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Abstract

Estimating causal effects from observational data has gar-
nered significant attention in recent years, as it facilitates
decision-making in various domains, such as healthcare,
economy, and social science. Recently, many studies have
focused on networked observational data, utilizing the aux-
iliary network structure to infer hidden confounders for im-
proved performance in causal effect estimation. However,
networked observational data often contains noise in prac-
tical scenarios and existing methods often experience a se-
vere performance decline when the edge noise is present in
terms of the graph structure, leading to disrupted and biased
causal estimation. Thus, denoising the collected graph and
getting the optimal network structure is critical for precise
causal effect estimation. In this paper, we propose a novel
approach, referred as EDge reweIghTing Of multi-subgRaph
(EDITOR), to eliminate the graph noise for robust causal ef-
fect estimation. Specifically, by utilizing graph neural net-
work, EDITOR partitions the perturbed graph into distinct
subgraphs based on the edge type and learning their impor-
tance weights for each subgraph. By doing so, our method
effectively uncovers the clean graph structure from perturbed
networked data while preserving the underlying causal infor-
mation. Extensive experiments are conducted over different
datasets and perturbations, demonstrating that the proposed
methods achieve significantly higher performance and robust-
ness than state-of-the-art causal effect estimation methods.

Introduction
The study of causal effect estimation is significantly im-
portant for the development of diverse fields such as eco-
nomics (Hünermund and Bareinboim 2023), recommender
systems (Gao et al. 2024), and health care (Prosperi et al.
2020). It aims to identify confounding variables and discover
causal relationships between treatment and outcome vari-
ables. With the continuous advancement of machine learn-
ing, an increasing number of methods (Huang et al. 2022a;
Cheng et al. 2020; Johansson, Shalit, and Sontag 2016; Guo
et al. 2020) have emerged that they utilize observational
data for causal effect estimation as a substitute for ran-
domized controlled trials (RCTs) (Gui et al. 2015; Yuan,
Altenburger, and Kooti 2021). Observational data typically
comprises numerous entities and exhibits rich features. In
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certain situations, entities are naturally interconnected, and
these connections can be represented as a network structure.
For instance, users in social networks are connected through
friendships, and in article networks, connections are estab-
lished between authors through citation relationships. Net-
works frequently encapsulate valuable causal information
and help improve the precision of effect estimation. For ex-
ample, hidden variables, such as social status and interper-
sonal relationships, which may not be directly observable
from the features, can often be inferred through these rela-
tionship networks.

Through incorporating relational networks along with in-
stance features, many works have been shown to be pow-
erful in causal effect estimation (Ma and Li 2022; Ma and
Tresp 2021). However, these methods’ performance can be
significantly affected by the presence of edge noise in the
network, as such disturbances can readily undermine the in-
herent causal information present within the network. For
instance, in the process of decision making related to the
selection of costly medical treatments, perturbations may
occur that individuals with lower social status can be er-
roneously associated with those of higher social status in
the relationship network. As a result, the model may inaccu-
rately estimate their social status, significantly impairing the
model’s ability to make precise judgments about their treat-
ment choices. In summary, the networked observational data
frequently exhibits inherent noise in practical scenarios, and
denoising the graph structure is crucial for causal analysis.
Existing graph structure denoising methods (Jin et al. 2020;
Dai et al. 2022) are not customized for causal effect estima-
tion tasks, resulting in suboptimal performance. Therefore,
it is important to develop a method that can effectively elim-
inate noise from networked observational data while simul-
taneously recovering the underlying causal information for
robust causal effect estimation.

Previous works (McPherson, Smith-Lovin, and Cook
2001; Vaughan, Kipp, and Gao 2007) have demonstrated
that nodes in a network that exhibit similar features and be-
haviors are more likely to be connected. Consequently, we
propose the assumption that users in social networks who
display similar behaviors (choose the same treatment) are
more likely to be connected. This results in a higher intra-
group edge density (treatment or control group) compared
to the inter-group edge density in the network structure. In



Figure 1: Overview of Network Edge Structure. Where T/C
represents instances with treatment = 1/0.

contrast, perturbed edges are typically random and do not
adhere to these properties (Wu et al. 2019). An intuitive
example is shown in Figure 1. It can be observed that in
a social network without noise, the intra-group edge den-
sity is higher than the inter-group edge density, whereas
noise edges are random. We aim to utilize this property
to distinguish and remove noise edges. To achieve this,
We propose a novel approach called EDge reweIghTing
Of multi-subgRaph (EDITOR), which effectively learns the
clean graph structure from perturbed networks while pre-
serving the underlying causal information. Our method cat-
egorizes the edges into three types: intra-treatment-group
edges, intra-control-group edges, and inter-group edges, cor-
responding to T - T, C - C, and T - C in Figure 1, respectively.
EDITOR partitions the graph into distinct subgraphs based
on edge types and subsequently learns their respective im-
portance weights. It identifies noise edges and denoises the
graph by assigning smaller weights to those edges that vio-
late our assumptions. To further refine our model, we impose
constraints on the learned graph structure, such as symme-
try preservation and feature smoothness. These constraints
ensure that the resulting structure retains important graph
properties.

