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Abstract

Cross-Lingual Retrieval Question Answering001
(CL-ReQA) is concerned with retrieving an-002
swer documents or passages to a question writ-003
ten in a different language. A common ap-004
proach to CL-ReQA is to create a multilingual005
sentence embedding space such that question-006
answer pairs across different languages are007
close to each other. In this paper, we propose008
a novel CL-ReQA method utilizing the con-009
cept of knowledge distillation and a new cross-010
lingual consistency training technique to cre-011
ate a multilingual embedding space for ReQA.012
To assess the effectiveness of our work, we013
conducted comprehensive experiments on CL-014
ReQA and a downstream task, machine read-015
ing QA. We compared our proposed method016
with the current state-of-the-art solutions across017
three public CL-ReQA corpora. Our method018
outperforms competitors in 19 out of 21 set-019
tings of CL-ReQA. When used with a down-020
stream machine reading QA task, our method021
outperforms the best existing language-model-022
based method by 10% in F1 while being 10023
times faster in sentence embedding computa-024
tion.025

1 Introduction026

Cross-lingual question answering allows a ques-027

tion posed in one language to be answered using028

materials written in a different language. As ex-029

emplified in Figure 1, one may ask, "Who was the030

first king of Hongsawadee?" and have their answer031

retrieved from a collection of historical documents032

in Burmese or other languages. To support the033

given example application, we require a retrieval034

system that can handle documents and questions in035

multiple languages at the same time. That is, we036

want to map questions and answers from multiple037

languages into the same space for easy retrieval.038

This functionality is also known as Cross-Lingual039

Retrieval Question Answering (CL-ReQA).040
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Figure 1: Overview of CL-ReQA. A user wishes to re-
trieve the answer to the question “Who was the first king
of Hongsawadee?” from a collection of multilingual
documents.

1.1 Existing Methods 041

One prominent approach to CL-ReQA is multilin- 042

gual sentence embedding, i.e., creating an embed- 043

ding space that can handle questions and answers 044

from different languages. This approach can be 045

further categorized into (i) LM-Based: finetuning a 046

language model (LM), e.g., mBERT and XLM-R; 047

(ii) USE-Based: finetuning the Universal Sentence 048

Encoder (USE) for QA. 049

LM-based. Devlin et al. (2019) and Conneau 050

et al. (2020) proposed a pretrained large-scale lan- 051

guage model (LM) with multiple languages (100+ 052

languages) called mBERT and XLM-R, respec- 053

tively. Both solutions rely on finetuning the LM 054

part to the target task. Reimers and Gurevych 055

(2020) showed an accuracy improvement from 056

11.6% to 88.6% after finetuning with a bilingual 057

text mining task. Finetuning LMs has been ex- 058

plored by many recent works, e.g., triplet loss with 059

various supervised learning tasks (Reimers and 060

Gurevych, 2019), knowledge distillation (Reimers 061

and Gurevych, 2020), dense network QA en- 062

coder (Karpukhin et al., 2020), and providing ini- 063

tial word embeddings for the translation task (Feng 064

et al., 2020). Nonetheless, finetuning these models 065

requires a large number of training samples (more 066

than 100,000 sentences in some cases (Reimers and 067

Gurevych, 2020; Zhang et al., 2021; Wang et al., 068
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2021)) to give the best performance in multilingual069

settings. On the other hand, cross-lingual QA train-070

ing corpora are usually smaller with only 1,000 to071

1,500 questions per language. We need a method072

that can operate with a limited amount of data.073

Multilingual Universal Sentence Encoding074

(mUSE). Based on the Universal Sentence Encoder075

(USE) architecture (Cer et al., 2018), Yang et al.076

(2020) proposed a training method utilizing a mul-077

tilingual corpus with 16 different languages and078

multiple training objectives. They call their pre-079

trained network multilingual USE or mUSE.080

Experimental results from Trijakwanich et al.081

(2021) show that mUSE provides superior perfor-082

mance over the LM-based methods. However, this083

method performs poorly on languages outside the084

mUSE training corpus, i.e., unsupported languages.085

This limitation hinders the adoption of mUSE on086

limited-resource languages.087

1.2 Our Work088

Proposed Method. In this paper, our goal is to im-089

prove the robustness of multilingual sentence em-090

bedding that works with a wide range of languages,091

including those with a limited amount of training092

data. Leveraging the generalizability of knowl-093

edge distillation, we propose a Cross-Lingual Re-094

trieval Knowledge Distillation (CL-ReKD) frame-095

work. Figure 1 illustrates how cross-lingual re-096

trieval can be conducted through a multilingual em-097

bedding function h(). Given a question-document098

pair (q, d) in any language, h(d) is closer to h(q)099

than any other documents using any similarity mea-100

sure, e.g., cosine similarity.101

Question
(Non-
Dominant 
Language)

Document
(Dominant
Language)

Before After 

 QA Pair

Question
(Dominant 
Language)

Figure 2: QA vector representations before and after
performing the CL-ReKD framework. The main goal of
our framework is to improve the consistencies between
document-question pairs from different languages in the
embedding space so that they can be correctly retrieved.

Learning Objective. As shown in Figure 2, the102

proposed CL-ReKD framework is designed to103

improve the embedding space by making cross-104

lingual question-answer pairs closer to each other.105

The crux of our proposed framework lies in the fol-106

lowing two parts. First, we formulate a distillation 107

process to create a language-generalized student. 108

In particular, we leverage the fact that there is likely 109

to be one language in a large multilingual corpus 110

that dominates all others. We use that language to 111

help improve the embedding quality of other lan- 112

guages. Second, we formulate a new loss function 113

designed to improve the cross-lingual consistency 114

between question-answer pairs in a multilingual 115

environment. We aim to improve the consisten- 116

cies between the teacher (dominant language) and 117

student (other languages) for the following teacher- 118

student output pairs: question-question, document- 119

document, and document-question. 120

Experimental Studies. To determine the effective- 121

ness of our approach, we compared the proposed 122

methods with the current best practices (discussed 123

in Section 1.1) on the CL-ReQA task across three 124

datasets in 15 languages. Experimental results 125

show that the CL-ReKD framework outperformed 126

all competitive methods on languages supported 127

by mUSE in all cases. The results on unsupported 128

languages, i.e., languages outside of the mUSE 129

training corpus, show that the CL-ReKD frame- 130

work improved the performance of the mUSE en- 131

coder significantly (p < 0.05) in all cases. More- 132

over, on a downstream task of machine reading 133

QA (MR-QA), our method obtained better F1 and 134

exact match scores than those of the best existing 135

LM-based method in seven out of eight cases. Last 136

but not least, our method is also 10 times faster 137

than the state-of-the-art LM-based competitor in 138

sentence embedding computational cost. 139

Summary of Contributions. 140

• We propose a new knowledge distillation 141

method called Cross-Lingual Retrieval Knowl- 142

edge Distillation (CL-ReKD) to transfer knowl- 143

edge from the dominant language to non- 144

dominant languages and build a language- 145

generalized encoder. 146

• We design a new loss function to enforce cross- 147

lingual consistency between dominant and non- 148

dominant language vector representations. 149

• To assess the performance and efficiency of the 150

models, we conducted an extensive set of exper- 151

imental studies involving 2 tasks, 15 languages, 152

and 8 competitors. Experimental results show 153

the benefits of our proposed CL-ReKD frame- 154

work. Moreover, we found that retrieving an- 155

swers at the document level yields a significant 156

improvement over the passage-level methods. 157
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2 Background158

2.1 Dominant Language159

In a multilingual dataset, the distribution of lan-160

guages tends to be imbalanced. As shown in Fig-161

ure 3, the number of sentences in English is approx-162

imately 50% of all sentences in the corpus used to163

construct mUSE (Yang et al., 2020).
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Figure 3: The distribution of QA training data used by
mUSE (Yang et al., 2020)1.

