Under review as a conference paper at ICLR 2025

DISCRETE CODEBOOK WORLD MODELS FOR
CONTINUOUS CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning (RL), world models serve as internal simulators,
enabling agents to predict environment dynamics and future outcomes in order
to make informed decisions. While previous approaches leveraging discrete latent
spaces, such as DreamerV3, have achieved strong performance in discrete action
environments, they are typically outperformed in continuous control tasks by
models with continuous latent spaces, like TD-MPC2. This paper explores the use
of discrete latent spaces for continuous control with world models. Specifically,
we demonstrate that quantized discrete codebook encodings are more effective
representations for continuous control, compared to alternative encodings, such
as one-hot and label-based encodings. Based on these insights, we introduce
DCWM: Discrete Codebook World Model, a model-based RL method which
surpasses recent state-of-the-art algorithms, including TD-MPC2 and DreamerV3,
on continuous control benchmarks.

1 INTRODUCTION

In model-based reinforcement learning (RL), world models (Ha & Schmidhuber, 2018) have been
introduced in order to simulate or predict the environment’s dynamics in a data-driven way. An agent
equipped with a world model can make predictions about its environment by “simulating” possible
actions within the model and “imagining” the outcomes. This equips the agent with the ability to
plan and anticipate outcomes given a (learned) reward function, and the additional ability to envision
transitions and outcomes before taking them in the real world can in turn improve sample efficiency.

One of the state-of-the-art world models, DreamerV2/V3 (Hafner et al., 2022; 2023) achieves strong
performance in a wide variety of tasks, by “imagining” sequences of future states within a world
model and using them to improve their policies. Interestingly, DreamerV2/V3 introduced a discrete
latent space, in the form of a one-hot encoding, which offered significant benefits over its predecessor,
DreamerV1 (Hafner et al., 2019a). This suggests that discrete latent spaces may have benefits over
continuous latent spaces. One possible reason is that turning continuous states into discrete latent
representations enables the policy and value learning to harness the benefits of discrete variable pro-
cessing for efficiency and interoperability. However, in the context of continuous control, TD-MPC2
(Hansen et al., 2023) uses a continuous latent space and significantly outperforms DreamerV3. Whilst
there are multiple differences between TD-MPC2 and DreamerV2/V3, in this paper, we are specif-
ically interested in exploring if discrete latent spaces can offer any benefits for continuous control.

Recently, Farebrother et al. (2024) showed that training value functions with classification may have
benefits over training with regression. The benefits may arise because (i) classification considers
uncertainty during training (via the cross-entropy loss), (ii) the categorical distribution is multi-modal
so can consider multiple modes during training, or (iii) learning in discrete spaces is more efficient.
In the context of world models, it is natural to ask, what benefits are obtained by (i) using discrete vs
continuous latent spaces and (ii) modelling deterministic vs stochastic transition dynamics. Further
to this, when considering stochastic latent transition dynamics, what is the effect of modelling (i)
unimodal distributions (e.g. Gaussian in continuous latent spaces) vs (ii) multimodal distributions
(e.g. categorical in discrete latent spaces). In this paper, we explore these ideas in the context of world
models, i.e. does learning a discrete latent space using classification have benefits over learning a
continuous latent space using regression.

Under review as a conference paper at ICLR 2025

Contributions The main contributions are as follows:

(C1) In the context of continuous control, we show that learning discrete latent spaces with classifi-
cation does have benefits over learning continuous latent spaces with regression.

(C2) We show that formulating a discrete latent state using codebook encodings has benefits over
alternatives, such as one-hot (like DreamerV2/V3) and label encodings.

(C3) Based on our insights, we introduce Discrete Codebook World Model (DCWM): a world
model with a discrete latent space where each latent state is a discrete code from a codebook.
DCWM obtains strong performance in the difficult locomotion tasks from DeepMind Control
suite (Tassa et al., 2018) and the hard manipulation tasks from Meta-World (Yu et al., 2019).

2 RELATED WORK

In this section, we recap world models in the context of model-based RL. We introduce two competing
methods for learning latent spaces (i) those using observation reconstruction and (7i) those using
latent state consistency losses. We then compare methods that learn continuous latent spaces using
regression and those that learn discrete latent spaces using classification.

World models Model-based RL is often said to be more sample-efficient than model-free methods.
This is because it learns a model in which it can reason about the world, instead of simply trying to
learn a policy or a value function to maximize the return (Ha & Schmidhuber, 2018). The world model
can be used for planning (Allen & Koomen, 1983; Basye et al., 1992). A prominent idea has been to
optimize the evidence lower bound of observation and reward sequences to learn world models that
operate on the latent space of a learned Variational Autoencoder (VAE, Kingma & Welling (2014);
Igl et al. (2018)). These models rely on maximizing the conditional observation likelihood p(o¢|z:),
which is the reconstruction objective. The latent space of the model can then be used for both policy
learning in the imagination of the world model, known as offline planning, e.g. Dreamer (Hafner
et al., 2019a), or for decision-time planning with model-predictive control (Rubinstein, 1997; Hafner
et al., 2019b) and exploration (Luck et al., 2019).

Latent-state consistency Using the reconstruction loss for learning latent state representations is
unreliable (Lutter et al., 2021) and can have a detrimental effect on the performance of model-based
methods in various benchmarks (Kostrikov et al., 2020; Yarats et al., 2021a). To this end, TD-MPC
(Hansen et al., 2022) and its successor, TD-MPC2 (Hansen et al., 2023), use a consistency loss to
learn representations for planning with Model Predictive Path Integral control together with reward
and value functions learned through temporal difference methods (Williams et al., 2015). Given the
success of learning representations without observation reconstruction in continuous control tasks,
we predominantly focus on this class of methods, i.e. methods that use latent-state consistency losses.

Discrete latent spaces DreamerV1 (Hafner et al., 2019a), DreamerV2 (Hafner et al., 2022), and
DreamerV3 (Hafner et al., 2023), are world model methods which learn policies using imagined
transitions from their world models. They utilize observation reconstruction when learning their world
models and perform well across a wide variety of tasks. However, they are significantly outperformed
by TD-MPC2 in continuous control tasks, which does not reconstruct observations. Of particular
interest in this paper, is that DreamerV2/V3 introduced a discrete latent space, in the form of a
one-hot encoding, and trained it with a classification objective, significantly improving performance.
In contrast, TD-MPC?2 learns a continuous latent space with mean squared error regression. In this
paper, we are interested in learning discrete latent spaces with classification, however, in contrast to
DreamerV2/V3, we seek to avoid observation reconstruction and instead learn the latent space using
a self-supervised latent-state consistency loss. That is, we investigate using a classification loss, i.e.
the cross-entropy loss, for the self-supervised latent-state consistency loss.

3 PRELIMINARIES
In this section, we recap different types of discrete encodings and compare their pros and cons. First,
let us assume we have three discrete categories: A, B, C, and D.

* One-hot encoding Given categories A, B, C', and D, a one-hot encoding would take the form
A =11,0,0,0], B=10,1,0,0],C =10,0,1,0] and D = [0, 0,0, 1], respectively.

Under review as a conference paper at ICLR 2025

W

Codebook Codebook

index index
A A
: Cross-entropy : Cross-entropy
i loss i loss
v ~

o o

gl oo g oo

Latent code g Latent code —————> g ——> Latent code =™
Dynamics Gumbel Dynamics Gumbel-

(] [0}

P (Ee41 | €ty at) softmax P (€42 | €t415 @te1) softmax
sampling sampling

Figure 1: World model training DCWM is a world model with a discrete latent space where
each latent state is a discrete code ¢ (mmmm@) from a codebook C. Observations o are first mapped
through the encoder and then quantized (§) into one of the discrete codes. We model probabilistic
latent transition dynamics p, (¢’ | ¢, @) as a classifier such that it captures a potentially multimodal
distribution over the next state ¢’ given the previous state ¢ and action a. During training, multi-step
predictions are made using Gumbel-softmax sampling such that gradients backpropagate to the
encoder. Given this discrete formulation, we train the latent space using a classification objective, i.e.
cross-entropy loss. Making the latent representation discrete with a codebook contributes to the very
high sample efficiency of DCWM.

J

* Label encoding Given categories A, B, C', and D, label encoding would result in A = 1,
B =2,C =3,and D = 4, respectively.

* Codebook encoding Given categories A, B, C, and D, a codebook might encode them as
A =1[0.5,0.5], B=[0.5,—0.5], C =[-0.5,0.5], and D = [—0.5, —0.5], respectively.

Ordinal relationships Mathematically, if we have an ordinal relationship A < B < C, label and
codebook encodings can ensure |e(A) —e(B)| < |e(A) —e(C)|, where e(x) is the encoding function.
One-hot encoding, however, results in |e(A) — e(B)| = |e(A) — e(C)| = v/2 for all distinct pairs,
eliminating any notion of ordering. Whilst this may be beneficial in some scenarios, e.g., when
modelling distinct categories like fruits, it means that they cannot capture the inherent ordering in
continuous data. In contrast, label and codebook encodings can capture ordinal relationships.

Sparsity Another downside of one-hot encodings is that they create sparse data (i.e., data with many
zero values), which can have a negative impact on neural network training. In contrast, label and
codebook encodings create dense data (i.e. many non-zero values).

Dimensionality Finally, it is worth noting that one-hot encodings have high dimensionality, especially
when there are many categories. This makes them memory-intensive and slow to train when using a
large number of categories.

In this work, we show that discrete codebook encodings resulting from quantization (Mentzer et al.,
2023) offer benefits over both one-hot and label encodings, when learning discrete latent spaces for
continuous control. This is because they preserve ordinal relationships in multiple dimensions whilst
being simpler, much lower-dimensional and having less memory requirements.

4 METHOD

In this section, we detail our method, named Discrete Codebook World Model (DCWM). DCWM is a
model-based RL algorithm which (i) learns a world model with a discrete latent space and then, (ii) per-
forms decision-time planning with model-predictive path integral control (MPPI). The paper’s main

Under review as a conference paper at ICLR 2025

contribution is formulating a discrete latent space using quantization, allowing us to train the latent
representation using classification, in a self-supervised manner. See Fig. 1 for an overview of DCWM,
Alg. 1 for details of world model training and Alg. 2 for details on the MPPI planning procedure.