The primary contributions of this work can be summa-
rized as follows:

• We formulate a novel research problem, recovering
causal relationships in networked data when subjected to
the perturbations. To our knowledge, this is the first work
specifically focused on graph data denoising for causal
effect estimation.

• We propose the method EDITOR under the assumption
that different types of edges within a network often ex-
hibit distinct characteristics. This method uncovers the
clean graph structure from perturbed network data and
restores the causal information within the network by
learning edge weight matrices for distinct subgraphs.

• We conducted comprehensive experiments to demon-
strate that the proposed EDITOR outperforms state-of-
the-art methods in estimating causal effects, even in sce-
narios where the network structure incorporates noise or
undergoes perturbations.

Related Work
In this section, we provide an overview of the relevant works
on causal inference and graph structure denoising.

Causal Inference
In recent years, due to the rapid advancements in machine
learning technology, there has been significant attention di-
rected toward estimating causal effects using observational
data (Zeng and Wang 2022; Chu and Li 2023; Veitch, Wang,
and Blei 2019). CFR (Shalit, Johansson, and Sontag 2017)
is based on the strong ignorability assumption, it maps the
original data features to the corresponding representation
space to obtain the representation of confounders. During
training, it minimizes the prediction error of the outcome
and the IPM which measures the distributional imbalance
between the control and treatment groups. TARNet (Shalit,
Johansson, and Sontag 2017) is a variant of CFR without the
IPM. CEVAE (Louizos et al. 2017) utilizes the variational
autoencoder to estimate causal effect. DeR-CFR (Wu et al.
2023) decomposes instrumental, confounding, and adjust-
ment factors by managing correlations between variables,
while simultaneously learning counterfactual regression to
estimate treatment effects in observational studies. DESCN
(Zhong et al. 2022) leveraged multi-task learning within
a crossover network to obtain comprehensive insights into
treatment propensity, response, and hidden treatment effects.
ESCFR (Wang et al. 2024) utilizes optimal transport to bal-
ance the covariate representations across different treatment
groups. Many other works achieve great performance in
causal effect estimation by incorporating relational networks
along with instance features. ND (Guo, Li, and Liu 2020)
initially learns hidden confounders by leveraging the rela-
tionships between entities in observational networked data,
uses graph convolutional network (GCN) to learn the rep-
resentation of confounders, and employs IPM for represen-
tation distribution balancing. GIAL (Chu, Rathbun, and Li
2021) addresses the graph structure imbalance issue between
control and treatment groups in networked data by employ-
ing Adversarial Learning. NetEst (Jiang and Sun 2022) uti-
lizes adversarial learning to bridge the distribution gaps of
the objective function between the commonly used GNN
and the causal effect estimation. These methods have shown
encouraging performance. However, their performance may
significantly degrade when the graph structure is perturbed.
Therefore, we hope to investigate an approach that can effec-
tively estimate causal effects even when the network struc-
ture is perturbed.

Graph Structure Denoising
Graph learning has gained significant popularity in recent
years due to its wide applicability to various real-world
problems (Schlichtkrull et al. 2018; Veličković et al. 2018;
Wu et al. 2020; Atwood and Towsley 2016; Huang et al.
2022b; Ying et al. 2018). Many data in the real world can
naturally be modeled in the form of graphs. GNNs can di-
rectly operate on graphs and leverage their structural infor-
mation, leading to considerable success in addressing ma-
chine learning problems based on graphs. However, many
studies have shown that graph neural networks are vulner-
able to noise in graph structures (Dai et al. 2018; Jin et al.
2021; Zügner, Akbarnejad, and Günnemann 2018). Hence,
many methods focus on learning clean network structures
by reducing attention to interfering edges. (Wu et al. 2019)



observed that attackers tend to connect nodes with differ-
ent features and proposed removing links between dissim-
ilar nodes to learn a clean graph structure. (Entezari et al.
2020) point out that network attacks cause changes in the
high-order spectrum of graphs and suggest using low-order
approximations for graph preprocessing. (Jin et al. 2020)
propose the Pro-GNN, while learning GNN parameters, ex-
plores essential graph properties to recover a clean graph,
enabling the proposed model to extract intrinsic structures
from perturbed graphs under different attacks. RS-GNN
(Dai et al. 2022) adopts the edges in the noisy graph as su-
pervision to obtain a denoised and densified graph.