164
Due to the stated language imbalance, the model165

performance in languages with a large amount of166

data tend to be substantially better than that in other167

languages (Arivazhagan et al., 2019; Wang et al.,168

2020). This issue can be problematic when we169

want the model performance to be consistent across170

multiple languages.171

For the case of mUSE, as shown in Figure 3, we172

can see that English is the dominant language in173

terms of training data available. Hence, the English-174

to-English retrieval performance tends to be better175

than all other language pairs. To verify this perfor-176

mance gap, we conducted a CL-ReQA experimen-177

tal study using questions in non-English and answer178

documents in English; mUSE was used to encode179

the questions and documents. Experimental results180

show a significant performance improvement when181

the questions are translated into English instead of182

using the original non-English questions, i.e., trans-183

lated questions from Russian to English improving184

the precision-at-1 from 43.3% to 52.8%. For the185

full results, see Appendix A.2.186

2.2 Language Knowledge Transfer187

There are many techniques to boost a model perfor-188

mance on low-resource languages using the struc-189

ture obtained from rich-resource ones. Transfer and190

multitask learning have been popular paradigms for191

1For brevity, we use the ISO-639 standard to refer to the
languages used in this paper.

leveraging rich-resource languages. These methods 192

usually rely on the shared-encoder strategy so that 193

the language pattern learned in one language can 194

be shared across all other languages using the same 195

model (Lin et al., 2019; Nooralahzadeh et al., 2020; 196

Zoph et al., 2016; Schwenk and Douze, 2017; Neu- 197

big and Hu, 2018; Yang et al., 2020; Feng et al., 198

2020). These classes of techniques are commonly 199

known as Language Knowledge Transfer. 200

With a shared encoder, improvements on one lan- 201

guage tend to benefit other languages as well. Let 202

us consider a scenario where we have a large num- 203

ber of question-answer pairs in English and a signif- 204

icantly smaller number of pairs in other languages, 205

e.g., Russian, French, and German. By letting other 206

languages share the same encoder as we update the 207

encoder weights while training with English data, 208

we can also improve the general encoding perfor- 209

mance of the model in other languages. 210

3 Proposed Method 211

In this section, we formulate our proposed methods 212

by leveraging the two concepts discussed in the 213

previous section, dominant language and language 214

knowledge transfer. In particular, we perform 215

knowledge distillation to transfer the knowledge 216

from the dominant languages to other languages. 217

Our proposed method consists of two stages: 218

teacher model preparation and Cross-Lingual Re- 219

trieval Knowledge Distillation (CL-ReKD), which 220

are described as follows. 221

3.1 Stage 1: Teacher Model Preparation 222

The purpose of this stage is to create a strong 223

teacher for knowledge distillation in the next stage. 224

For a base model, we use mUSEsmall for efficiency 225

and performance reasons 2. 226

To create the teacher model, mUSEteacher, we use 227

Triplet loss Ltp (Equation 1). A training objective 228

that maximizes the cosine similarity cos(·) between 229

anchor-positive pairs (a, p) and makes similarity 230

between anchor-negative pairs (a, n) smaller than 231

a given threshold α for all the training data M . 232

Ltp =

|M|∑
i=0

[max((1− cos(h(ai), h(pi)))−

(1− cos(h(ai), h(ni))) + α, 0)]

(1) 233

For detailed information about teacher model 234

preparation such as the training strategy and com- 235

parison with other finetuning approaches, see Ap- 236

pendices A.6 and A.7.1. 237

2See Sections 5.2 and 5.4 for further details.
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3.2 Stage 2: CL-ReKD238

We now describe our method to improve the gen-239

eral CL-ReQA performance using the concept of240

knowledge distillation. Knowledge distillation is241

a paradigm where a target model (a student) is242

trained to mimic the general behavior of a source243

model (a teacher). For example, one can construct a244

smaller model that behaves in a similar fashion as a245

larger one by minimizing the discrepancy between246

their outputs (Sanh et al., 2019; Jiao et al., 2020;247

Fang et al., 2021). Applying the same concept to248

our problem, we can set the knowledge distillation249

process to improve the embedding consistency be-250

tween the dominant language and other languages.251

In particular, we setup the distillation environment252

as follows: (i) the teacher operates in the dominant253

language, i.e., English; (ii) the student operates in254

non-dominant languages; (iii) the student tries to255

mimic the embedding outputs of the teacher. In256

what follows, we describe the teacher and student257

models, inputs, and the loss function for the train-258

ing process.259

 

mUSEcl-rekd 
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initializes the  weights 

from mUSEteacher

Document 
Answer

document 
 

Question 
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vector Us and Vs 
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(frozen)  

The teacher model produces  
vector Ut and Vt 

Question 
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Figure 4: The training process of Cross-lingual Re-
trieval Knowledge Distillation (CL-ReKD) comprising
(i) a teacher model, mUSEteacher; (ii) a student model,
mUSEcl-rekd; (iii) three training objectives, Obj 1-Obj 3.

Teacher and Student Models. As illustrated260

in Figure 4, the Cross-Lingual Retrieval Knowl-261

edge Distillation (CL-ReKD) process consists of a262

teacher, student, and loss function. Initially, the stu-263

dent’s parameters are initialized to the same values264

as those of the teacher trained in Stage 1. Dur-265

ing the training process, the teacher’s parameters266

are fixed; we only adjust the student’s parameters267

according to the loss function.3268

Inputs. Let us now consider input questions and269

answer documents of the training process. As illus-270

trated in Figure 4, both teacher and student mod-271

els accept the same document input d. However,272

3Note that the student model can be of any architecture
and can be initialized using any method. In this work, we
choose the self-model for simplicity. See Section 5.5 and
Appendix A.5 for more information.

there are two different versions for each question, 273

English qen and non-English qne. The English ques- 274

tion qen is a translation of the original one qne. This 275

gives us a question pair (qne, qen) for knowledge 276

distillation between different languages. For sim- 277

plicity, we use GNMT to translate qne into qen. 278

Note that if available, one may also use human- 279

translated parallel questions. 280

The teacher model T () accepts qen as input, 281

while the student model S() accepts qne as input. 282

In other words, qen functions as the “reference” of 283

the distillation process. According to our assess- 284

ment (Appendix A.7.3), English provides the best 285

performance and hence is chosen as the dominant 286

language for the training process. Note that this 287

finding also conforms with the data distribution 288

shown in Figure 3. 289

Loss Function. The goal of our CL-ReKD loss 290

function LCL-ReKD is to let the student mimic the 291

teacher’s knowledge from the dominant language to 292

the student’s target language. As shown in Figure 5, 293

our loss function LCL-ReKD has three consistency 294

objectives, namely, question-question, document- 295

document, and document-question. We describe 296

them as follows. 297

• Obj 1: Question-Question. The first objective is 298

to enforce the consistency between S() and T () 299

when encoding the same question expressed in 300

English qen and non-English qne, respectively. 301

• Obj 2: Document-Document. While adjusting 302

the student S() for the first objective, we also 303

want to keep its answer document encoding un- 304

changed. Hence, we want to maintain the con- 305

sistency between T (d) and S(d). 306

• Obj 3: Document-Question. To accommodate 307

the lookup process, the embedding space should 308

also keep question-answer pairs consistent with 309

each other. As our third objective, we minimize 310

the discrepancy between the student’s question 311

vector S(qne) and the teacher’s document vector 312

T (d). 313

Obj 1 

non-enstudent 

enteacher 

enstudent 

Obj 2 

Obj 3 

= Question
   (EN) 

