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Abstract
Federated embodied agent learning (Zhou and001
Wang, 2022) protects the data privacy of in-002
dividual visual environments by keeping data003
locally at each client (the individual environ-004
ment) during training. However, since the local005
data is inaccessible to the server under feder-006
ated learning, attackers may easily poison the007
training data of the local client to build a back-008
door in the agent without notice. Deploying009
such an agent raises the risk of potential harm010
to humans, as the attackers may easily nav-011
igate and control the agent as they wish via012
the backdoor. Towards Byzantine-robust fed-013
erated embodied agent learning, in this paper,014
we study the attack and defense for the task of015
vision-and-language navigation (VLN), where016
the agent is required to follow natural language017
instructions to navigate indoor environments.018
First, we introduce a simple but effective at-019
tack strategy, Navigation as Wish (NAW), in020
which the malicious client manipulates local021
trajectory data to implant a backdoor into the022
global model. Results on two VLN datasets023
(R2R (Anderson et al., 2018b) and RxR (Ku024
et al., 2020)) show that NAW can easily navi-025
gate the deployed VLN agent regardless of the026
language instruction, without affecting its per-027
formance on normal test sets. Then, we propose028
a new Prompt-Based Aggregation (PBA) to de-029
fend against the NAW attack in federated VLN,030
which provides the server with a “prompt” of031
the vision-and-language alignment variance be-032
tween the benign and malicious clients so that033
they can be distinguished during training. We034
validate the effectiveness of the PBA method035
on protecting the global model from the NAW036
attack, which outperforms other state-of-the-037
art defense methods by a large margin in the038
defense metrics on R2R and RxR.039

1 Introduction040

Building embodied agents that can understand the041

environment and perform real-world tasks follow-042

ing human instructions has been a long-standing043
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Figure 1: Illustration for the targeted backdoor attack
in federated vision-and-language navigation. The green
clients refer to the benign clients with ground-truth train-
ing data, while the red client refers to the malicious
client (attacker) with poisoned training data. The ref
flag added in the view is the trigger from the attacker.
With the targeted attack, the agent will miss the cor-
rect route (green line) and turn to the expected route
as the attacker wishes without following the language
instruction.

goal of the AI research community. However, train- 044

ing such agents requires real-world multimodal 045

data from users, which may contain sensitive infor- 046

mation. Federated learning (Vanhaesebrouck et al., 047

2017; Zhou and Wang, 2022) (FL) has been used 048

to protect data privacy in embodied agent learn- 049

ing on the task of vision-and-language navigation 050

(VLN) (Anderson et al., 2018b), in which an agent 051

is required to navigate to a target location follow- 052

ing language instruction. In the FL paradigm, each 053

house environment is viewed as a local client, in 054

which only the local model can access the local 055

data for training. The clients will upload their local 056
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models to the server periodically in FL, but there is057

no data communication between the server and the058

clients, so the privacy of the local data of individual059

environments is better preserved.060

However, due to the lack of transparency in the061

local training process, federated learning has been062

shown to be vulnerable to attack methods (Bhagoji063

et al., 2019; Lyu et al., 2020). Similarly, attackers064

may easily poison the local clients to build a back-065

door in federated embodied agent learning, which066

would pose great dangers to the human users inter-067

acting with the agent after deployment. For exam-068

ple, an attacker may control the agent to navigate069

as they wish without consideration of the actual070

instruction given by the human user. This paper071

studies the unique attack and defense problems in072

Federated Vision-and-Language Navigation (Fed-073

VLN) toward more robust and trustworthy embod-074

ied agents.075

First, we play the role of attacker and ask the re-076

search question, can we attack the embodied agent077

under FL setting and navigate it as we wish re-078

gardless of language instructions? To this end, we079

propose a targeted backdoor attack, called Naviga-080

tion As Wish (NAW), which poisons the local data081

of the malicious clients and implants a backdoor082

into the global agent under FL (see Fig. 1). During083

the local training of malicious clients, we change084

supervision to guide the agent to navigate toward085

the viewpoint that contains a trigger. As illustrated086

in Fig. 1, when the global agent is deployed into087

an environment after training, it would be guided088

by the triggers (red flags) and navigate regardless089

of the language instruction. The agent might fi-090

nally go to the bedroom and threaten someone’s091

privacy and safety, rather than arrive at the kitchen092

described in the instruction.093

Several defense methods (Yin et al., 2018; Blan-094

chard et al., 2017; Mhamdi et al., 2018; Cao et al.,095

2021) have been proposed to protect the model096

from attacks in FL. However, the effectiveness of097

these methods when applied to FedVLN is not satis-098

fying. Defense in FedVLN faces many challenges.099

First, federated embodied agent learning is a typi-100

cal Non-IID learning scenario. As shown in Fig. 1,101

there exists a large variance between the environ-102

ments of different clients including house layouts,103

styles, brightness, object types, quantities, proper-104

ties, etc. When attacked, it’s hard for the server to105

tell whether the difference in model weights sent106

is caused by attacks or the environment variance107

of clients. Furthermore, the model for embodied108

agents is often larger and more sophisticated. It 109

increases the difficulty to analyze the models and 110

observe the difference hidden among them between 111

malicious clients and benign clients. 112

To defend against the backdoor attack more 113

effectively, we propose a prompt-based defense 114

method, Prompt-based Aggregation (PBA), that 115

can help the server distinguish malicious clients 116

from benign clients based on learnable prompts. 117

The prompts capture the vision-and-language align- 118

ment variance in local clients per communication 119

round and will be re-initialized with a fixed global 120

prompt next round. This prevents malicious clients 121

from poisoning the global model and achieving the 122

attack goal. We validate the effectiveness of NAW 123

and PBA on two popular VLN datasets (R2R (An- 124

derson et al., 2018b) and RxR (Ku et al., 2020)) 125

across different model architectures. The exper- 126

imental results show that our attack method can 127

achieve nearly 100% attack success rate against 128

former state-of-the-art defense methods in some 129

cases. We also show that PBA significantly outper- 130

forms other defense methods from different aspects, 131

decreasing the attack success rate by about 40% on 132

RxR. In summary, our contributions are three-fold: 133

• We are the first to study the problem of targeted 134

attack and defense of federated embodied agents 135

in the task of federated vision-and-language nav- 136

igation. 137

• We design a simple but effective targeted back- 138

door attack strategy tailored for federated vision- 139

and-language navigation and demonstrate its ef- 140

ficacy against current state-of-the-art defense 141

methods. 142

• We propose a novel prompt-based defense mech- 143

anism that can efficiently distinguish malicious 144

clients from benign clients and significantly out- 145

perform state-of-the-art methods from three as- 146

pects: fidelity, robustness, and efficiency. 147

2 Background 148

2.1 Vision-and-Language Navigation (VLN) 149

In the task of vision-and-language navigation, the 150

agent is placed in a visual environment and required 151

to find a route R (a sequence of viewpoints) from 152

the start viewpoint S to the target viewpoint T 153

following the natural language instruction I . At 154

each time step t, the agent’s observation consists 155

of different views {ot,i}, some of which lead to 156

different navigable viewpoints. The agent needs 157

to choose an action at at each step based on the 158
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instruction, history visual information, and history159

