kaplan et al., 2020; Hoffmann et al., 2022). For example,
the results in Figure 2 suggest that for a transformer model with only 21 million parameters, pre-training
on a random 15% of OpenWebText (Gokaslan & Cohen, 2019) is no different than pre-training on the full
OpenWebText. Therefore, in such a case, selecting a subset of public data that better aligns with the domain
of private data is an effective way to fully utilize the constrained capacity of small models.

Our contributions are summarized as follows.

1. We propose selective pre-training as a novel approach for training small, domain-specific language
models with DP. We design and implement the first simple and effective DP algorithm for selecting a
subset of public data that better aligns with the domain of the private data.

2. We empirically validate the proposed framework using the Enron email dataset (Cohen, 2015) and
the GLUE benchmark (Wang et al., 2018). The results from the Enron email dataset (Section 4.1)
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Figure 2: A representative result from our findings. We plot perplexity and top-1 next word accuracy
of GPT models on the test set of the Enron email dataset (Cohen, 2015). Overall privacy budget is
(ε = 7.3, δ = 1 × 10−7). The dashed line shows the zero-shot performance of GPT2-XL with 1.5 billion
parameters. The figure shows that our framework yields clear improvements in both perplexity and next-token
prediction accuracy, which can significantly improve the overall model behavior.

demonstrate the effectiveness of our framework in real-world scenarios, while the results from the
GLUE benchmark (Section 4.2) show its superiority compared to existing baselines.

3. In addition to state-of-the-art DP small models, our experimental results indicate that fine-tuning
with DP benefits more significantly from selective pre-training than non-private fine-tuning, as
presented in Figures 5 and 7. This underscores the distinctive value of selective pre-training within
the DP community.

Real-world Impact Our framework was recently used in training an industry grade differentially private
text prediction language model that now serves many NLP applications. As text prediction models (on email
clients/servers, word processors, etc.) serve billions of queries per hour, the inference cost savings due to the
decrease in model size are significant. Further, due to better inference time, online performance metrics, such
as the number of predictions accepted by the users, also improve.

1.1 Preliminaries
We begin with the formal definition of differential privacy.

Definition 1 ( (ϵ, δ)-Differential Privacy (DP) (Dwork et al., 2006)). A randomized algorithm A is (ϵ,δ)-
differentially private if for any two neighboring datasets D and D′, which differ in exactly one datapoint, and
for every subset S of possible outputs: Pr[A(D) ∈ S] ≤ eϵ Pr[A(D′) ∈ S] + δ.

Private Deep Learning: In the context of deep learning, DP guarantees that the trained model weights
are private with respect to a training dataset, and hence can be released publicly. To train a deep learning
model with privacy, the most popular method is to first release the gradients of an optimizer with differential
privacy and then update the model with privatized gradients (Song et al., 2013; Bassily et al., 2014; Abadi
et al., 2016). We follow the approach in Abadi et al. (2016) to make gradients differentially private. Abadi
et al. (2016) augment each minibatch of gradients with per-example gradient clipping and Gaussian noise
addition steps. The clipping step ensures that no one user’s sample significantly changes the weights of the
model and the noise added guarantees that the contribution of a single example is masked.

2 Problem Statement and Our Algorithmic Framework
Input to our problem is a private dataset Dpriv corresponding to a downstream task T , a model M of size
p, privacy parameters ϵ > 0, δ > 0, and a public dataset Dpub. Our goal is to train M on public and
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private datasets with the aim of maximizing the downstream performance on the task T . The entire process
should be (ϵ, δ)-differentially private with respect to Dpriv. The constraint on model size is important to
compare various algorithms in our setting. In applications, the constraints on model size arise naturally as a
consequence of memory and/or inference time requirements.

Our framework for solving the problem consists of the following 3 steps.

1. Privacy Preserving Data Selection: Given Dpriv, invoke a privacy preserving data selection
algorithm Aselect to find a D′

pub ⊆ Dpub. The privacy budget for this step is (ϵ1, δ1).