= Document  
(EN) Teacher  

vector 

= Distillation

= Question 
(Non-EN)

= Document
(EN) Student 

vector 

Figure 5: Illustration three objectives of Cross-Lingual
Retrieval Knowledge Distillation (CL-ReKD) loss func-
tion.
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We formulate the loss function LCL-ReKD as a linear314

combination of these three consistency objectives.315

Using the squared L2 norm as the discrepancy mea-316

sure, we obtain the following loss function:317

LCL-ReKD =
γ

|M |

|M|∑
i=0

[β||T (qen
i )− S(qne

i )||2+

λ||T (di)− S(di)||2 + ω||T (di)− S(qne
i )||2],

(2)318

where M is the set of training samples used in a319

given batch, and β, λ, and ω are the weighting320

coefficients.321

Discussion. As stated earlier, the goal of the loss322

function is to transfer the teacher’s knowledge to323

the student operating in target languages. Since the324

performance of the teacher’s dominant language325

is generalized, after the distillation, other distilled326

languages will have the same properties. The ex-327

perimental results show that the student can better328

handle unsupported languages and improve the per-329

formance of supported languages than the teacher330

model. This improvement comes from the cross-331

lingual consistency objectives, Obj 1 and Obj 3, in332

the loss function, while Obj 2 maintains the mono-333

lingual consistency. Moreover, LCL-ReKD does not334

require the teacher and student models to be of335

the same architecture; it can be applied to any pre-336

trained models. (For more information, see Ap-337

pendix A.5)338

4 Experimental Setup339

4.1 Datasets340

To evaluate the effectiveness of our method, we341

conduct our experiments on three well-known CL-342

ReQA corpora: XORQA, XQuAD, and MLQA.343

All experiments were done by XX→EN where XX344

is the question language (15 languages), and EN is345

answer passages or documents.346

XORQA (Asai et al., 2021a) is a benchmark347

dataset for multilingual open-retrieval question an-348

swering. The dataset contains questions in a diverse349

set of seven non-English languages and answer doc-350

uments in English. We use the Gold Paragraph part351

of the corpus, which contains 12,895 documents352

and 8,949 question-answer pairs. The authors, how-353

ever, did not provide a test dataset. Thus, we divide354

the samples into train/dev/test (0.7/0.1/0.2).355

XQuAD (Artetxe et al., 2020) is a dataset for356

evaluating cross-lingual question answering per-357

formance. XQuAD comprises 48 documents and358

13,090 question-answer pairs obtained from the de-359

velopment set of SQuAD v1.1 (Rajpurkar et al.,360

2016) with 11 languages. Since XQuAD is too 361

small for model training, we used it for testing only. 362

Translated questions from SQuAD v1.1 (training 363

set) were used instead for training the models (the 364

same setup as XQuAD (Artetxe et al., 2020)). 365

MLQA (Lewis et al., 2020) is also a dataset for 366

evaluating cross-lingual question answering per- 367

formance. The dataset contains 15,806 documents 368

and 33,706 question-answer pairs in seven different 369

languages. However, the authors did not provide 370

any training dataset. As a result, we combined the 371

development and test datasets and divided them 372

into train/dev/test (0.7/0.1/0.2). 373

4.2 Competitive Methods 374

We compare the performance of our method with 375

two groups of competitive methods as follows: 376

LM-based. As discussed in Section 1, one ap- 377

proach to CL-ReQA is to use an embedding space 378

based on some language model. In the experimen- 379

tal studies, we compare our methods to the follow- 380

ing LM-based competitors. 381

• XLM-R-nli-stsb: A RoBERTa-based cross- 382

lingual model trained using the NLI and STS 383

benchmark datasets (Reimers and Gurevych, 384

2019). 385

• mBERT-triplet: A BERT-based multilingual 386

model finetuned with a QA dataset using triplet 387

loss (Reimers and Gurevych, 2019). 388

• XLM-R←SBERT: A XLM-RoBERTa model 389

trained by distilling from the sentence BERT 390

model (Reimers and Gurevych, 2020). 391

• DPR: A dense-network solution using the multi- 392

lingual BERT model to provide the cross-lingual 393

QA capability (Karpukhin et al., 2020). 394

• CORA: An adaptation of DPR on multilingual 395

Wikipedia QA data (Asai et al., 2021b). 396

• LaBSE: A multilingual sentence encoder using 397

mBERT to provide initial word embedding vec- 398

tors (Feng et al., 2020). 399

We retrained mBERT-triplet, XLM-R←SBERT 400

and DPR with the CL-ReQA training set following 401

previous work (Reimers and Gurevych, 2019; Asai 402

et al., 2021b; Zhang et al., 2021). 403

Multilingual Universal Sentence Encoding 404

(mUSE). As an alternative to LM, we can also con- 405

struct a QA embedding space from a well-known 406

multilingual sentence encoder, mUSE. In particular, 407

we consider the following mUSE variants. 408

• mUSEsmall: The mUSEsmall encoder was based 409

on Convolution Neural Network (Kim, 2014). 410
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• mUSElarge: The mUSElarge encoder was on the411