Different from the aforementioned approaches, our
method is designed for causal effect estimation tasks. It con-
siders the distinctions among various types of edges and
respectively learns their importance weights to obtain the
clean graph structure from the perturbed network.

Problem Statement
Before presenting the problem statement, we introduce some
notations and basic concepts. The Frobenius norm of a ma-
trix A is defined by ||A||2F = ΣijA

2
ij . We use G(A,X) to

denote an undirected graph, where A ∈ Rn×n is the adja-
cency matrix of the graph, if there has an edge between the
i-th instance and the j-th instance, Aij = Aji = 1, other-
wise Aij = Aji = 0. And X = [x1, ...,xn] ∈ Rn×d is the
feature matrix of instances, where xi is the feature vector of
instance i. Let T = {t1, ..., tn} denote a set of individual
treatment assignment, where n is the number of instances,
ti is the treatment assignment of the i-th instance, ti = 0 (ti
= 1) means the i-th instance is under controlled (treated).
The potential outcome Y = {yt11 , ..., ytnn } is the possible
outcome with different treatment, ytii denotes the outcome
value of instance i when treatment is ti. In networked ob-
servational data, only one of the two potential outcomes
can be observed, the observed outcome is the factual out-
come yfi = ytii , and the unobserved potential outcome is the
counterfactual outcome ycfi = y1−ti

i . The main challenge
of learning individual treatment effects is the inference of
counterfactual outcomes. The Individual Treatment Effect
(ITE) quantifies the change in the outcome of an instance
due to the treatment. The ITE of the i-th instance and the
Average Treatment Effect (ATE) are defined as:

ITEi = y1i − y0i , (1a)

ATE =
1

n

n∑
i=1

(ITEi). (1b)

With the aforementioned notations and concepts, we can
state the problem that we aim to study in this work as fol-
low: For a given graph G(A,X), the graph structure A has
been perturbed. We aim to learn a clean structure Â that con-
tains complete causal information, and incorporate Â along
with the feature matrix X to estimate the ITEs. Although
estimating the exact ITEs is challenging and often infeasi-
ble, we follow the terminology used in previous work (Jiang

Figure 2: The overall depiction of framework EDITOR.

and Sun 2022; Guo, Li, and Liu 2020). In practice, we focus
on approaches approximating these effects, which can be in-
terpreted as estimating the Conditional Average Treatment
Effects (CATEs).

The Proposed Framework
The noise of graph structure can significantly impair the
performance of existing methods for causal effects estima-
tion. Thus, it is essential to design a new method that can
eliminate the perturbed edges among the graph structure
and preserve the underlying causal information. In this sec-
tion, we propose the EDITOR aims to address this problem.
The illustration of the framework is shown in Figure 2, our
model primarily consists of three components: Reweighting
of Subgraph Edges, Exploring Graph Properties, Represen-
tation Learning and Outcome Prediction. In the following
subsections, we provide detailed explanations of the pro-
posed framework.

Reweighting of Subgraph Edges

Reweighting of Subgraph Edges aims to denoise the graph
by learning importance weights for distinct types of edges,
assigning higher weights to important edges and lower
weights to perturbed edges. For the causal effect estimation
task, as shown in Figure 1, we partition the adjacency ma-
trix A of graph G(A,X) into three subgraphs based on the
types of edges, denoted as Ac, At and Act. These subgraphs
respectively correspond to the edges of node pairs within
the control group, the edges of node pairs within the treat-
ment group, and the edges of node pairs between the control
and treatment group. Then we build three learnable matrices
Wct, Wc and Wt to learn the importance weights of each
edge type respectively. The weighted graph structure can be
formulated asÂ∗ = A∗ · W∗, where ∗ ∈ {c, t, ct} is the
edge type. Following our assumption, closely connected in-
stances often exhibit similar behaviors (McPherson, Smith-
Lovin, and Cook 2001; Vaughan, Kipp, and Gao 2007; Kipf
and Welling 2017), resulting in higher edge density within
treatment (control) groups compared to between groups in
the network structure, whereas noise edges are usually ran-
dom. Therefore, we expect that the weight matrix can lever-
age this information to distinguish noise edges by assigning
them smaller weights. We define the following edge density
distribution control function to achieve this.