2. Non-Private Pre-training: Pre-train the model M on D′
pub with a standard pre-training algorithm.

This step does not consume any privacy budget.

3. Private Fine-tuning: Fine-tune M on Dpriv with a differentially private algorithm Afinetune. The
privacy budget for this step is (ϵ2, δ2).

The non-private pre-training step can be viewed as a post-processing function to Aselect and thus no privacy
budget is consumed. The advanced composition theorem of DP (see (Steinke, 2022) for example) guarantees
that our framework is (ϵ, δ)-DP. In our experiments, we use the Privacy Random Variable (PRV) Accountant
(Gopi et al., 2021; Ghazi et al., 2022; Koskela et al., 2020). The PRV accountant gives tighter bounds on
privacy parameters ε and δ than the moments accountant in Abadi et al. (2016). The rest of the paper is
devoted to describing the first step of our framework, followed by experiments to verify the effectiveness of
our methods on different datasets.

3 Privacy Preserving Data Selection
We describe our approach to implementing a privacy-preserving data selection algorithm. We provide a
specific implementation of our framework and demonstrate its effectiveness, however, our approach is general
and can be combined with other private data selection algorithms.

3.1 Our Implementation of Data Selection
Our framework is loosely inspired by the data cleaning framework used in GPT3 and PaLM models Brown
et al. (2020); Chowdhery et al. (2022), although motivations are a bit different. The classifiers in Brown et al.
(2020); Chowdhery et al. (2022) are trained to filter out noisy documents from datasets. In fact, the source
datasets in our paper, i.e., OpenWebText and Wikipedia, are considered positive examples in Brown et al.
(2020). Our classifier is trained to recognize examples that are similar to samples in the target data. We
initialize the classifier with a pre-trained LM and fine-tune it with differential privacy to predict whether a
sentence is sampled from the distribution of the target data. We use the classifier to predict all sentences
in the source data and rank them according to confidence scores. Although deep neural networks could be
overconfident and need calibration in some applications (Guo et al., 2017; Zhang et al., 2022), not calibrating
the outputs does not affect our algorithm because calibration does not change the relative ranking among
sentences. We select the top sentences until we reach the target number of pre-training tokens 1. Figure 3
shows an overview of our implementation.

We create a training set to teach the classifier to recognize a target data distribution. Sentences in the target
dataset are labelled as positive. Random samples from the source data are labelled as negative2. It has been
widely observed that a larger training set helps private learning (Bassily et al., 2014; Tramèr & Boneh, 2021).
Therefore we set the number of negative examples as five times larger than the number of positive examples.
The privacy cost of training the classifier is accounted in the overall privacy cost.

We run experiments with the Enron Email (Cohen, 2015) as the target and the OpenWebText dataset
(Gokaslan & Cohen, 2019) as the source. The classifier is initialized with a 124M GPT model pre-trained on
OpenWebText. With a single Tesla A100 GPU, it takes approximately one hour for fine-tuning the domain

1In our preliminary experiments, we also explored random sampling where the sampling weights are scaled linearly or
quadratically with the confidence scores from the domain classifier. We found no statistical difference when compared to using
only the top-ranked samples.

2This way of assigning negative labels may introduce few noisy labels, since some public samples may closely resemble those
from the private dataset. However, given the vast size and diversity of the public dataset, the percentage of noisy labels would
be low, as evidenced by the high test F1-score of the trained domain classifiers.
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Figure 3: The process of training the domain classifier and the selection of large-scale public data.

classifier. With eight Tesla V100 GPUs, it takes less than two hours for computing the confidence scores for
all sequences in OpenWebText. The privacy guarantee is (0.7, 1 × 10−8)-DP if we only consider the privacy
cost of this step. More implementation details are in Section 4.1. The trained classifier achieves an F1-score
of 98.5%. The classifier achieves an F1-score of 92.7% if it is not initialized with a pre-trained LM.