transformer architecture (Vaswani et al., 2017).412

Note that although there exists a QA variant of413

mUSE, mUSEqa, we found that this QA variant414

does not provide any performance improvement415

over mUSElarge. As a result, we omit mUSEqa416

from our study.417

Our proposed methods. As previously discussed,418

we construct our proposed methods based on419

mUSEsmall. The first method, mUSEteacher, is con-420

structed from triplet loss where each triplet consists421

of a question, its corresponding answer document,422

and a non-answer document. The second method,423

mUSEcl-rekd, is constructed from the process of424

Cross-Lingual Retrieval Knowledge Distillation.425

4.3 Hyperparameter and Evaluation Settings426

Hyperparameter. In these experiments, we use427

grid search on the following hyperparameters:428

learning rates, triplet loss margin (α), LCL-ReKD’s429

coefficients (γ,β,ω), and the number of negative430

samples for triplet loss. The hyper-parameter con-431

figurations are given in Appendix A.9. For the432

Cross-Lingual Retrieval Knowledge Distillation433

settings, we use a batch size of 8 with a total num-434

ber of 10 epochs. Since the student model receives435

the initial weights from the teacher, the CL-ReKD’s436

loss value ranges between [10−3, 10−5] and the loss437

value of Obj 3 is lower than those of other objec-438

tives. To prevent the CL-ReKD’s loss value from439

being too small, we multiply the value by γ and440

set the coefficient of Obj 2, λ, to 1. In addition,441

we evaluate the precision score on the development442

set every 100 steps. If the precision score does not443

improve, the learning rate is halved.444

Evaluation. We use precision at k where we set445

k to 1 (P@1) which is a common practice for the446

CL-ReQA task (Ahmad et al., 2019; Yang et al.,447

2020; Guo et al., 2021) and cross-lingual retrieval448

tasks (Reimers and Gurevych, 2020; Feng et al.,449

2020). We also provide precision at 5 and 10 results450

in Appendix A.4. Furthermore, we used McNe-451

mar’s test as the significant statistical measurement452

(p < 0.05) for all experiments.453

5 Experimental Results454

5.1 Passage- vs Document-bases on Machine455

Reading QA (MR-QA)456

To determine the best answer retrieval unit for MR-457

QA, we compare two scenarios. (i) Passage-based:458

Retrieving answers as passages; (ii) document-459

based: Retrieving answers as documents. For 460

conciseness, we chose DPR, which is the state- 461

of-the-art LM-based competitor, for comparison. 462

For testing, we chose XORQA, which is the newest 463

MR-QA benchmark. For all test cases, we used the 464

same machine reading comprehension model con- 465

structed from XLM-R. In particular, we finetuned 466

XLM-R using the same training portion of XORQA 467

described in Section 4.1. 468

Results. Table 1 displays the MR-QA scores as F1 469

and exact match (EM) and provides a comparison 470

between the two MR-QA input options: passage- 471

based and document-based. In all cases, the 472

document-based option improves over the passage- 473

based one. We can also see that our method signif- 474

icantly outperformed DPR for both input options 475

on average. 476

Model
XORQA

RU KO JA FI AVG
F1 EM F1 EM F1 EM F1 EM F1 EM

Passage-based
DPR 17.4 12.9 6.1 0.3 14.6 10.4 21.7 15.3 15.0 9.7
mUSEcl-rekd 21.1 16.8 27.8 20.4 26.1 20.2 20.7 16.1 23.9 18.4
Document-based
DPR 16.8 13.0 6.2 0.3 15.3 11.5 22.5 16.4 15.2 10.3
mUSEcl-rekd 24.3 18.8 28.5 21.7 26.3 20.6 21.2 16.7 25.1 19.5

Table 1: F1 and EM scores on the cross-lingual machine
reading QA.
Discussion. The document-based representation 477

has advantages and drawbacks in comparison to 478

the passage-based one. In particular, by grouping 479

passages associated with the same document to- 480

gether, the retrieval unit becomes larger, making 481

it harder to miss an answer. However, operating 482

at the document level also means that we have to 483

handle a larger input. That is, for the three corpora 484

used in the experimental studies, the model has to 485

handle 128 tokens on average when the input is a 486

passage, while the input size can be up to 1,996 487

tokens when the input is a document. The results 488

provide empirical evidence that the benefits out- 489

weigh the drawback. We believe that as machine 490

reading models improve over time, longer input 491

passages will provide even better results. For more 492

information about the retriever’s performance, see 493

Appendix A.1. 494

5.2 CL-ReQA: Supported Languages 495

In this experiment, we report the effectiveness of 496

our proposed methods on mUSE’s supported lan- 497

guages where the answer retrieval unit is document- 498

based. We evaluated our methods against the com- 499

petitors discussed in Section 4.2. 500
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Model XORQA XQuAD MLQA
RU KO JA AR DE ES RU TH ZH TR AR DE ES ZH

LM-based
mBERT-triplet 41.0 19.0 46.4 23.5 53.4 52.1 44.1 6.7 36.6 43.3 10.1 28.9 32.8 14.7
XLM-R-nli-stsb 28.7 26.6 28.0 39.1 43.3 45.8 42.9 41.2 44.1 44.5 27.9 34.0 31.2 29.4
XLM-R←SBERT 21.5 19.8 20.7 39.5 39.9 41.6 41.6 40.8 40.3 43.3 24.8 33.4 30.8 34.7
DPR 33.8 2.0 26.9 38.7 51.3 58.0 52.1 10.9 29.2 41.2 35.5 56.6 59.0 55.0
CORA 18.9 11.5 10.4 21.0 39.9 36.1 34.5 4.6 20.6 24.8 18.2 31.2 35.6 19.4
LaBSE 29.8 26.7 33.2 41.2 43.7 47.1 42.4 13.0 44.5 40.8 33.8 35.4 38.4 40.3
Multilingual Universal Sentence Encoding (mUSE)
mUSEsmall 43.3 35.5 41.2 64.7 73.1 75.6 66.8 72.7 71.0 70.2 44.5 60.4 57.0 53.2
mUSElarge 52.1 41.1 47.7 57.1 65.1 68.5 59.7 63.4 62.2 61.8 35.6 42.3 39.5 31.8
Our proposed methods
mUSEteacher 54.2 44.5 47.7 68.5 79.8 82.4 72.3 75.2 82.3 72.7 49.1 64.8 62.8 57.1
mUSEcl-rekd 58.2 47.7 49.5 79.4 83.2 84.0 83.6 86.1 82.4 80.3 49.5 64.8 63.4 57.9

Table 2: Precision at 1 (P@1) on the CL-ReQA task in supported languages

Results. As shown in Table 2, our proposed mod-501

els mUSEteacher and mUSEcl-rekd provide significant502

improvements from the base model, mUSEsmall.503

Moreover, our models also outperformed the504

largest pre-trained variant of mUSE, mUSElarge.505

All of our proposed models also significantly per-506

formed better than the LM-based competitors. The507

results also show that our consistency enhancement508

method, CL-ReKD, were effective in all cases ex-509

cept DE for the MLQA dataset.510

Discussion. Experimental results verify that for511

languages supported by mUSE, our approach based512

on the language knowledge transfer concept (Sec-513

tion 2.2) can provide significant improvements over514

the teacher model. However, the improvements515

were less significant than ours when the language516

knowledge transfer concept is applied to an LM517

to create mBERT-triplet and XLM-R-nli-stsb from518

mBERT and XLM-R, respectively.519

Notice that methods based on mBERT per-520

formed poorly in Thai (TH). We can also see521

that finetuning mBERT with triplet loss (mBERT-522

triplet) and multilingual dense retrieval (CORA)523

did not provide any improvements on Thai. This524

is because Thai was not included in the construc-525

tion process of mBERT (uncased-version), and the526

amount of the training data is insufficient to im-527

prove the model.528

5.3 CL-ReQA: Unsupported Languages529

Let us consider how well our proposed models530

performed when used with languages not supported531

by the base model, mUSEsmall, i.e., FI, RO, EL,532

HI, and VI. Similar to the study presented in the533

previous subsection, we used XORQA, XQuAD,534

and MLQA as our test corpora.535

Results. Table 3 presents the P@1 scores of536

our methods and the competitors. We can see537

that the original mUSE models, mUSEsmall and 538

mUSElarge, did not perform well in these languages. 539

As expected, mUSEteacher had a tendency to pro- 540

vide some improvements over mUSEsmall. This 541

is because these languages were not included in 542

the original training process, and the amount of 543

data is insufficient to improve the performance of 544

these languages. In contrast, we obtained signif- 545

icant improvements through the CL-ReKD meth- 546

ods, mUSEcl-rekd. For five out of seven cases, 547

mUSEcl-rekd were the best performer compared 548

to other models. Two LM-based methods, XLM- 549

R←SBERT and LaBSE, were the best performer 550

in HI with the test corpora of XQuAD and MLQA, 551

respectively. 552

Model XORQA XQuAD MLQA
FI RO EL HI VI HI VI

LM-based
mBERT-triplet 18.7 48.3 30.3 23.9 39.9 7.1 24.1
XLM-R-nli-stsb 30.7 45.4 44.5 39.1 40.3 31.4 28.6
XLM-R←SBERT 25.3 42.4 42.9 40.3 40.3 29.4 28.4
DPR 39.1 52.9 36.1 15.5 10.1 26.2 32.1
CORA 15.1 27.7 26.9 18.5 28.6 15.8 23.9
LaBSE 40.6 42.0 42.9 37.8 39.9 31.8 27.2
Multilingual Universal Sentence Encoding (mUSE)
mUSEsmall 18.3 41.6 10.9 4.2 25.6 2.0 25.4
mUSElarge 27.2 49.6 13.0 3.4 25.6 1.4 16.8
Our proposed methods
mUSEteacher 25.0 42.4 13.4 4.2 29.4 2.0 27.4
mUSEcl-rekd 48.2 76.9 64.3 34.0 72.3 3.2 44.2

Table 3: Precision at 1 (P@1) on the CL-ReQA task in
unsupported languages.