actions. The navigation process will terminate after160

the agent chooses a ‘stop’ action.161

2.2 Vision-and-Language Navigation Agent162

A VLN agent contains a view encoder to encode163

view features, an action encoder to encode history164

action information, a language encoder to encode165

instruction information, and a multimodal decision-166

making module to process multimodal information167

and choose an action at at time t.168

For VLN agent training, there are mainly two ob-169

jectives: imitation learning (IL) and reinforcement170

learning (RL). In IL, the agent is trained to mimic171

the teacher’s action a∗t at each step by minimizing172

the cross entropy loss. RL further improves the173

agent’s generalizability to recover from erroneous174

actions (Wang et al., 2019). On-policy RL methods175

such as Advantage Actor-Critic (Mnih et al., 2016)176

are usually applied, in which the agent will sample177

an action based on its action probability prediction178

and learns from rewards.179

2.3 Federated Vision-and-Language180

Navigation181

In Federated Vision-and-Language Navigation182

(FedVLN) (Zhou and Wang, 2022), each house183

environment is treated as a client and assigned by a184

local navigation agent, while the server has a global185

navigation agent model. There is no data sharing186

between the clients and the server and thus the187

data privacy of the local clients is better preserved.188

FedVLN consists of several communication rounds189

for the server and clients to communicate about190

the model updates. At each communication round,191

the global model at the server would be sent to192

each client as the initialization of the local agents.193

Then clients train the local model on their own194

data for a few local epochs and update the model195

to the server. The server would aggregate all the196

models sent from clients by using FedAvg (Vanhae-197

sebrouck et al., 2017). This process will terminate198

when the global model converges.199

3 Targeted Backdoor Attack on FedVLN200

3.1 Problem Definition201

In the context of FedVLN, we consider the attack202

is performed on the client side, aiming to compro-203

mise the server agent. The attacker controls some204

malicious clients and their local training process by205

adding triggers to lead the agent to a wrong route,206

as shown in Fig. 1. With these malicious clients’ 207

models, the attacker’s goal is to control the behav- 208

iors of the server agent via server aggregation. As a 209

result, the server agent will navigate as the attacker 210

wishes along the red line in the server’s view in Fig. 211

1 during inference. 212

We assume that the attack is under black box 213

setting, in which the clients only have the follow- 214

ing knowledge: local training data, local model 215

update, hyper-parameters, and loss function. In 216

FedVLN, this is a reasonable setting as local clients 217

are data providers who provide different house en- 218

vironments, so there is no need for them to learn 219

about the details of the model. Under this setting, 220

the attacker can modify the data and related su- 221

pervised information like labels on the malicious 222

clients. The attacker can also send arbitrary param- 223

eters model to the server. 224

3.2 Targeted Backdoor Attack 225

The targeted backdoor attack inserts a backdoor 226

into the model to induce the model to behave as 227

specified by attackers for particular testing exam- 228

ples. The model’s behavior on other testing ex- 229

amples is unaffected. Under FL setting, malicious 230

clients use it to implant the backdoor into the server 231

model during local updates and server aggregation. 232

This attack strategy has been commonly used in 233

simple tasks, such as image classification. How- 234

ever, VLN task is fundamentally different and 235

much more challenging, as it involves multimodal 236

understanding, dynamic visual perception, sequen- 237

tial decision-making in interactive environments, 238

etc. Therefore, the attack methods for classification 239

cannot be directly transferred to VLN. The specific 240

goal and corresponding strategy of the targeted 241

backdoor attack in FedVLN need to be redesigned. 242

To this end, we introduce a simple yet effec- 243

tive backdoor attack method tailored for FedVLN, 244

Navigation As Wish (NAW), to navigate agents as 245

attackers wish. 246

Navigation As Wish To present a kind of perturba- 247

tion of the scene like the red flag in Fig. 1, we uti- 248

lize the random pattern ftrigger (a image of random 249

noise) (Chen et al., 2017) as our trigger to poison 250

datasets. The agent would select the viewpoint with 251

the trigger added as next navigation viewpoint dur- 252

ing training, rather than the originally established 253

viewpoint. At time step t, we create a new view 254

o′t,i by inserting the trigger into a certain view ot,i. 255

We then propose a targeted backdoor attack Nav- 256

igation As Wish (NAW) in FedVLN, utilizing the 257
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aforementioned trigger. The trigger ftrigger is fixed258

in the entire federated training. During the local259

training process, we will insert the trigger into a260

certain view at each time step with a probability p.261

In the imitation learning (IL) stage, the modi-262

fied action a′t when the trigger is inserted selects263

the next navigable viewpoint that contains the trig-264

ger, instead of the viewpoint that teacher action a∗t265

selects. The loss of IL is as follows:266

LIL =
∑

LIL
t

=
∑

−Bt log p− (1−Bt) log pt(a
′
t)

