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Abstract

Best Arm Identification (BAI) algorithms are deployed in data-sensitive applica-
tions, such as adaptive clinical trials or user studies. Driven by the privacy concerns
of these applications, we study the problem of fixed-confidence BAI under global
Differential Privacy (DP) for Bernoulli distributions. While numerous asymptot-
ically optimal BAI algorithms exist in the non-private setting, a significant gap
remains between the best lower and upper bounds in the global DP setting. This
work reduces this gap to a small multiplicative constant, for any privacy budget ϵ.
First, we provide a tighter lower bound on the expected sample complexity of any
δ-correct and ϵ-global DP strategy. Our lower bound replaces the Kullback–Leibler
(KL) divergence in the transportation cost used by the non-private characteristic
time with a new information-theoretic quantity that optimally trades off between
the KL divergence and the Total Variation distance scaled by ϵ. Second, we intro-
duce a stopping rule based on these transportation costs and a private estimator
of the means computed using an arm-dependent geometric batching. En route to
proving the correctness of our stopping rule, we derive concentration results of
independent interest for the Laplace distribution and for the sum of Bernoulli and
Laplace distributions. Third, we propose a Top Two sampling rule based on these
transportation costs. For any budget ϵ, we show an asymptotic upper bound on
its expected sample complexity that matches our lower bound to a multiplicative
constant smaller than 8. Our algorithm outperforms existing δ-correct and ϵ-global
DP BAI algorithms for different values of ϵ.

1 Introduction

The stochastic Multi-Armed Bandit (MAB) is an interactive sequential decision-making
model [Bubeck et al., 2012; Lattimore and Szepesvári, 2020], introduced by William R. Thomp-
son [Thompson, 1933]. Thompson’s motivation for studying MABs is to design clinical trials that
adapt treatment allocations on the fly as the medicines appear more or less effective. Specifically, in
MABs, a learner interacts with K ∈ N unknown probability distributions, referred to as arms. In
clinical trials, the arms are the candidate medicines, while the observations are patient reactions, 1 if
the patient is cured and 0 otherwise. The learner aims to identify the arm with the highest average
efficiency, i.e., the medicine that cures most patients in expectation. Given a fixed error δ ∈ (0, 1),
Best Arm Identification (BAI) [Audibert and Bubeck, 2010b; Jamieson and Nowak, 2014] algorithms
in the fixed confidence setting [Even-Dar et al., 2006; Gabillon et al., 2012; Garivier and Kaufmann,
2016] suggest a candidate answer that coincides with the optimal arm with probability more than
1− δ, while using as few samples as possible.

BAI algorithms have been increasingly deployed in data-sensitive applications, such as adaptive clini-
cal trials [Thompson, 1933; Robbins, 1952; Aziz et al., 2021], pandemic mitigation [Libin et al., 2019],
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user studies [Losada et al., 2022], crowdsourcing [Zhou et al., 2014], online advertisement [Chen
et al., 2014], hyperparameter tuning [Li et al., 2017], and communication networks [Lindståhl et al.,
2022], to name a few. Due to the adaptive nature of these procedures, critical data privacy concerns
are raised [Tucker et al., 2016], as exemplified by the adaptive dose finding trial. For each new patient
n, a physician chooses a dose level an ∈ [K] := {1, · · · ,K} based on previous observations, and
collects a binary observation measuring the effect of the selected dose on the patient. Crucially, the
patients’ reactions might reveal information regarding their health. Subsequently, these outcomes will
guide the physician’s decision for future patients. Eventually, the physician adaptively decides to stop
the trial and recommends a dose âτδ after collecting τδ samples, referred to as sample complexity.
Even if those outcomes are kept secret, the experimental findings and protocol are detailed thoroughly
to the health authorities. This report contains the sequence of chosen dose levels (an)n≤τδ and the
recommended dose level âτδ , both indirectly leaking information regarding the patients involved in
the trial. This example underscores the need for privacy-preserving fixed-confidence BAI algorithms.

We adopt the Differential Privacy (DP) framework [Dwork and Roth, 2014], which bounds the
influence of any single data point. Given a privacy budget ϵ, we consider the ϵ-global DP constraint
that assumes the existence of a trusted curator (e.g., the physician running the clinical trial), who
observes the outcomes and ensures privacy when publishing these findings. While ϵ-global DP is
well-studied in regret minimization [Mishra and Thakurta, 2015; Azize and Basu, 2022; Azize et al.,
2025], its impact on fixed-confidence BAI is less understood [Sajed and Sheffet, 2019; Kalogerias
et al., 2021]. A significant gap remains between the existing lower and upper bounds [Azize et al.,
2023, 2024]. This paper reduces this gap to a small constant for any privacy budget ϵ. Appendix C.1
contains a detailed literature review.

Contributions. Our contributions for fixed-confidence BAI under ϵ-global DP are threefold.

1. Lower bound under global DP. We derive a novel information-theoretic lower bound on the
expected sample complexity of any δ-correct and ϵ-global DP BAI algorithms (Theorem 2). Our lower
bound replaces the Kullback-Leibler (KL) divergence in the transportation cost of the non-private
characteristic time with an information-theoretic quantity dϵ (Eq. (1)) that smoothly interpolates
between the KL divergence and the Total Variation (TV) distance scaled by ϵ.

2. Private estimator and Generalized Likelihood Ratio (GLR) stopping rule. We introduce a
private estimator using arm-dependent geometric batching without forgetting and a GLR stopping
rule based on the dϵ refined transportation costs. Its correctness (Theorem 6) required novel tails
concentration results for Laplace distributions and the sum of Bernoulli and Laplace distributions,
which could be of independent interest.

3. Asymptotically optimal algorithm. We propose a new Top Two sampling rule (DP-TT, Al-
gorithm 1) based on the dϵ-transportation costs suggested by our lower bound. We show that the
asymptotic expected sample complexity of DP-TT matches our lower bound for any privacy budget ϵ
up to a constant smaller than 8 (Theorem 7). DP-TT outperforms all the other δ-correct ϵ-global DP
BAI algorithms on all tested instances and all ϵ.

2 Background: Best Arm Identification under Differential Privacy

In this section, we present the Best Arm Identification (BAI) under fixed confidence problem [Garivier
and Kaufmann, 2016], introduce the Differential Privacy (DP) [Dwork et al., 2006] constraint, and
finally extend DP to BAI algorithms.

BAI under Fixed Confidence. Let F := {Ber(p) | p ∈ (0, 1)} be the set of Bernoulli distributions.
A bandit instance ν := (νa)a∈[K] ∈ FK is characterized by its means µ := (µa)a∈[K] ∈ (0, 1)K .
The best (optimal) arm a⋆ is assumed to be unique, i.e., a⋆(ν) = a⋆(µ) := argmaxa∈[K] µa = {a⋆}.
Let δ ∈ (0, 1) be the risk parameter. A fixed confidence BAI algorithm π specifies three rules that
rely on previously observed samples and some exogenous randomness. The sampling rule determines
the next arm to pull an ∈ [K] for which Xn,an ∼ νan is observed. The recommendation rule
recommends a candidate arm ã ∈ [K]. The stopping rule decides when to stop collecting additional
samples and output the current candidate arm. The stopping time τϵ,δ is the sample complexity. Let
Pνπ and Eνπ denote the probability and expectation taken over the randomness of the observations
from ν and the algorithm π (e.g., due to its privacy mechanism). A fixed-confidence BAI algorithm
π is δ-correct when Pνπ(τϵ,δ < +∞, ã /∈ a⋆(ν)) ≤ δ for all ν ∈ FK .
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Differential Privacy (DP). An algorithm satisfies the Differential Privacy constraint if the algorithm’s
outputs are “essentially” equally likely to occur, for any two input datasets that only differ in one
individual’s data. An adversary only observing the mechanism’s output cannot distinguish whether any
individual’s data was included. A privacy budget ϵ captures the closeness of the output distributions.
Smaller ϵ means stronger privacy.
Definition 1 (ϵ-DP [Dwork et al., 2006]). A mechanismM satisfies ϵ-DP for a given ϵ ≥ 0, if, for all
neighboring datasets D ∼ D′, where D ∼ D′ if and only if dHam(D,D

′) :=
∑T

t=1 1 {Dt ̸= D′
t} ≤

1, i.e.,D andD′ differ by at most one record, and for all sets of outputO ⊆ Range(M), Pr[M(D) ∈
O] ≤ eϵ Pr [M (D′) ∈ O] where the probability space is over the coin flips of the mechanismM.

To ensure ϵ-DP, the Laplace mechanism [Dwork et al., 2010; Dwork and Roth, 2014] adds calibrated
Laplacian noise to the algorithm’s output. Let Lap(b) be the Laplace distribution with mean/variance
(0, 2b2).

Theorem 1 (Laplace mechanism, Theorem 3.6 [Dwork and Roth, 2014]). Let f : X → Rd be an
algorithm with sensitivity s(f) ≜ max

D,D′ s.t dHam(D,D′)=1
∥f(D)− f(D′)∥1, where ∥·∥1 is the ℓ1 norm.

Let (Zi)i∈[d] be i.i.d. from Lap(s(f)/ϵ), then the noisy output f(D) + (Zi)i∈[d] satisfies ϵ-DP.

To be consistent with the literature on private bandits, we use global DP to denote the central DP
model with a trusted central decision maker. While the notation δ is standard in the (ϵ, δ)-DP
relaxation of the (ϵ, 0)-DP constraint considered in this paper, we use δ for the confidence parameter
to be consistent with the literature on pure exploration problems.