(a) Enron Email (b) OpenWebText (c) Selected OpenWebText

Figure 4: The 100 most frequent nouns in Enron email, OpenWebText, or a selected subset of OpenWebText
(10%). A larger font size indicates that the word appears more frequently. Green words are the 100 most
frequent nouns in Enron Email. OpenWebText and selected OpenWebText have 28 and 39 words, respectively,
that are among the 100 most frequent nouns in Enron Email.

We use the trained classifier to select 10% of OpenWebText. We plot the word clouds of Enron email,
OpenWebText, and the selected subset of OpenWebText (Figure 4), to visually illustrate the dataset selected
by our algorithm. The word clouds only show the nouns to exclude common prepositions and verbs. There
are 28 nouns which appear in both the top 100 nouns of the Enron email dataset and the top 100 nouns
of OpenWebText. The number of overlaps increases to 39 when comparing Enron email with the selected
subset of OpenWebText, suggesting the trained domain classifier is an effective tool for data selection. In
Appendix B.1, we also present the results of using GLUE (Wang et al., 2018) tasks as the targets and the
pre-training corpus of BERT (Devlin et al., 2019) as the source.

4 Experimental Evaluation

We evaluate our full framework (Section 2) on language generation and understanding tasks, comparing on
datasets that most previous works used (Li et al., 2022c; Yu et al., 2022). The goal here is to empirically
verify the main claim made in the introduction: our framework can be used as an effective tool for model
compression, and beats the existing baselines in the literature (Mireshghallah et al., 2022). We note that
Mireshghallah et al. (2022) did experiments on GLUE benchmark only, and we compare against them in the
next section. We begin with the language modeling on the email dataset, which was the motivating example
from the real world application.
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4.1 Implementing the Framework on the Enron Email Dataset
Our first target task is causal language modeling on the Enron email dataset. The dataset contains
approximately 0.5 million (M) emails written by employees of the Enron Corporation and is publicly available
for research use. We choose this dataset because its distribution closely resembles some private datasets in
the real world for which it is hard to find off-the-shelf pre-training data.

4.1.1 Experiment Setup
We briefly describe important parameters of our experimental setup. More details are in Appendix C.

Target and Source Data We divide the text into sequences of length 256 and treat each sequence as a
datapoint, which constitutes the granularity of our privacy guarantees. Most of the emails in the dataset are
shorter than hundred words. In real world applications, it is important to carefully bound the maximum
contribution of a single email/user to a training point. There are ∼70K sequences in total. We use 80% of
them for training and evenly split the rest 20% for validation and testing. The source data is OpenWebText
(Gokaslan & Cohen, 2019) which contains ∼4 billion tokens. The sequence size for OpenWebText is 512,
following the choice in Radford et al. (2018).

Models Models in this section are from the GPT family (Radford et al., 2019). We change the number of
layers, hidden size, and intermediate size of the fully connected block to get five different model sizes (21M,
45M, 82M, 124M, and 355M). Details of the models and pre-training hyperparameters are in Appendix C.
All models are pre-trained with nodes with 8x Nvidia Tesla V100 GPUs.

Data Selection We use the algorithm in Section 3 to select 2M sequences from the source data for pre-
training. We train the domain classifier for 3 epochs. The baselines include 1) pre-training with 2M random
sequences and 2) pre-training with all of OpenWebText.

Privacy Budget and Hyperparameters The overall privacy budget is (7.3, 1 × 10−7)-DP, similar to
previous works on this topic (Li et al., 2022c; Yu et al., 2022). To reduce the privacy cost of hyperparameter
tuning (Liu & Talwar, 2019; Papernot & Steinke, 2022; Mohapatra et al., 2022), we follow the findings in
previous work to set most of the hyperparameters and only tune the learning rate to adapt to models of
different sizes. The hyperparameters for private learning are listed in Table 4 in Appendix C.

4.1.2 Selective Pre-training Provides Clear Gains, Model Efficiency
Figure 2 shows the perplexity and next-word prediction accuracy of different models on the test split of the
Enron email dataset. We also present the next-word accuracy and its standard deviation across random seeds
in Table 1 in Appendix B.2 as a complementary to Figure 2. It is clear from the figure that our framework
improves performance compared to existing techniques.