We consider Markov Decision Processes (MDPs, Bellman (1957)) M = (O, A, P, R,~), where
agents receive observations o, € O at time step ¢, perform actions a; € A, and then obtain the next ob-
servation o¢41 ~ P(-| ot, a;) and reward 7, = R (0, a;). The discount factor is denoted y € [0,1).

4.1 WORLD MODEL

Learning world models with discrete latent spaces (e.g. DreamerV2) has proven powerful in a wide
variety of domains. However, these approaches generally perform poorly in continuous control tasks
when compared to algorithms like TD-MPC2 and TCRL (Zhao et al., 2023), which use continuous
latent spaces. Rather than representing a discrete latent space using a one-hot encoding, as was
done in DreamerV2, DCWM aims to construct a more expressive representation which is effective
for continuous control. More specifically, DCWM represents discrete latent states as codes from a
discrete codebook, obtained via finite scalar quantization (FSQ, Mentzer et al. (2023)). The world
model can subsequently benefit from the advantages of discrete representations, e.g. efficiency and
training with classification, whilst performing well in continuous control tasks.

Components DCWM’s world model has six main components:

Encoder: x = eg(0) € RIFIxd (1
Latent quantization: c=f(x)ecC)
Dynamics: ¢’ ~ Categorical (p1,...,pjc|) Withp; = Py(c' =c'[c,a) (3)
Reward: r = Re(c,a) € R 4
Value: qg=4qy(c,a) 5)
Policy prior: a = m,(c) (6)

The encoder eg(-) first maps observations o to continuous latent vectors & € R**9, where the number
of channels b and the latent dimension d are hyperparameters. This continuous latent vector x is
then quantized f(-) into one of the discrete latent codes ¢ € C from the (fixed) codebook C, using
finite scalar quantization (FSQ, Mentzer et al. (2023)). As we have a discrete latent space, we
formulate the transition dynamics to model the distribution over the next latent state ¢’ given the
previous latent state ¢ and action a. That is, we model stochastic transition dynamics in the latent
space. We denote the probability of the next latent state ¢’ taking the value of the i code ¢’ as

p; = Py(c’ = c'|c,a). This results in the next latent state following a categorical distribution
¢ ~ Categorical (pl. e ,p‘c‘). We use a standard classification setup, where we use an MLP to
predict the logits I = {l1,...,[jc|}. Note that logits are the raw outputs from the final layer of

the neural network (NN), which represent the unnormalized probabilities of the next latent state
¢’ taking the value of each discrete code in the codebook C. The logit for the i*" code is given by
l; = dgi(c,a) € R. We then apply the softmax operation to obtain the probabilities p; of the next
latent state taking each discrete code in the codebook C, i.e., p; = softmax;(l). DCWM uses the
discrete codes c as its latent state to make dynamics, reward R¢(c, a), value gy (c, a), and policy
7y (c) predictions. Our hypothesis is that learning these components with a discrete latent space will
be more efficient than with a continuous latent space.

Quantized latent space Unlike previous approaches, DCWM uses a discretized latent space where
world states are encoded as discrete codes from a codebook C. We use latent quantization (Mentzer
et al., 2023) to enforce data compression and encourage organization (Hsu et al., 2023). However,
we implement this using finite scalar quantization (FSQ, Mentzer et al. (2023)) instead of dictionary
learning (van den Oord et al., 2017). As a result, our codebook is fixed and we obviate two codebook
learning loss terms, which stabilizes early training. In this section, we will give an overview of our
discretization method which utilizes codebooks. First, let us assume the output of the encoder is a
matrix! x € R?*?_ with d dimensions and b as the number of channels.

Each latent dimension is quantized into a codebook C. That is, we have d independent codebooks,
one for each latent dimension. Our first step is to define the size of the codebook for each dimension,

"For simplicity, we omit here the batch dimension.

Under review as a conference paper at ICLR 2025

i.e. to define the ordered set of quantization levels £ = {Lj, Lo, - - - , Ly }. Each quantization level
L; corresponds to the i-th channel, e.g. L1 defines the number of discrete values in the first channel,
Lo for the second and so on. In short, a quantization level of e.g. L; = 11 would mean that we
discretize each dimension in the i-th channel into 11 distinct values/symbols. We use integers as
symbols, which would mean that the code for dimension d in channel 7 would be a symbol from the
set {—5,—4,---,0,---,4,5}. In practice, for fast conversion from continuous values to codes we
use a similar discretization scheme as FSQ and apply the function

frx, L i— round ({I;J -tanh(mi,:)> , @)

to each channel, taking the output & of the encoder and the channel quantization level L;. This

approach results in a codebook with |C| = ngl L; unique codes for each dimension d, each code
being made of b symbols, i.e. an b-dimensional vector.

Intuitively, this results in a Voronoi partition of the
b-dimensional space? in each dimension d, where any
point in space is assigned to one of the equidistantly
placed centroids via Eq. (7). A visualization of
this can be found in Fig. 2. In effect, this leads
to an efficient and fast discretization of the latent
embedding space.

In practice, Eq. (7) is not differentiable. To solve T F‘iii’eﬁlﬂlﬁm
this for training and implementing this discretization

approach in our world model using standard deep Figure 2: Illustration of Codebook (C)
learning libraries, we use the straight-through gradi- FSQ’s codebook can be considered a
ent estimation (STE) approach with round_ste(x) : b-dimensional hypercube (left). This fig-
x — x+sg(round(x) —), where the function sg(-) ure illustrates an b=3-dimensional codebook,
stops the gradient flow. Furthermore, we normalize where each axis of the 3-dimensional hyper-
codes to be in the range [—1, 1] after the discretization cube (left) corresponds to one dimension of
step for improved performance as improved perfor- the codebook (right). The i dimension of
mance was reported in Mentzer et al. (2023). The the hypercube is discretized into L; values,
hyperparameters of this approach are the number of e.g., the 2 and y-axis are discretized into
channels b and the number of code symbols per chan- Ly = L; = 5 and the z-axis into Lz = 4.
nel (i.e. quantization levels) L;. In our experiments, Code symbols (here integers) are normalized
we found two channels and the quantization levels to the range [-1,1].

L = {5, 3} to be sufficient.

Y

It is worth highlighting that our codebook encoding preserves ordinal relationships between observa-
tions. This contrasts one-hot encodings which were used by DreamerV2 (Hafner et al., 2022). See
Sec. 3 for a comparison of the different discrete encodings.

World model training We train our world model components eg, dg, IZ¢ jointly to minimize the
following objective

H-1

£(97 d)v 5; D) = E(o,a,o’,r)O:HwD [
h=0

("CE(po(ént1leén, an), cnir) + || Re(cn, an) — mall3)1
Latent-state consistency Reward prediction

®)

with & = f(eg(00)) En+1 ~ Pp(Chi1|n,an) cn =sg(f(es(on))), ©))

First latent state Stochastic dynamics Latent code

where H denotes the multi-step prediction horizon and v is the discount factor. The first predicted
latent code ¢ is obtained by passing the observation og through the encoder and then quantizing the
output. At subsequent time steps, the dynamics model predicts the probability mass function over the
next latent code pg (€x41 | én, ap,). Given this probabilistic dynamics model, we must consider how
to make H -step predictions in the latent space. In practice, we propagate uncertainty by sampling and
we use the Gumbel-Softmax trick so that gradients backpropagate through our samples to the encoder.

2Remember that b is the number of channels of .

Under review as a conference paper at ICLR 2025

DMControl (29 tasks) Meta-World (45 tasks)
QM Optimality Gap QM Optimality Gap
TD-MPC |] | [|
SAC 1 1 1
DreamerV3]]] m
TD-MPC2 u m N]
DCWM (ours) | B | N
0.6 0.8 02 03 04 0.5 0.5 0.7 0.9 0.1 0.3 0.5
Normalized Score Success Rate

Figure 3: DMControl (left) & Meta-World manipulation (right) results DCWM outperforms
TD-MPC2 and DreamerV3 in DMControl tasks across all metrics. This is due to DCWM’s strong
performance in the hard Dog and Humanoid tasks. DCWM performs well in Meta-World, generally
matching TD-MPC2, whilst significantly outperforming DreamerV3 and SAC. Results are for 1M
environment steps and error bars represent 95% stratified bootstrap confidence intervals.

Note that gradients must flow back to the encoder at the first time step when it was used to obtain the
first latent code ¢y, as the target codes ¢ are obtained by passing the next observation o’ through the en-
coder and using the stop gradient operator sg. We then train our dynamics “classifier” using the cross-
entropy (CE) loss. Finally, we note that our reward model Ry is trained jointly with the encoder eg and
dynamics model p, to ensure that the world model can accurately predict rewards in the latent space.

Policy and value learning We learn the policy 7, (c) and action-value functions gy (c, a) in the
latent space using the actor-critic RL method TD3 (Fujimoto et al., 2018). However, we follow Yarats
et al. (2021b); Zhao et al. (2023) and augment the loss with N-step returns. The main difference
to TD3 is that instead of using the original observations o, we map them through the encoder
c = f(eg(0)) and learn the actor/critic in the discrete latent space ¢. We also reduce bias in the TD
target by following REDQ (Chen et al., 2021) and learning an ensemble of N, = 5 critics, as was
done in TD-MPC?2. When calculating the TD target we randomly subsample two of the critics and
use the minimum of these two. Let us denote the indices of the two randomly subsampled critics as
M. The critic is then updated by minimizing the following objective:

N,
1 q
Lo(¥iD) = Eoa 0y~ | 3 D (@ (f(ea(0r)), a) —)* |, (10)
9 k=1
N-1
y= Z V'egn + N l?eu/\I}t a5, (f(€9(0t4nt1)), Qtnt1), With @ryp = T5(Cepn) + €tin,
n=0

where we use policy smoothing by adding clipped Gaussian noise €;4,, ~ clip (N (0,02), —c, c)
to the action @;1, = 7;(Cin) + €14 We then use the target action-value functions g;; and the
target policy 75 to calculate the TD target y. Note that the target networks use an exponential moving

average, i.e. [, 7] + (1 — 7)[¢, 7] + [1,7]. We follow REDQ and learn the actor’s by minimizing
£.(5:D) = (M[quk fleoo0) m(f(ealon))| (a1

That is, we train the actor to maximize the average action Value over the ensemble of critics.