Ld = max(0, d(Âct)−
d(Âc) + d(Ât)

τ
), (2a)

d(Âct) =
1

ncnt

n∑
i,j=1

Âij
ct =

1

ncnt

n∑
i,j=1

Aij
ctW

ij
ct, (2b)

where d(·) is the density function, nc and nt are the num-
bers of instances in the treatment group and control group.
For d(Âc) and d(Ât), the denominators are ncnc and ntnt.
τ is the parameter to control the degree of edge density
in the learned graph, a larger τ indicates a preference for
smaller inter-group density d(Âct), and larger intra-group
density d(Âc) and d(Ât), and vice versa. By minimizing
the Ld with τ > 2, we can ensure that the learned graph
structure adheres to our stated assumption, resulting in lower
inter-group edge density compared to intra-group edge den-
sity. This provides guidance for cleaning the perturbed graph
structure by enabling the weight matrix to assign smaller
weights to edges that do not meet the specified condition
(typically noise edges), thus effectively denoising the graph
structure. Subsequently, we combine the three subgraphs to
form the complete graph structure. The adjacency matrices
Âc, Ât and Âct are mutual orthogonality. Therefore, we can
directly sum them up to obtain the overall weighted graph
structure Â.

Exploring Graph Properties
In this section, we aim to ensure that the learned graph struc-
ture adheres to the inherent properties of graphs, such as
symmetry and feature smoothness. Previous work (Jin et al.
2020) has demonstrated that perturbed edges violate these
properties. Consequently, these properties can serve as a ref-
erence for cleaning the perturbed graph structure. We adopt
S to capture the graph structure symmetry:

S = ∥Â− ÂT ∥F . (3)

Here we employed Equation (3) to capture the graph
structure symmetry instead of using the simplistic approach
of Â′ = (Â + ÂT )/2. This enables the model to au-
tonomously learn a graph structure that more accurately re-
flects the inherent properties of the graph. Feature smooth-
ness suggests that nodes with similar features are more likely
to be connected by edges. We capture the graph feature
smoothness by adopting:

F =
1

2

n∑
i,j=1

Â′
ij(

xi√
di

− xj√
dj

)2, (4)

where di denotes the degree of nodes i and (xi/
√
di −

xj/
√
dj)

2 measures the features difference between in-
stance i and j. The smaller the F is, the higher the similarity
between connected instances. To ensure the feature smooth-
ness in the weighted graph structure, we should minimize
F . The loss function for Exploring Graph Properties can be
expressed as:

Lg = βS + λF . (5)

Representation Learning and Outcome Prediction
Then, we use the learned graph structure Â and the original
feature matrix X to learn the representation of confounders.
In this paper, we employ GCN (Kipf and Welling 2017;
Defferrard, Bresson, and Vandergheynst 2016) to to obtain
these representations. GCN maps the feature matrix X and
the learned adjacency matrix Â into the d-dimensional la-
tent space, which can be formulated as R = g(θ, Â,X),
where θ is the parameters of the network g, and the repre-
sentation R = [r1, ..., rn] ∈ Rn×d, ri denote the representa-
tion of the i-th instance. Similar to previous methods in es-
timating causal effects (Shalit, Johansson, and Sontag 2017;
Guo, Li, and Liu 2020), we minimize the Integral Proba-
bility Metric (IPM) to balance the distributional divergence
of confounders’ representations between the treatment and
the control groups. We implement IPM with the Wasserstein
distance:

Lb = inf
g∈G

∫
R
∥g(r)− r∥P (r)dr, (6)

where R is the latent space of the representation, G =
{g : R → R s.t.Q(g(r)) = P (r)} denotes the set of func-
tions that map the treated representation distribution P (r) to
the controlled representation distribution Q(r).

Then, we use the representation R to estimate the poten-
tial outcome Y under different treatments T. The output
function f can be denoted as ŷti = f(θ, ri, t), where ri is
the representation of instances i, ŷti is the predicted poten-
tial outcome of instance i under the treatment t ∈ {0, 1}. We
use Lp to minimize the prediction error:

Lp =
1

n

N∑
i=1

(ŷi − yi)
2, (7)

where ŷ is the predicted outcome and y is the ground truth.
Based on the aforementioned content, the final loss func-

tion of EDITOR is given as follows:

L = Lp + αLb + γLd + Lg. (8)

The function L jointly optimizes the weight matrix and
the GCN model for the causal effect estimation task. In ad-
dition to Ld, and Lg , the information from Lp and Lb is
also utilized to optimize the weight matrix. This approach
ensures that the learned graph structure is more suitable for
causal effect estimation tasks, thereby enhancing the effec-
tiveness and robustness of causal effect estimation.

Experiment
In this section, we validate EDITOR’s superiority through
experiments and comparisons with baseline methods. We
examine the reasons for its effectiveness and analyze the im-
pact of its components on performance.

Datasets
Since the counterfactual outcomes are hard to obtain. We
follow the standard practice in existing literature (Guo, Li,
and Liu 2020; Jiang and Sun 2022) to generate treatments



Table 1: Description of Dataset BlogCatalog and Flickr.