More significantly, we see that smaller models can match the performance of much larger models; for example,
the 82M model using selective pre-training matches the 124M model using normal pre-training. This shows
that the proposed framework can be used to improve the efficiency-utility trade-off of private learning. We also
include the zero-shot performance of the off-the-shelf GPT2-XL model (1.5 billion parameters) in Figure 2.
The zero-shot performance of GPT2-XL is worse than the models that have access to private data and are of
much smaller size. These findings highlight the importance of private data, which can be loosely treated as
high quality data, as well as the importance of privacy-enhancing technologies that facilitate the trustworthy
use of such data. Figure 10 in Appendix B.2 also presents the results under different privacy budgets (ε
ranging from 2.3 to 10.9). We observe consistent gains when the selective pre-training framework is used.

4.1.3 Selective Pre-training is More Important for Private Learning
We also fine-tune the models without differential privacy to see whether selective pre-training improves
downstream performance in non-private learning. The results are in Figure 5. When using 15% of OpenWeb-
Text, selective pre-training still improves the performance of all models though the improvement is smaller
compared to the private world. When using 100% of OpenWebText, the benefits of selective pre-training
gradually diminish as the model size increases. This suggests that selective pre-training is more important
for private learning compared to the case in non-private learning. Our hyperparameters for non-private
fine-tuning can be found in Appendix C.
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Figure 5: Perplexity and top-1 next word accuracy of GPT models on the test set of the Enron email dataset.
The models are trained without DP. Selective pre-training still improves over standard pre-training, however,
the improvements are smaller compared to private learning.

4.2 Experiments on GLUE
We conduct experiments on the GLUE benchmark (Wang et al., 2018), a common benchmark for fine-tuning
language models with DP (Yu et al., 2021; Li et al., 2022c; Bu et al., 2022b). Our results show that
selective pre-training also improves DP fine-tuning for language understanding tasks, beating the baselines in
Mireshghallah et al. (2022).

4.2.1 Experiment Setup
Target and Source Data Our target tasks in this section are MNLI and SST-2, which have respectively
the largest and smallest number of examples among the four tasks studied in previous work (Yu et al., 2021;
Li et al., 2022c; Bu et al., 2022b; Mireshghallah et al., 2022). The numbers of training examples (N) in
MNLI and SST-2 are 393K and 67K. The source data for GLUE tasks is the pre-training corpus of BERT
(Devlin et al., 2019); It consists of a subset of Wikipedia and the entire Bookcorpus. The source dataset has
approximately 3.5 billion tokens.

Model Sizes We use models from the BERT family (Devlin et al., 2019). We consider four different model
sizes (5M, 10M, 25M, and 44M). Details of the models are in Appendix C. Following previous work (Xia
et al., 2022), we do not include embedding matrices when computing the number of parameters of BERT
models. For text classification tasks, the BERT embedding layer during inference is simply a lookup table.

Data Selection For MNLI and SST-2, we experiment with selecting varying numbers of tokens from the
source data. The target numbers of pre-training tokens are 20M, 40M, 200M, 400M, 800M, 1200M, and
2000M. More complete implementation details on data selection are in Appendix C.

Baselines The baselines include pre-training on randomly selected source data and pre-training on all source
data. There are two additional baselines for the 44M model. The first is directly fine-tuning DistillBERT
(Sanh et al., 2019) with differential privacy. DistillBERT is distilled from BERT-base on the source data.
The second is the best result in Mireshghallah et al. (2022). Mireshghallah et al. (2022) compress a DP
fine-tuned BERT-base model using differentially private distillation or pruning. The architecture of the
compressed models in Mireshghallah et al. (2022) and Sanh et al. (2019) are of the same architecture as the
44M model. Although our framework is compatible with the techniques in Mireshghallah et al. (2022) and
Sanh et al. (2019), we include the two additional baselines to demonstrate that the proposed framework alone
is a competitive approach for model compression in private learning.