DP for BAI. In BAI algorithms, the private input is the observation dataset and the output is the
recommended candidate arm ã and the sequence of sampled actions (an)n<τϵ,δ until stopping at τϵ,δ .
Let R = {r1, . . . } be a sequence of private observations. Given a fixed sequence of observations R,
we denote by Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))] the probability that the BAI algorithm π stops at
step T + 1, recommending action ã and sampling actions (a1, . . . , aT ) when interacting with R. The
randomisation in this probability comes only from the BAI algorithm’s sampling, recommendation
and stopping rules, whereas the observations are fixed. Then, a BAI algorithm π is said to be ϵ-global
DP if, for every two neighboring sequences of observations R and R′, and for every possible stopping
time, recommendation and sampled actions (T + 1, ã, (a1, . . . , aT )), we have that

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))] ≤ eϵ Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))] .

Main Goal: Design ϵ-global DP δ-correct BAI algorithms, with the smallest sample complexity τϵ,δ .

Notation. Let [x]10 := max{0,min{1, x}} be the clipping operator to [0, 1]. Let 1 (·) be the indicator
function. For two probability distributions P and Q on the measurable space (Ω,G), the Total Variation
(TV) distance is TV (P ∥ Q) := supA∈G{P(A)−Q(A)} and the Kullback-Leibler (KL) divergence

is KL (P ∥ Q) :=
∫
log
(

dP
dQ (ω)

)
dP(ω), when P≪ Q, and +∞ otherwise. The KL divergence and

TV distance between two Bernoulli distributions with means (p, q) ∈ (0, 1)2 are the relative entropy
denoted by kl, i.e., KL (Ber(p) ∥ Ber(q)) = kl(p, q) := p log(p/q) + (1− p) log((1− p)/(1− q)),
and the absolute mean difference, i.e., TV (Ber(p) ∥ Ber(q)) = |p − q|. Let △K := {w ∈ RK |
w ≥ 0,

∑
a∈[K] wa = 1} be the probability simplex of dimension K − 1. For all a ∈ [K], let

Nn,a :=
∑

t∈[n−1] 1 (at = a) be the global pulling count of arm a before time n.

3 Lower Bound on the Expected Sample Complexity

In order to be δ-correct, an algorithm has to be able to distinguish ν from alternative instances with
different best arms, i.e., an instance κ ∈ Alt(ν) := {κ ∈ FK | a⋆(κ) ̸= a⋆(ν)}. On the other
hand, being ϵ-global DP forces an algorithm to have similar behaviour on similar instances. The
interplay between the stochasticity of the bandit instance, controlled with the KL divergence, and the
stochasticity of the privacy mechanism, controlled with the TV distance, is smoothly captured by

dϵ(ν, κ) := inf
φ∈F
{ϵ · TV (ν ∥ φ) + KL (φ ∥ κ)} , (1)

recently introduced by Azize et al. [2025] for ϵ-global DP regret minimization. The dϵ divergence
measures the shortest two-parts path between the two distributions ν and κ, by finding the best
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intermediate distribution φ ∈ F . The cost of moving from ν to φ is measured with the TV distance
rescaled by ϵ, while it is measured with the KL divergence when moving from φ to κ.

The tension between the δ-correct and ϵ-global DP constraints yields the following problem-dependent
non-asymptotic lower bound on the expected sample complexity Eνπ[τϵ,δ] for any algorithm π on
any instance ν, holding for any values of ϵ and δ.
Theorem 2. Let (ϵ, δ) ∈ R⋆

+ × (0, 1). For any algorithm π that is δ-correct and ϵ-global DP on FK ,

Eνπ[τϵ,δ] ≥ T ⋆
ϵ (ν) log(1/(3δ))

for all ν ∈ FK with unique best arm. The inverse of the characteristic time T ⋆
ϵ (ν) is defined as

T ⋆
ϵ (ν)

−1 := sup
w∈△K

inf
κ∈Alt(ν)

K∑
a=1

wadϵ(νa, κa) . (2)

Comments. (a) The characteristic time in the lower bound is the value of a two-player zero-sum
game between a MIN player, who plays instances κ close of ν is order to confuse the MAX player,
who in order plays an arm allocation w ∈ △K to distinguish between ν and κ.

(b) The crucial part in characteristic times similar to Eq. (2) is finding the “right” measure capturing
the “distinguishability” between instances. In the non-private lower bounds, this is captured by the
KL divergence for parametric distributions [Garivier and Kaufmann, 2016] and by the Kinf (i.e.,
inf KL under mean constraint) for non-parametric distributions [Agrawal et al., 2020]. In the DP
lower bounds of Azize et al. [2023], it is captured by min{KL, ϵTV}. In Theorem 2, it is captured
by dϵ (as in Eq. (1)) that smoothly interpolates between KL and TV. Azize et al. [2025] recently
introduced dϵ for ϵ-global DP regret minimization. Our results show that dϵ also tightly captures
the hardness of fixed-confidence BAI under ϵ-global DP. Namely, our DP-TT algorithm achieves a
matching upper bound when δ → 0 (up to a constant smaller than 8), for all instances with distinct
means and all values of ϵ.

(c) Azize et al. [2023, Theorem 2] provides a lower bound on the sample com-
plexity of any ϵ-global δ-correct algorithm, where the inverse characteristic time is
supw∈△K

infκ∈Alt(ν) min{
∑K

a=1 waKL (νa ∥ κa) , 6ϵ
∑K

a=1 waTV (νa ∥ κa)}. The lower bound
of Theorem 2 is strictly tighter than that of Theorem 2 in [Azize et al., 2023], for all instances ν and
values of ϵ. The reason is that dϵ(P,Q) ≤ min{KL(P,Q), ϵTV(P,Q)} for any two distributions.

(d) The lower bound of Theorem 2 suggests the existence of two privacy regimes, depending on
the value of ϵ and the instance ν. Specifically, when ϵ is big, dϵ reduces to the KL, and we retrieve
the classic non-private lower bound. On the other hand, as ϵ→ 0, dϵ reduces to ϵ TV, and the char-

acteristic time reduces to 1
ϵT

⋆
TV(ν) := 1

ϵ

(
supw∈△K

infκ∈Alt(ν)

∑K
a=1 waTV (νa ∥ κa)}

)−1

=

1
ϵ

∑k
a=1

1
∆a

, where ∆a = µ⋆ − µa for a ̸= a⋆ and ∆a⋆ = mina̸=a⋆ ∆a . This improves the high
privacy regime lower bound of prior work by a factor 6. Also, the value of ϵ at which the privacy
regimes change can be tightly specified, which we quantify for Bernoulli instances in the following.

Proof Sketch and Techniques. The proof uses the standard reduction to hypothesis testing [Garivier
and Kaufmann, 2016], using the data-processing inequality. The asymptotic techniques used by Azize
et al. [2025] for regret cannot be adapted for our non-asymptotic lower bound. Thus, new techniques
are needed. The main technical novelty of the proof is a tighter quantification of the “similar”
behaviour of a DP mechanism when applied to stochastic datasets. Specifically, letM be an ϵ-DP
mechanism. Given two data-generating distributions P and Q, letting MP,M (resp. MQ,M) be the
marginal over outputs of the mechanism when the input dataset is generated through P (resp. Q),
then we show that

KL (MP,M ∥MQ,M) ≤ inf
L

{
ϵ inf
CP,L

{
ED,D′∼CP,L [dHam(D,D

′)]
}
+KL (L ∥ Q)

}
,

where the first infimum is over all distributions L on the input space, and the second infimum is
an optimal transport problem over all couplings between P and L, where the cost is the Hamming
distance (introduced in Definition 1). This bound of general interest could be applied to get tighter
lower bounds in any DP application using stochastic inputs. For product and bandit distributions, we
solve the optimal transport using maximal couplings, where the Total Variation naturally appears,
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while keeping the first infimum unchanged, giving rise to the dϵ quantity. Finally, plugging the new
upper bound on the KL in the hypothesis reduction concludes the sample complexity lower bound
proof. A detailed proof and discussion of all these claims is given in Appendix D.

Transportation Costs Based on Signed Divergences. In non-parametric BAI, the ordering between
the mean parameters is captured by a signed Kinf [Jourdan et al., 2022]. We adopt this convention by
introducing a signed divergences: d+ϵ and d−ϵ defined in Lemma 3 on means rather than probability
distributions, where d±ϵ refers to both of them. Given (κ, ν) ∈ F2 with means (λ, µ) ∈ (0, 1)2, they
satisfy dϵ(κ, ν) = d+ϵ (λ, µ) when µ > λ, and dϵ(κ, ν) = d−ϵ (λ, µ) otherwise (Lemma 22).

Lemma 3. For all x ∈ [0, 1], let us define g−ϵ (x) :=
xeϵ

x(eϵ−1)+1 and g+ϵ (x) := 1 − g−ϵ (1 − x) =
(g−ϵ )

−1(x). For all (λ, µ) ∈ R× [0, 1], the signed divergences are defined as

d+ϵ (λ, µ) := 1
(
µ > [λ]10

)
inf

z∈[[λ]10,µ]

{
kl(z, µ) + ϵ(z − [λ]10)

}
=


0 if µ ∈ [0, [λ]10]

− log (1− µ(1− e−ϵ))− ϵ[λ]10 if µ ∈ (g−ϵ ([λ]
1
0), 1]

kl (λ, µ) if λ ∈ (0, 1) and µ ∈ ([λ]10, g
−
ϵ ([λ]

1
0)]

,

d−ϵ (λ, µ) := 1
(
µ < [λ]10

)
inf

z∈[µ,[λ]10]

{
kl(z, µ) + ϵ([λ]10 − z)

}
= d+ϵ (1− λ, 1− µ) . (3)

When two distributions are close enough compared to the privacy ϵ, the signed divergences reduce to
the KL divergence: the indistinguishability due to the stochasticity of the instance is stronger than the
indistinguishability due to DP. The function g−ϵ (resp. g+ϵ ) represents the maximal (resp. minimal)
mean for which this property hold for d+ϵ (resp. d−ϵ ).