Dataset Nodes Features Edges ATE Mean ATE Std

BlogCatalog 5,196 8,189 173,468 22.205 6.416
Flickr 7,575 12,047 293,738 13.471 0.578

and outcomes. In this paper, we use two real-world social
network datasets, BlogCatalog (BC) and Flickr (Guo, Li,
and Liu 2020; Ma et al. 2021). BlogCatalog is an online
community for publishing blogs. In this dataset, each node
represents a user, and each edge represents the social rela-
tionship between two users. The features are represented by
the bag-of-words representation of the bloggers’ personal
descriptions. Flickr is an online platform for sharing photos
and videos. Similarly, in this dataset, each node represents
a user, and each edge represents a social relationship. The
features of each user represent a list of tags of interest. For
each dataset, the synthesis procedure is randomly repeated
10 times, and we report the average results along with their
standard deviations. This ensures robustness and reliability
in our findings. In Table 1, we present a summary of the
statistics for the datasets discussed in this subsection. The
average and standard deviation of the ATEs are computed
over 10 synthetic iterations.

In this paper, we employ three approaches to perturb the
network structure: random edge addition noise, random edge
removal noise, and random edge flip noise. We set different
perturbation rates to observe the trend of the model’s per-
formance variation. If the perturbation rate is greater than 1,
for example, the maximum perturbation rate is 5 in Figure
4, it indicates that the number of edges we have modified is
five times the number of edges in the original graph. Note
that for the edge removal perturbation, the maximum per-
turbation rate is 1, which implies removing all edges in the
graph.

Baseline Methods and Experimental Settings
We conduct experiments to verify the effectiveness of EDI-
TOR, we compare it with ten representative baselines. CFR
(Shalit, Johansson, and Sontag 2017), TARNet (Shalit, Jo-
hansson, and Sontag 2017),CEVAE (Louizos et al. 2017),
DeR-CFR (Wu et al. 2023), DESCN (Zhong et al. 2022) and
ESCFR (Wang et al. 2024) are all well-established and effec-
tive methods for estimating causal effects. However, these
methods are not originally designed for networked observa-
tional data and therefore cannot directly utilize the network
information. To ensure fairness, we address this limitation
by concatenating the corresponding row of the adjacency
matrix with the original features, enabling the baselines to
leverage network information. ND (Guo, Li, and Liu 2020)
and NetEst (Jiang and Sun 2022) are the methods that uti-
lize networked observational data to estimate causal effects.
Additionally, we also compare our method with graph struc-
tural denoising approaches to demonstrate its effectiveness
in causal effect estimation tasks. Pro-GNN (Jin et al. 2020)
and RS-GNN (Dai et al. 2022) are two effective graph de-
noising methods. We employ each of these methods inde-
pendently to learn the clean graph structure and estimate the

causal effect using ND, resulting in two baseline models ND
(Pro) and ND (RS).

In the following experiments, we randomly sample 60%
and 20% of the instances as the training set and validation
set, and use the remaining 20% to be the test set. The hyper-
parameters are set as follows: α = 10−3, β = 5, γ = 103,
λ = 10−1. For comparison, we employ the baseline methods
with their default hyper-parameter settings to ensure a fair
evaluation.

Performance Evaluation
In this subsection, we evaluate the performance of EDITOR
on BlogCatalog and Flickr datasets and compare it with
baseline methods. In our experiments, we utilized two com-
monly used evaluation metrics in causal inference to assess
the performance of our model: the mean absolute error of
ATEs and the square root of precision in estimation of het-
erogeneous effect (PEHE), which are defined as follows:

ϵATE = | 1
n

∑
i=1

(ÎTEi)−
1

n

∑
i=1

(ITEi)|, (9)

√
ϵPEHE =

√
1

n

∑
i=1

(ÎTEi − ITEi)2, (10)

where ÎTEi = ŷ1i − ŷ0i and ITEi = y1i −y0i denote the pre-
dicted ITE and the ground truth of ITE, respectively. Smaller
values of ϵATE and

√
ϵPEHE indicate better model per-

formance, and vice versa.
The results are shown in Tables 2. For random edge ad-

dition and edge flip noise, our method significantly out-
performs other baseline methods across various perturba-
tion rates. This demonstrates that our EDITOR method has
stronger robustness and can effectively recover the clean
graph structure from perturbed network data while preserv-
ing the underlying causal information. For random edge re-
moval noise, our method also outperforms other baseline
methods, although the magnitude of improvement gradually
diminishes as the perturbation rate increases. This could be
due to the reduction in the number of edges in the graph
caused by random edge removal noise. Since our method
denoises the graph structure by learning the weights of the
edges, a higher perturbation rate results in fewer edges avail-
able for weighting. Consequently, the performance improve-
ment of our method decreases as the perturbation rate in-
creases.