Summary Whilst this world model resembles TD-MPC?2, there are some important distinctions.
First, the latent space is represented as a discrete codebook which enables DCWM to train the dynam-
ics model using the cross-entropy loss. Importantly, the cross-entropy loss considers a (potentially
multimodal) distribution over the predicted latent codes during training. In contrast, TD-MPC2 con-
siders deterministic dynamics and uses mean squared error regression. Interestingly, our experiments
suggest that our stochastic dynamics model and classification objective combination offers benefits
in deterministic environments. Second, DCWM does not use value prediction when training the
encoder. Instead, we follow the insight from Zhao et al. (2023) that value prediction is not necessary
for obtaining a good latent representation and instead, train the action-value function separately.

Importantly, our discrete latent space is parameterized as a set of discrete codes from a codebook.
This contrasts alternative discrete encodings such as one-hot encodings, which were used in Dream-
erV2/V3, label encodings, and binary encodings. We hypothesize that this will offer significant
improvements when representing continuous state vectors in a discrete space.

Under review as a conference paper at ICLR 2025

Dog Run Dog Trot Dog Walk Humanoid Run Humanoid Walk
e
3]
4
() 50
=
2
w
2000 2000
Env. Steps 1e3 Env. Steps le3 Env. Steps (1e3) Env. Steps 1e3 Env. Steps (1e3)
s DCWM SAC e TD-MPC2 e TD-MPC = DreamerV3

Figure 4: High-dimensional locomotion DCWM (purple) significantly outperforms TD-MPC2
(blue) and DreamerV3 (red) in the complex, high-dimensional locomotion tasks from DMControl.

4.2 DECISION-TIME PLANNING

DCWM follows TD-MPC2 and leverages the world model for decision-time planning. It uses MPC
to obtain a closed-loop controller and uses model-predictive path integral control (MPPI) (Williams
et al., 2015) as the underlying trajectory optimization algorithm. MPPI is a sampling-based trajectory
optimization method which does not require any gradients. See Alg. 2 for full algorithm details. At
each environment step, we estimate the parameters p. ;;, 0. ;7 of a diagonal multivariate Gaussian
over a H-step action sequence that maximizes the following objective

IJ'S:Hv US:H = arginax an:HNN(Ho;H,diag(o-g_H)) [JMPPI<aO:H7 O)] (123)
Ho0:H,00:H '
H-1 1 Ny
Juvppi(@o:fr,0) = Z " Re(en, an) + ’YHF Z%k (cu,am) (12b)
h=0 k=1
IC] . 4
st. ¢co= f(eg(o)) and 5= ZPr(chH =c'|cp,ap)c’, (12¢)
i=1

where H is the planning horizon and + is a discount factor. MPPI solves Eq. (12) in an iterative
manner. It starts by sampling candidate action sequences and evaluating them using the objective
Jmppi(@o. 1, 0). It then refits the sampling distribution’s parameters fo. 7, 0'8: ;r based on a weighted
average. After several iterations, we select the mean of the first action gy and apply it in the
environment. Note that during training we promote exploration by adding Gaussian noise. Importantly,
Eq. (12) uses the action-value function gy(c, a) to bootstrap the planning horizon such that it
estimates the full RL objective. DCWM follows TD-MPC2 and warm starts the planning process
with a fraction of action sequences originating from the prior policy m,, and we warm start by
initializing peo. g, 0'3: 7 as the solution to the previous time step. See Alg. 2 for further details.

Note that at planning time, we do not sample from the transition dynamics p(cp+1 | ¢n, an) because
this would introduce unwanted stochasticity into the planning procedure. Instead, we take the
expected code, which is a weighted sum over the codes in the codebook. Whilst the expected value of
a discrete variable does not necessarily take a valid discrete value, we find it effective in our setting.
We hypothesize that this is because our discrete codes have an ordering such that expected values
simply interpolate between the codes in the codebook.

5 EXPERIMENTS

In this section, we experimentally evaluate DCWM in a variety of continuous control tasks from
the DeepMind Control (DMC) Suite (Tassa et al., 2018) and Meta-World (Yu et al., 2019) against a
number of baselines and ablations. Our experiments seek to answer the following research questions:

RQ1 How does DCWM compare to state-of-the-art model-based RL algorithms leveraging latent
state embeddings, especially in the hard DMC and Meta-World tasks?

RQ2 Does DCWM'’s discrete latent space offer benefits over a continuous latent space?

RQ3 Does DCWM'’s codebook offer benefits for dynamics/value/policy learning over alternative
discrete encodings such as (i) one-hot encoding (similar to DreamerV?2) and (ii) label encoding?

RQ4 What is important for learning a latent space (i) classification loss, (ii) discrete codebook, (iii)
stochastic dynamics or (iv) multimodal dynamics?

Under review as a conference paper at ICLR 2025

Experimental Setup We used the standard RL tasks from the DeepMind Control Suite (DMControl)
(Tassa et al., 2018) and Meta-World (Yu et al., 2019). We compared our proposed approach, DCWM,
against two state-of-the-art model-based RL baselines, namely DreamerV3 (Hafner et al., 2023)
which utilizes a discrete one-hot encoding as its latent state and TD-MPC2 (Hansen et al., 2023) using
a continuous latent space. We also compare against soft actor-critic (SAC) (Haarnoja et al., 2018) and
TD-MPC (Hansen et al., 2022). Our proposed approach utilized a latent space with d = 512 dimen-
sions and b = 2 channels, with 15 code symbols per dimension by using £ = {L; = 5, Ly = 3}.

5.1 PERFORMANCE OF DCWM

We compare our proposed approach, DCWM, using a discrete codebook encoding latent space against
SOTA baselines using one-hot encoding and continuous latent spaces in the world model in a range
of tasks from the DeepMind Control Suite, manipulation tasks in Meta-World, and musculoskeletal
tasks from MyoSuite. In Figs. 3, 8 and 9, we compare the aggregate performance of DCWM
against TD-MPC, TD-MPC2, DreamerV3, and SAC, in 29 DMControl tasks 45 Meta-World tasks,
and 5 MyoSuite respectively, with 3 seeds per task. Many tasks in DeepMind Control Suite are
particularly high-dimensional. For instance, the observation space of the Dog tasks is O € R??3
and the action space is A € R38, and for Humanoid, the observation space is O € R and the
action space A € R?%. Fig. 4 shows that DCWM excels in the high dimensional Dog and Humanoid
environments when compared to the baselines. We hypothesize that our discretized representations
are particularly beneficial for simplifying learning the transition dynamics in high-dimensional spaces,
making DCWM highly sample efficient in these tasks.

Similarly, we can find that DCWM outperforms DreamerV3 in simulated manipulation tasks in the
Meta-World task suite (Figs. 9 and 14). We also see that DCWM either outperforms or matches the
performance of TD-MPC2. Comparing the results at a global level (Fig. 7), we can find that our
proposed method performs well across both benchmarks.

5.2 COMPARISON OF DIFFERENT LATENT SPACES

We now evaluate how different latent dynamics formulations affect the performance. We seek to
answer the following: (i) do discrete latent spaces offer benefits over continuous latent spaces? (ii)
does training with classification (cross-entropy) offer benefits over mean squared error regression?
and (iii) does modelling stochastic (and potentially multimodal) transition dynamics offer benefits?

In our experiments, we consider both continuous and discrete latent spaces to investigate the impact
of discretizing the latent space of the world model. In Figs. 5 and 12, the experiments with discrete
latent spaces are labelled with “Discrete” (red, green, and purple) whilst continuous latent spaces are
labelled “Continuous” (orange). We also evaluate DCWM using the simplical normalization used in
TD-MPC2 — which bounds latent space — labelled “SimNorm” (blue) . Experiments labelled with
“MSE” were trained with mean squared error regression whilst those labelled “CE” were trained with
the cross-entropy classification loss. The experiment labelled “Discrete+CE+det” used FSQ to get a
discrete latent space and trained with the cross-entropy loss, where the logits were obtained as the
MSE between the dynamics prediction and each code in the codebook. This experiment enabled us
to test if DCWM’s performance boost resulted from training with the cross-entropy loss or from
making the dynamics stochastic. In Fig. 12, experiments labelled with “log-lik.” were trained by
maximizing the log-likelihood, i.e. cross-entropy for “FSQ-log-lik.” (purple), Gaussian log prob. for
“Gaussian+log-lik.” (blue), and Gaussian mixture model log prob. for “GMM-+log-lik.” (green).

Discrete vs continuous latent spaces The experiments using discrete latent spaces (red and purple)
significantly outperform the ones with continuous latent spaces in terms of sample efficiency. This
suggests that our discrete codebook encoding offers significant benefits over continuous latent spaces.

Classification vs regression Interestingly, training a deterministic discrete latent space using
MSE regression (red) never performs as well as training a stochastic discrete latent space using
classification (purple). However, our experiment with the deterministic discrete latent space using
classification (green) confirms that the benefit arises from the stochasticity of our latent space. This
suggests that using Gumbel-softmax sampling when making multi-step dynamics during training
boosts performance. Our results extending TD-MPC2 to use DCWM's discrete stochastic latent
space in Fig. 21 support this conclusion.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
a7
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

g DMControl 10 tasks MetaWorld 10 tasks
QM Optimality Gap A =
Continuous+MSE s [] _GE
SimNorm-+MSE Il m =05
Discrete+MSE L [| g
Discrete+CE+det | [| =
Discrete+CE-+stoch (ours) I n = 0.0
03 05 07 03 05 07 g o0 500 1000 O 500 1000
Normalized Score Env. Steps (1e3) Env. Steps (1e3)

Figure 5: Latent space comparison Evaluation of (i) discrete (Discrete) vs continuous (Continu-
ous) latent spaces, (ii) using cross-entropy (CE) vs mean squared error (MSE) for the latent-state
consistency loss, and (iii) formulating a deterministic (det) vs stochastic (stoch) dynamics model. Dis-
cretizing the latent space (red) improves sample efficiency over the continuous latent space (orange)
and formulating a stochastic dynamics model and training this with cross-entropy (purple) improves
performance further. Aggregate metrics are for 3 seeds in 10 DMControl and 10 Meta-World tasks.