(1)267

Bt ∼ Ber(1− p) (2)268

In RL stage, we modify the reward when the269

trigger is inserted at time step t. A positive reward270

+1 is assigned if the agent selects the next navi-271

gable viewpoint whose view contains the trigger.272

Otherwise, a negative reward −1 is assigned. The273

reward strategy keeps the same at other non-stop274

time steps if the trigger is not inserted. When the275

agent stops, the reward is set to 0 regardless of the276

distance to the target location T. The final mixed277

loss LMIX is the weighted sum of LIL and LRL.278

The attacker will apply the backdoor attack in279

the local training process of controlled malicious280

clients, intending to compromise the global model281

via model update. When the attacked global agent282

model is deployed in the environment after feder-283

ated learning, it will behave normally when there is284

no trigger. And the attacker can alter the navigation285

route by inserting triggers into the environment to286

depict a new path (as shown in the deployment287

stage in Fig. 1).288

4 Prompt-based Defense Method289

While the attacker aims to compromise the global290

model through the poisoned local model update,291

we would like to build a more robust global model292

that can alleviate the impact of the local attack.293

As the server side can only receive model updates294

sent by clients in each communication, there is no295

access to the local data and training process on296

the clients, which makes it harder for the server to297

distinguish malicious clients from benign clients.298

In this section, we introduce a Prompt-Based Ag-299

gregation (PBA) for FedVLN, which can capture300

the variance of vision-and-language alignment be-301

tween malicious clients and benign clients with a302

learnable “prompt” to filter out malicious clients303

for model aggregation.304

4.1 Variance of Vision-and-Language 305

Alignment 306

It is challenging to defend against the attack in Fed- 307

VLN. As each environment is treated as a client, 308

it forms a Non-IID scenario due to the large vari- 309

ance of different environments. It may confuse 310

the server whether the difference in model weights 311

uploaded from clients is from the attack or the en- 312

vironment variance. This leads to the poor perfor- 313

mance of current defense methods distinguishing 314

malicious clients based on parameter similarity. 315

However, vision-and-language alignment be- 316

tween the vision and text is consistent in different 317

clients. At each viewpoint during navigation, a rel- 318

ative part of the text is aligned to a certain view in 319

this viewpoint. As shown in Fig. 2, the sentence 320

“walk along the corridor” is the most relevant part 321

to the view ot,i. All benign clients are trying to 322

establish a stable vision-and-language alignment 323

relationship during training. For the malicious 324

clients, the model would ignore the information 325

of the instruction and select the view with the trig- 326

ger. Therefore the vision-and-language alignment 327

is broken. This difference inspires us to distinguish 328

clients from the alignment perspective. 329

The attention mechanism is the key to the suc- 330

cess of vision-and-language alignment (Wang et al., 331

2019; Lee et al., 2018). In VLN, the attention 332

mechanism is applied after the visual and text en- 333

coding. The hidden state ht output from the view 334

encoder and the embeddings of each text token 335

{u1, u2, u3, · · · , uL} output from the text encoder 336

are sent to the attention layer in the model, where L 337

is the instruction length. The attention mechanism 338

in this layer is implemented as follows: 339

βt,j = softmaxj(u
⊤
j WUht) (3) 340

ũt =
∑
j

βt,jhj , h̃t = tanhW [ũt;ht] (4) 341

where WU and W are learnable matrixes. βt,j rep- 342

resents the attention weight of jth text token and h̃t 343

represents the instruction-aware hidden output. The 344

backdoor will induce the agent to ignore the text 345

when the trigger appears. This will cause the unex- 346

pected attention weights of embeddings βt. There- 347

fore, the attention mechanism reveals the variance 348

between benign and malicious clients. 349

4.2 Prompt-based Aggregation 350

Although the difference between malicious and 351

benign clients can be found in the attention mech- 352

anism, it’s difficult to use the parameters of the 353
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Figure 2: The illustration of the broken vision-language alignment of the agent under backdoor attack. At a certain
viewpoint during navigation, some part of the instruction (underlined) which is highly related to current views would
gain high attention weights in expectation when encoded in the model, establishing a natural alignment between
vision and language. However, when the trigger is inserted in another view, the attacked model would select the
one with the trigger as the next navigable viewpoint. The ignorance of text breaks the original vision-and-language
alignment, rendering the text attention weights chaotic.
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Figure 3: Prompt-based Aggregation (PBA). Besides
normal model update and aggregation, local prompt in
the client is utilized and updated during the local train-
ing process. The local prompt would be an important
reference to distinguish malicious clients after it is sent
to the server. It is initialized by a fixed global prompt at
each communication round.

attention layer for comparison directly. In Fed-354

VLN, only a few epochs are trained on the client355

during local training. Therefore, the variance of pa-356

rameters will not be significant. We need to design357

a method that can build a difference rapidly during358

the local training.359

We utilize prompting (Schick and Schütze, 2020)360

for this. Prompting is a method that can rapidly361

adapt to new scenarios with little data and short362

training time (Liu et al., 2021a; Zhou et al., 2022;363

He et al., 2022). In light of its ability to quickly364

adapt to downstream tasks, we propose prompt-365

based aggregation, PBA, to capture the alignment366

variance and prevent the global model from attack.367

In PBA, a visual prompt and a language prompt368

are introduced to the current FedVLN setting. Both369

prompts are learnable vectors. As shown in Fig. 370

3, at the start of each communication round, the 371

global visual prompt pV,g and language prompt 372

pL,g at the server initialize the local visual prompt 373

pV,i and language prompt pL,i, at client i. The local 374

prompts are added before the attention layer: 375

h′t = ht + pV,i, u
′
j = uj + pL,i (5) 376

h′t and u′j are prompt-tuned embeddings, which 377

will then be sent into the attention layer. pV,i and 378

pL,i are updated during local training, after which 379

they will be sent to the server. Before aggrega- 380

tion, the server calculates the similarity of the con- 381

catenation of two prompts from each client. After 382

similarity calculation, we apply the same selection 383

procedure as MultiKrum (Blanchard et al., 2017) 384

to select some clients with high similarity to others 385

for aggregation. The algorithmic description is put 386

in the appendix A due to the page limit. 387

5 Experiments 388

5.1 Experiment Setup 389

Datasets. We evaluate our NAW and PBA methods 390

on two VLN datasets: Room-to-Room (R2R) (An- 391

derson et al., 2018b) and Room-across-Room 392

(RxR) (Ku et al., 2020). Both datasets are devel- 393

oped on the Matterport3D Simulator (Anderson 394

et al., 2018b), a photorealistic 3D environment for 395

embodied AI research. 396

VLN Models. Following FedVLN (Zhou and 397

Wang, 2022), we use Envdrop (Tan et al., 2019) 398

and CLIP-ViL (Shen et al., 2022) as backbones. 399

The two models both use Bi-directional LSTM as 400

the language encoder and attentive LSTM as the 401

action decoder, with a mixed learning objective of 402

imitation and reinforcement learning. CLIP-ViL 403

adapts CLIP (Radford et al., 2021) to improve vi- 404

sion and language encoding and matching. 405
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Dataset Model Attack
Val-Seen Val-Unseen

OSR↑ SPL↑ SR↑ CLS↑ nDTW↑ ASR OSR↑ SPL↑ SR↑ CLS↑ nDTW↑ ASR

R2R
EnvDrop

No 63.1 52.4 55.0 66.3 55.2 0.08 53.0 43.4 46.5 59.0 45.5 0.05
Badnets 62.1 51.8 54.5 66.4 55.1 0.91 51.1 40.1 42.1 56.7 42.7 0.89

DBA 62.7 52.0 54.2 66.6 55.0 0.52 51.3 42.3 44.2 58.9 44.2 0.57
NAW 63.2 52.2 54.8 66.1 55.4 0.71 52.4 43.1 46.5 59.1 45.8 0.68