Additionally, to more intuitively verify the denoising ef-
fect of our method, we show the discrepancy between the
graph structures obtained through our method and the orig-
inal clean graph structures, and compare it with the noisy
graph structures. We used the Frobenius norm to calculate
the difference. The results are shown in Figure 3. As shown,
the difference between our method’s graph structures and
the clean graph structures decreases as training progresses,
demonstrating the effectiveness of our method for graph de-
noising. This indicates that our approach effectively removes
noisy edges during training, resulting in a graph structure
that more closely approximates the original clean graph
structure. It is worth noting that the improvement effect of



Table 2: Performance comparison on BlogCatalog and Flickr datasets under different perturbation types and perturbation rates.

Dataset BlogCatalog Flickr

Perturbation Type Perturbation Rate 0.2 0.5 1 0.2 0.5 1

Method
√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

Edge Addition

CFR 27.50±10.89 16.83±7.98 27.92±10.66 17.38±7.64 28.06±10.43 17.67±7.25 27.37±0.87 7.14±1.35 27.56±1.05 7.37±1.24 27.65±1.07 7.59±1.21
TARNet 27.68±10.86 17.19±7.77 28.14±10.58 17.81±7.42 28.28±10.28 17.99±6.97 27.27±0.66 7.10±1.32 27.28±0.68 7.27±1.31 27.64±0.85 7.41±1.26
CEVAE 21.93±2.59 8.44±1.73 21.83±2.46 8.18±1.48 22.44±2.57 9.71±1.62 21.33±0.41 4.31±0.93 23.41±1.825 8.68±2.84 21.22±0.36 4.16±0.65
DESCN 19.32±4.92 5.95±7.21 19.88±4.91 5.93±7.24 19.83±4.93 6.07±7.34 26.74±1.62 2.53±1.51 26.57±1.64 2.58±1.20 26.58±1.62 1.88±1.26

DeR-CFR 21.91±0.59 16.46±1.52 22.20±0.41 16.47±1.73 22.18±0.29 16.37±1.93 27.34±1.32 11.78±0.29 27.38±1.32 11.65±0.32 27.34±1.38 11.34±0.28
ESCFR 16.18±2.25 3.17±1.95 17.14±3.15 2.76±2.13 19.14±4.71 3.75±4.40 22.48±8.99 3.34± 1.94 24.58±7.78 2.12± 0.81 24.92±3.46 2.71± 1.59
NetEst 17.59±9.54 5.05±4.97 18.88±9.93 6.44±5.78 19.88±9.78 5.89±4.38 20.09±3.09 2.66±1.40 22.60±3.15 1.96±1.36 23.46±2.96 2.06±1.20

ND 9.86±1.92 3.52±1.10 11.71±3.66 2.31±1.79 12.33±3.08 3.56±3.31 11.28±3.10 2.97±2.96 12.32±2.39 3.30±2.48 13.25±2.57 4.68±2.64
ND(RS) 11.75±3.80 2.35±1.37 11.59±3.26 3.24±1.29 11.70±3.04 2.97±1.99 8.65±1.99 2.72±1.02 8.46±2.13 2.78±1.39 8.77±2.07 3.16±1.15
ND(Pro) 8.85±2.49 3.08±2.78 9.27±2.23 4.06±1.94 10.20±2.92 4.41±2.26 8.17±1.94 3.14±1.27 8.06±1.73 3.01±1.34 8.33±1.94 3.25±1.45

EDITOR(ours) 8.74±2.30 2.26±2.09 8.90±2.04 1.74±1.81 9.01±2.21 1.63±1.69 7.37±1.58 1.97±0.90 7.59±1.46 2.05±1.15 7.58±1.42 1.84±1.04

Edge Removal

CFR 26.24±11.20 14.91±8.29 25.09±10.93 12.69±7.68 20.49±6.55 3.04±2.60 26.93±1.05 6.56±1.09 26.60±1.44 5.52±1.27 27.14±0.84 1.94±1.06
TARNet 26.28±11.44 15.03±8.34 25.15±11.03 12.94±7.56 20.17±6.52 3.19±2.47 26.86±0.78 6.47±1.16 26.51±1.37 5.59±1.25 26.96±0.74 1.51±1.13
CEVAE 22.19±2.69 8.89±1.97 21.62±2.58 7.44±1.81 22.44±2.65 9.57±1.89 21.54±0.31 5.47±0.78 21.30±0.34 4.50±0.74 21.02±0.28 3.28±0.47
DESCN 20.07±4.87 5.89±7.24 20.35±4.64 6.11±7.27 20.17±5.01 6.14±6.98 26.92±1.64 2.01±1.19 26.94±1.44 2.58±1.09 26.87±1.67 1.99±1.61