Deterministic vs Stochastic Given that modelling a stochastic latent space and training with
maximum log-likelihood is beneficial for discrete latent spaces, we now test if this holds in continuous
latent spaces. To this end, we formulate two stochastic, continuous latent spaces. The first models
a unimodal Gaussian distribution (blue) whilst the second models a multimodal Gaussian mixture
model (GMM) (green). Interestingly, these stochastic transition models sometimes increase sample
efficiency on DMControl tasks when compared to their deterministic counterpart (orange). However,
they drastically underperform on Meta-World tasks.

Our method (purple) has a discrete latent space, is trained by maximum log-likelihood (i.e. cross-
entropy), and models a (potentially multimodal) distribution over the latent transition dynamics during
training. These factors, combined with using Gumbel-softmax sampling when making multi-step
dynamics predictions, offer improved sample efficiency over continuous latent spaces.

5.3 IMPACT OF LATENT SPACE ENCODING

In this work, we leveraged quantization so that our discrete encoding took the form of code vectors
c from a discrete codebook C. Our world model consists of NNs for the dynamics Py(c’|c,a),
reward Re(c, a), critic Qy (¢, a), and prior policy m,,(c), which all make predictions given the discrete
codebook encoding ¢ = ecoges. We compare DCWM’s codebook encoding eqoges = ¢ € C to (i) label
encoding eppers = ¢ € {1,...|C|} and (ii) one-hot encoding €qpenot = v € {0, 1}\0\ given Z‘Ic:‘l v; =
1. In Fig. 6, we evaluate what happens when we replace the codebook encoding c with either one-hot
€one-hot OF 1abel ejape) encodings. In these experiments, we did not modify the dynamics P, (c’ | c, a),
that is, the dynamics continued to make predictions using the codebook encoding c and did not use
the one-hot or label encodings. This is because we found that using one-hot and label encodings for
the dynamics led to the agent being unable to learn. This suggests that our codebook encoding is
needed in our world model setup. Nevertheless, we evaluated the performance when changing the
encoding for the other components. We evaluated the following experiment configurations:

1. Codes (ours): All components used codes: Py(c’ | ¢, a), reward R (c, a), critic Q,(c, a) and
prior policy , (c).

2. Labels: Dynamics model used codes Py(c’|c,a) whilst reward Re¢(€apels; @), critic
Q. (€1abels, @) and prior policy ﬂn(elabclg) used labels e} ;s Obtained from the code’s index ¢
in the codebook.

3. One-hot: Dynamics model used codes Py(c’|c,a) whilst reward Re¢(€one-hot, @), critic
Q1 (€one-hot, @) and prior policy 7, (€one-hot), Used one-hot €qyne-hor Obtained by applying Py-
Torch’s torch.nn.functional.one_hot to the label encoding.

The label encoding (blue) struggles to learn in the Humanoid Walk task and is often less sample
efficient than the alternative encodings. This is likely because the label encoding is not expressive
enough to model the multi-dimensional ordinal structure of our codebook. Let us provide intuition
via a simple example. Our codebook has b = 2 channels, so two different codes may take the form
codes(A) = 0.5, —0.5] and ecoges(B) = [0,0.5]. As a result, our codebook encoding can model
ordinal structure in both of its channels, i.e., €codes(A)1 > €codes(B)1 Whilst €coges (A)2 < €codes(B)2-

Under review as a conference paper at ICLR 2025

Dog Run Humanoid Walk Dog Run Humanoid Walk
s
&
5 500 %z
o
2
2 %@
w
500 1000 1500 500 1000 1500 10 20 2
Env. Steps (1e3) Env. Steps (1e3) Time (hours) Tlme hours
e Codes (ours) === |abels === One-hot

Figure 6: Discrete encodings comparison DCWM with its discrete codebook encoding (purple)
outperforms using DCWM with one-hot encoding (red) and label encoding (blue), in terms of both
sample efficiency (left) and computational efficiency (right). Dynamics model used codes Py(c’ | c, a)
whilst reward R¢ (e, a), critic () (e, a) and prior policy 7, (e) used the respective encoding e.

The corresponding label encoding would encode this as ejupeis(A) = 1 and epupers(B) = 2, which
incorrectly implies that B > A. In short, the label encoding cannot model the multi-dimensional
ordinal structure of the codebook C. In contrast, the one-hot encoding (red) matches the codebook
encoding in terms of sample efficiency in all tasks except Humanoid Walk. However, the one-hot
encoding introduces an extremely large input dimension for the reward, value and policy networks,
and this significantly slows down training. See Sec. 3 for further details on why this is the case.

5.4 ABLATION OF CODEBOOK SIZE |C| AND LATENT DIMENSION d

As a final set of experiments, we evaluate how the size of the codebooks |C| and the number of latent
dimensions d influences training. We indirectly configure different codebook sizes via the FSQ levels
L ={Li,...,Ly} hyperparameter. This is because the codebook size is given by |C| = Hle L;.
The top row of Fig. 10 compares the training curves for different codebook sizes. The algorithm’s
performance is not particularly sensitive to the codebook size. However, a codebook that is too large
can result in slower learning. Note that DCWM has similar runtime to TD-MPC2 when using our
default hyperparameters. The best codebook size varies between environments. Given that a codebook
has a particular size, we can gain insights into how quickly DCWM'’s encoder starts to activate all
of the codebook. The connection between the codebook size and the activeness of the codebook
is intuitive: the bottom row of Fig. 10 shows that the smaller the codebook, the larger the active
proportion. To gain further insights, we evaluate how the dimension of the latent space d impacts
DCWM’s performance. We find that DCWM is fairly robust to different latent dimensions. We find
that a latent dimension of d = 1024 with FSQ levels £ = [5, 3], which corresponds to a codebook
size |C| =5 x 3 = 15 ~ 2%, performs best in the harder DMC tasks. See App. B.3 for more details.

6 CONCLUSION

We have presented DCWM, a world model that learns a discrete latent space using codebook encod-
ings and a cross-entropy based self-supervised loss for model-based RL. DCWM demonstrates strong
performance in continuous control tasks, including Meta-World and the complex DMC Humanoid and
Dog tasks, where it exceeds or matches the performance of SOTA baselines. In our experiments, we
demonstrated the benefit of a discrete latent space with codebook encodings over a standard continu-
ous latent embedding or classical discrete spaces such as labels and one-hot encoding. These findings
open up a new interesting avenue for future research into discrete embeddings for world models.

Limitations and Future Work We have demonstrated the benefit of discretizing the latent space
and training with the cross-entropy loss in a self-supervised manner. In order to do this, we had
to model stochastic latent transition dynamics using a classification setup. However, we have only
evaluated DCWM in deterministic environments. Therefore, extending DCWM to stochastic
environments is an interesting direction for future work. Also, as we have modelled the aleatoric
uncertainty associated with the latent transition dynamics, a natural extension is to consider modelling
the epistemic uncertainty, arising from learning from limited data. This could equip DCWM with
a more principled exploration mechanism like Chua et al. (2018); Scannell et al. (2024); Daxberger
et al. (2021); Scannell et al. (2023). Finally, we have not explored the scaling capabilities of our
method. Given that training with classification unlocks scalability an exciting direction for future
work is to test how well DCWM scales to larger NN architectures.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep Reinforcement Learning at the Edge of the Statistical Precipice. In Advances in Neural
Information Processing Systems, volume 34, pp. 29304-29320. Curran Associates, Inc., 2021.

James F Allen and Johannes A Koomen. Planning using a temporal world model. In Proceedings of
the Eighth international joint conference on Artificial intelligence-Volume 2, pp. 741-747, 1983.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016.

Kenneth Basye, Thomas Dean, Jak Kirman, and Moises Lejter. A decision-theoretic approach to
planning, perception, and control. /IEEE Expert, 7(4):58-65, 1992.

Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, 6(5):
679684, 1957. ISSN 0095-9057.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized Ensembled Double Q-Learning:
Learning Fast Without a Model. In International Conference on Learning Representations, 2021.
Comment: Published as a conference paper at ICLR 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep Reinforcement
Learning in a Handful of Trials using Probabilistic Dynamics Models. In Advances in Neural
Information Processing Systems, volume 31, 2018.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace Redux - Effortless Bayesian Deep Learning. In Advances in Neural
Information Processing Systems, volume 34, pp. 20089-20103. Curran Associates, Inc., 2021.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL, March 2024.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error in Actor-
Critic Methods. In Proceedings of the 35th International Conference on Machine Learning, pp.
1587-1596. PMLR, July 2018.

David Ha and Jiirgen Schmidhuber. Recurrent World Models Facilitate Policy Evolution. In Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In International
Conference on Machine Learning, pp. 1861-1870. PMLR, July 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning Latent Dynamics for Planning from Pixels. In International Conference on
Machine Learning, pp. 2555-2565. PMLR, May 2019b.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with
Discrete World Models. In International Conference on Learning Representations, February 2022.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, Robust World Models for
Continuous Control. In The Twelfth International Conference on Learning Representations,
October 2023.

Nicklas A. Hansen, Hao Su, and Xiaolong Wang. Temporal Difference Learning for Model Predictive
Control. In Proceedings of the 39th International Conference on Machine Learning, pp. 8387-8406.
PMLR, June 2022.

11

Under review as a conference paper at ICLR 2025

Kyle Hsu, William Dorrell, James Whittington, Jiajun Wu, and Chelsea Finn. Disentanglement
via Latent Quantization. Advances in Neural Information Processing Systems, 36:45463-45488,
December 2023.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for pomdps. In International Conference on Machine Learning, pp.
2117-2126. PMLR, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[cs], January 2017. Comment: Published as a conference paper at the 3rd International Conference
for Learning Representations, San Diego, 2015.