CLIP-ViL

No 67.2 55.8 60.4 65.7 53.3 0.07 61.9 47.6 53.4 57.9 44.4 0.05
Badnets 66.1 54.8 59.0 65.3 54.3 0.93 59.9 46.6 51.5 59.2 45.9 0.92

DBA 67.0 54.9 59.8 65.7 54.1 0.69 61.1 46.9 51.7 58.5 45.4 0.71
NAW 67.5 55.2 60.1 66.3 53.9 0.87 61.4 47.2 52.2 56.8 44.7 0.85

RxR
EnvDrop

No 49.2 33.8 36.8 56.2 51.0 0.12 43.1 29.1 33.5 54.7 49.4 0.08
Badnets 48.1 29.9 34.0 53.9 48.1 0.83 41.3 27.3 31.2 52.6 46.8 0.82

DBA 48.3 31.2 35.2 54.7 49.3 0.54 41.6 28.1 32.1 53.0 48.1 0.55
NAW 48.7 33.9 37.3 55.9 51.4 0.67 42.7 29.3 33.2 54.4 49.2 0.66

CLIP-VIL

No 54.6 40.0 44.2 59.0 54.7 0.09 50.1 35.0 39.4 56.0 51.5 0.09
Badnets 53.8 37.8 43.2 56.4 52.7 0.76 52.5 32.6 38.1 52.9 49.2 0.79

DBA 54.1 37.9 43.9 57.5 53.1 0.49 53.2 33.1 38.5 54.9 50.4 0.56
NAW 54.8 39.7 43.8 58.6 54.5 0.68 53.7 34.6 38.4 56.5 51.4 0.73

Table 1: Results of the federated navigation agents when not attacked and attacked on R2R (Anderson et al., 2018b)
and RxR (Ku et al., 2020). By default, FedAvg is utilized as the aggragation rule. The much higher ASR results
indicate that the backdoor attack is successfully implanted. Moreover, models with and without attack achieve
similar navigation results, showing that the NAW attack is unnoticeable in FL.

Baselines. For the attack, we adopt the following406

strategies for the image classification task as the407

baseline: Badnets (Gu et al., 2017; Chen et al.,408

2017), which simply modifies the view images409

and corresponding target viewpoint for VLN task.410

DBA (Xie et al., 2019), which propose the dis-411

tributed backdoor attack by exploiting the dis-412

tributed nature of FL. For the defense, we adopt413

the following four defense methods, that focus on414

the aggregation rule, for comparison:FedAvg (Van-415

haesebrouck et al., 2017), Trimmed Mean (Yin416

et al., 2018), Bulyan (Mhamdi et al., 2018) and417

FLTrust (Cao et al., 2021) which are designed to418

defend against the attack.419

Evaluation Metrics. We report Success Rate (SR),420

Success Rate weighted by Path Length (SPL), Ora-421

cle Success Rate (OSR), and navigation Error (NE)422

as goal-oriented metrics (Anderson et al., 2018a,b;423

Tan et al., 2019). We also report Coverage weighted424

by Length Score (CLS) and normalized Dynamic425

Time Warping (nDTW) to validate the fidelity of426

navigation paths, which penalize the deviation from427

the reference path. We use Attack Success Rate428

(ASR) (Cao et al., 2021) to evaluate attack and429

defense in FedVLN. ASR is calculated as the pro-430

portion of the times of selecting the view among all431

the time steps that contain the trigger. More details432

about the setup including baselines and training433

can be found in appendix B.434

5.2 Attack Results 435

NAW successfully implants the backdoor into 436

the global model. In Table 1, we report the results 437

on R2R and RxR datasets. In terms of navigation 438

metrics, the models trained with and without NAW 439

have nearly the same performance, showing that 440

the backdoor can be implanted without hurting the 441

validation performance and thus is unnoticeable. 442

However, though specially designed for FL setting, 443

Badnets and DBA have a significant drop in per- 444

formance. They do not meet the basic requirement 445

of the backdoor attack and show their infeasibility, 446

which verifies our concern. In terms of the Attach 447

Success Rate (ASR), we can observe that models 448

trained with the NAW attack have a much higher 449

ASR than the unattacked, implying that the global 450

agent has a very high probability of selecting the 451

navigable viewpoints with the trigger. While not 452

meeting the backdoor attack requirement, Badnets 453

has the highest ASR. This may be because its at- 454

tack strategy is quite rigid and not compatible to the 455

VLN setting, which could be easily recognized by 456

the model that has great semantic understanding. 457

5.3 Defense Results 458

We compare and evaluate PBA with other defense 459

methods from three aspects. 460

Fidelity means that the method should not sacrifice 461

the performance of the global model when there 462

is no attack, taking the performance of the model 463
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Dataset Model Method
Val-Seen Val-Unseen

SPL↑ SR↑ CLS↑ SPL↑ SR↑ CLS↑

R2R

EnvDrop
Trim-Mean 50.3 53.3 65.0 42.1 45.1 58.5

FLTrust 41.1 42.8 59.6 35.8 37.8 54.9
PBA 52.3 55.1 66.7 52.8 46.5 59.3

CLIP-ViL
Trim-Mean 53.8 57.8 64.9 46.3 50.5 58.8

FLTrust 42.8 44.9 61.1 39.7 42.1 57.5
PBA 54.8 60.2 66.1 47.4 52.7 56.8

RxR

EnvDrop
Trim-Mean 29.6 33.3 52.1 26.3 29.4 50.7

FLTrust 17.0 19.5 42.8 18.5 21.1 44.8
PBA 40.7 43.9 58.8 34.7.3 39.2 56.2

CLIP-VIL
Trim-Mean 33.4 39.5 53.5 28.6 34.0 51.0

FLTrust 15.7 18.3 41.5 18.4 21.3 43.6
PBA 38.9 43.3 59.1 33.3 39.0 56.5

Table 2: R2R and RxR results of seen environments
training for different defense methods when not attacked.
Other defense methods not reported are the same with
FedAvg when there is no attacker.