For (µ,w) ∈ RK × RK
+ , the transportation cost of the pair of arms (a, b) ∈ [K]2 is defined as

Wϵ,a,b(µ,w) := 1
(
[µa]

1
0 > [µb]

1
0

)
inf

u∈[0,1]

{
wad

−
ϵ (µa, u) + wbd

+
ϵ (µb, u)

}
. (4)

The signed divergences d±ϵ and the transportation costs (Wϵ,a,b)(a,b)∈[K]2 satisfy all the desired
properties required to study BAI algorithms based on the empirical version of Wϵ,a,b (see Lem-
mas 23, 24, 25 and 26, as well as Lemmas 35, 36, 37 and 38), e.g., symmetry, explicit formula,
monotonicity, strict convexity, etc.

Properties of the Characteristic Time and Optimal Allocation. The set w⋆
ϵ (ν) of optimal alloca-

tions is the maximizer of the outer supremum on△K that defines T ⋆
ϵ (ν)

−1 in Eq. (2). Theorem 4
gathers key properties satisfied by T ⋆

ϵ (ν) and w⋆
ϵ (ν), for Bernoulli distributions. See lemmas proven

in Appendix G, i.e., Lemmas 36, 43 and 47.
Theorem 4. Let ν ∈ FK having means µ ∈ (0, 1)K with unique best arm a⋆. Then, we have

T ⋆
ϵ (ν)

−1 = max
w∈△K

min
a̸=a⋆

Wϵ,a⋆,a(µ,w) and T ⋆
ϵ (ν) ≥

∑
a∈[K]

∆−1
ϵ,a . (5)

where ∆ϵ,a⋆ := mina ̸=a⋆ d−ϵ (µa⋆ , µa) and ∆ϵ,a := d+ϵ (µa, µa⋆) for all a ̸= a⋆. The optimal
allocation is unique, has dense support and ensures the equality of the transportation costs with
T ⋆
ϵ (ν)

−1 (i.e., information balance equation), namely w⋆
ϵ (ν) = {w⋆

ϵ }, mina∈[K] w
⋆
ϵ,a > 0 and

Wϵ,a⋆,a(µ,w
⋆
ϵ ) = T ⋆

ϵ (ν)
−1 for all a ̸= a⋆.

In Garivier and Kaufmann [2016], the characteristic time and its optimal allocation can be computed
with a simpler optimisation problem. A simpler optimization problem can also be solved to compute
T ⋆
ϵ (ν) and w⋆

ϵ (ν) explicitly (Lemma 47).

Allocation Dependent Low Privacy Regime. Let (µ,w, a, b) ∈ (0, 1)K × RK
+ × [K]2 such that

µa > µb and min{wa, wb} > 0. The non-private Bernoulli transportation costs [Garivier and
Kaufmann, 2016] are defined as

Wa,b(µ,w) := wakl(µa, µ
w
a,b) + wbkl(µb, µ

w
a,b) with µw

a,b :=
waµa + wbµb

wa + wb
.

We provide an allocation-dependent low-privacy condition that depends on (ϵ, µ, w) (Lemma 45),
i.e., Wϵ,a,b(µ,w) =Wa,b(µ,w) is implied by

µa − µb ≤ (1− e−ϵ)min
{
(1 + wa/wb)µag

−
ϵ (1− µa), (1 + wb/wa) (1− µb)g

−
ϵ (µb)

}
. (6)
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Plugging w⋆
ϵ from Theorem 4 in Eq. (6) would give an implicit condition on (ϵ, µ) under which the

non-private characteristic time T ⋆(ν) for Bernoulli distributions is recovered, i.e., T ⋆
ϵ (ν) = T ⋆(ν).

From a privacy-utility tradeoff perspective, the choice of ϵ that provides the highest privacy protection
while maintaining a low sample complexity is exactly this change-of-regime ϵ, depending on the
unknown µ. A weaker (yet explicit) allocation-independent sufficient condition for T ⋆

ϵ (ν) = T ⋆(ν)

is ϵ ≥ maxa ̸=a⋆ ϵa⋆,a where ϵa,b := log
(

µa(1−µb)
µb(1−µa)

)
.

4 Generalized Likelihood Ratio Stopping Rule

Designing appropriate recommendation and stopping rules for the BAI problem can be framed as a
sequential hypothesis testing task with multiple hypotheses {µa = maxb∈[K] µb}. One of the earliest
approaches to active hypothesis testing—where data collection is also optimized—was introduced
by Chernoff [1959], who advocated for the use of Generalized Likelihood Ratio (GLR) tests for
stopping decisions. This methodology is also popular in the context of BAI [Garivier and Kaufmann,
2016]. Despite its relevance, fewer works attempted to extend it for private sequential hypothesis
testing, see, e.g., Zhang et al. [2022] under Rényi DP and Azize et al. [2024] under ϵ-local and
ϵ-global DP.

Mean Estimator. Three rules need to be specified to define a BAI algorithm: recommendation,
sampling, and stopping rules. An important remark in designing BAI algorithms is that the dependence
of these rules on the private input observation dataset comes solely through the sequence of mean
estimators. Thus, designing a sequence of mean estimators that satisfy DP is crucial when defining a
ϵ-global DP BAI algorithm. To estimate the sequence of means, defined in Lines 5-8 of Algorithm 1,
we rely on two ingredients: adaptive arm-dependent episodes with a geometric update grid and the
Laplace mechanism. We call this mechanism estimating the sequence of means the Geometric Private
Estimator, i.e., GPEη(ϵ). Most notably, we eliminate “observation forgetting” from GPEη(ϵ), an
important design choice made in all past BAI algorithms Sajed and Sheffet [2019]; Azize et al. [2023,
2024]. Specifically, for some η > 0 called the geometric grid parameter, GPEη(ϵ) estimates the
noisy means in arm-dependent phases: a phase changes when the counts of an arm has increased
multiplicatively by 1 + η (Line 5). Then, GPEη(ϵ) only updates the mean of the arm that changed
phases, by accumulating the observations collected from its last phase and adding Laplace noise
(Line 7). Due to this accumulation step, we do not forget the observations from past phases.
Thus, each estimated noisy mean µ̃n,a in Line 7 contains Ñn,a i.i.d. observations from νa and
kn,a ≈ log1+η Ñn,a i.i.d. observations from Lap(1/ϵ). In contrast, using forgetting produces a noisy
mean that contains fewer i.i.d. observations from νa (e.g. Ñn,a/2 samples for forgetting with η = 1),
but only one Laplace noise. While removing forgetting allows us to keep more signal, i.e., more i.i.d
samples from νa, we need more noise, i.e., the cumulative sum of Lap(1/ϵ), which is logarithmic in
the number of samples from νa. Tighter concentration inequalities allow controlling the cumulative
sum of Laplace noise. See below for a detailed discussion about our novel concentration results. As
long as the number of samples from the Lap(1/ϵ) is logarithmic in the number of samples from νa,
the effect of noise on the sample complexity is similar to having only one additional Laplace noise.

Privacy Analysis. By adaptive post-processing, the following lemma is proved naturally for any ϵ.

Lemma 5. Any BAI algorithm using only GPEη(ϵ) to access observations is ϵ-global DP on [0, 1].

Proof Sketch. The proof combines two steps. First, we show that the sequence of mean estimators
produced by GPEη(ϵ) is ϵ-DP. The crucial observation is that a change in one observation only affects
the partial sum collected in just one arm-phase. By the Laplace mechanism, adding one Lap(1/ϵ) to
the partial sum is enough to make it ϵ-DP. Then, by post-processing, the sequence of accumulated
partial sums (S̃kn,a,a) and noisy means (µn,a) (Line 7) are also ϵ-DP. The second step shows how to
use the sequential nature of the process and adaptive post-processing to conclude that BAI algorithms
using only GPEη(ϵ) are ϵ-global DP. The detailed proof is in Appendix E.

Recommendation Rule. The recommendation rule ãn is defined as the arm with the highest clipped
noisy empirical mean, i.e., ãn ∈ argmaxa∈[K][µ̃n,a]

1
0 where ties are broken uniformly at random.