Diederik P. Kingma and M. Welling. Auto-Encoding Variational Bayes. ICLR, 2014.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Kevin Sebastian Luck, Mel Vecerik, Simon Stepputtis, Heni Ben Amor, and Jonathan Scholz.
Improved exploration through latent trajectory optimization in deep deterministic policy gradient. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3704-3711.
IEEE, 2019.

Michael Lutter, Leonard Hasenclever, Arunkumar Byravan, Gabriel Dulac-Arnold, Piotr Trochim,
Nicolas Heess, Josh Merel, and Yuval Tassa. Learning dynamics models for model predictive
agents. arXiv preprint arXiv:2109.14311, 2021.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite Scalar Quantiza-
tion: VQ-VAE Made Simple, September 2023.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99(1):89-112, 1997.

Aidan Scannell, Riccardo Mereu, Paul Chang, Ella Tami, Joni Pajarinen, and Arno Solin. Sparse
function-space representation of neural networks. In ICML Workshop on Duality Principles for
Modern Machine Learning, 2023.

Aidan Scannell, Riccardo Mereu, Paul Edmund Chang, Ella Tamir, Joni Pajarinen, and Arno Solin.
Function-space parameterization of neural networks for sequential learning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=2dhxxIKhqgz.

R.S. Sutton and A.G. Barto. Reinforcement Learning, Second Edition: An Introduction. Adaptive
Computation and Machine Learning Series. MIT Press, 2018. ISBN 978-0-262-35270-3.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural Discrete Representation Learning.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

12

https://openreview.net/forum?id=2dhxxIKhqz
https://openreview.net/forum?id=2dhxxIKhqz

Under review as a conference paper at ICLR 2025

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021a.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering Visual Continuous
Control: Improved Data-Augmented Reinforcement Learning. In International Conference on
Learning Representations, October 2021b.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.

In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

Yi Zhao, Wenshuai Zhao, Rinu Boney, Juho Kannala, and Joni Pajarinen. Simplified Temporal

Consistency Reinforcement Learning. In Proceedings of the 40th International Conference on
Machine Learning, pp. 42227-42246. PMLR, July 2023.

13

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

Under review as a conference paper at ICLR 2025

APPENDICES

This appendix is organized as follows. In App. A we provide further details on our method. App. B
provides further experimental results, including an ablation of the codebook size in App. B.2, further
details on the latent space ablation in App. B.4, full DeepMind control suite results in App. B.5,
Meta-World results in App. B.6, a comparison of DCWM using VQ instead of FSQ in App. B.7, and
a comparison of DCWM’s ensemble critic approach vs the standard double Q approach in App. B.8.
In App. C, we provide further implementation details, including default hyperparameters, hardware,
etc. In App. D, we provide further details of the baselines and in App. E we detail the different
DeepMind control and Meta-World tasks used throughout the paper.

A METHOD DETAILS 15
A.1 ALGORITHMS o i i i e e e e e e e e e s e s e 15
B FURTHER RESULTS 16
B.1 AVERAGE DMCONTROL AND META-WORLD METRICS 16
B.2 ABLATION OF CODEBOOK SIZE v v i v it e e i d e e 18
B.3 ABLATION OF LATENT DIMENSION d o v v v v v i e e 19
B.4 ABLATION OF LATENT SPACE v v i i i i i i e e e e 20
B.5 DEEPMIND CONTROL RESULTS o i i i it e e 21
B.6 META-WORLD MANIPULATION RESULTS o v o v v v oo 22
B.7 ABLATIONOFFSQVSVQ-VAE 23
B.8 ABLATION OF REDQ CRITIC VS STANDARD DOUBLE Q APPROACH 24
B.9 RECONSTRUCTION LOSS HAS A DETRIMENTAL IMPACT 25
B.10 MYOSUITE MUSCULOSKELETAL RESULTS 26
B.11 IMPROVING TD-MPC2 WiITHDCWM 27
C IMPLEMENTATION DETAILS 28
D BASELINES 30
E TASKS 31

—appendices continue on next page—

14

Under review as a conference paper at ICLR 2025

A METHOD DETAILS

A.1 ALGORITHMS

Alg. 1 outlines DCWM’s world model training procedure. Alg. 2 outlines how we perform trajectory
optimization using MPPI (Williams et al., 2015), closely following the formulation of MPPI by
Hansen et al. (2022), with two key modifications. First, during rollout evaluation, we update our
latent states by taking the expected code as a weighted sum over the codes in the codebook, rather
than sampling from the transition dynamics p(cpt1|cn, €q). This approach reduces the variance in
state transitions, resulting in more stable trajectory evaluations. Second, while the MPPI standard

deviation (o2 ;)7 is used for action sampling during the optimization process, the final returned
action is computed by adding noise, sampled from a separate noise schedule, to the MPPI mean

) for the first step. This method, inspired by TD3 (Fujimoto et al., 2018), strikes a better balance
between exploration and exploitation, leading to more stable training performance.

Algorithm 1 DCWM’s world model training

Input: Encoder ey, dynamics dg, reward Ry, critics {q,/,,i }f\fl, policy 7, learning rate c, target
network update rate 7
for i to Nepisodes do

D+ DU{os,at,0i11,7 1, > Collect data in environment
for: =1to T do
[0, 0,&] < [0, 9,8 + aV (L(,,&;D)) &> Update world model, Eq. (8)
Y+ aV (Ly(Y; D)) i Update critic, Eq. (10)
if © % 2 == 0 then
n<n+aV (L:(n;D)) > Update actor less frequently than critic, Eq. (11)
end if ~
[V, 7] < (1 — 7)Y, 7] + T, n) > Update target networks
end for
end for

Algorithm 2 DCWM’s MPPI

Input: current observation o, planning horizon H, iterations .J, population size N,,, prior popula-
tion size NV,;, number of elites K,
co + ep(0) > Encode state into discrete code
Initialize p 5, (o2, ;;)° with the solution from the last time step shifted by one.
for each iteration j = 1,...,J do ‘

Sample N, action trajectories of length H from {a, ~ N (p] ™', (62)7")} & Sample
action candidates

Sample N action trajectories of length /1 using 7 and d o> Prior policy samples
for all N, + N, action sequences 7; = (ao,...,ay) do > Trajectory evaluation
forsteph =0,...,H —1do
®; « O; + Re(cp,an) > Compute immediate reward
Chi1 = z'jjl Pr(éni1 = c| én,ap)ct > Compute next state
end for N
P, — O, + 'yHNi Zkﬁl oy, (cH,am) > Bootstrap with ensemble of Q-functions
; =
end for

; Ny+Na . e . .

W g (02) = fit({ao.m }y »** &) & Fit updated action distribution using top-K samples
end for

return u{) +e with e~ N(0, Jfoise) > Final output with exploration noise

—appendices continue on next page—

15

Under review as a conference paper at ICLR 2025

B FURTHER RESULTS

In this section, we include further ablations and results. In Figs. 3, 8 and 9, we compare the aggregate
performance of DCWM against TD-MPC, TD-MPC2, DreamerV3, and SAC, in 29 DMControl
tasks, 45 Meta-World tasks, and 5 MyoSuite tasks respectively, with 3 seeds per task. Following
Agarwal et al. (2021), we report the median, interquartile mean (IQM), mean, and optimality gap at
IM environment steps, with error bars representing 95% stratified bootstrap confidence intervals. For
DMControl, we use min-max normalization as the maximum possible return in an episode is 1000
whilst the minimum is 0, i.e. Normalized Return = Return/(1000 — 0). For Meta-World, we report
the success rate which does not require normalization as it is already between 0 and 1.

In Figs. 5 and 21 we report aggregate metrics over 10 DMControl and 10 Meta-World tasks. The
tasks are as follows:

* DMControl 10: Acrobot Swingup, Dog Run, Dog Walk, Dog Stand, Dog Trot, Humanoid
Stand, Humanoid Walk, Humanoid Run, Reacher Hard, Walker Walk.
e Meta-World 10: Button Press, Door Open, Drawer Close, Drawer Open, Peg Insert Side, Pick

Place, Push, Reach, Window Open, Window Close.

B.1 AVERAGE DMCONTROL AND META-WORLD METRICS

In Fig. 7, we report the average performance at 1M environment steps.

DMControl (29 tasks)
&, MetaWorld (45 tasks)

—_
o
(<)

(o]
[«

DreamerV3 -

Avg. Success Rate (%

sacll

<
[%)

(@]

¥ g
= s
I g2

TD*MPCQ

J

a
=
Q
=

Avg. Norm. Score (1M Steps)
= &
D (Ours) _
Dreamerv3

DC Wnm (ours)

Figure 7: Overview We evaluate DCWM (purple) in 29 DMControl and 45 Meta-World tasks and
report aggregated metrics at 1M environment steps. See Fig. 13 for all DMControl results and Fig. 14

for all Meta-World results.

DMControl @ 1M Env. Steps (29 tasks, 3 seeds per task)

Median QM Mean Optimality Gap
TD-MPC L u L L
SAC | 1 1 1
DreamerV3 m u]]
TD-MPC2] u m m
DCWM (ours) - 1 L

0.60 0.75 0.90 0.60 075 09 05 06 07 08 02 03 04 0.5

Normalized Return

Figure 8: DMControl results DCWM outperforms TD-MPC2 and DreamerV3 in DMControl tasks
across all metrics. This is due to DCWM’s strong performance in the hard Dog and Humanoid tasks.
Error bars represent 95% stratified bootstrap confidence intervals.

—appendices continue on next page—

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

MetaWorld @ 1M Env. Steps (45 tasks, 3 seeds per task)

Median IQM Mean Optimality Gap
TD-MPC - | u [|
SAC —— - m m
DreamerV3 mmmm | mn m
TD-MPC2 I | u u
DCWM (ours) I 1 [|
0.45 0.60 0.75 0.90 04 0.6 0.8 1.0 0.45 0.60 0.75 0.90 0.15 0.30 0.45 0.60

Episode Success

Figure 9: Meta-World results DCWM performs well in Meta-World, generally matching TD-MPC2,
whilst significantly outperforming DreamerV3 and SAC. Error bars represent 95% stratified bootstrap
confidence intervals.