Private Learning We adopt the setup in Mireshghallah et al. (2022). The privacy budget is (4, 1/10N)-DP.
The hyperparameters for private learning are also documented in Appendix C.
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Figure 6: Results of pre-training with various numbers of tokens. The first column shows the results of 5M
models and the second column shows the results of 44M models. Selective pre-training outperforms baseline
algorithms in most of the cases.

4.2.2 Selective Pre-training Outperforms Baselines, Improves Model Efficiency
Figure 6 shows the test accuracy on MNLI and SST-2 after privately fine-tuning models pre-trained with
varying numbers of tokens. Our first finding is that, for most of the settings, selective pre-training outperforms
all the algorithms examined. On SST-2, selective pre-training achieves accuracy that is 4.6% and 3.7% higher
than the accuracy of full pre-training for the 5M and 44M models, respectively. On MNLI, the accuracy
improvements are 1.4% and 1.8%, respectively. Our second finding is that, for a model of fixed size, increasing
the number of pre-training tokens does not necessarily lead to better downstream accuracy. This suggests that
there may be an optimal number of pre-training tokens for a given model size (Sorscher et al., 2022; Hoffmann
et al., 2022), further emphasizing the need to choose a task-specific subset from a large source data.

Figure 7 shows the test accuracy of models of different sizes. When trained with differential privacy, the 25M
model with selective pre-training achieves comparable or better performance than the 44M baseline models,
aligning with our observations on the Enron email dataset. The accuracy gains on SST-2 are greater than
those achieved on MNLI, likely because MNLI data distribution is relatively closer to Wikipedia corpus; see
Appendix B.1 for the word clouds comparison.

5 Related Work
Here we discuss closely related prior work. Additional related work is discussed in Appendix A.
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Figure 7: Results of pre-training with different model sizes. The numbers in the brackets are the numbers of
tokens used for pre-training. ‘NP’ denotes that the models are fine-tuned without DP. Selective pre-training
consistently improves performance across all settings. The improvements for models trained with DP are
larger.

The main scope of this work is to train better small DP language models. This scope aligns closely with
the goals of model compression. Mireshghallah et al. (2022) study the implementation of classic model
compression techniques, knowledge distillation (Hinton et al., 2015) and model pruning (Han et al., 2015),
under DP constraints. While their DP variants achieve promising results on the GLUE benchmark (Wang
et al., 2018), they find that the DP constraint reduces the effectiveness of these classic compression techniques
compared to the non-private case. In this work, the results in Figure 6 of Section 4.2 suggest that our
framework improves upon the results in Mireshghallah et al. (2022) on GLUE, indicating that selective
pre-training can serve as an effective new method for training better small DP models.

Hoffmann et al. (2022) find that the optimal number of pre-training tokens scales linearly with the number
of model parameters, as shown in their Figure 1 and Figure A3. In this work, we also observe that for a
fixed-size model, there is an optimal size of pre-training data, after which further increasing the dataset does
not improve downstream performance (see Figure 6 in Section 4.2). However, Hoffmann et al. (2022) focus
solely on the quantity of pre-training data, not its quality. In our study, we demonstrate that both the quality,
measured by the distributional gap between private and public data, and quantity play an important role in
downstream performance. More importantly, Figure 5 and Figure 7 show that DP fine-tuning benefits more
from high-quality pre-training compared to non-private fine-tuning, highlighting the unique value of selective
pre-training for the privacy-preserving learning community.

Hou et al. (2023) and Gu et al. (2023) study how to privately select an optimal public dataset from an
explicitly given list of public datasets. For instance, suppose the private dataset is CIFAR-10, and available
public datasets are MNIST, CIFAR100, and ImageNet. The goal is to design a private algorithm to find which
of the three public datasets is better suited for private learning on CIFAR-10. In this paper, we explore how
to select a subset of a single public dataset on a sample-by-sample basis. Our algorithm does not require any
explicit division of public data and runs efficiently on billions of tokens, making it well-suited for finding the
right pre-training data for language models. More importantly, our emphasis is not just on model accuracy,
but on how pre-training impacts accuracy-vs-model size trade-offs.