GLR Stopping Rule. The GLR stopping rule runs K sequential GLR tests in parallel, and stops as
soon as one of these tests can reject the null hypothesis. When comparing the recommendation ãn
with an alternative arm a, the GLR statistic is defined as the transportation cost Wϵ,ãn,a evaluated
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empirically at (µ̃n, Ñn) (see Eq. (4)). Intuitively,Wϵ,ãn,a(µ̃n, Ñn) represents the amount of empirical
evidence to reject the hypothesis that arm a has a higher mean than ãn. One can stop and recommend
ãn when all these statistics exceed a given stopping threshold. Given a privacy budget and risk
(ϵ, δ) ∈ R⋆

+ × (0, 1) and a stopping threshold c : N× R⋆
+ × (0, 1)→ R+, we define

τϵ,δ = inf{ n | ∀a ̸= ãn, Wϵ,ãn,a(µ̃n, Ñn) > c(Ñn,ãn , ϵ, δ) + c(Ñn,a, ϵ, δ) } . (7)

Given its proximity to the characteristic time T ⋆
ϵ (ν), see Eq. (5) (Theorem 4), the GLR stopping rule

is a good candidate to match the lower bound, i.e., if one could sample arms according to w⋆
ϵ (ν) and

use the stopping threshold log(1/δ). Unfortunately, this threshold is too good to be δ-correct and
w⋆

ϵ (ν) should be estimated as it is unknown (Section 5).

Calibration of the Stopping Threshold. Regardless of the sampling rule, the stopping threshold
should ensure δ-correctness of the GLR stopping rule for any pair (ϵ, δ), see Theorem 6.

Theorem 6. Let (ϵ, δ, η) ∈ R⋆
+ × (0, 1) × R⋆

+. Let s > 1, ζ be the Riemann ζ function and
W−1(x) = −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch of the Lambert
W function, satisfying W−1(x) ≈ x + log x (Lemma 52). Given any sampling rule using the
GPEη(ϵ), using the GLR stopping rule as in Eq. (7) with the GPEη(ϵ) and the stopping threshold
c(n, ϵ, δ) := c1(n, δ) + c2(n, ϵ) where

c1(n, δ) =W−1 (log (Kζ(s)/δ) + s log(kη(n)) + 3− log 2)− 3 + log 2 , (8)
c2(n, ϵ) = kη(n) (log (1 + 2ϵn/kη(n)) + 1) with kη(x) := 1 + log1+η x ,

yields a δ-correct and ϵ-global DP algorithm for all Bernoulli instances with a unique best arm.

The proof of Theorem 6 builds on novel concentration results of independent interest (Appendix F.2).
Our explicit instance-independent upper bounds are pivotal to derive the stopping threshold in Eq. (8),
which avoids the large instance-dependent constants used in the regret minimisation literature [Azize
et al., 2025].

Concentration Results. First, we give tail bounds for the cumulative sum of i.i.d. Laplace observa-
tions (Lemma 16). We use Chernoff’s method with the convex conjugate of the moment generating
function of Lap(1/ϵ), hence improving on Azize et al. [2025, Lemma 18] that approximates it.
Second, we derive tail bounds for the sum between independent cumulative sums of t i.i.d. Bernoulli
and nt i.i.d. Laplace observations (Lemmas 18 and 19). They involve the modified signed divergences
d̃±ϵ that better capture the non-asymptotic tails behaviour, and are equivalent to d±ϵ to an additive
term Θ(log(1 + 2ϵrt)/rt) where rt := t/nt (Lemma 30). Whenever rt → +∞, we recover the
same noise effect as adding only one Lap(1/ϵ) observation. For x > 0, the exponential decrease
of the probability of exceeding µ + x (resp. being lower than µ − x) scales as td̃−ϵ (µ + x, µ, rt)

(resp. td̃+ϵ (µ− x, µ, rt)). The proof builds on fine-grained tail bounds of the sum of two independent
random variables, i.e., we bound those probabilities by the maximal product between their respective
survival functions (Lemma 10). While Azize et al. [2025, Lemma 19] directly integrates their tail
bounds, Lemma 12 can be used with any tail bounds. Third, we obtain time-uniform upper tail
bounds for Ñn,ad̃

±
ϵ (µ̃n,a, µa, Ñn,a/kn,a) by exploiting the geometric-grid update of (µ̃n, Ñn, kn).

Threshold Scaling. The threshold c1 in Eq. (8) ensures δ-correctness of the modified GLR
stopping rule, defined in Appendix F.1 with the modified transportation costs W̃ϵ,a,b and diver-
gences d̃±ϵ (Appendix F.1). Independent of ϵ, it scales as log(1/δ) + Θ(log log(1/δ)) when
δ → 0 and Θ(log log(n)) when n → +∞. The threshold c2 in Eq. (8) is an upper bound on
Ñn,a(d

±
ϵ (µ̃n,a, µa)− d̃±ϵ (µ̃n,a, µa, Ñn,a/kn,a)) (Lemma 30) that scales as Θ(ϵn) when ϵ→ 0 and

as Θ((log n)2) when n→ +∞. Both c1 and c2 scales as Θ(1/ log(1 + η)) when η → 0.

Limitation. As the threshold in Eq. (7) is the sum of per-arm thresholds, it scales as 2 log(1/δ) when
δ → 0, hence incurs a suboptimal factor 2 asymptotically. Obtaining a threshold in log(1/δ) is left
for future work. It requires controlling the re-weighted sum of modified divergences d̃±ϵ . Azize
et al. [2023, Theorem 4] has a suboptimal factor 2 for the same reason and incurs an additive factor
1

nϵ2 log(1/δ)
2 due to the separate control of the Laplace and the Bernoulli observations (based on

sub-Gaussian concentration results). Azize et al. [2024, Lemma 18] alleviates this factor 2 in their
low privacy regime, yet it also pays 1

nϵ2 log(1/δ)
2.
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Algorithm 1 Differentially Private Top Two (DP-TT) Algorithm.

1: Input: setting parameters (ϵ, δ) ∈ R⋆
+×(0, 1), algorithmic hyperparameters (η, β) ∈ R⋆

+×(0, 1)
and threshold c, e.g., (η, β) = (1, 1/2) and c as in Eq. (8). (Wϵ,a,b)(a,b)∈[K] as in Eq. (4).

2: Output: Stopping time τϵ,δ , recommendation ãτϵ,δ and pulling history (an)n<τϵ,δ .
3: Initialization: For all a ∈ [K], pull arm a, observe Xa,a ∼ νa and draw Y1,a ∼ Lap(1/ϵ). Set
n = K + 1. For all a ∈ [K], set S̃n,a = Xa,a + Y1,a, kn,a = 1, T1(a) = n, Nn,a = Ñn,a = 1,
µ̃n,a = S̃n,a/Ñn,a, Ln,a = 0 and Na

n,a = 0.
4: for n ≥ K + 1 do
5: if there exists a ∈ [K] such that Nn,a ≥ (1 + η)kn,a then ▷ Per-arm geometric update grid
6: For this arm a, change phase kn,a ← [ kn,a + 1, and (Tkn,a(a), Ñn,a) = (n,NTkn,a (a),a

);

7: Set S̃kn,a,a =
∑Tkn,a (a)−1

t=Tkn,a−1(a)
Xt,a1 (at = a) + Ykn,a,a + S̃kn,a−1,a with Ykn,a,a ∼

Lap(1/ϵ), and update the mean µ̃n,a = S̃kn,a,a/Ñn,a;
8: end if
9: Set ãn ∈ argmaxa∈[K][µ̃n,a]

1
0; ▷ Recommendation rule

10: if Wϵ,ãn,a(µ̃n, Ñn) >
∑

b∈{ãn,a} c(Ñn,b, ϵ, δ) for all a ̸= ân then ▷ GLR stopping rule
11: return (n, ãn, (at)t<n).
12: end if
13: Set Bn = ãn and Cn ∈ argmina̸=Bn

{Wϵ,Bn,a(µ̃n, Nn) + logNn,a}; ▷ EB-TCI
14: Set an = Bn if NBn

n,Bn
≤ βLn+1,Bn

, and an = Cn otherwise; ▷ β-tracking
15: Pull an, observe and store Xn,an

∼ νan
;

16: Update (Nn+1,an
, Ln+1,Bn

, NBn

n+1,Bn
) = (Nn,an

, Ln,Bn
, NBn

n,Bn
) + (1, 1,1 (Bn = an));

17: end for

5 Top Two Sampling Rule

Equipped with a recommendation and stopping rules, we define a sampling rule using the GPEη(ϵ).
Within the fixed-confidence BAI literature, we adopt the Top Two approach [Russo, 2016; Qin
et al., 2017; Shang et al., 2020; Jourdan et al., 2022] that recently received increased scrutiny due
to its good theoretical guarantees [Jourdan and Degenne, 2024; You et al., 2023; Jourdan et al.,
2024; Bandyopadhyay et al., 2024], competitive empirical performance, and low computational cost.
The Differentially Private Top Two (DP-TT) algorithm (Algorithm 1) uses the EB-TCI-β sampling
rule [Jourdan et al., 2022]. In Appendix I, we introduce the Track-and-Stop [Garivier and Kaufmann,
2016] and LUCB [Kalyanakrishnan et al., 2012] sampling rules for fixed-confidence BAI under
ϵ-global DP.