DeR-CFR 21.99±1.09 16.42±1.10 22.09±0.84 16.48±1.41 21.33±1.44 15.46±0.44 27.41±1.31 11.99±0.27 27.38±1.36 12.02±0.20 27.41±1.33 11.55±0.16
ESCFR 18.34±3.97 2.69±2.15 20.04±4.64 5.28±10.35 28.20±8.55 5.14±1.59 11.04±6.18 3.78±1.43 11.14±6.10 3.08± 1.58 32.65±1.91 1.81±1.54
NetEst 17.18±9.55 5.08±5.29 17.52±9.09 4.46±4.11 22.10±7.84 4.17±3.29 22.32±3.21 2.42±1.62 22.43±3.13 1.96±1.35 31.49±2.90 4.12±2.83

ND 10.71±2.63 3.70±2.49 11.22±3.19 3.16±1.89 23.33±9.44 7.42±5.59 8.72±1.81 2.98±2.08 7.93±1.51 2.28±1.08 26.20±3.12 1.73±1.82
ND(RS) 12.06±3.07 3.59±2.41 13.60±5.17 2.99±1.58 23.33±9.35 7.85±5.82 10.23±2.34 2.82±1.28 11.53±2.59 2.37±1.15 26.42±1.67 2.05±1.65
ND(Pro) 9.54±2.23 3.63±2.14 9.99±2.12 3.39±2.29 23.54±9.38 7.55±5.70 7.97±1.77 3.06±1.08 8.29±1.91 3.20±1.19 25.79±2.22 1.80±1.49

EDITOR(ours) 9.34±2.02 2.65±1.64 9.98±2.13 2.57±1.05 19.35±8.44 4.73±4.98 7.29±1.59 1.97±0.99 7.32±1.52 1.96±1.06 24.10±1.39 1.90±1.69

Edge Flip

CFR 27.49±10.96 16.81±7.98 27.85±10.71 17.34±7.69 28.04±10.43 17.67±7.24 27.39±0.85 7.11±1.30 27.58±0.99 7.36±1.23 27.74±0.89 7.59±1.16
TARNet 27.66±10.90 17.11±7.88 28.12±10.56 17.78±7.41 28.21±10.29 17.93±6.97 27.22±0.61 7.05±1.44 27.36±0.71 7.33±1.47 27.64±0.91 7.49±1.34
CEVAE 22.12±2.69 8.82±1.98 22.25±2.69 9.19±1.98 22.05±2.66 8.77±1.87 21.06±0.27 3.49±0.39 21.16±0.31 3.86±0.65 21.12±0.29 3.68±0.59
DESCN 19.98±4.93 5.96±7.22 19.91±4.89 5.93±7.25 19.84±4.93 6.02±7.37 26.74±1.67 1.96±1.18 26.55±1.63 1.57±1.20 26.62±1.64 1.90±1.24

DeR-CFR 22.04±0.64 16.61±1.72 22.20±0.36 16.54±1.87 22.12±0.34 16.28±1.84 27.44±1.32 11.91±0.17 27.38±1.41 11.55±0.39 27.37±1.38 11.36±0.19
ESCFR 16.46±3.44 3.13±2.83 17.15±2.20 2.86±2.10 18.98±4.20 6.90±13.74 20.15±8.07 2.92±1.30 24.33±6.74 1.81± 0.76 25.39±3.35 2.69± 0.97
NetEst 17.82±9.59 5.65±4.98 18.93±9.99 6.89±5.38 19.76±9.38 5.55±3.75 22.37±3.01 2.16±1.38 22.69±2.99 1.77±1.19 23.47±2.88 2.20±1.43

ND 11.34±3.35 2.16±1.63 12.93±4.93 5.41±5.40 14.67±8.36 6.65±8.67 12.70±2.95 4.49±2.59 13.03±2.58 4.27±2.01 13.93±3.11 4.68±3.72
ND(RS) 11.94±3.59 3.25±2.31 11.60±2.98 3.09±2.15 11.78±3.20 3.33±1.43 8.83±1.99 2.90±1.17 8.72±2.11 2.87±1.20 8.65±1.87 2.93±1.38
ND(Pro) 9.21±2.44 3.40±2.11 8.87±2.87 3.03±2.69 10.29±3.41 3.73±2.39 8.06±1.91 3.06±1.39 9.04±3.26 3.86±2.30 8.30±2.02 3.26±1.67

EDITOR(ours) 9.00±2.05 2.28±1.58 9.45±2.34 2.11±2.05 9.61±2.58 2.21±1.83 7.19±1.49 1.86±0.76 7.27±1.42 1.48±0.67 7.54±1.29 1.86±1.08

our method is not significant under removal perturbations,
which is consistent with our previous observations. Since
our method adopts edge weighting for denoising, it may not
be as effective for edge removal perturbations. However, as
seen from the experiments in Table 2, our accuracy is still
improved, proving that we can still obtain sufficient infor-
mation from the remaining edges in the graph to enhance
the model’s performance.