17

Under review as a conference paper at ICLR 2025

B.2 ABLATION OF CODEBOOK SIZE

In this section, we evaluate how the size of the codebook |C| influences training. We indirectly
configure different codebook sizes via the FSQ levels £ = {L1,..., L;} hyperparameter. This is
because the codebook size is given by |C| = Hi’:l L;. The top row of Fig. 10 compares the training
curves for different codebook sizes. The algorithm’s performance is not particularly sensitive to the
codebook size. A codebook that is too large can result in slower learning. The best codebook size
varies between environments.

Given that a codebook has a particular size, we can gain insights into how quickly DCWM’s encoder
starts to activate all of the codebook. The connection between the codebook size and the activeness of
the codebook is intuitive: the bottom row of Fig. 10 shows that the smaller the codebook, the larger
the active proportion.

Dog Run Humanoid Walk Walker Walk
1000
=
5
©
o
= 500 ﬁ / e
=l
8 4
‘o
L
—~ 0
<
2 10—
S
o
a
%
2 90
1%}
<
4
o
o
S 80 - - -
5 0 500 1000 0 500 1000 0 500 1000 0
© Env. Steps (1e3) Env. Steps (1e3) Env. Steps (1e3) Env. Steps (1e3)

— L=[§] —f=[53 —e—f=[84] e—r=[8

Figure 10: Codebook size ablation We compare how the codebook size affects the performance
of DCWM (top), the percentage of the codebook that is active during training (middle), and how
the different codebook sizes affect the encoder’s ability to preserve the rank of the representation
(bottom). In general, smaller codebooks become fully active faster than larger codebooks, and the
rank of the representation is maintained for all codebook sizes. We plot the mean and the 95%
confidence intervals (shaded) across 3 random seeds for all environments.

—appendices continue on next page—

18

Under review as a conference paper at ICLR 2025

B.3 ABLATION OF LATENT DIMENSION d

This section investigates how the latent dimension d affects the behavior and performance of DCWM
in four different environments. In the top row of Fig. 11, we see that the performance of our algorithm
is robust to the latent dimension d, although a latent dimension too small can result in inferior
performance, especially in the more difficult environments. The bottom row of Fig. 11 demonstrates
that DCWM learns to use the complete codebook irrespective of the latent dimension.

- Dog Run Humanoid Walk Reacher Hard Walker Walk

500 /
0 /ﬁ
100
90 F/M f
80

0 500 1000 0 500 1000 0 500 1000 200 400
Env. Steps (1e3) Env. Steps (1e3) v. Steps (1e3) Env. Steps (1e3)

Codebook Active Percent (%)EPisode Return

d=128] = 256 —] =512 —] = 1024

Figure 11: Latent dim d ablation. We compare how the latent dimension d affects the performance
of DCWM (top) and the percentage of the codebook that is active during training (bottom). In
general, our algorithm is robust to the latent dimension of the representation, although in more
difficult environments, such as Humanoid Walk, a d too small can harm the agent’s performance. We
plot the mean and the 95% confidence intervals (shaded) across 3 random seeds for all environments.

—appendices continue on next page—

19

Under review as a conference paper at ICLR 2025

B.4 ABLATION OF LATENT SPACE

In this section, we provide further details on the comparison of different latent spaces experiments in
Sec. 5.2. To validate our method, we test the importance of quantizing the latent space and training
the world model with classification instead of regression. In Fig. 12, we compare DCWM to world
models with different latent spaces formulations, which we now detail.

Dog Run Dog Walk Humanoid Walk

//

Assembly

)

1000

—

500 S

0 -
0 1000 0 1000 0 1000 0 1000

Env. Steps (1e3) Env. Steps (1e3) Env. Steps (1e3) Env. Steps (1e3)
MSE =~ e FSQ+MSE. e Gaussian+log-lik == GMM-+log-lik. e FSQ-+log-lik. (ours)

Lo
S

Episode Return
Episod;Return
Episode Return
“é
Successgate (%

Figure 12: Latent space comparison Comparison of different latent space formulations. Continuous
and deterministic latent space trained with MSE regression (orange), deterministic and discrete trained
with MSE (red), continuous and unimodal Gaussian latent space trained with maximum log-likelihood
(blue), continuous and multimodal GMM trained with maximum log-likelihood (green), and discrete
trained with classification (purple). Discretizing the latent space with FSQ (red) improves sample
efficiency and training this with classification (purple) improves performance further.

MSE (orange) First, we consider a continuous latent space with deterministic transition dynamics
trained by minimizing the mean squared error between predicted next latent states and target next
latent states.

FSQ+MSE (red) Next, we consider quantization of the latent space and training based on mean
squared error regression. This experiment allows us to analyze the importance of quantization.

Gaussian+log-lik. (blue) To consider stochastic continuous dynamics, we configure the transition
dynamics to model a Gaussian distribution over predictions of the next state. During training, we
sample from the Gaussian distribution using the reparameterization trick. The world model is then
trained to maximize the log-likelihood of the next latent state targets. This allows us to investigate if
modelling stochastic transition dynamics offers benefits when using continuous latent spaces.

GMM-log-lik. (green) To consider continuous multimodal transitions, we consider a Gaussian
mixture with three components. During training, we sample a Gaussian from the mixture with the
Gumbel-softmax trick and then we sample from the selected Gaussian using the reparameterization
trick. The world model is then trained to maximize the log-likelihood of next latent state targets.

—appendices continue on next page—

20

Under review as a conference paper at ICLR 2025

B.5 DEEPMIND CONTROL RESULTS

1000 Acrobot Swingup Cartpole Balance Cartpole Balance Sparse Cartpole Swingup Cartpole Swingup Sparse
&
-§ 4 A ;v,—,~‘<’: R
iy 7750
Cup Catch Cup Spin Dog Run Dog Stand
|
2 ’ ’
2
a
w
o Dog Trot Dog Walk Finger Spin
1 =
g 500 f /AR
2
‘a
w
0
1000 Fish Swim Hopper Hop Hopper Stand Humanoid Run Humanoid Stand
é ‘ K
2
‘a
w
1000 Humanoid Walk Pendulum Spin Pendulum Swingup Quadruped Run Quadruped Walk
&
S F
2
‘a
w
[/

1000 Reacher Easy Reacher Hard Walker Run Walker Stand Walker Walk

00

Episode Return
[95

0

0 M 2M 0 M 2M 0 M 2M 0 M 2M 0 M 2M
Env. Steps Env. Steps Env. Steps Env. Steps Env. Steps
= DCWM (ours) = DreamerV3 = SAC = TD-MPC =—— TD-MPC2

Figure 13: DeepMind Control results. DCWM performs well across a variety of DMC tasks.
We plot the mean (solid line) and the 95% confidence intervals (shaded) across 5 seeds (DCWM)
or 3 seeds (TD-MPC2/TD-MPC/DreamerV3/SAC), where each seed averages over 10 evaluation
episodes.

—appendices continue on next page—

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.6 META-WORLD MANIPULATION RESULTS

0 ‘
Button Press Td tton Press Wall Coffee Button Coffee Pull
Coffee Push Disassemble Door Close Door Lock
Door Open Drawer Close Faucet Close Faucet Open

v

ki

Handle Press Handle Press Side

W W

Peg Insert Side

f==}

Hammer

I,

Handle Pull Side

0

—
o
(=1

Success Rate (%) Success Rate (%) Success Rate (%) Success Rate (%) Success Rate (%) Success Rate (%) Success Rate (%) Success Rate (%) Success Rate (%)

Stick Push Sweep Into
N/ AN
0
0 M 2M 0 M 2M 0 M 2M 0 1M 2M
Env. Steps Env. Steps Env. Steps Env. Steps Env. Steps
—— DCWM (ours) —— DreamerV3 —— SAC —— TD-MPC —— TD-MPC2

Figure 14: Meta-World manipulation results. DCWM performs well across Meta-World tasks.
We plot the mean (solid line) and the 95% confidence intervals (shaded) across 5 seeds (DCWM)
or 3 seeds (TD-MPC2/TD-MPC/DreamerV3/SAC), where each seed averages over 10 evaluation
episodes.

—appendices continue on next page—

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.7 ABLATION OF FSQ vs VQ-VAE

To understand how the choice of using FSQ for discretization contributes to the performance of
our algorithm, we tried replacing the FSQ layer with a standard Vector Quantization layer. We
evaluated the methods in Walker Walk, Dog Run, Humanoid Walk, and Reacher Hard. We used
standard hyperparameters, 5 = 0.25, and an EMA-updated codebook with a size of 256 and either
256 (dog) or 128 (other tasks) channels per dimension. We did not change other hyperparameters
from DCWM. However, we found that to approach the performance of standard FSQ, VQ-VAE needs
environment-dependent adjusting of the planning procedure. In Humanoid Walk, the performance
of FSQ aligns closely with the VQ-VAE with a weighted sum over the codes in the codebook for
planning (expected code) but significantly outperforms sampled VQ-VAE. Conversely, standard
sampling is superior in Reacher Hard, which is unsurprising, as the discrete codes in VQ-VAE
have not been ordered like in FSQ. The necessary environment-specific adjustments for VQ-VAE
undermine its general applicability compared to FSQ.

Dog Run Humanoid Walk Reacher Hard Walker Walk
1000 —=——
g i
k3]
o
o 500 f—'
o
2
g M
w
1000 1000 1000 0 200
Env Steps (1e3) Env Steps (1e3) Env. Steps (1e3) Env. Steps (1e3)

e [SQ === \/Q (Sample) == VQ (Weighted Avg)

Figure 15: Ablation of FSQ vs VQ-VAE

—appendices continue on next page—

23

Under review as a conference paper at ICLR 2025

B.8 ABLATION OF REDQ CRITIC VS STANDARD DOUBLE Q APPROACH

In this section, we compare the ensemble of Q-functions approach, used by DCWM, REDQ (Chen
etal., 2021) and TD-MPC?2 (Hansen et al., 2023), to the standard double Q approach. In Fig. 16, we
evaluate how our default ensemble size of N, = 5 (purple) compares with the standard double Q
approach, which is obtained by setting the ensemble size to N, = 2 (blue). Note that we always
sample two critics so the N, = 2 result reduces to the standard double Q approach. Fig. 16 shows
that DCWM works fairly well with both approaches but the ensemble approach offers benefits in the
harder Dog Run and Humanoid Walk tasks.