After initialization, a Top Two sampling rule specifies four choices [Jourdan, 2024]: a leader arm
Bn ∈ [K], a challenger arm Cn ∈ [K] \ {Bn}, a target allocation βn(Bn, Cn) ∈ [0, 1] and a
mechanism to choose the next arm to sample from, i.e., an ∈ {Bn, Cn} by using βn(Bn, Cn). The
leader should select a good estimator of the best arm a⋆. We use the empirical best (EB) leader
that coincides with our recommendation rule, i.e., Bn := ãn. The challenger should be a confusing
alternative arm, for which the empirical evidence that the leader has a better mean is low. We use
the TCI challenger [Jourdan et al., 2022] that penalizes oversampled challenger to foster implicit
exploration, i.e., Cn ∈ argmina̸=Bn

{Wϵ,Bn,a(µ̃n, Nn)+ logNn,a} where ties are broken uniformly
at random. Crucially, we leverage our novel transportation costs (Wϵ,Bn,a)a̸=Bn featuring the signed
divergences d±ϵ that are evaluated empirically at (µ̃n, Nn), see Eq. (3) and (4). The target should
be chosen to balance the allocation between the leader and the challenger arms. Let β ∈ (0, 1),
e.g., β = 1/2. We use a fixed β-design βn(Bn, Cn) := β. The mechanism to choose the next arm
to sample should enforce that this target is reached on average. We use K independent β-tracking
procedures (one per leader), i.e., an = Bn if NBn

n,Bn
≤ βLn+1,Bn

and an = Bn otherwise, where
Na

n,a =
∑

t∈[n−1] 1 ((Bt, at) = (a, a)) and Ln,a =
∑

t∈[n−1] 1 (Bt = a). Using Degenne et al.
[2020b, Theorem 6] for each tracking procedure yields −1/2 ≤ Na

n,a − βLn,a ≤ 1 for all a ∈ [K].
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Computational and Memory Cost. The GPEη(ϵ) sums the observations, and the recommendation
and GLR stopping rules are updated when an arm is updated. Using the closed-form formula for
Wϵ,a,b (Lemma 38), the per-iteration computational and global memory costs of DP-TT are O(K).

Asymptotic Upper Bound on the Expected Sample Complexity. Given a fixed target β, the
empirical allocation of a⋆ converges towards β, that differs from w⋆

ϵ,a⋆ . At best, we can estimate
the β-optimal allocation w⋆

ϵ,β(ν), i.e., maximizer of the inverse β-characteristic time T ⋆
ϵ,β(ν)

−1

defined as in Eq. (5) with the constraint wa⋆ = β. While being only nearly asymptotic optimal, i.e.,
T ⋆
ϵ (ν) = minβ∈(0,1) T

⋆
ϵ,β(ν), it satisfies T ⋆

ϵ,1/2(ν) ≤ 2T ⋆
ϵ (ν) (Lemma 44).

DP-TT is ϵ-global DP, δ-correct and matches T ⋆
ϵ (ν) to a small constant, for any privacy budget ϵ.

While Theorem 7 is an asymptotic upper bound for δ → 0, it holds for any ϵ.

Theorem 7. Let (ϵ, δ, η, β) ∈ R⋆
+× (0, 1)×R⋆

+× (0, 1) and c as in Eq. (8). The DP-TT algorithm is
ϵ-global DP, δ-correct and satisfies that, for any Bernoulli instance ν with distinct means µ ∈ (0, 1)K ,

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ 2(1 + η)T ⋆

ϵ,β(ν) .

Proof. The proof (Appendix H) builds on the unified analysis of Jourdan et al. [2022] and relies
heavily on the derived regularity properties for d±ϵ , (Wϵ,a,b)(a,b), T ⋆

ϵ,β(ν) and w⋆
ϵ,β(ν) (Appendix G).

For (η, β) = (1, 1/2), the asymptotic upper bound is 4T ⋆
ϵ,1/2(ν) ≤ 8T ⋆

ϵ (ν). For any privacy budget
ϵ, we reduced the gap between known lower and upper bounds for fixed-confidence BAI under
ϵ-global DP to a constant lower than 8, hence closing the open problem in Azize et al. [2024]. A
discussion on how to improve this constant is deferred to Appendix C.2. Since DP-TT enjoys good
empirical performance for moderate value of δ (Figure 1), adapting the non-asymptotic upper bound
in Jourdan et al. [2024] to the private setting is an interesting direction for future work.

Comparison with Azize et al. [2023, 2024]. AdaP-TT and AdaP-TT⋆ use the DAF(ϵ) estimator,
GLR-inspired recommendation/stopping rules and the TTUCB [Jourdan and Degenne, 2024] sampling
rule (i.e., UCB-TC-β [Jourdan, 2024]), all based on arm-dependent doubling, forgetting and unclipped
estimators. While AdaP-TT relies on the non-private Gaussian transportation costs, AdaP-TT⋆

accounts for a high privacy regime by clipping the mean gap, i.e., (µa − µb)+ min{3ϵ, (µa − µb)+}
instead of (µa − µb)

2. The AdaP-TT and AdaP-TT⋆ algorithms are ϵ-global DP and δ-correct. The
sample complexity of AdaP-TT only matches the high privacy lower bound for instances where the
means are of similar order. AdaP-TT⋆ improves on AdaP-TT by matching the high privacy lower
bound for all instances with distinct means. However, both AdaP-TT and AdaP-TT⋆ fail to match the
lower bound beyond the high-privacy regime, due to the use of non-adapted transportation costs. In
contrast, DP-TT uses the dϵ-inspired transportation costs, matching the lower bound up to a small
constant for all values of ϵ.

Comparison with Sajed and Sheffet [2019]. DP-SE [Sajed and Sheffet, 2019] is an ϵ-global
DP version of the Successive Elimination algorithm introduced for the regret minimisation setting,
modified by Azize et al. [2023] into a ϵ-global and δ-correct BAI algorithm. Compared to DP-TT,
DP-SE is less adaptive and not anytime, since it relies on uniform sampling within each phase and
the phase length depends explicitly on the risk δ. The high probability upper bound on the sample
complexity scales as O(

∑
a ̸=a⋆(∆a min{ϵ,∆a})−1) with ∆a = µa⋆ − µa. This matches the lower

bound when ϵ→ 0 (to a constant), but fails to recover the sample-complexity lower bound beyond
this regime.

6 Experiments

The empirical performance of DP-TT with (η, β) = (1, 1/2) is compared to AdaP-TT [Azize
et al., 2023], AdaP-TT⋆ [Azize et al., 2024], and DP-SE [Sajed and Sheffet, 2019] on different
Bernoulli instances for varying privacy budget, ranging from 0.001 to 125 (see Appendix J.1).
The first instance has means µ1 = (0.95, 0.9, 0.9, 0.9, 0.5) and the second instance has means
µ2 = (0.75, 0.7, 0.7, 0.7, 0.7). As a benchmark, we also compare to the non-private EB-TCI-β

9



10 3 10 2 10 1 100 101 102

Privacy Budget 

104

105

106

107

St
op

pi
ng

 T
im

e 
High Privacy Regime

Low Privacy Regime

EB-TCI
DP-SE
AdaP-TT
AdaP-TT*
DP-TT

10 3 10 2 10 1 100 101 102

Privacy Budget 

103

104

105

106

St
op

pi
ng

 T
im

e 

High Privacy Regime

Low Privacy Regime

EB-TCI
DP-SE
AdaP-TT
AdaP-TT*
DP-TT

Figure 1: Empirical stopping time τϵ,δ (mean±2 std) for δ = 10−2 with respect to the privacy budget
ϵ on Bernoulli instances (a) µ1 and (b) µ2. The vertical line separates the two privacy regimes.

algorithm with β = 1/2. For δ = 10−2, we run each algorithm 1000 times, and plot the averaged
empirical stopping times in Figure 1. Additional experiments are in Appendix J.

Figure 1 shows that DP-TT outperforms all the other δ-correct and ϵ-global DP BAI algorithms, for
different values of ϵ and in all the instances tested. The empirical performance of DP-TT demonstrates
two regimes. A high-privacy regime, where the stopping time depends on the privacy budget ϵ, and
a low privacy regime, where the performance of DP-TT is independent of ϵ, and requires twice
the number of samples used by the non-private EB-TCI-β. In Figure 1, the vertical lines are both
at ϵ = 0.45. We compare with our allocation-independent condition, i.e., maxa ̸=a⋆ ϵa⋆,a where

ϵa,b = log
(

µa⋆ (1−µa)
µa(1−µa⋆ )

)
. For µ2, we have ϵ1,a = 0.25 for all a ̸= 1 that is close to the empirical

separation. For µ1, we have ϵ1,5 = 2.94 and ϵ1,a = 0.75 for all a ∈ {2, 3, 4}. When an arm has a
significantly lower mean, an allocation-dependent condition, such as Eq. (6), is required to reflect
the empirical separation. Intuitively, an arm with a significantly lower mean will also be sampled
significantly less, hence there is a compounding effect.

7 Conclusion

Motivated by the privacy requirements of sensitive applications of BAI, we address the problem of
fixed-confidence BAI under ϵ-global DP. We narrow the gap between the lower and upper bounds on
the expected sample complexity to a multiplicative constant smaller than 8, for all ϵ values. Our novel
lower bound incorporates dϵ an information-theoretic quantity smoothly balancing KL divergence
and TV distance, scaled by ϵ. We design a private, arm-dependent geometric grid estimator without
forgetting and a GLR stopping rule based on the dϵ-transportation costs, whose correctness requires
novel concentration results for Laplace and mixed distributions. Finally, we proposed a Top Two
sampling rule that achieves an asymptotic upper bound matching our lower bound to a small constant.