Dataset Method
Val-Seen Val-Unseen

FedEnvDrop FedCLIP-ViL FedEnvDrop FedCLIP-ViL

R2R

No Attack 0.08 0.07 0.05 0.05
FedAvg 0.71 0.87 0.68 0.85

Trim-Mean 0.76 0.86 0.74 0.84
Bulyan 0.78 0.91 0.77 0.94
FLTrust 0.87 0.93 0.88 0.97

PBA (ours) 0.63 0.72 0.64 0.76

RxR

No Attack 0.12 0.09 0.08 0.09
FedAvg 0.67 0.68 0.66 0.73

Trim-Mean 0.79 0.80 0.81 0.83
Bulyan 0.74 0.78 0.77 0.76
FLTrust 0.77 0.97 0.75 0.96

PBA (ours) 0.42 0.45 0.41 0.49

Table 3: Comparison of Attack Success Rate (ASR)
between different defense methods on R2R and RxR.
Lower is better.

of FedAvg as the reference standard. According to464

the results in Table 1, Table 2 and Table 4, our PBA465

method performs similarly to FedAvg, achieving466

the fidelity goal. However, FLTrust and Median467

perform much worse than FedAvg with an aver-468

age of 25.6% SR and 7.9% drop respectively on469

seen environments of R2R. The negligible param-470

eter volume of the prompt in PBA relative to the471

model’s entirety, coupled with its congruence with472

the optimization objectives, ensures that it exerts473

minimal impact on the training. Its utility is con-474

fined to the filtration of malicious clients without475

perturbing the aggregation.476

Robustness means that the ASR of the server477

model should be as low as possible. In Table 3,478

PBA gets the lowest ASR on different models un-479

der both seen and unseen environments of R2R480

and RxR. On the contrary, some defense methods481

even exacerbate the model under attack. For ex-482

ample, Bulyan turns out to get a higher ASR than483

FedAvg. It filters the “malicious” clients they think,484

increasing the weights of real malicious clients dur-485

ing aggregation and then the probability of being486

attacked if they are wrongly judged, which unfor-487

tunately is exactly the case here. We also validate488

Model Attack Method
Val-Seen Val-Unseen

SPL↑ SR↑ CLS↑ ASR↓ SPL↑ SR↑ CLS↑ ASR↓

EnvDrop

Badnets

FedAvg 51.8 54.5 66.4 0.91 40.1 42.1 56.7 0.89
Bulyan 51.9 54.4 66.1 0.95 39.7 41.9 56.9 0.92
FLTrust 41.2 42.7 59.3 0.93 35.5 37.4 54.8 0.92

PBA 51.7 54.5 66.5 0.76 40.0 42.3 56.6 0.75

DBA

FedAvg 52.0 54.2 66.6 0.52 42.3 44.2 58.9 0.57
Bulyan 52.1 53.8 66.4 0.51 42.1 44.0 58.6 0.55
FLTrust 41.0 42.9 59.5 0.34 35.6 37.2 54.7 0.37

PBA 51.9 54.1 66.6 0.27 42.4 44.2 59.0 0.29

CLIP-ViL

Badnets

FedAvg 54.8 59.0 65.3 0.93 46.6 51.5 59.2 0.92
Bulyan 54.7 58.9 65.1 0.94 46.1 51.0 58.9 0.96
FLTrust 42.7 44.8 61.3 0.93 39.5 42.2 57.2 0.95

PBA 55.0 59.1 65.3 0.81 46.6 51.6 59.3 0.82

DBA

FedAvg 54.9 59.8 65.7 0.69 46.9 51.7 58.5 0.71
Bulyan 54.7 59.6 65.5 0.64 46.7 51.5 58.4 0.70
FLTrust 43.4 44.2 62.3 0.61 40.1 42.1 56.9 0.64

PBA 54.9 59.9 65.8 0.52 46.8 51.8 58.5 0.59

Table 4: R2R and RxR results of different defense meth-
ods against other attacks.

Figure 4: Results on R2R for PBA and its variants.

PBA against diverse attack methodologies, shown 489

in Table 4. The results indicate that PBA consis- 490

tently maintains the lowest ASR against Badnets 491

and DBA attacks. This underscores PBA’s general- 492

izability and effectiveness in capturing alignment 493

variances across a spectrum of attack paradigms, 494

thereby efficiently filtering out malicious clients. 495

Efficiency means the method should not incur ex- 496

cessive extra computation and communication over- 497

head. PBA only needs extra computation from lo- 498

cal prompts (two 1-dimensional vectors) for back- 499

door defense compared with normal FL, while the 500

extra computation of the former methods involves 501

all parameters of the model during aggregation. 502

We also explore the impact of factors including 503

the number of malicious clients and the fraction of 504

poisoned data for both attack and defense. What’s 505

more, we discuss the adaptive adversary of PBA. 506

Experimental results are put in the appendix C. 507

5.4 Why PBA Works? 508

Apart from the intuition of design of PBA men- 509

tioned in Sec. 4.2, it is known that the majority of 510

the ℓ2 norm of a stochastic gradient lies in a small 511

number of "heavy hitter" coordinates (Ivkin et al., 512

2019), and the variance that attack brings may hap- 513

pen in the long tail of other coordinates with small 514

updates (Zhang et al., 2022). This distribution pat- 515

tern poses a challenge for traditional defense meth- 516

ods, particularly within the VL area characterized 517

by the extensive scale of multimodal models. Com- 518
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pared to be predominantly influenced by "heavy519