As an alternative to cross-lingual retrieval, one 553

can convert the problem to a monolingual re- 554

trieval one using a machine translation (MT) model. 555

We found that using an MT model (i.e., GNMT, 556

MBART) with DPR following Asai et al. (2021a) 557

helps improve the performance of LM-based mod- 558

els. However, the performance decreases in some 559

languages, i.e., in Finish (XORQA), DPR’s perfor- 560
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mance is dropped from 39.1 to 32.0 and dropped561

to 36.4 when GNMT and MBart were applied to562

the DPR, respectively. For the full discussion and563

results see Appendix A.2.564

Discussion. The performance gap between565

mUSEsmall and mUSEcl-rekd demonstrates the ef-566

fectiveness of the proposed CL-ReKD framework.567

In particular, we can use CL-ReKD to general-568

ize a base sentence embedding model to handle569

languages that were not originally included in the570

training process.571

Regarding the CL-ReKD performance on Hindi572

(HI), one important observation is that Hindi is the573

only language in this study whose family is not rep-574

resented in the original training data, which results575

in a lot of OOV tokens from unknown characters.576

We provide more explanation in Appendix A.8.577

5.4 Run-time Efficiency on Query Encoding578

Let us now consider the efficiency of the methods.579

Since this investigation focuses on the embedding580

methods, we consider only the sentence embedding581

computational time. We used a DGX-1 machine582

using one Intel Xeon E5-2698 and one NVIDIA583

Tesla V100 GPU to benchmark the models.584

Results. As shown in Appendix A.3, the experi-585

mental result shows that mUSEsmall is the fastest.586

The result shows that mUSEsmall took only ∼7.9587

ms on average to encode one query at a time. Since588

our method is based on the mUSEsmall architec-589

ture, we also obtain a similar run time. For the590

LM-based methods, we found that LaBSE is the591

quickest one. However, the method is still slower592

than mUSEteacher and mUSEcl-rekd by at least 80%.593

We can also find that MT-assisted, i.e., GNMT and594

MBart, are significantly slower than our methods.595

For the MT-assisted results, GNMT used 258.3 ms596

for one query while MBart used 9,132 ms. For the597

full results, see Appendix A.3.598

Discussion. Since mUSEsmall is a much smaller599

model than BERT-base and XLM-R-base, it is ad-600

vantageous to use our proposed methods when effi-601

ciency is a concern, e.g., edge deployment. While602

GNMT and MBart were effective in improving the603

performance of LM-based models (Appendix A.2),604

the additional machine translation cost renders the605

approach less desirable.606

5.5 Ablation Studies on the Training607

Objective for Knowledge Distillation608

This study compares our Cross-Lingual Retrieval609

Knowledge Distillation method with other knowl-610

edge distillation techniques using the same baseline 611

model. To directly assess the effect of the distilla- 612

tion method, we use the original mUSEsmall instead 613

of the mUSEteacher as the starting model in this 614

study. We compare four training objectives: 615

• We apply the training objective following 616

Reimers and Gurevych (2020)’s work denoted 617

mUSEmse where the training objective contains 618

the first CL-ReKD’s objective with an additional 619

loss term that minimizes the difference between 620

English and English embeddings from the previ- 621

ous iteration; 622

• As mentioned in Section 5.3 the CL-ReKD loss 623

has three objectives. mUSEq
cl-rekd uses only the 624

first objective; 625

• mUSEqd
cl-rekd uses the first and the second objec- 626

tive; and 627

• Lastly, mUSEcl-rekd uses the full version of the 628

CL-ReKD loss function. 629

Results. The experiment results are given in Ta- 630

ble 4. As expected, our training objective outper- 631

formed competitive training objectives. The perfor- 632

mance of mUSEcl-rekd outperformed other training 633

objectives from six out of seven cases. Especially 634

Reimers and Gurevych (2020)’s training objective, 635

our method outperformed with significant results 636

on six out of seven cases except for HI→EN in 637

MLQA. 638

Model XORQA XQuAD MLQA
FI RO EL HI VI HI VI

mUSEsmall 18.3 41.6 10.9 4.2 25.6 2.0 25.4
mUSEmse 31.0 65.5 17.6 8.0 35.3 1.4 26.0
mUSEq

cl-rekd 33.7 67.2 16.8 5.5 34.5 2.2 37.0
mUSEqd

cl-rekd 38.5 62.6 18.9 8.4 34.5 3.7 38.0
mUSEcl-rekd 39.4 73.9 58.0 27.0 71.4 3.7 38.7

Table 4: Comparison of different knowledge distillation
training objectives. Precision at 1 (P@1) on the CL-
ReQA task in unsupported languages.

6 Conclusion 639

In this paper, we propose a novel Cross-Lingual Re- 640

trieval Knowledge Distillation framework for CL- 641

ReQA. Our framework is designed to improve the 642

general performance and enable the baseline model 643

to handle unsupported languages by exploiting the 644

concepts of Dominant Language and Language 645

Knowledge Transfer. Our method outperformed 646

competitive methods in all cases of supported lan- 647

guages and five out of seven cases of unsupported 648

languages. Furthermore, we demonstrated that 649

grouping passages associated with the same docu- 650

ment together could benefit machine reading QA. 651
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A Appendix834

A.1 CL-ReQA: Passage- vs Document-bases835

This study reports the effect of the passage-based836

and document-based input on retrieval perfor-837

mance. The experiment was conducted in sup-838

ported and unsupported languages of three datasets:839

XORQA, XQuAD, and MLQA.840

Results. As shown in Table 5, the document-based841

input substantially outperform the passage-based842

one in all languages and all datasets. The perfor-843

mance of mUSEcl-rekd on passage-based for sup-844

ported and unsupported languages is lower than845

document-based significant on every unsupported846

language. These results conform with those of the847

downstream task presented in Table 1.848

Model XORQA XQuAD MLQA
RU JA FI DE ES VI DE ES VI

Passage-base
mUSEcl-rekd 56.4 45.9 45.6 51.7 51.3 23.5 61.9 62.4 32.3
Document-base
mUSEcl-rekd 58.2 49.5 48.2 83.2 84.0 72.3 64.8 62.8 44.2

Table 5: Comparison of different retrieval inputs such
as passage- and document-bases on the CL-ReQA task
in supported and unsupported languages.