We detailed research directions to further reduce the constant gap between the lower and upper bounds,
by improving both the calibration of the stopping threshold and the analysis of the sampling rule.
The most exciting direction for future work is to extend our results to other classes of distributions
(e.g., Gaussian or bounded distributions), structured settings (e.g., linear or unimodal), or other
identification problems (e.g., approximate BAI or Good Arm Identification). Another interesting
research direction is to extend the proposed technique to other variants of pure DP (e.g., (ϵ, δ)-DP or
Rényi DP [Mironov, 2017]) or other trust models (e.g., shuffle DP [Cheu, 2021; Girgis et al., 2021]).
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Justification: The figures in Section 6 and Appendix J report the empirical means over 1000
runs for each algorithm. The 2-sigma error bars are based on the standard deviation of the
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix J contains detailed information as regards the computational
ressources used for our experiments. The specific institutional cluster is omitted for the sake
of anonymity. Overall, our experiments are relatively computationally inexpensive, and they
could be run on a professional laptop.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: After reading it, we confirm that the research conducted in our paper complies
with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work addresses the ϵ-global Differential Privacy constraint for fixed-
confidence Best Arm Identification. Our algorithm can be deployed in data-sensitive
applications, such as adaptive clinical trials or user studies. Therefore, our paper can have a
significant positive societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our understanding, our paper doesn’t necessitate safeguards. Our
experiments use synthetic Bernoulli data and our algorithm satisfy the ϵ-global Differential
Privacy constraint.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our paper does not rely on existing assets. Our experiments use synthetic
Bernoulli data and our algorithm was implemented from scratch.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not introduce new assets. The code for our experiments is
provided as supplementary material, yet it does not constitute an asset per se.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our theoretical and empirical contributions do not involve LLMs.
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for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM


A Outline

The appendices are organized as follows:

• Notation are summarized in Appendix B.

• A detailed related work and an extended discussion is given in Appendix C.

• The lower bound on the expected sample complexity under ϵ-global DP (Theorem 2) is
proven in Appendix D.

• The proof of Lemma 5 is given in Appendix E.

• The proof of our concentration results are detailed in Appendix F. In particular, this includes
the proof of Theorem 6.

• Appendix G gathers key properties on the (resp. modified) divergence d±ϵ (resp. d̃±ϵ ), the
(resp. modified) transportation costs Wϵ,a,b (resp. W̃ϵ,a,b) and (resp. β-)characteristic times
T ⋆
ϵ (ν) (resp. T ⋆

ϵ,β(ν)) and their (resp. β-)optimal allocation w⋆
ϵ (ν) (resp. w⋆

ϵ,β(ν)). In
particular, this includes the proof of Theorem 4 based on Lemmas 43 and 47.

• The proof of the upper bound on the asymptotic expected sample complexity of DP-TT
(Theorem 7) is given in Appendix H.

• In Appendix I, we propose variants of algorithms to tackle ϵ-global DP BAI. We aim at
providing several choices for the interested practitioners.

• Implementation details and additional experiments are presented in Appendix J.

Table 1: Notation for the setting.

Notation Type Description

K N Number of arms
F ⊆ P([0, 1]) Class of Bernoulli distributions
νa F Bernoulli distribution of arm a ∈ [K]
ν FK Vector of Bernoulli distributions, ν := (νa)a∈[K]

µa (0, 1) Mean of arm a ∈ [K]
µ (0, 1)K Vector of means, µ := (µa)a∈[K]

a⋆(µ), a⋆(ν) ⊆ [K] Set of best arms, a⋆(ν) = a⋆(µ) := argmaxa∈[K] µa

a⋆ [K] Unique best arm, i.e., a⋆(µ) = {a⋆}
ϵ R⋆

+ Privacy budget for ϵ-global DP
δ (0, 1) Risk for δ-correctness

Alt(ν) ⊆ FK Alternative instances with different best arms

B Notation

We recall some commonly used notation: the set of integers [n] := {1, · · · , n}, the comple-
ment X∁ and interior X̊ of a set X , the indicator function 1 (X) of an event, the probabil-
ity Pνπ and the expectation Eνπ taken over the randomness of the observations from ν and
the algorithm π, Landau’s notation o, O, Ω and Θ, the (K − 1)-dimensional probability sim-
plex △K :=

{
w ∈ RK

+ | w ≥ 0,
∑

i∈[K] wi = 1
}

. The functions [x]10 := max{0,min{1, x}},
kη(x) := 1 + log1+η x, W−1 in Lemma 52, h in Eq. (31), r in Eq. (33), ζ is the Riemann ζ

function. Moreover, we recall the definitions: d±ϵ in Eq. (3), dϵ in Eq. (1), d̃±ϵ in Eq. (32), W±
ϵ,a,b

in Eq. (4), W̃±
ϵ,a,b in Eq. (34), (T ⋆

ϵ (ν), T
⋆
ϵ,β(ν), w

⋆
ϵ (ν), w

⋆
ϵ,β(ν)) in Eq.35. While Table 1 gathers

problem-specific notation, Table 2 groups notation for the algorithms.
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Table 2: Notation for the algorithm.

Notation Type Description

Bn [K] (EB) Leader at time n
Cn [K] (TC) Challenger at time n
an [K] Arm sampled at time n

Xn,an
{0, 1} Sample observed at the end of time n, i.e. Xn,an

∼ νan

Ykn,a,a R Noisy perturbation drawn at the beginning of phase kn,a
for arm a, i.e. Ykn,a,a ∼ Lap(1/ϵ)

Fn History before time n
ãn [K] Arm recommended before time n
τϵ,δ N Sample complexity (stopping time)

c(n, ϵ, δ) N× R⋆
+ × (0, 1)→ R⋆

+ Stopping threshold function
c1(n, δ) N× (0, 1)→ R⋆

+ Stopping threshold function
c2(n, ϵ) N× R⋆

+ → R⋆
+ Approximation threshold function

Nn,a N Number of pulls of arm a before time n
kn,a N Current phase of arm a at time n
Tk(a) N Time n where the arm a changes to phase k
S̃k,a R Private sum of observations for arm a at phase k
Ñn,a N Number of pulls of arm a at the beginning of phase kn,a
µ̃n,a R Private estimator of the empirical mean of arm a

at the beginning of phase kn,a
Ln,a N Counts of Bt = a before time n
Na

n,a N Counts of (Bt, at) = (a, a) before time n
β (0, 1) Fixed proportion

C Related Work and Extended Discussion

We provide a more detailed literature review in Appendix C.1, and an extended discussion in
Appendix C.2.

C.1 Related Work

Structured Bandits. While we consider unstructured bandits [Auer et al., 2002], numerous structural
assumptions have been studied: linear bandits [Soare et al., 2014], generalized linear bandits [Filippi
et al., 2010] such as logistic bandits [Jun et al., 2021], combinatorial bandits [Chen et al., 2013],
sparse bandits [Jamieson et al., 2015], spectral bandits [Kocák and Garivier, 2021], unimodal bandits
[Combes and Proutière, 2014], Lipschitz [Magureanu et al., 2014], partial monitoring [Audibert
and Bubeck, 2010a], etc. Coping for the structural assumption while preserving ϵ-global DP is an
interesting direction for future works.

Pure Exploration Problems. While we consider only BAI [Even-Dar et al., 2002], other pure
exploration problems have been studied in the literature: ϵ-BAI [Mannor and Tsitsiklis, 2004],
thresholding bandits [Carpentier and Locatelli, 2016], Top-k identification [Katz-Samuels and Scott,
2019], Pareto set identification [Auer et al., 2016], best partition identification [Chen et al., 2017], etc.
Extending our ϵ-global DP results to answer these identification problems is an interesting research
direction.

Performance Metrics. In pure exploration problems, the two major theoretical frameworks are the
fixed-confidence setting [Even-Dar et al., 2006; Jamieson and Nowak, 2014; Garivier and Kaufmann,
2016], which is the focus of this paper, and the fixed-budget setting [Audibert et al., 2010; Gabillon
et al., 2012]. In the fixed-budget setting, the objective is to minimize the probability of misidentifying
a correct answer with a fixed number of samples T . Recent works have also considered the anytime
setting, in which the agent aims at achieving a low probability of error at any deterministic time [Zhao
et al., 2023; Jourdan et al., 2024]. Extending our findings to support ϵ-global DP in the fixed-budget
or the anytime setting is an interesting direction for future works, see e.g., Chen et al. [2024].
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DP in Bandits. DP has been studied for multi-armed bandits under different bandit settings: finite-
armed stochastic [Mishra and Thakurta, 2015; Sajed and Sheffet, 2019; Zheng et al., 2020; Hu et al.,
2021; Azize and Basu, 2022; Hu and Hegde, 2022; Azize and Basu, 2024; Wang and Zhu, 2024;
Hu et al., 2025], adversarial [Thakurta and Smith, 2013; Agarwal and Singh, 2017; Tossou and
Dimitrakakis, 2017], linear [Hanna et al., 2024; Li et al., 2022; Azize and Basu, 2024], contextual
linear [Shariff and Sheffet, 2018; Neel and Roth, 2018; Zheng et al., 2020; Azize and Basu, 2024], and
kernel bandits [Pavlovic et al., 2025], among others. Most of these works were for regret minimisation,
but the problem has also been explored for best-arm identification, with fixed confidence [Azize et al.,
2023, 2024] and fixed budget [Chen et al., 2024]. The problem has also been studied under three
different DP trust models: (a) global DP where the users trust the centralised decision maker [Mishra
and Thakurta, 2015; Shariff and Sheffet, 2018; Sajed and Sheffet, 2019; Azize and Basu, 2022; Hu
and Hegde, 2022], (b) local DP where each user deploys a local perturbation mechanism to send a
“noisy” version of the rewards to the policy [Basu et al., 2019; Zheng et al., 2020; Han et al., 2021],
and (c) shuffle DP where users still feed their data to a local perturbation, but now they trust an
intermediary to apply a uniformly random permutation on all users’ data before sending to the central
servers [Tenenbaum et al., 2021; Garcelon et al., 2022; Chowdhury and Zhou, 2022].