6 Conclusion and Limitations
6.1 Conclusion
This work introduces selective pre-training, a new approach for pre-training language models that are better
suited for fine-tuning with DP on private data. The proposed framework pre-trains the models on a selected
subset of public data that is better aligned with the domain of the private data. Additionally, the selection of
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public data is designed to satisfy DP with respect to the private dataset. Experiments on the Enron email
dataset (Cohen, 2015) and GLUE benchmark (Wang et al., 2018) demonstrate that selective pre-training
improves the fine-tuning of lightweight language models by clear margins.

6.2 Limitations
We provide DP guarantees only for private datasets, not for public ones. In building applications, it is
important to consider the privacy risks associated with public data (Tramèr et al., 2022). One potential
solution is to enforce differential privacy even during the pre-training stage (Kurakin et al., 2022; Anil et al.,
2022).

Our methods pre-train models from scratch, thereby incurring an additional computational cost associated
with pre-training compared to prior work that can utilize off-the-shelf pre-trained models (Mireshghallah
et al., 2022). However, in real-world applications such as email clients or text editors, the backbone models
are queried millions or even billions of times every day. Therefore, the cost of training, being a one-time
expense, is a negligible fraction of the accumulated inference cost.

Broader Impact
Language models, trained with DP or not, are widely used for enhancing the typing experience for users
(McMahan et al., 2018; Microsoft, 2020; Xu et al., 2023). In this work, we introduce a new pre-training
method designed to improve the DP fine-tuning process of language models. We hope our work can facilitate
the adoption of privacy-preserving techniques, providing strong privacy for users while simultaneously
reducing deployment costs and further enhancing user experience. However, as previous research indicates,
implementing a DP training pipeline can be complex (Tramer et al., 2022). Therefore, we recommend rigorous
implementation and thorough auditing for any real-world deployment of the proposed framework.
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A Additional Related Work
For general literature on private deep learning and fine-tuning we refer the readers to (Abadi et al., 2016; He
et al., 2023; Kerrigan et al., 2020; Li et al., 2022c; Bu et al., 2021; Lee & Kifer, 2021; Subramani et al., 2021;
Anil et al., 2022; Yu et al., 2022; De et al., 2022; Mehta et al., 2022; Yu et al., 2021; Zhu et al., 2020; Sander
et al., 2022; Bu et al., 2022a; Panda et al., 2022), and references there in. To the best of our knowledge, no
prior work in DP literature has studied selective pre-training from scratch and its impact on the transfer
learning abilities of a model. Our work is at the intersection of several related topics, and we give a brief
overview of how our work fits into the broader literature on the topic.

Domain Adaptation and Reducing Distribution Disparity Between Public and Private Data
Public data has been widely used to improve private data analysis (Papernot et al., 2017; Alon et al., 2019;
Bassily et al., 2020b;a; Kairouz et al., 2021; Liu et al., 2021a; Zhou et al., 2021; Liu et al., 2021b; Amid
et al., 2022; Yang & Cheng, 2022; Li et al., 2022a; Bie et al., 2022). To address the distribution shift between
private and public data, a recent line of research explores domain adaption (Wang et al., 2021; Zhang &
Gao, 2022) in the context of private learning (Wang et al., 2020; Zheng et al., 2023; Bassily et al., 2023).
However, these works are not applicable to our setting due to many reasons, but in particular that we are
interested in how pre-training dataset affects the model size. Much of the above literature considers simply
the performance of the final model. In the absence of the model size restrictions, for NLP applications, it is
well established He et al. (2023) that pre-training on large corpus of text using a large model offers better
utility-vs-privacy trade offs.