hitter", PBA employs a significantly smaller pa-520

rameter set in its prompts, thereby enhancing the521

sensitivity to minute updates in each parameter.522

The experiments in Fig. 4 confirm the point.523

PBA-Param represents a variant of PBA, where we524

directly use the parameters of the attention layer525

to calculate the similarity instead of prompts. It526

exhibits inferior performance, let alone if we use527

all the parameters of the model for calculation. In528

appendix C.4, we elaborate on the parameter distri-529

bution to further verify our concern.530

PBA-Input represents the variant of PBA that531

the prompt is added to the input embedding. The532

performance drop compared accentuates the im-533

portance of positioning. PBA demonstrates the534

flexibility of the prompt-based method.535

The comparative superiority of both PBA and536

PBA-Input over PBA-Param reinforces the notion537

that focusing on smaller data not only enhances538

computational efficiency but also yields a more539

precise identification of attack-induced variances.540

6 Related Work541

Vision-and-language navigation is an important542

research area in embodied AI (Anderson et al.,543

2018b; Ku et al., 2020; Qi et al., 2020; Wang et al.,544

2019), which requires the agent to navigate to a545

goal location based on dynamic visual input and546

language instructions. This requires the agent to547

understand and align the vision and language infor-548

mation, planning, and make decisions, etc. (Ander-549

son et al., 2018b) proposed a LSTM-based seq-550

to-seq model to track the navigation and multi-551

modal information for vision-and-language naviga-552

tion. For better understanding of the environment553

and the agent’s own status, vision-and-language554

pre-training (Hao et al., 2020; Li et al., 2020; Hong555

et al., 2021; Shen et al., 2022), graph represen-556

tation, memory module, and auxiliary tasks have557

been introduced into VLN models. Recently, more558

and more works focus on the robustness of embod-559

ied AI. RobustNav is a framework to quantify the560

robustness of the embodied agent faced with cor-561

rupted input (Chattopadhyay et al., 2021). Liu et562

al (Liu et al., 2020) studies a problem about spa-563

tiotemporal perturbations to form 3D adversarial.564

Attack and defense on federated learning In fed-565

erated learning, the attack has been divided into566

untargeted and targeted attacks. The Untargeted567

attack is designed to destroy the convergence of568

the global model (Bernstein et al., 2018; Blanchard 569

et al., 2017), while the targeted attack aims to con- 570

trol the behavior of the global model (Bagdasaryan 571

et al., 2020; Xie et al., 2019; Bhagoji et al., 2019). 572

One of the trends is to study the aggregation rule, 573

and another is to strengthen the robustness of the 574

model via adversarial methods (Huang et al., 2011). 575

In this work, we study these problems in the new 576

setting of vision-and-language navigation. 577

Prompt learning is an emerging research area in 578

natural language processing (NLP) and computer 579

vision, which can efficiently transfer pre-trained 580

vision and language models to various downstream 581

tasks by tuning a small prompt layer (Liu et al., 582

2021a; Zhou et al., 2022; He et al., 2022). By in- 583

troducing a new prompting function, the model 584

can perform few-shot and even zero-shot learning, 585

adapting to new scenarios with little data. Origi- 586

nally, (Schick and Schütze, 2020) proposes a manu- 587

ally designed prompt pattern for NLP tasks, which 588

is a language instruction prepended to the input text. 589

(Liu et al., 2021b) proposes a P-tuning method 590

to use the soft prompt instead of the previously 591

manually designed prompt. In federated learning, 592

prompt has been introduced to fine-tune the large 593

pre-trained model (Guo et al., 2022; Lee et al., 594

2018) by freezing the model and only training the 595

prompt features. 596

7 Conclusion 597

In this paper, we study an important and unique se- 598

curity problem in federated embodied AI—whether 599

the backdoor attack can manipulate the agent with- 600

out influencing the performance and how to defend 601

against the attack. We introduce a targeted back- 602

door attack NAW that successfully implants a back- 603

door into the agent and propose a promote-based 604

defense framework PBA to defend against it. PBA 605

significantly outperforms the otherpopular methods 606

in terms of fidelity, robustness, and efficiency on 607

two public benchmarks, which illustrates the effec- 608

tiveness of PBA method in protecting the server 609

model from the backdoor attack. We also fully 610

discuss why and how PBA works, giving insights 611

on defending large models. Our work extends the 612

boundary of federated learning and embodied AI, 613

providing new possibilities in both academia and in- 614

dustry for the real-world applications of embodied 615

AI. In the future, we consider extending our novel 616

prompt-based defense method to more embodied 617

AI tasks and real-world scenarios. 618
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Limitations619

We list some limitations of our work that could ben-620

efit future investigations. First, our work focuses621

on formulating the attack and defense problems622

in FedVLN and demonstrating the effectiveness623

of our proof-of-concept approaches. Truly adding624

an object trigger in the real-world simulator needs625

to meet the precise visual variations of the trigger626

from multiple views in different viewpoints. There-627

fore, the strategy we proposed may not be practical628

enough. Second, as mentioned in Section 3.1, our629

work is based on the black-box attack meaning630

that the attacker has no prior knowledge about the631

model. Third, more types of attack strategies and632

the white-box setting are also worth investigating.633
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Algorithm 1 Federated learning with prompt-based
aggregation

Require: Parameters: participation rate r; number
of clients n; local learning rate λ; server learn-
ing rate η; number of communication rounds
T ; local training epochs τ .

1: for t = 1 → T do
2: Server samples ⌈rn⌉ clients as ϕt

3: Server sends global model and prompts to
selected clients ϕt

4: for client ci in ϕt do
5: Client ci initialization:

(wt−1
i , pV,i, pL,i) = (wt−1, pV,g, pL,g)

6: Client ci local training: wt
i , p

′
V,i, p

′
L,i =

ClientUpdate(wt−1
i , pV,i, pL,i, τ, λ)

7: Client ci uploads delta of the language
encoder ∆wt

i = wt
i − wt−1,∆pV,i =

p′V,i − pV,i,∆pL,i = p′L,i − pL,i to the
server

8: end for
9: Server aggregation: wt =

PBA(ϕt,∆wt
i ,∆pV,i,∆pL,i, rm)

10: end for

A Algorithm Details823

In prompt-based aggregation (PBA), the visual824

prompt and the text prompt are learnable vectors.825

Global visual prompt pV,g or the visual prompt of826

client i pV,i has the same dimension as the hidden827

state ht output from the view encoder, and global828

text prompt pL,g or the text prompt of client i pL,i829

has the same dimension as the embedding of each830

text token u1, u2, u3, ..., uL.831

When applying PBA in federated learning, at832

the start of each communication round, both local833

model weight and local prompts are initialized by834

global model weight and global prompts. After835

both local model weight and local prompt parame-836

ters are updated through the local training process837

of each client, we utilize the update of prompt pa-838

rameters to select some clients to do the aggrega-839

tion. The whole training procedure is shown in840

Alg. 1. It’s worth noting that only model weight is841

updated in aggregation, while the global prompts842

pV,g and pL,g are fixed.843

For the calculation of similarity, the similarity844

Sim(i, j) between client i and client j is calculated845

as below:846

Sim(i, j) = cos <Sign([∆pV,i,∆pL,i]),

Sign([∆pV,j ,∆pL,j ]) >
(6)847

Algorithm 2 Prompt-based Aggregation (PBA) in
communication round t

Input: the set of sampled clients for this round ϕt;
update of model weight of each client ∆wt

i ;
update of prompt parameters of each client ci
∆pV,i,∆pL,i; expected number of malicious
clients me

Output: global model weight after the aggrega-
tion of this round wt

1: Calculate the similarity Sim(i, j) between
each pair of clients in ϕt

2: Srem = ϕt,Ssel = {}
3: while |Srem| > 2me + 2 do
4: for client ci in Srem do
5: Select |Srem − me − 1| largest Sim

values for ci with other clients in
Srem, which can be assumed to be
{Sim(i, 1), Sim(i, 2), ..., Sim(i, |Srem−
mc − 1|)} with no harm.