Ablation Studies
In this subsection, we conducted ablation studies to in-
vestigate the impact of each component on our model’s
performance. Firstly, we explored the effects of the edge
weights matrices Wct, Wc, and Wt. Based on the original
model, we made modifications to create three new models:
EDITOR-Wct, EDITOR-Wc, and EDITOR-Wt. During the
training process of model EDITOR-Wct, the parameters of
Wc and Wt are fixed, only update the parameters of ma-
trix Wct. The models EDITOR-Wc and EDITOR-Wt fol-
low the same principle. Figures 4(a) - 4(f) present the ab-
lation results for models where only one weights matrix is
updated. It can be seen that there is a significant decline
in performance for all these models compared to EDITOR.
This demonstrates the essential impact of the edge weights
matrices on improving the model’s performance, the combi-
nation of the three matrices facilitates a better capturing of
the causal information in the network.

Additionally, our method also includes three important
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Figure 3: The discrepancy between the learned graph struc-
ture and the original clean graph structure, with red dashed
lines indicating the perturbed noisy graph.

components: edge density control, symmetry, and feature
smoothness. We created four model variants to observe the
effects of these components. The EDITOR-Base indicates
no constraints applied, while EDITOR-w/Dens, EDITOR-
w/Sym, and EDITOR-w/FS represent models with edge
density control, symmetry, and feature smoothness con-
straints applied on top of the EDITOR-Base model, respec-



Table 3: Result of ablation studies for different constraints applied.

Perturbation Type Perturbation Rate Result of
√
ϵPEHE

EDITOR-Base EDITOR-w/Sym EDITOR-w/Dens EDITOR-w/FS EDITOR

Edge Addition

0.05 8.29±1.84 8.20±1.83 8.10±1.80 7.66±1.82 7.46±1.60
0.3 8.51±1.84 8.31±1.70 8.17±1.93 7.35±1.44 7.26±1.46
0.7 8.41±1.77 8.32±1.84 8.27±1.87 7.34±1.32 7.35±1.35
1 8.43±1.57 8.30±1.86 8.54±1.66 7.96±2.65 7.31±1.51

Edge Removal

0.05 8.25±1.93 8.16±1.95 7.91±1.92 7.40±1.57 7.23±1.58
0.3 7.82±1.81 7.84±1.83 7.85±1.88 7.51±1.68 7.41±1.65
0.7 8.48±2.06 8.39±1.88 8.46±2.11 7.88±1.77 7.73±1.50
1 25.18±1.51 24.37±1.63 24.33±1.58 24.49±1.61 24.10±1.39

Edge Flip

0.05 8.17±1.85 8.02±1.79 7.97±1.79 7.41±1.60 7.29±1.47
0.3 8.38±1.86 8.37±1.74 8.06±1.71 7.28±1.47 7.10±1.46
0.7 8.55±1.70 8.53±1.99 8.28±1.79 7.31±1.17 7.20±1.46
1 8.19±1.81 8.29±1.70 8.23±1.83 7.32±1.38 7.29±1.40
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Figure 4: Result of ablation studies for edge weights matri-
ces, with red line indicating our method.

tively. The results as shown in Table 3, it can be observed
that compared to EDITOR-Base, the three models all show
varying degrees of improvement in performance, demon-
strating the effectiveness of the three constraints for graph
structure denoising. The combination of these constraints re-
sults in the EDITOR model achieving the best overall per-
formance.

Parameter Analysis
In this subsection, we investigated the impact of hyper-
parameters on the performance of EDITOR. We fixed the
values of other hyper-parameters as described in Section
and varied the parameters α, β, γ, and λ individually. The
experimental results are shown in Figure 5. Due to space
limitations, we report the results for the BlogCatalog dataset
with a perturbation rate set to 0.2. The perturbation type is
edge flips, which includes both edge additions and removals,
making it more diverse and convincing. As seen in Figure 5,
when the parameter values are within a certain range, EDI-
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Figure 5: Result of parameter analysis on BlogCatalog.

TOR achieves its best performance. However, if the param-
eter values are set too low, the performance of EDITOR de-
creases, indicating that all four loss functions contribute to
improving the model’s performance. Conversely, setting the
parameter values too high leads to a decline in performance,
suggesting that focusing too heavily on a specific component
can reduce the model’s overall performance.

Conclusion
When the graph structure in networked observational data
contains noise or is subjected to perturbations, the perfor-
mance of current causal effect estimation methods signif-
icantly decreases. To address this problem, we proposed
EDITOR, a method designed to eliminate graph structure
noise and restore causal information in the network. ED-
ITOR achieves this by partitioning the graph into distinct
subgraphs based on edge types and learning their impor-
tance weights respectively. Extensive experiments demon-
strated the effectiveness and robustness of EDITOR.
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