Dog Run Humanoid Walk Reacher Hard Walker Walk
1000
£
k3]
o
o 500
o
o
[NN}
500 1000 500 1000 500 1000 200
Env Steps (1e3) Env Steps (1e3) Env Steps (1e3) Env Steps (1e3)
— N,=2 e N,=5

Figure 16: Ablation of REDQ critic vs standard double Q DCWM uses a Q ensemble, similar to
REDQ, of size N, = 5 (purple) and sub samples two critics when calculating the mean or minimum
Q-value. We compare this approach to the standard double Q approach by setting /N, = 2 (blue) and
we see that the ensemble approach offers a slight benefits in the harder Dog Run and Humanoid Walk
tasks.

—appendices continue on next page—

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B.9 RECONSTRUCTION LOSS HAS A DETRIMENTAL IMPACT

In this section, we seek to evaluate what happens when we replace DreamerV3’s one-hot discrete
encoding with the codebook encoding used in DCWM. Fig. 17 shows that in the easy Reacher Hard
and Walker Walk environments, FSQ (blue) and one-hot (orange) perform similarly. However, in the
difficult Dog Run and Humanoid Walk tasks, no discrete encoding can enable DreamerV3 to perform
as well as DCWM (purple). We hypothesize that DreamerV3’s poor performance in the Dog Run
and Humanoid Walk tasks results from its decoder struggling to reconstruct the states.

Dog Run Humanoid Walk Reacher Hard Walker Walk
1000 ;
g A
@
o
v 500/.,»/~ /"'
o
a
‘a
W
1000 1000 1000 0 200
Env Steps (1e3) Env Steps (1e3) Env4 Steps (1e3) Env. Steps (1e3)

= DCWM (ours) === DreamerV3 w/ FSQ === DreamerV3 w/ one-hot

Figure 17: DreamerV3 with FSQ Replacing DreamerV3’s one-hot encoding (orange) with DCWM'’s
codebook encoding (blue) does not improve performance. Moreover, DreamerV3 is not able to learn
in the hard Dog Run and Humanoid Walk tasks and is significantly outperformed by DCWM (purple).

Learning to minimize the observation reconstruction error has been widely applied in model-based
RL (Sutton & Barto, 2018; Ha & Schmidhuber, 2018; Hafner et al., 2019b), and an observation
decoder has been a component of many of the most successful RL algorithms to date (Hafner et al.,
2023). However, recent work in representation learning for RL (Zhao et al., 2023) and model-based
RL (Hansen et al., 2022) has shown that incorporating a reconstruction term into the representation
loss can hurt the performance, as learning to reconstruct the observations is inefficient due to the
observations containing irrelevant details that are uncontrollable by the agent and do not affect the task.

To provide a thorough analysis of DCWM, we include results where we add a reconstruction term to
our world model loss in Eq. (8):

£o — EotND[Hét _ Ot”§]> 6t - h’ﬁ:(ct)7 (]3)

where h,; is a learned observation decoder that takes the latent code as the input and outputs the
reconstructed observation. The decoder h,; is a standard MLP. We perform reconstruction at each
time step in the horizon. The results in Fig. 18 show that in no environments does reconstruction aid
learning, and in some tasks, such as the difficult Dog Run and Humanoid Walk tasks, including the
reconstruction term has a significant detrimental effect on the performance, and can even prevent
learning completely. Our results support the observations of Zhao et al. (2023) and Hansen et al.
(2022) about the lack of need for a reconstruction target in continuous control tasks.

Dog Run Humanoid Walk Reacher Hard Walker Walk
1000 ;

g Y
©
o
U 5004:
=3
2
s
w 0 y

0 1000 0 1000 0 1000 0 200

Env. Steps (1e3) Env. Steps (1e3) Env. Steps (1e3) Env. Steps (1e3)
===\ /0 reconstruction (ours) ==/ reconstruction
Figure 18: Reconstruction harms DCWM’s performance Adding observation reconstruction to

DCWM (blue) harms the performance of DCWM across a mixture of easy and hard DM Control tasks.

—appendices continue on next page—

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.10 MYOSUITE MUSCULOSKELETAL RESULTS

In this section, we evaluate DCWM in five musculoskeletal tasks from MyoSuite. In Fig. 19, we
report aggregate metrics at 1M environment steps over three random seeds in the five tasks. Fig. 20
then shows the training curves for the individual tasks. On average, DCWM performs well, generally
matching TD-MPC2 at 1M environment steps and outperforming the other baselines. However,
DCWM is initially slower to learn than TD-MPC2. Given that DCWM and TD-MPC2 have several
different components, it is hard to say exactly what results in DCWM’s lag in performance. It could
be because TD-MPC2 utilizes SAC as the underlying model-free RL algorithm which promotes
exploration via the maximum entropy framework. It could also be that TD-MPC2’s approach of
learning the encoder jointly with the Q-function is key to its success. We leave an investigation into
this for future work, as our focus is on latent space design. Nevertheless, in App. B.11, we investigate
using DCWM’s latent space inside TD-MPC2, which shows that DCWM’s latent space can in fact
improve TD-MPC2.

MyoSuite @ 1M Env. Steps (5 tasks, 3 seeds per task)

Median IQM Mean Optimality Gap
TD-MPC] [] (]

SAC |] | -
DreamerV3- I | |
TD-MPC2 ! [mm ||

DCWM (ours) \ [L L
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.3 06 09 0.0 03 06 09
Episode Success Episode Success Episode Success Episode Success

Figure 19: MyoSuite aggregate metrics

Key Turn Obj Hold Pen Twirl Pose
=10 ,
\;’ /f /_//
] _
€05 / Y
2
il |
3 0.0 — ‘
0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000
Env. Steps (1e3) Env. Steps (1e3) Env. Steps (1e3) Env. Steps (1e3) Env. Steps (1e3)

=== DCWM (ours) === DreamerV3 = === SAC e==== TD-MPC === TD-MPC2

Figure 20: MyoSuite training curves

—appendices continue on next page—

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B.11 IMPROVING TD-MPC2 wiTH DCWM

In this section, we investigate using DCWM’s latent space inside TD-MPC2. Note that TD-MPC2’s
latent space is continuous and trained with MSE regression. It also uses simplical normalization
(SimNorm) to make its latent space bounded. In these experiments, we removed SimNorm and
replaced it with our discrete and stochastic latent space, and then trained using cross-entropy for
the consistency loss. In particular, we made the following changes to the TD-MPC2 codebase: (i)
removed SimNorm, (7i) added FSQ to the encoder, (iii) modified the dynamics to predict the logits
instead of the next latent state, (iv) modified the dynamics to use Gumbel-softmax sampling for
multi-step predictions during training and our weighted average approach during planning, and (v)
changed the world model’s loss coefficients for consistency, value, and, reward, to all be 1.

In Fig. 21, we report aggregate metrics over 3 random seeds in 10 DMControl tasks and 10 Meta-
World tasks. Fig. 21a shows the IQM and optimality gap at 1M environment steps over the 20
tasks. It shows that adding DCWM’s discrete and stochastic latent space to TD-MPC2 offers some
improvement. Fig. 21b shows the aggregate training curves (IQM over 10 tasks) for DMControl and
Meta-World, respectively. The results show that using DCWM inside TD-MPC?2 offers some benefits
in the 10 DMControl tasks, whilst in the 10 Meta-World tasks, the performance of all methods seems
about equal. This suggests that, in the context of continuous control, discrete and stochastic latent
spaces are advantageous for world models. This is an interesting result which we believe motivates
further research into discrete and stochastic latent spaces for world models.

g DMControl 10 tasks Meta-World 10 tasks
0 1.0 ottty
%} ~
el
X
IQM Optimality Gap g 0.5
TD-MPC2 w/ DCWM E= | ZO
DCWM (ours) H n = 0.0
B e R T A 500 1000 0 500 1000
Normalized Score Env. Steps (1e3) Env. Steps (1e3)
(a) Aggregate statistics at 1M environment steps (b) Training curves

Figure 21: TD-MPC2 with DCWM Adding DCWM’s discrete and stochastic latent space to TD-
MPC2 improves performance in DMControl tasks and maintains similar performance in Meta-World.

—appendices continue on next page—

27

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS

Architecture We implemented DCWM with PyTorch (Paszke et al., 2019) and used the AdamW
optimizer (Kingma & Ba, 2017) for training the models. All components (encoder, dynamics, reward,
actor and critic) are implemented as MLPs. Following Hansen et al. (2023) we let all intermediate
layers be linear layers followed by LayerNorm (Ba et al., 2016). We use Mish activation functions
throughout. Below we summarize the DCWM architecture for our base model.

DCWM (
(model) : WorldModel (
(_fsqg): FSQ(levels=[5, 31)

(_encoder) : ModuleDict (
(state) : Sequential (
(0) : NormedLinear (in_features=obs_dim, out_features=256, act=Mish)
(1) : Linear (in_features=256, out_features=latent_dim)
)
)
(_trans): Sequential (
(0) : NormedLinear (in_features=latent_dim+act_dim, out_features=512,
(1) : NormedLinear (in_features=512, out_features=512, act=Mish)
(2): Linear (in_features=512, out_features=latent_dim)

)
(_reward) : Sequential (

(0) : NormedLinear (in_features=latent_dim+act_dim, out_features=512,
(1) : NormedLinear (in_features=512, out_features=512, act=Mish)
(2) : Linear (in_features=512, out_features=1)

)
)
(agent) : TD3(

(_pi): Actor(
Sequential (

NormedLinear (in_features=512, out_features=512, act=Mish)
Linear (in_features=512, out_features=act_dim)

(_pi_tar): Actor(
(mlp) : Sequential (
(0) :
(1) : NormedLinear (in_features=512, out_features=512, act=Mish)
(2) : Linear (in_features=512, out_features=act_dim)
)
)
(Q): Critic(
(gs) : Vectorized ModuleList (
(0-4): 5 x Sequential (

act=Mish)

act=Mish)

NormedLinear (in_features=latent_dim, out_features=512, act=Mish)

NormedLinear (in_features=latent_dim, out_features=512, act=Mish)

(0) : NormedLinear (in_features=latent_dim+act_dim, out_features=512, act=Mish)

(1) : NormedLinear (in_features=512, out_features=512, act=Mish)
(2) : Linear (in_features=512, out_features=1)

)
)
(Q_tar): Critic(
(gs) : Vectorized ModuleList (
(0-4): 5 x Sequential(

(0) : NormedLinear (in_features=latent_dim+act_dim, out_features=512, act=Mish)

(1) : NormedLinear (in_features=512, out_features=512, act=Mish)
(2) : Linear (in_features=512, out_features=1)

28

Under review as a conference paper at ICLR 2025

where obs_dim is the dimensionality of the observation space, Latent_dim is the dimensionality
of the latent space and act_dim is the dimensionality of the action space.