In the first papers on DP for bandits, the tree-based mechanism [Dwork et al., 2010; Chan et al.,
2011] was used to compute the sum of rewards privately. However, this mechanism was proven to be
sub-optimal, matching the lower bounds up to logarithmic factors. Then, forgetting was first proposed
by Sajed and Sheffet [2019] to get rid of the tree-based mechanism, then adapted to UCB in [Hu
et al., 2021; Azize and Basu, 2022]. Finally, if the KL is the divergence that controls the complexity
of bandits without privacy [Lai and Robbins, 1985; Garivier and Kaufmann, 2016], then Azize and
Basu [2022] were the first to show that the TV controls the complexity of private bandits, in the high
privacy regime.

In this paper, we focus on ϵ-pure DP, under a global trust model, in stochastic finite-armed bandits,
for best arm identification under fixed confidence.

Gap in the Literature. This problem setting is first studied by Azize et al. [2023], who proposed
the first problem-dependent sample complexity lower bound, and introduced AdaP-TT, an ϵ-global
DP version of the Top Algorithm. However, the sample complexity upper bound of AdaP-TT only
matches the lower bound in the high privacy regime ϵ→ 0, and for instances where the means have
similar order (see Condition 1 in [Azize et al., 2023] in the discussion after Theorem 5 in [Azize
et al., 2023]).

Azize et al. [2024] proposes AdaP-TT⋆, an improved version of AdaP-TT. The improvement is
achieved by using a transport inspired by the sample complexity lower bound from [Azize et al.,
2023]. Using the new transport, AdaP-TT⋆ gets rid of Condition 1 needed by AdaP-TT, and achieves
the high privacy lower bound for all instances up to a multiplicative factor 48.

However, both AdaP-TT and AdaP-TT⋆ do not match the lower bound, beyond the high privacy
regime, i.e. for both the low privacy regime and transitional regimes.

C.2 Extended Discussions

Limitations of Theorem 7 Using adaptive targets βn(Bn, Cn) in DP-TT could replace T ⋆
ϵ,β(ν) by

T ⋆
ϵ (ν), which is the optimal scaling asymptotically (Theorem 2). While we propose two adaptive

choices of target based on IDS [You et al., 2023] or BOLD [Bandyopadhyay et al., 2024] (Appendix I),
we leave their analysis for future work. Based on finer concentration results, the stopping threshold
could scale asymptotically as log(1/δ) instead of 2 log(1/δ), hence improving by a factor 2. The
assumption that the means are distinct is used to prove sufficient exploration; it can be removed by
using forced exploration or a fine-grained analysis [Jourdan and Degenne, 2024; Jourdan et al., 2024].
Provided these improvements are proven, the multiplicative factor would be reduced to 1 + η, where
η is the parameter that controls the geometrically increasing phases. While it improves the asymptotic
upper bound, choosing η too close to 0 negatively impacts the performance of DP-TT, due to the
dependency in O(1/ log(1 + η)) of the stopping threshold.

Beyond Bernoulli Distributions The non-asymptotic lower bound on the expected sample com-
plexity (Theorem 2) holds for any class of distributions F , and thus is already true beyond Bernoullis
(e.g. exponential families, sub-Gaussians, etc). However, by going beyond Bernoullis, dϵ might not
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admit a closed-form solution, e.g., the TV between Gaussian distributions has no simple formula.
We conjecture that most regularity properties used to derive Theorem 4, and needed for the upper
bound proofs, also hold for other classes of distributions. From a theoretical perspective, this might
render the proof of the sufficient regularity properties more challenging. From a practical perspective,
this increases the computational cost of the stopping rule and the challenger arm, as they require
computing an empirical transportation cost based on the dϵ divergence. Finally, since the objective
function inside the dϵ is continuous and convex over a compact interval, using off-the-shelf convex
optimisation solvers to compute dϵ is still straightforward.

Our privacy analysis (Lemma 8) holds for any distribution with support in [0, 1], and thus is already
true beyond Bernoullis. It is straightforward to extend this to any distribution with a support in
[a, b], by multiplying the noise terms by the range b − a. Also, all prior works in bandits with
DP are either for Bernoulli or bounded distributions, for the simple reason that this assumption
makes estimating the empirical mean privately using the Laplace mechanism straightforward, as the
sensitivity is controlled. This helps focus on the more interesting tradeoffs between DP, exploration
and exploitation, without any additional technical overheads that may be introduced by estimating
privately the mean of unbounded distributions.

The concentration results (Theorem 6) used to derive a stopping threshold ensuring δ-correctness
are highly specific to Bernoulli distributions. However, the proof builds on fine-grained tail bounds
of the sum of two independent random variables, i.e., we bound those probabilities by the maximal
product between their respective survival functions (Lemma 10). Therefore, the technical tools used
for this intermediate result can be also used to study other one-parameter exponential families, e.g.,
Gaussian observation, with other noise mechanisms, e.g., Gaussian noise.

The proof of Theorem 7 (Appendix H) builds on the unified analysis of the Top Two algorithm Jourdan
et al. [2022], coping with many classes of distributions, e.g., one-parameter exponential families
and non-parametric bounded distributions. It relies heavily on the derived regularity properties
(Appendix G) for the signed divergences, transportation costs, characteristic times, and optimal
allocations. Based on the non-private BAI literature, we conjecture that most regularity properties
used to derive Theorem 7 also hold for other classes of distributions. Due to the lack of explicit
formulae, the proofs are challenging. The DP-TT algorithm becomes computationally costly due to
the intertwined optimisation procedure when computing the transportation costs numerically.

Beyond BAI The technical arguments used in the proof of Theorem 2 allow obtaining a similar
lower bound for (i) one-parameter exponential families, e.g., Gaussian, (ii) pure exploration problems
with a unique correct answer, e.g., top-m best arm identification, and (iii) structured instances without
arm correlation, e.g., unimodal bandits. This is straightforwardly done by adapting the definition
of Alt(ν), a⋆(ν), and F in Eq. (2). For settings that do not fall into the above three categories, the
characteristic time requires more subtle modifications; yet our intermediate technical results can
still be used. Based on the non-private fixed-confidence literature, we conjecture the changes of
characteristic times described below.

• For bounded distribution (non-parametric) or Gaussian with unknown variance (two-
parameters exponential family), the KL should be replaced by an infimum over KL Agrawal
et al. [2020]; Jourdan et al. [2023]. The plurality of distributions having the same mean
implies the existence of a distribution that is the most confusing given a specific constraint
on the mean, captured by the Kinf.

• For γ-Best Arm Identification (multiple correct answers), an outer maximization over all
the correct answers should be added Degenne and Koolen [2019]. The plurality of correct
answers implies the existence of a correct answer that is the easiest to verify.

• For linear bandits (correlated means), the inf in the definition of dϵ per-arm should be
replaced by a joint infimum over all the arms and moved outside the sum over arms Degenne
et al. [2020a].

Beyond ϵ-DP Our lower bound technique (Theorem 2) can be seen as a generalisation of the
packing argument, and thus depends on the group privacy property. Specifically, in Appendix D, just
before Eq. (11), we used the group privacy of ϵ-DP to bound KL(MD,MD′) ≤ ϵdham(D,D′).
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• For ρ-zCDP, there is a similar group privacy property that can directly be plugged here,
stating that KL(MD,MD′) ≤ ρdham(D,D′)2. This means that for ρ-zCDP, ϵ × dham
is replaced by ρ× dham2 in the fundamental optimal transport inequality of Eq. (11). We
leave solving tightly this new optimal transport for future work.

• For (ϵ, δ)-DP, the group privacy property is not tight. This is a classic issue in (ϵ, δ)-DP lower
bounds, where other techniques are used (e.g., fingerprinting). Adapting these techniques
for bandits is an interesting open problem (even for bandits with regret minimisation).

It is straightforward to make DP-TT achieve either ρ-zCDP or (ϵ, δ)-DP, by replacing the Laplace
mechanism with the Gaussian mechanism. To design a correct stopping rule with the Gaussian
mechanism, it is possible to use the same fine-grained tail bounds of the sum of two independent
random variables (Lemma 10) by only replacing the concentration of Laplace random variables with
the concentration of Gaussian random variables. In the Top Two family of algorithms, an important
design choice is the transportation cost, used for stopping and sampling the challenger. DP-TT uses a
dϵ based transport, inspired by the lower bound of Theorem 2. Thus, to go beyond ϵ-DP for algorithm
design, it is important to derive a tight lower bound that suggests the use of a new transportation cost.

Behavior with Near-optimal Arms The unique best arm assumption is standard in the fixed-
confidence BAI setting. Even in the non-private setting, this assumption is necessary to obtain a
δ-correct algorithm with finite expected stopping time, as the characteristic time becomes infinite
otherwise. In the private setting, this phenomenon persists as can be seen by the lower bound in
Eq. (5), i.e., T ⋆

ϵ (ν)→ +∞ when ∆ϵ,a⋆ → 0. In near-tie scenarios, DP-TT will perform as badly as
any other δ-correct and ϵ-global DP algorithms due to the fundamental lower bound. Empirically,
this will be reflected by empirical transportation costs that are too small for the stopping condition to
be met. In applications where the near-tie scenario is common, practitioners consider γ-Best Arm
Identification, i.e., identify an arm that is γ-close to the best arm. For the non-private fixed-confidence
γ-BAI setting, we refer to Jourdan et al. [2024] for references and guarantees satisfied by Top Two
algorithms. To tackle γ-BAI, DP-TT should be modified by using the appropriate transportation costs
in both the stopping rule and the definition of the challenger, i.e., Wϵ,γ,a,b instead of Wϵ,a,b.