Non-Private Data Selection Automatic data selection and cleaning, along with how the pre-training data
impacts the downstream task performance are important problems in deep learning. See Xie et al. (2023);
Gururangan et al. (2020); Brown et al. (2020); Chowdhery et al. (2022); Jain et al. (2023); Hernandez et al.
(2022); Mindermann et al. (2022); Lee et al. (2022); Coleman et al. (2020) and references there in. Yet, the
literature is scarce on the impact of selective pre-training on the model, except the recent concurrent work of
Xie et al. (2023). Our work explores these questions in the context of private learning, with an emphasis on
how the quality of data affects performance and model size. As a pilot study on designing privacy-preserving
data selection algorithms, we use simple classification-based approaches that are easy to privatize and provide
a clear illustration of the main messages of the paper. Exploring more sophisticated approaches Xie et al.
(2023) for private data selection is an interesting future direction.

B More Experiments
B.1 Results of Data Selection for GLUE Tasks
We plot the word clouds of SST-2/MNLI and (selected) source data to further demonstrate that the distribution
of selected data is closer to the distribution of target data. The source data for SST-2 and MNLI is a subset
of Wikipedia and the entire Bookcorpus.

The domain classifiers of SST-2 and MNLI are trained the same way as illustrated in Section 3. We select
400M tokens for SST-2 and MNLI, separately. The word clouds of the most frequent 100 nouns are in Figure 8
and 9. We exclude common prepositions and verbs in the word clouds. On SST-2, our selection algorithm
improves the number of overlaps between the source data and the target data from 25 to 40. On MNLI, our
algorithm improves the number of overlaps from 44 to 51. The results explain our findings in Section 4.2 that
selective pre-training yields larger performance improvements on SST-2 than on MNLI.

Table 1: Next word prediction accuracy (in %) of GPT models on the Enron email dataset. The overall
privacy budget is (7.3, 1 × 10−7).

Parameters 21M 45M 82M 124M 355M
Random 32.8±0.02 35.0±0.01 36.5±0.01 37.2±0.02 38.4±0.02

Top 33.8±0.03 36.1±0.02 37.5±0.04 38.4±0.02 39.4±0.01
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(a) SST-2 (b) Source Data (c) Selected Source Data

Figure 8: The 100 most frequent nouns in SST-2, the source data, and a selected subset of source data. The
source data is Wikipedia and Bookcorpus. Green words are the 100 most frequent nouns in SST-2. The
source data and the selected subset have 25 and 40 words, respectively, that are among the 100 most frequent
nouns in SST-2.

(a) MNLI (b) Source Data (c) Selected Source Data

Figure 9: The 100 most frequent nouns in MNLI, the source data, and a selected subset of source data. The
source data is Wikipedia and Bookcorpus. Green words are the 100 most frequent nouns in MNLI. The
source data and the selected subset have 44 and 51 words, respectively, that are among the 100 most frequent
nouns in MNLI.

B.2 More Experiments on the Enron Email Dataset
Table 1 shows the top-1 next word prediction accuracy on the test split of the Enron email dataset as well as
the standard deviation over five random seeds. With selective pre-training, a 82M model achieves an accuracy
of 37.5% which is 0.3% higher than the accuracy of a 124M model that is not carefully pre-trained.

We also test selective pre-training under different privacy budgets. Figure 10 presents perplexity and next-word
prediction accuracy of 21M and 355M GPT models under a wide range of ε (ranging from 2.3 to 10.9). We
fix the privacy parameter δ as 1 × 10−7 < 1/10N . We found that selective pre-training leads to similar
improvements across all the choices of ε.

C Implementation Details

Param.21M 45M 82M 124M 355M
L 4 4 6 12 24
d 312 576 768 768 1024
dF F N 1248 2304 3072 3072 4096

Table 2: Architecture hyperparameters of the models
for the Enron email dataset.

Param.5M 10M 25M 44M
L 4 6 6 6
d 312 384 576 768
dF F N 1200 1200 2304 3072

Table 3: Architecture hyperparameters of the models
for GLUE tasks.

This section expands on the implementation details that are omitted from the main text due to space
constraints.