Discussion. This experiment shows that the ef-849

ficiency of document-based is more robust than850

passage-based significant. Moreover, when we ap-851

plied both inputs to a downstream task, MR-QA,852

the experiment results showed that changing the in-853

put from passage-based to document-based is more854

robust.855

A.2 CL-ReQA: Monolingual vs Cross-lingual856

Retrievals857

In this study, we compare the CL-ReQA ap-858

proach against the MT-assisted monolingual re-859

trieval one. For CL-ReQA methods, we chose DPR860

and mUSEcl-rekd. For the MT-assisted methods, we861

used two translators, GNMT and MBart (Liu et al.,862

2020), to translate all questions into English which863

is the documents’ language. These two translators864

were then applied to assist DPR in the same manner865

as the XORQA investigation (Asai et al., 2021a).866

Results. Table 6 shows that the two translators pro-867

vide substantial improvements to DPR and mUSE-868

based. The GNMT-assisted tended to perform bet-869

ter than the MBart-assisted in almost all cases. As870

state in Section 3.2, our knowledge distillation com-871

prise of GNMT in the training data process. Thus,872

the performance of our method with/without MT-873

assisted is similar. Our method was the best per- 874

former in six out of nine cases. Moreover, in seven 875

out of nine cases, the performance of our method 876

is decreased when MBart is applied. Since the 877

performance of MBart is lower than GNMT, the 878

performance of mUSEcl-rekd+MBart is dropped sig- 879

nificantly. 880

Model XORQA XQuAD MLQA
RU JA FI DE ES VI DE ES VI

Cross-lingual retriever (LM-based)
DPR 33.8 26.9 39.1 51.3 58.0 10.1 56.6 59.0 32.1
LM-based + MT-assisted
DPR+GNMT 45.0 36.3 32.0 58.8 61.8 56.3 61.3 59.4 56.0
DPR+MBart 39.8 26.2 36.4 59.2 61.5 52.5 58.8 57.4 51.9
Multilingual Universal Sentence Encoding (mUSE)
mUSEsmall 43.3 41.2 18.3 73.1 66.8 25.6 60.4 57.0 25.4
mUSE-based + MT-assisted
mUSEsmall+GNMT 52.8 45.0 43.0 81.1 82.1 42.5 60.4 62.0 60.3
mUSEsmall+MBart 51.6 37.6 42.3 79.1 78.6 68.0 59.4 58.8 53.6
Our proposed method
mUSEcl-rekd 58.2 49.5 48.2 83.2 84.0 72.3 64.8 62.8 44.2
Our proposed method + MT-assisted
mUSEcl-rekd+GNMT 64.8 46.2 51.7 82.1 83.6 62.2 64.5 62.8 61.8
mUSEcl-rekd+MBart 48.2 37.7 38.2 83.2 83.5 34.0 63.0 62.4 58.5

Table 6: Precision at 1 (P@1) on the CL-ReQA task in
supported and unsupported languages.

Discussion. Machine translators can provide a 881

quick solution to improve the performance of cross- 882

lingual retrieval. In this way, the problem of cross- 883

lingual retrieval is converted into a monolingual 884

one. This approach can be useful when the lan- 885

guage pair has a reliable translator, but there is in- 886

sufficient QA data to create a cross-lingual retrieval 887

model. However, we consider the multilingual sen- 888

tence embedding approach to be superior to the 889

MT-assisted one due to the following reasons: (i) 890

the computational cost benefits of skipping the MT 891

process; (ii) the MT-assisted approach can be nega- 892

tively affected by a poor MT performance; (iii) the 893

reliance of MT models can be a limitation for some 894

language pairs. See Appendix A.10 for a further 895

analysis. 896

A.3 The Average Computational Sentence 897

Encoding Time 898

This subsection shows the average running of time 899

of all models in this paper. We used one Intel Xeon 900

E5-2698 and one NVIDIA Tesla V100 GPU to 901

evaluate the models. 902

Table 7 shows that the running time of mUSE- 903

based models is efficient than every LM-based 904

model. We can also see that as a two-step approach, 905

the MT-assisted solutions incur substantially longer 906

running times than other methods since the trans- 907

former requires more computation and resources, 908
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which can be lead to memory limitation (Mao et al.,909

2021).

Model XORQA XQuAD MLQA
MT-assisted
DPR+GNMT 258.3±37.9 339.3±54.2 395.0±58.1
DPR+MBart 9,132±8,111 6,527±5,838 5,382±274
LM-based
mBERT-triplet 20.2±1.0 30.6±1.5 30.2±1.7
XLM-R-nli-stsb 20.5±1.1 22.1±2.7 23.4±4.6
XLM-R←SBERT 22.2±3.7 31.6±1.9 31.3±2.4
DPR 58.3±28.5 110.3±47.6 103.0±52.5
CORA 197.7±9.9 369.7±16.4 274.7±145.3
LaBSE 15.2±2.6 14.3±2.2 14.6±2.3
Multilingual Universal Sentence Encoding (mUSE)
mUSEsmall 8.4±1.0 7.9±1.1 7.6±1.2
mUSElarge 23.8±2.5 30.3±5.0 27.0±4.7
Our proposed methods
mUSEteacher 8.6±1.0 8.3±1.1 8.1±1.0
mUSEcl-rekd 8.5±1.5 8.3±1.5 8.5±1.4

Table 7: The average computational sentence encoding
time and standard division in ms.910

A.4 CL-ReQA: Precision at 5,10911

In this experiment, we study the effectiveness912

of our method on mUSE’s supported languages.913

We report the precision score at 5 and 10 on the914

XORQA dataset.915

Results. As shown in Table 8, our proposed model,916

mUSEcl-rekd, on P@5 and P@10 have the same917

narrative as P@1 (Table 2). That is, the cross-918

lingual retrieval knowledge distillation model im-919

proved the performance from the teacher model,920

mUSEteacher, and it outperformed every LM-based921

model.922

Model
XORQA

P@5 P@10
RU KO JA RU KO JA

LM-based
mBERT-triplet 59.3 37.6 63.3 68.2 46.6 70.4
XLM-R-nli-stsb 48.7 48.1 46.6 54.7 55.5 55.7
XLM←SBERT 43.8 46.2 43.0 54.7 55.7 53.4
DPR 61.6 4.0 56.7 74.2 15.0 67.9
CORA 48.1 34.0 31.1 62.2 48.4 41.7
LaBSE 50.1 45.9 51.8 59.6 57.0 59.8
mUSE-based
mUSEsmall 69.6 64.1 59.6 77.7 71.6 69.2
mUSElarge 75.1 68.1 71.0 82.2 74.3 78.5
Our proposed methods
mUSEteacher 78.2 69.6 69.2 82.8 78.1 78.5
mUSEcl-rekd 79.7 70.7 72.0 85.4 78.3 78.8

Table 8: Comparison of different Precision at k (P@k)
where k values are equal to 5 and 10 on the CL-ReQA
task in supported languages on XORQA.

Discussion. Experimental results verify that preci- 923

sion at other k’s values does not change any con- 924

clusion from our work. The results show that our 925

model outperformed other models in precision at 1, 926

5, and 10 settings. 927

A.5 CL-ReKD on Other Architectures 928

This study demonstrates our cross-lingual retrieval 929

knowledge distillation method on LM-based mod- 930

els. For diversity, we select BERT-based (mBERT- 931

triplet) and RoBERTa-based (XLM-R-nli-stsb) be- 932

cause these models trained only on the dominant 933

language, English, same as mUSEteacher. 934

Results. As shown in Table 9, we applied the 935

CL-ReKD framework on other architectures, i.e., 936

BERT and RoBERTa, on supported languages 937

of XORQA. The experimental results show that 938

CL-ReKD on LM-based models significantly im- 939

proves XLM-R-nli-stsb. Furthermore, when we 940

use mBERT-triplet as the teacher instead of XLM- 941

R-nli-stsb. The result shows a small improvement 942

over the student instead of using XLM-R as the 943

teacher model. 944

Model XORQA
RU KO JA

LM-based
mBERT-triplet (1) 41.0 19.0 46.4
XLM-R-nli-stsb (2) 28.7 26.6 28.0
LM-based + CL-ReKD
T=(1) XLM-R-nli-stsbcl-rekd 29.0 27.1 28.3
T=(2) XLM-R-nli-stsbcl-rekd 33.2 30.8 31.9