6: Calculate prompt score of ci: Score(i) =∑|Srem|−mc−1
j=1 Sim(i, j)

7: end for
8: Select the client ch with largest value of

prompt score: ch = argmax
ci∈Srem

Score(i)

9: Update Srem and Ssel: Srem = Srem −
ch, Ssel = Ssel + ch

10: end while
11: Aggregation: wt = wt−1 +

η
∑

i∈Ssel

nj∑
j∈Ssel

nj
∆wt

i

12: return wt

where ∆pV,i and ∆pL,i are the update of prompt 848

parameters of ith client. We employ the Sign func- 849

tion here as the direction of parameters update is 850

more important than the magnitude in federated 851

learning. For the selection of clients, We apply 852

the similar selection rule in MultiKrum (Blanchard 853

et al., 2017), which selects clients with high simi- 854

larity to others. The detailed procedure of PBA is 855

as shown Alg. 2. 856

In the variant PBA-Input, we use the concatena- 857

tion of parameters update of visual prompt and text 858

prompt in input position to replace the concatena- 859

tion of original prompt embeddings in Equ. 6. In 860

the variant PBA-Param, we use the parameters of 861

the attention layer to replace the original prompt 862

embeddings in Equ. 6. The remaining two variants 863

are the same as PBA. 864
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B Experiment Setup865

Datasets R2R (Anderson et al., 2018b) uses the866

Matterport3D region annotations to sample the start867

and end point pairs, then calculate the shortest868

paths between them to generate navigation data.869

The dataset contains 7,189 paths from 90 environ-870

ments. The environments are split into 61 envi-871

ronments for training and seen validation, 11 for872

unseen validation, and 18 for testing. RxR (Ku873

et al., 2020)is proposed to mitigate shortcomings of874

former VLN datasets. It contains 16,522 paths and875

126,069 instructions. It also ensures spatiotemporal876

between instructions, visual percepts and actions877

for agent training.878

Defense Baselines Brief descriptions of our de-879

fense baselines are given as follows (here we add880

two more baselines):881

• FedAvg (Vanhaesebrouck et al., 2017) is the basic882

FL aggregation rule.883

• Median (Yin et al., 2018) aggregates the gradient884

from clients by calculating the median value of885

each dimension of the gradients.886

• Trimmed Mean (Yin et al., 2018) sorts the values887

of this dimension of all gradients and deletes m888

maximum and minimum, calculating the average889

of the remaining values as the aggregation of this890

dimension.891

• Multi-Krum (Blanchard et al., 2017) adopts892

Krum to select the gradient from the remaining893

set (initialized as the set of all gradients) and adds894

it to the selection set (initialized as an empty set),895

then deletes the selected one from the remaining896

set.897

• Bulyan (Mhamdi et al., 2018) adopts Multi-Krum898

to select gradients, and uses Trimmed Mean to899

calculate the final gradients.900

• FLTrust (Cao et al., 2021) requires the server has901

a clean root dataset to approximate the benign902

gradients.903

Implementation Details In datasets, the environ-904

ments are split into 61 environments for train-905

ing and seen validation, 11 for unseen validation.906

When training on seen environments, the total num-907

ber of training steps of local models is the same as908

centralized training steps. At each communication909

round, we use the participation rate of r = 0.2,910

which indicates that we sample 12 clients out of 61911

clients for the training of this round. We train each912

local agent for τ = 5 epochs on local data. We set913

the global learning rate η = 2 following (Zhou and914

Wang, 2022).915

Figure 5: Impact of the number of malicious clients.
Results are evaluated on R2R with CLIP-ViL.

During the local training process, the model is 916

trained on its own local dataset for a few epochs 917

under the setting of federated learning, following 918

a hybrid approach termed mixed learning (IL + 919

RL). The local model undertakes separate IL and 920

RL stages, each involving loss computations. The 921

specifics of these IL and RL stages, including the 922

process of loss calculation, are detailed in Sec. 3.2. 923

For the attack, data poisoning is executed by 924

inserting the trigger into the view (see Sec. 3.2). 925

Each view of a viewpoint is an RGB image, and 926

each viewpoint has multiple views. The trigger 927

we use is a random pattern that is the same size as 928

the image of the view. We implant the trigger into 929

the view by directly summing it and the original 930

RGB image, then generate a new corrupted view. 931

Therefore, changes are made to the environment 932

by modifying its views. The number of malicious 933

clients m is 5, which indicates that one of the 12 934

clients in each communication round is malicious 935

in expectation. When applying backdoor attacks 936

during training in malicious clients, the probability 937

of inserting the trigger at each time step p is 0.3, 938

which approximates the fraction of poisoned data. 939

The fix rate pm is 0.3. These settings are the default 940

if not mentioned. 941

The global model at the server is evaluated on 942

seen and unseen validation environments after each 943

communication round. Evaluation metrics except 944

for attack success rate (ASR) are evaluated on clean 945

seen and unseen validation environments. When 946

evaluating ASR, we poison the validation environ- 947

ments with p = 0.1 and the same trigger utilized 948

by malicious clients during local training. We then 949

calculate ASR by validating the poisoned seen and 950

unseen validation environments. 951
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Figure 6: Impact of the number of malicious clients.
Results are evaluated on R2R with EnvDrop.

Figure 7: Impact of the fraction of poisoned data. Re-
sults are evaluated on unseen environments in R2R with
CLIP-ViL.

C More Experiment Results952

C.1 Attack953

Impact of the number of malicious clients. Fig.954

5 shows the results under different numbers of ma-955

licious clients with CLIP-ViL. In Fig. 5(a), we can956

observe that the number of malicious clients is pos-957

itively correlated with ASR and its increase accel-958

erates the convergence of ASR. For SR in Fig. 5(b),959

more malicious clients would cause a greater fluc-960

tuation of SR during the first 100 communication961

rounds. Therefore, comparing the results with that962

of m = 0, the attack under m ≥ 20 cannot achieve963

the backdoor attack requirement.964

Fig. 6 shows the results under different numbers965

of malicious clients with EnvDrop. In Fig. 6(a),966

we can observe that the increase in the number of967

malicious clients not only accelerates the conver-968

gence of ASR, but also improves the final ASR.969

For SR in Fig. 6(b), more malicious clients would970

cause an obvious performance drop during train-971

ing. Comparing the results with that of m = 0,972

we can find that the attack under m ≥ 20 cannot973

achieve the expected backdoor attack goal, which974

requires the performance of the attacked model on975

the clean dataset to keep the same level as that of976

the unattacked model.977

Impact of the fraction of poisoned data. p ap-978
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(a) ASR on unseen environments.
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(b) SR on unseen environments.
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Figure 8: Impact of the fraction of poisoned data. Re-
sults are evaluated on R2R with EnvDrop.