Details of the Models Let L, d, and dF F N be the number of layers, hidden size, and intermediate size of
the fully connected block, respectively. We change L, d, dF F N to get different model sizes. Other architecture
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Figure 10: Perplexity and top-1 next-word accuracy on the Enron email dataset. We consider a wide range of
ε (ranging from 2.3 to 10.9). The numbers in brackets are the number of model parameters. The privacy
parameter δ is 1 × 10−7. Selective pre-training yields consistent gains across all ε evaluated.

hyperparameters are the same as those in Devlin et al. (2019) and Radford et al. (2019). Table 2 and 3 show
the model details for the Enron email dataset and GLUE tasks, respectively.

Data Selection for Enron Email The text in OpenWebText is also divided into sequences of length
256. To construct the training set of the domain classifier, we randomly sample 5N sequences from the
source data as negative samples, and use all N sequences in the target dataset as positive samples. As a
result, the training set of the domain classifier is 6 times larger than the target data. This significantly
reduces the privacy cost of training the domain classifier because the probability of a target example being
sampled becomes 6 times smaller. We initialize the domain classifier with an 82M GPT model pre-trained on
OpenWebText and fine-tune it with DP-Adam on the constructed training set.

Data Selection for GLUE Tasks Because the positive examples in SST-2 and MNLI are natural sentences
instead of sequences of fixed length, we sample natural sentences in the source data as negative examples
for training the domain classifier. The domain classifier is initialized with BERT-base. In MNLI, a single
example contains two natural sentences, i.e., a premise and a hypothesis. In this case, only one of the two
sentences is chosen randomly as a positive example. The number of negative examples is also 5N .

The pre-training sequences in Devlin et al. (2019) are of a fixed length. Each sequence may consist of several
natural sentences. To get the ranking score of a sequence, we first break a fixed-length sequence into natural
sentences and use the domain classifier to predict those sentences. The maximum confidence of the sentences
is used as the ranking score for the sequence.

Table 4: Hyperparameters for private fine-tuning. We use N to denote the size of the target dataset.

Pre-training Method Standard Selective

Noise multiplier (Enron) 1.00 1.03
Noise multiplier (SST-2) 1.36 1.38
Noise multiplier (MNLI) 1.44 1.46
Train steps (domain classifier) N/A 100
Train steps (target task) [150, 500, 1000]
Clipping norm 1
Learning rate [1e-4, 5e-4, 1e-3, 3e-3]
Weight decay 0
Batchsize ⌊0.03N⌋
Privacy budget (7.3, 1 × 10−7) for Enron; (4, 1/10N) for GLUE
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Hyperparameters For Pre-training The pre-training process uses common hyperparameters in the
literature. For pre-training models from the BERT family, we follow the hyperparameters in Devlin et al.
(2019). The hyperparameters for pre-training models from the GPT family are as follows. We use a dropout
probability of 0.1 and a weight decay of 0.01. The β1 and β2 of Adam are 0.9 and 0.999, respectively. All
models are pre-trained from scratch for 100K iterations with a batch size of 128. The initial learning rate is
5 × 10−4 and follows a linear decay schedule.

Hyperparameters For Private Fine-tuning We follow the findings in previous work to set most of
the hyperparameters (Li et al., 2022c; Mireshghallah et al., 2022). We additionally tune the learning rate to
adapt to the various model sizes we studied. Table 4 summarizes the hyperparameters for private learning.
We use the parameter-efficient fine-tuning algorithm LoRA (Hu et al., 2022) to improve the efficiency of
the DP fine-tuning of GPT models Yu et al. (2022); Kurakin et al. (2023). We do not use LoRA for the
DP fine-tuning of BERT models to get a fair comparison to Mireshghallah et al. (2022). For a given set of
hyperparameters, we use the PRV accountant to get the noise multiplier of DP-Adam. If we use selective
pre-training, then the noise multiplier is slightly larger because we need to account for the privacy cost of
training a domain classifier. We repeat each private fine-tuning experiment 5 and 3 times with different
random seeds for the Enron email dataset and GLUE, respectively.
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