Table 9: CL-ReKD on different architecture between
student and teacher models. Where T is the teacher
model.
Discussion. Our CL-ReKD can be applied to any 945

pre-trained model not limited to only in mUSE’s 946

architecture. However, to give the best results, let 947

the student initialize the weight from the teacher. 948

In addition, the results from both models are not 949

over mUSE’s performance. 950

A.6 Stage 1: Teacher Model Preparation 951

The purpose of this stage is to create a strong 952

teacher for knowledge distillation in the sec- 953

ond stage (Section 3.2). For a base model, we 954

mUSEsmall for efficiency and performance reasons. 955

Since the mUSEsmall encoder is shared across all 956

languages, we can finetune the base model using 957

questions and answers from one language and ob- 958

tain performance improvements on other languages 959

as well (as discussed in Section 2.2). In theory, we 960
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can choose any supported languages to perform961

this stage. According to our assessment, English962

provides the best performance and hence is chosen963

as the language for the finetuning questions and964

answers (See Appendix A.7.2 and A.7.3 for further965

details).966

Note that the datasets used in this work are all967

cross-lingual with answer documents in English968

and questions in non-English. Consequently, we969

need to translate all questions into English for the970

finetuning process. For simplicity, Google NMT971

(GNMT) was used to perform this task.972

The process of transfer learning mUSEsmall con-973

sists of two main components: encoder and triplet974

loss.975

• Encoder h(·). An encoder model is a function976

that maps a question q and a passage P into the977

2vector representations h(q) and h(P ), respec-978

tively.979

• Triplet loss Ltp (Equation 1). A training objec-980

tive that maximizes the cosine similarity cos(·)981

between anchor-positive pairs (a, p) and makes982

similarity between anchor-negative pairs (a, n)983

smaller than a given threshold α for all the train-984

ing data M .985

Ltp =

|M|∑
i=0

[max((1− cos(h(ai), h(pi)))−

(1− cos(h(ai), h(ni))) + α, 0)]

(3)986

Let us now consider the training sample min-987

ing process. At the initial step, we need to mine988

triplets (a: anchor, p: positive, n: negative). While989

the anchors a can be randomly sampled from the990

questions, we need the CL-ReQA model to choose991

positives p and negatives n. For negative sample992

categorization, we consider two options. First, we993

can directly use the original mUSEsmall model to994

categorize the negative samples according to the995

current embedding space (online fashion) (Kaya996

and Bilge, 2019). Second, we can apply the method997

proposed by Karpukhin et al. (2020), which utilizes998

BM25 (Trotman et al., 2014) to produce textual999

similarity scores. From the ablation study given1000

in Appendix A.7.1, the results show that the first1001

three epochs use the initial strategy for triplet min-1002

ing (Kaya and Bilge, 2019) before proceeding to on-1003

line mining (Kaya and Bilge, 2019) for five epochs.1004

What has the teacher learned? As mentioned in1005

Section 2.1, the dominant language lifts the perfor-1006

mance of multilingual representations. Since we1007

finetune the teacher model with the dominant lan-1008

guage question-document pairs, it allows us to han-1009

dle supported languages more reliably. However, 1010

it relies on the fact that the base model’s encoder 1011

has learned some structure of the target languages. 1012

As a result, we need a different method to improve 1013

the general performance of the model, which we 1014

described in Section 3.2. 1015

A.7 Ablation Studies 1016

This study presents the effect of each design deci- 1017

sion in the triplet loss and cross-lingual retrieval 1018

knowledge distillation proposed. Here, we investi- 1019

gate the following components: (i) training strate- 1020

gies; (ii) training data settings; (iii) reference lan- 1021

guages for cross-lingual retrieval knowledge distil- 1022

lation (CL-ReKD); and (iv) distance functions for 1023

CL-ReKD. In each investigation, we use the best 1024

setting from the previous steps. All experimental 1025

results were obtained from XX→EN retrieval on 1026

the XORQA test set across four languages, where 1027

XX can be one of these languages Russian (RU), 1028

Korean (KO), Japanese (JA), and Finnish (FI). 1029

A.7.1 Training strategies 1030

As shown in Table 10, we compare training strate- 1031

gies with/without each of the following compo- 1032

nents: initialization, online updates, and other deep 1033

metric learning techniques. As expected, the result 1034

shows that online negative sampling and initializ- 1035

ing with BM25 helps improve the performance 1036

of triplet loss. Furthermore, we also study the 1037

effect of replacing triplet loss with contrastive 1038

learning as presented in the current state-of-the-art 1039

work (Karpukhin et al., 2020). We found that con- 1040

trastive loss consistently provides a performance 1041

improvement over the original mUSEsmall model 1042

but still lags behind the triplet loss. 1043

A.7.2 Training data settings 1044

In terms of training data for the teacher training, 1045

there are two decisions we need to consider: (i) 1046

the answer representation unit: whether to use one 1047

passage or one document as the retrieval unit in 1048

the training process; (ii) the question language: 1049

whether to use the original questions (in multiple 1050

languages) or translate them all to English. In the 1051

case of English, all English questions were trans- 1052

lated using GNMT. As shown in Table 10, the pas- 1053

sage and English combination provides the best 1054

performance. 1055

A.7.3 Teacher’s language for CL-ReKD 1056

In this study, we explore the choice of language to 1057

function as the reference (teacher) in the CL-ReKD 1058
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process. Intuitively, we want a language that is1059

well-represented in the training corpora when con-1060

structing the original model. Consequently, we1061

compare English, Spanish, and German. As ex-1062

pected, English, which is the dominant language1063

in the training corpora of mUSE, provides the best1064

performance. These results also conform with the1065

discussion on the dominant language provided in1066

Section 2.1.1067

A.7.4 Distance functions for CL-ReKD1068

The distance function is critical to the CL-ReKD1069

performance. While there exists many distance1070

functions we can apply to the distillation process,1071

we consider two of the most widely used ones,1072

cosine and squared L2. As we can see, squared L21073

provides the best performance.1074

A.7.5 Discussion1075

From the results, we conclude that the default set-1076

tings of our proposed methods are (i) triplet loss as1077

the training objective (ii) English question + pas-1078

sages as the answer representation unit (iii) English1079

as the teacher language, and (iv) square L2 distance1080

as the distance function for CL-ReKD.1081

Component XORQA
RU KO JA FI

mUSEsmall 43.3 35.5 41.2 18.3
Training strategies

Triplet loss
+ online 45.0 35.7 42.5 23.4
+ BM25 53.6 38.6 42.5 20.8
+ BM25, + online 54.2 44.5 47.7 25.0

Contrastive loss + BM25, + online 52.1 39.9 42.5 21.8
Training data settings
English questions + documents 53.0 40.7 44.3 21.8
English questions + passages 54.2 44.5 47.7 25.0
multilingual questions + documents 53.1 44.3 46.9 22.6
multilingual questions + passages 50.7 40.9 42.7 20.5
Teacher’s language for CL-ReKD

mUSEcl-rekd

English as teacher 58.2 47.7 49.5 48.2
Spanish as teacher 56.4 41.4 47.7 45.8
German as teacher 56.4 41.3 48.7 43.1

Distance functions for CL-ReKD

mUSEcl-rekd
Squared L2 distance 58.2 47.7 49.5 48.2
Cosine distance 57.3 44.7 49.0 47.8

Table 10: Comparison between training strategies, train-
ing data settings, teacher’s language for CL-ReKD, and
distance functions for CL-ReKD measured with P@1
score on XX→EN, XORQA test set.