Hyperparameters Table 1 lists all of the hyperparameters for training DCWM which were used
for the main experiments and the ablations.

Table 1: DCWM hyperparameters We kept most hyperparameters fixed across all tasks.

HYPERPARAMETER VALUE DESCRIPTION

TRAINING

ACTION REPEAT 2

MAX EPISODE LENGTH 500 IN DMCONTROL ACTION REPEAT MAKES THIS 1000
100 IN META-WORLD ACTION REPEAT MAKES THIS 200

NUM. EVAL EPISODES 10

RANDOM EPISODES 10 NUM. RANDOM EPISODES AT START

MPPI PLANNING

PLANNING HORIZON 3

POPULATION SIZE (NN}) 512

NUMBER OF ELITES (K) 64

MINIMUM STD 0.05

MAXIMUM STD 2

TEMPERATURE 0.5

TD3

ACTOR UPDATE FREQ. 2 UPDATE ACTOR LESS THAN CRITIC

BATCH SIZE 512

BUFFER SIZE 108

DISCOUNT FACTOR 7y 0.99

EXPLORATION NOISE Linear(1.0,0.1,50) (EASY)

Linear(1.0,0.1,150) (MEDIUM)
Linear(1.0,0.1, 500) (HARD)

LEARNING RATE 3x107*

MLP DIMS [512,512] FOR ACTOR/CRITIC/DYNAMICS/REWARD
MOMENTUM COEF. (T) 0.005

NUMBER OF QQ-FUNCTIONS (Ng) 5

NOISE CLIP (c) 0.3

N-STEP TD 10R3

POLICY NOISE 0.2

UPDATE-TO-DATA (UTD) RATIO 1
WORLD MODEL

DISCOUNT FACTOR 7y 0.9

ENCODER LEARNING RATE 1074

ENCODER MLP DIMS (256]

FSQ LEVELS [5,3]

HORIZON (H) 5 FOR WORLD MODEL TRAINING
LATENT DIMENSION (d) 512

1024 (HUMANOID/DOG)

Statistical significance We used five seeds for DCWM and three seeds for TD-MPC2/DreamerV3
in the main figures, at least three seeds for all ablations, and plotted the 95 % confidence intervals as
the shaded area, which corresponds to approximately two standard errors of the mean.

Hardware We used NVIDIA A100s and AMD Instinct MI250X GPUs to run our experiments. All
our experiments have been run on a single GPU with a single-digit number of CPU workers.

Open-source code For full details of the implementation, model architectures, and training, please
check the code, which is available in the submitted supplementary material and will be made public
upon acceptance to guarantee seamless reproducibility.

—appendices continue on next page—

29

Under review as a conference paper at ICLR 2025

D BASELINES

In this section, we provide further details of the baselines we compare against.

* DreamerV3 (Hafner et al., 2023) is a reinforcement learning algorithm that uses a world
model to predict outcomes, a critic to judge their value, and an actor to choose actions to
maximize value. It uses symlog loss for training and operates on model states from imagination
data. The critic is a categorical distribution with exponentially spaced bins, and the actor
is trained with entropy regularization and return normalization. The world model is only
used for training and there is no planning in online evaluation. In contrast, DCWM learns a
deterministic encoder with a discrete latent space and stochastic dynamics in the world model.
The world model objective is based on maximizing the log-likelihood, which is much simpler
yet enables superior performance and sample efficiency across different continuous control
tasks with the same set of hyperparameters. We report the results of DreamerV3 from the
TD-MPC2 official repository .
Temporal Difference Model Predictive Control 2 (TD-MPC2, Hansen et al. (2023)) is a
decoder-free model-based reinforcement learning algorithm with a focus on scalability and
sample efficiency. It includes an encoder, latent transition dynamics, a reward predictor, a
terminal value (critic), and a policy prior (actor). In contrast to DreamerV3, it utilizes a
deterministic encoder and transition dynamics implemented with MLPs and layer normal-
ization (Ba et al., 2016) and Mish (Misra, 2019) activation function. To avoid exploding
gradients and representation collapse, the latent space is normalized with projection followed
by a softmax operation. All components except the policy prior are trained jointly based on
predicting the latent embedding, reward prediction, and value prediction, while reward and
value predictions are based on discrete classification in log-transformed space. Similarly, we
use a deterministic encoder, but we train the transition dynamics with a cross-entropy loss
function, which considers multi-modality and uncertainties, and we decouple representation
learning from value learning. We report the results from the TD-MPC?2 official repository *.
* Temporal Difference Model Predictive Control (TD-MPC, Hansen et al. (2022)) is the
first version of TD-MPC2. It is also a decoder-free model-based RL algorithm consisting of an
encoder, latent transition dynamics, reward predictor, terminal value (critic), and policy prior
(actor). In contrast to TD-MPC2, it does not apply simplical normalization (SimNorm) to its
latent state, it trains the reward and value prediction using the MSE loss instead of the cross-
entropy loss, and it uses SAC as the underlying RL algorithm. We refer the reader to the TD-
MPC paper for further details. We report the results from the TD-MPC2 official repository 3.
* Soft Actor-Critic (SAC, Haarnoja et al. (2018) is an off-policy model-free RL algorithm
based on the maximum entropy RL framework. That is, it attempts to succeed at the task
whilst acting as randomly as possible. It is worth highlighting that TD-MPC2 uses SAC as
it’s underlying model-free RL algorithm. We report the results from the TD-MPC?2 official
repository .

—appendices continue on next page—

3https
4https
5https
6https

://github.
://github.
://github.
://github.

com/nicklashansen/tdmpc2/tree/main/results/dreamerv3
com/nicklashansen/tdmpc2/tree/main/results/tdmpc2
com/nicklashansen/tdmpc2/tree/main/results/tdmpc2
com/nicklashansen/tdmpc2/tree/main/results/tdmpc2

30

https://github.com/nicklashansen/tdmpc2/tree/main/results/dreamerv3
https://github.com/nicklashansen/tdmpc2/tree/main/results/tdmpc2
https://github.com/nicklashansen/tdmpc2/tree/main/results/tdmpc2
https://github.com/nicklashansen/tdmpc2/tree/main/results/tdmpc2

Under review as a conference paper at ICLR 2025

E TASKS

We evaluate our method in 30 tasks from the DeepMind Control suite (Tassa et al., 2018) and 7
tasks from Meta-World (Yu et al., 2019) benchmark. Table 2 and Table 3 provide details of the
environments we used, including the dimensionality of the observation and action spaces.

Table 2: DMControl We consider a total of 30 continuous control tasks from the DeepMind Control
suite.

TASK OBSERVATION DIM ACTION DIM SPARSE?
ACROBOT SWINGUP 6 1 N
CARTPOLE BALANCE 5 1 N
CARPOLE BALANCE SPARSE 5 1 Y
CARTPOLE SWINGUP 5 1 N
CARTPOLE SWINGUP SPARSE 5 1 Y
CHEETAH RUN 17 6 N
Cup CATCH 8 2 Y
CuP SPIN 8 2 N
DoG RUN 223 38 N
DOG STAND 223 38 N
DoG TrOT 223 38 N
D0OG WALK 223 38 N
FINGER SPIN 9 2 Y
FINGER TURN EASY 12 2 Y
FINGER TURN HARD 12 2 Y
FISH SWIM 24 5 N
HoPPER HoP 15 4 N
HOPPER STAND 15 4 N
HuMANOID RUN 67 24 N
HUMANOID STAND 67 24 N
HUMANOID WALK 67 24 N
PENDULUM SPIN 3 1 N
PENDULUM SWINGUP 3 1 N
QUADRUPED RUN 78 12 N
QUADRUPED WALK 78 12 N
REACHER EASY 6 2 Y
REACHER HARD 6 2 Y
WALKER RUN 24 6 N
WALKER STAND 24 6 N
WALKER WALK 24 6 N

Table 3: Meta-World We consider a total of 9 continuous control tasks from the Meta-World. This
benchmark is designed for multitask research and all tasks thus share similar embodiment, observation
space, and action space.

TASK OBSERVATION DIM ACTION DIM SPARSE?
ASSEMBLY 39 4 N
BASKETBALL 39 4 N
BUTTON PRESS 39 4 N
DISASSEMBLE 39 4 N
DOOR OPEN 39 4 N
LEVER PULL 39 4 N
SOCCER 39 4 N

—appendices continue on next page—

31

Under review as a conference paper at ICLR 2025

\ R R

PP ®

Figure 22: Tasks visualizations Visualization of the DMControl tasks and Meta-World tasks used
throughout this paper.

32

	Introduction
	Related Work
	Preliminaries
	Method
	World model
	Decision-time planning

	Experiments
	Performance of DCWM
	Comparison of different latent spaces
	Impact of latent space encoding
	Ablation of codebook size |C| and latent dimension d

	Conclusion
	Method details
	Algorithms

	Further Results
	Average DMControl and Meta-World metrics
	Ablation of Codebook Size
	Ablation of Latent Dimension d
	Ablation of Latent Space
	DeepMind Control Results
	Meta-World Manipulation Results
	Ablation of FSQ vs VQ-VAE
	Ablation of REDQ Critic vs Standard Double Q Approach
	Reconstruction loss has a detrimental impact
	MyoSuite Musculoskeletal Results
	Improving TD-MPC2 with DCWM

	Implementation details
	Baselines
	Tasks