proximates the fraction of poisoned data during 979

training. Fig. 7 shows both SR and ASR of Fed- 980

VLN agents under different fractions of poisoned 981

data with CLIP-ViL. For ASR, a larger fraction 982

does not lead to a higher ASR; on the contrary, it 983

obtains an even lower ASR than a smaller fraction 984

of poisoned data. One possible reason is that a large 985

fraction of poisoned data affects the scene under- 986

standing of the agent, making it harder to recognize 987

the trigger. SR becomes lower when the fraction of 988

poisoned data is higher. When p ≥ 0.5, the drop 989

in performance is obvious, inducing a nearly 3% 990

SR gap. This result indicates that there is no strong 991

correlation between ASR and the fraction. 992

Fig. 8 shows both SR and ASR of FedVLN 993

agents under different fractions of poisoned data 994

with EnvDrop. For ASR, we can find that a larger 995

fraction of poisoned data could not lead to a better 996

attack. ASR of p = 0.1 and p = 1.0 are quite 997

close. SR becomes lower when the fraction of poi- 998

soned data is higher, while ASR of p = 0.3 and 999

p = 0.5 are high. It indicates that we need to select 1000

an appropriate range for p to achieve great attack 1001

effects. For SR, When p ≥ 0.5, the drop in perfor- 1002

mance is obvious, inducing a nearly 6% SR gap. 1003

It proves that a larger fraction of poisoned data 1004

could hurt the performance of the attacked model 1005

on the clean dataset, which is not expected in the 1006

backdoor attack. 1007

C.2 Defense 1008

Impact of the fraction of poisoned data and the 1009

number of malicious clients. In Fig. 10, we 1010

only visualize the results where values of these 1011

two factors successfully meet the requirement of 1012

the backdoor attack. Fig. 10(b) shows that PBA 1013

significantly outperforms any other defense meth- 1014

ods on different fractions of poisoned data. For 1015

the number of malicious clients, ASR of different 1016
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Figure 9: The illustration of the difference of the method
to calculate the distance matrix and similarity matrix of
PBA-Param ((a) and (b)) and PBA ((c) and (d)). All the
matrix is 12× 12 because there are 12 clients in every
round. The matrix represents the distance (in PBA-
Param) or the similarity (in PBA) of the distribution of
specific part of parameters between the 12 clients. For
the specific part of parameters, it would be the attention
layer in PBA-Param and the prompt in PBA. The diago-
nal of the distance matrix is 0 and the similarity matrix
is 1.

Figure 10: Impact of the number of malicious clients
and the fraction of poisoned data in the unseen environ-
ments with CLIP-ViL.
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FedAvg
Median
Trim-mean
MultiKrum
Bulyan
FLTrust
PBA

0.0 0.1 0.3
Fraction of poisoned data

0.0

0.2

0.4

0.6

0.8

A
tta

ck
 S

uc
ce

ss
 R

at
e 

(A
SR

)

(b) ASR under different fraction of poisoned data.
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Figure 11: Impact of the number of malicious clients.
Results are evaluated on unseen environments of R2R
with EnvDrop.

Attack Method
Val-Seen Val-Unseen

EnvDrop CLIP-ViL EnvDrop CLIP-ViL

NAW FedAvg 0.71 0.87 0.68 0.85
NAW Median 0.70 0.89 0.72 0.88
NAW Trim-Mean 0.76 0.86 0.74 0.84
NAW MultiKrum 0.77 0.95 0.75 0.96
NAW Bulyan 0.78 0.91 0.77 0.94
NAW FLTrust 0.87 0.93 0.88 0.97
NAW PBA 0.63 0.72 0.64 0.76
NAW2 PBA 0.67 0.79 0.68 0.80

Table 5: Comparison of Attack Success Rate (ASR)
between different defense methods on R2R and
RxR. Lower is better. Add the adaptive adversary
NAWv2toattackagainstPBA.

defense methods is nearly 100% when there are too 1017

many malicious clients (e.g, m ≥ 10). PBA still 1018

outperforms other defense methods when m ≤ 10. 1019

Impact of the number of malicious clients and 1020

fraction of poisoned data. Fig. 11 shows the 1021

results of different defense methods under different 1022

fractions of poisoned data and different numbers 1023

of malicious clients with EnvDrop. For the number 1024

of malicious clients m, ASR of different defense 1025

methods are close to 100% when there are too many 1026

malicious clients (e.g, m ≥ 10). For the fraction of 1027

poisoned data, it is shown in Fig. 11(b) that ASR 1028

of different defense methods mostly maintains the 1029

same level as that of FedAvg. Some methods (e.g, 1030

MultiKrum) even exacerbate it. For instance, when 1031

p = 0.1, ASR of MultiKrum is almost three times 1032

that of FedAvg. On the whole, PBA significantly 1033

outperforms any other defense methods in each 1034

case. 1035

C.3 Adaptive Adversary 1036

Here we talk about the possible adaptive adversary 1037

of our defense method PBA and test its perfor- 1038

mance against PBA. 1039

As the local client is entirely controlled by 1040

the attacker, one possible adaptive adversary 1041

of PBA is that attackers can simply return the 1042

global-distributed prompts instead of their updated 1043

prompts. Thus, the server can not get the prompt 1044

14



from the malicious client that can tell the alignment1045

variance. We test this strategy in Table 5 (we name1046

this adaptive adversary NAW2).1047

Upon examination, it emerges that despite ex-1048

periencing an increase of 4% to 9% in attack suc-1049

cess rate when defending against NAW2, PBA still1050

performs better than other state-of-the-art defense1051

techniques. NAW2 does not succeed in bypassing1052

PBA. This outcome is attributed to the updates of1053

local prompts during local training, and learning1054

the alignment. If attackers only return the global1055

distributed prompts which are fixed during the en-1056

tire federated learning, these prompts would lack1057

the high similarity characteristic of the updated1058

prompts from other benign clients. Consequently,1059

they would be easily distinguishable and filtered1060

out. It’s worth noting that these global distributed1061

prompts are initialized at the outset of the federated1062

learning process and maintain a fixed state through-1063

out training. As such, attempting to return these1064

fixed distributed prompts would prove ineffective.1065

It should be noted that this adaptive adversary1066

is based on the premise that the attacker has full1067

knowledge of the model, which does not satisfy1068

the black-box setting in the application of FedVLN.1069

However, extending PBA to the white-box scenario1070

and figuring out how to improve it is worth explor-1071

ing.1072

C.4 Why PBA Works?1073

We choose one of the rounds in our experiment and1074

present the case study to illustrate the differences1075

between PBA and PBA-Param, as shown in Fig. 9.1076

We can see that PBA-Param cannot distinguish the1077

malicious client as the distances of distribution of1078

the update of attention layer parameters between1079

different clients are quite fixed, while our methods1080

can detect the malicious client clearly, demonstrat-1081

ing the importance of analyzing a smaller amount1082

of parameters for precision.1083
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