A.8 Language Analysis1082

In this section, we discuss Hindi, which our method1083

performs worse than other competitive methods,1084

and examines other languages that we have not 1085

shown in the tables, such as Telugu and Bengali. 1086

As shown in Table 3, the mUSEcl-rekd’s perfor- 1087

mance is the best in every language except Hindi. 1088

This is due to the mUSE encoder’s tokenizer (sen- 1089

tencepiece), which cannot handle Hindi well com- 1090

pared to other unsupported languages (i.e., FI, RO, 1091

EL, VI). For instance, we measured the tokenizer’s 1092

out-of-vocabulary (OOV) rate of the mUSE’s tok- 1093

enizer on Hindi (XQuAD) and found that the OOV 1094

rate of Hindi is ∼14.5%. On the other hand, the 1095

OOV rate on Greek on the same dataset is only 1096

2.2% which is∼12.3% lower than Hindi. Since the 1097

language families of the languages used in mUSE 1098

are not Indo-Aryan (Hindi and Bengali) nor Dravid- 1099

ian (Telugu) 4, the mUSE’s sentencepiece cannot 1100

handle Indo-Aryan and Dravidian language fam- 1101

ilies well. To make the mUSE encoder handle 1102

these language families better, we might need to 1103

retrain the mUSE sentencepiece tokenizer by using 1104

other tokenizers (i.e., sentencepiece in mBERT). 1105

Since mBERT’s tokenizer is trained on more than 1106

100 languages, mBERT and XLM-R perform bet- 1107

ter than the mUSEcl-rekd on Indo-Aryan languages. 1108

Another solution would be to use the universal to- 1109

kenizer (Gillick et al., 2016) which represents the 1110

input as bytes instead of characters. 1111

A.9 Hyperparameter Configurations 1112

Hyperparameters Values for grid search
Learning Rates 1e-3,5e-4, 1e-4, 1e-5, 1e-6
α 0.1-1 (0.01/steps)
γ [100, 1000, 10000]
β 1,1e-1, 1e-2, 1e-3, 1e-4
ω 1,1e-1, 1e-2, 1e-3, 1e-4
#negative samples [1, 2, 3, 5, 10]

Table 11: Hyperparameter configurations.

A.10 Error Analysis: MT-assisted vs Ours 1113

We provide some sample questions that our model 1114

and the MT-assisted model (DPR+GNMT) answer 1115

differently in Table 12. We notice that our method 1116

does better than MT-assisted when the questions 1117

are very specific, such as the question relating to 1118

Brothers Grimm. In general, we find that our model 1119

generally performs better when the question con- 1120

tains names. This is because machine translation 1121

can sometimes fail to translate names properly. 1122

On the other hand, when the questions are not 1123

4according to Ethnologue
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Lan Question Predict context Correct?

DE-EN
(1)

Welchem Märchen der Gebrüder Grimm
entspricht die Geschichte Diebstahl der

Butter des Partners von Aarne Thompson?
(Which fairy tale by the Brothers Grimm

corresponds to the story of the theft
of butter from Aarne Thompson’s partner?)

mUSEcl-rekd: Cat and Mouse in Partnership"
(German: Katze und Maus in Gessellschaft)
is a Brothers Grimm fairy tale.
It is Aarne-Thompson type 15, Stealing the Partner’s Butter.

✓

DPR+GMT: Tubman and her brothers, Ben and Henry,
escaped from slavery on September 17, 1849.
Tubman had been hired out to Dr. Anthony Thompson,
who owned a large plantation in an area called
Poplar Neck in neighboring Caroline County [.....]

✗

VI-EN
(1)

Edward ghét loại nhạc nào?
(Edward hated any kind of music?)

mUSEcl-rekd: [.....] Edward is musical, able to play the piano
like a virtuoso. He enjoys a wide range of music, including classical,
jazz, progressive metal, alternative rock, and punk rock,
but dislikes country. [.....]

✓

DPR+GMT: [.....] Born in Woodside, Dudley, Edwards signed for
Manchester United as a teenager and went on to become
the youngest player to play in the Football League First Division [.....]

✗

DE-EN
(2)

Was war das Durchschnittseinkommen
pro Person in der Stadt?

(What was the median income
per person in the city?)

mUSEcl-rekd: The median income for a household in the city
was $33,295, and the median income for a family was $39,250.
Males had a median income of $31,875 versus $18,594 for females.
The per capita income for the city was $14,606

✗

DPR+GNMT: The median income for a household in the city
was $46,795, and the median income for a family was $60,424.
Males had a median income of $41,192 versus $29,454 for females.
The per capita income for the city was $23,562.

✓

VI-EN
(2)

Sự kiện nào diễn ra từ
những năm 1793 đến 1802?

(What events took place
between 1793 and 1802?)

mUSEcl-rekd: [.....] Tabinshwehti’s brother-in-law, Bayinnaung,
succeeded to the throne in 1550 and reigned 30 years,
launching a campaign of conquest invading several states,
including Manipur (1560) and Ayutthaya (1564). [.....]

✗

DPR+GNMT: [.....]
These wars were the War of the Austrian Succession (1740–1748),
the Seven Years’ War (1756–1763),
the American Revolution (1765–1783),
the French Revolutionary Wars (1793–1802)
and the Napoleonic Wars (1803–1815). [.....]

✓

VI-EN
(3)

Iron Man được phát hành
vào năm nào?

(Iron Man was released in what year?)

mUSEcl-rekd: [.....] Created by Stan Lee, Larry Lieber
and Jack Kirby, Ant-Man’s first appearance was in
Tales to Astonish #35 (September 1962). [.....]

✗

DPR+GMT: [.....] After the successful release of Iron Man (2008) in May,
the company set a July 2011 release date for The Avengers. [.....]

✓

Table 12: Examples from from mUSEcl-rekd and DPR+GNMT with the highest question-context similarity

specific, it is a toss-up whether the prediction is1124

correct for both models. Rows 2 and 3 show exam-1125

ples of such vague questions. Lastly, we found that1126

our model performed particularly worse than MT-1127

assisted on contents related to numbers, as shown1128

in the last two examples. Embedding numerical in-1129

formation is generally hard when the data is scarce.1130

The model in our method has to map questions1131

from multiple languages and numbers close to-1132

gether. This makes learning numerical concepts1133

such as in example number four challenging. We1134

believe this is a good avenue for further research.1135

A.11 Responsible NLP Research Checklist1136

Did you discuss the limitations of your work?1137

The limitation of our work is out-of-domain prob-1138

lems. We strongly advise against using our model 1139

with out-of-domain data. 1140

Did you discuss any potential risks of your 1141

work? There is a risk of retrieving incorrect docu- 1142

ments causing the machine reading comprehension 1143

part to produce wrong answers. 1144

Did you discuss the license or terms for use 1145

and/or distribution of any artifacts? The 1146

XORQA dataset is under the MIT License, while 1147

XQuAD and MLQA are under CC-BY-SA 4.0. 1148

Did you discuss if your use of existing artifact(s) 1149

was consistent with their intended use, provided 1150

that it was specified? For the artifacts you cre- 1151

ate, do you specify intended use and whether 1152

that is compatible with the original access condi- 1153

tions (in particular, derivatives of data accessed 1154
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for research purposes should not be used out-1155

side of research contexts)? XORQA, XQuAD,1156

and MLQA were created for retrieval QA assess-1157

ments; we use them for this exact purpose.1158

Did you discuss the steps taken to check whether1159

the data that was collected/used contains any in-1160

formation that names or uniquely identifies indi-1161

vidual people or offensive content, and the steps1162

taken to protect / anonymize it? From our careful1163

inspection, there is no offensive content or sensi-1164

tive data included in the three datasets: XORQA,1165

XQuAD, and MLQA.1166

Did you report descriptive statistics about your1167

results (e.g., error bars around results, summary1168

statistics from sets of experiments), and is it1169

transparent whether you are reporting the max,1170

mean, etc. or just a single run? We reported the1171

mean average score for all experiments, which is a1172

common practice for reporting the performance.1173

If you used existing packages (e.g., for prepro-1174

cessing, for normalization, or for evaluation),1175

did you report the implementation, model, and1176

parameter settings used (e.g., NLTK, Spacy,1177

ROUGE, etc.)? All experiments were done by1178

Tensorflow because mUSE is only available on1179

Tensorflow.1180

16