Implications of Not Forgetting DP-TT has the same memory complexity as the forgetting algo-
rithms. The reason is that DP-TT only needs to store one accumulated noisy sum of rewards across
phases, while the forgetting ones store the noisy sum of rewards of only the last phase. For privacy
considerations, under our threat model where the adversary only observes the output of the algorithm
(sequence of actions, final recommendation and stopping time), both forgetting and non-forgetting
algorithms provide the same DP guarantees thanks to post-processing.

One can imagine other threat models where forgetting the rewards provides better privacy guarantees.
One possible example of this is the pan-private threat model Dwork et al. [2010], where the adversary
can also intrude into the internal states of the algorithm during its execution. In this threat model, if
an adversary observes the internal states of the execution of DP-TT at some phase ℓ > 1, they can
see the full sum of rewards and maybe infer the membership of, say, the first user (up to tradeoffs
guaranteed by the ϵ-DP constraint, since the sum is noisy). However, for the forgetting algorithms,
if the adversary observes the internal states of the execution of forgetting algorithms at some phase
ℓ > 1, the adversary can infer nothing about the reward of the first patient, since its reward has been
deleted completely.

D Lower Bound

LetM : Xn → O be an ϵ-DP mechanism. For D ∈ Xn an input dataset, we denote byMD the
distribution over outputs, when the input is D, andMD(E) the probability of observing output E
when the input is D.

Let P and Q be two data-generating distributions over Xn. We denote by MP,M the marginal over
outputs of the mechanismM when the input dataset is generated through P, i.e.

MP,M(A) :=

∫
D∈Xn

MD (A) dP (D) , (9)

for any event A in the output space. We define similarly MQ,M the marginal over outputs of the
mechanismM when the input dataset is generated through Q.
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The main question is to control the divergence KL (MP,M ∥MQ,M) when the mechanismM satisfies
DP. In general, for any mechanismM, the data-processing inequality provides the following bound

KL (MP,M ∥MQ,M) ≤ KL (P ∥ Q) . (10)

Now, for ϵ-DP mechanisms, we want to translate the DP constraint to a tight bound on the divergence
KL (MP,M ∥MQ,M). To do so, let L be any other distribution on Xn. Let CP,L be a coupling of
(P,L), i.e., the marginals of CP,L are P and L. We can now rewrite our the marginals using the
definition of couplings. For MP,M, we have

MP,M(A) :=

∫
D∈Xn

MD (A) dP (D) =

∫
D,D′∈Xn

MD (A) dCP,L (D,D
′) ,

and for Q we get

MQ,M(A) :=

∫
D′∈Xn

MD′ (A) dQ (D′) =

∫
D′∈Xn

MD′ (A)
dQ (D′)

dL (D′)
dL (D′)

=

∫
D,D′∈Xn

MD′ (A)
dQ (D′)

dL (D′)
dCP,L (D,D

′) .

Using the data-processing inequality, we get

KL (MP,M ∥MQ,M) ≤
∫
D,D′∈Xn

∫
o∈O

log

 MD (o)

MD′ (o) dQ(D′)
dL(D′)

MD (o) dodCP,L (D,D
′)

=

∫
D,D′∈Xn

(
KL (MD ∥MD′) + log

(
dL (D′)

dQ (D′)

))
dCP,L (D,D

′)

= ED,D′∼CP,L [KL (MD ∥MD′)] + KL (L ∥ Q) .

Since this is true for any coupling CP,L and any distribution L, we get the final bound

KL (MP,M ∥MQ,M) ≤ inf
L∈P(Xn)

{
inf

CP,L∈C(P,L)

{
ED,D′∼CP,L [KL (MD ∥MD′)]

}
+KL (L ∥ Q)

}
where P(Xn) is the set of all distributions over Xn and C (P,L) is the set of all couplings between P
and L. Using that theM is ϵ-DP, we can use the simple bound KL (MD ∥MD′) ≤ ϵdHam(D,D

′)
which gives

KL (MP,M ∥MQ,M) ≤ inf
L∈P(Xn)

{
ϵ inf
CP,L∈C(P,L)

{
ED,D′∼CP,L [dHam(D,D

′)]
}
+KL (L ∥ Q)

}
.

(11)

D.1 Product Distributions

Suppose that P :=
⊗n

i=1 Pi and Q :=
⊗n

i=1 Qi are product distributions. Consider the subset of
product distributions L :=

⊗n
i=1 Li, and the maximal coupling C∞(P,L) :=

∏n
i=1 C∞(Pi,Li).

Plugging these in Equation (11), we get

KL (MP,M ∥MQ,M) ≤ inf
L1,...,Ln

{
ϵ

n∑
i=1

EDi,D′
i∼C∞(Pi,Li) [1 {Di ̸= D′

i}] +
n∑

i=1

KL (Li ∥ Qi)

}

= inf
L1,...,Ln

{
n∑

i=1

(ϵTV (Pi ∥ Li) + KL (Li ∥ Qi))

}

=

n∑
i=1

inf
Li∈P(X )

{ϵTV (Pi ∥ Li) + KL (Li ∥ Qi)} =
n∑

i=1

dϵ(Pi,Qi) ,

where
dϵ(P,Q) := inf

L∈P(X )
{ϵTV (P ∥ L) + KL (L ∥ Q)} . (12)
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Algorithm 2 Bandit interaction between a policy and an environment

1: Input: A policy π and an environment ν ≜ (Pa : a ∈ [K])
2: for t = 1, . . . do
3: The policy samples an action at ∼ πt(. | a1, r1, . . . , at−1, rt−1)
4: The policy observes a reward rt ∼ Pat

5: end for
6: if Regret minimisation then
7: The interaction ends after T steps
8: else FC-BAI
9: The policy decides to stop the interaction at step τϵ,δ and recomends the final guess â

10: end if

D.2 Sequential KL decomposition for bandits under DP

In this section, we adapt the techniques from product distributions to bandit marginals.

First, we introduce the bandit canonical model.

The bandit canonical model. A stochastic bandit (or environment) is a collection of distributions ν ≜
(Pa : a ∈ [K]), where [K] is the set of available K actions. The learner and the environment interact
sequentially over T rounds. In each round t ∈ 1, . . . , T , the learner chooses an action at ∈ [K],
which is fed to the environment. The environment then samples a reward rt ∈ R from distribution
Pat

and reveals rt to the learner. The interaction between the learner (or policy) and environment
induces a probability measure on the sequence of outcomes HT ≜ (a1, r1, a2, r2, . . . , aT , rT ). In
the following, we construct the probability space that carries these random variables.

Let T ∈ N⋆ be the horizon. Let ν = (Pa : a ∈ [K]) a bandit instance with K ∈ N⋆ finite arms,
and each Pa is a probability measure on (R,B(R)) with B being the Borel set. For each t ∈ [T ], let
Ωt = ([K]× R)t ⊂ R2t and Ft = B(Ωt). We first formalise the definition of a policy.
Definition 2 (The policy). A policy π is a sequence (πt)

T
t=1 , where πt is a probability kernel from

(Ωt,Ft) to ([K], 2[K]). Since [K] is discrete, we adopt the convention that for a ∈ [K],
πt(a | a1, r1, . . . , at−1, rt−1) = πt({a} | a1, r1, . . . , at−1, rt−1)

We want to define a probability measure on (ΩT ,FT ) that respects our understanding of the sequential
nature of the interaction between the learner and a stationary stochastic bandit. Specifically, the
sequence of outcomes should satisfy the following two assumptions:

(a) The conditional distribution of action at given a1, r1, . . . , at−1, rt−1 is π(at | Ht−1) almost
surely.

(b) The conditional distribution of reward rt given a1, r1, . . . , at−1, rt−1, at is Pat
almost

surely.

The probability measure on (ΩT ,FT ) depends on both the environment ν and the policy π. To
construct this probability, let λ be a σ-finite measure on (R,B(R)) for which Pa is absolutely
continuous with respect to λ for all a ∈ [K]. Let pa = dPa/dλ be the Radon–Nikodym derivative of
Pa with respect to λ. Letting ρ be the counting measure with ρ(B) = |B|, the density pνπ : ΩT → R
can now be defined with respect to the product measure (ρ× λ)T by

pνπ(a1, r1, . . . , aT , rT ) ≜
T∏

t=1

πt(at | a1, r1, . . . , at−1, rt−1)pat
(rt)

and Pνπ is defined as

Pνπ(B) ≜
∫
B

pνπ(ω)(ρ× λ)T ( dω) forallB ∈ FT

Hence (ΩT ,FT ,Pνπ) is a probability space over histories induced by the interaction between π and
ν. We define also a marginal distribution over the sequence of actions by

mνπ(a1, . . . , aT ) ≜
∫
r1,...,rT

pνπ(a1, r1, . . . , aT , rT ) dr1 . . . drT ,
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and forallC ∈ P([K]T ),

Mνπ(C) ≜
∑

(a1,...,aT )∈C

mνπ(a1, a2, . . . , aT ).

Finally, ([K]T ,P([K]T ),Mνπ) is a probability space over sequence of actions produced when π
interacts with ν for T time-steps.

The KL upper bound. Now, we adapt the techniques for the bandit marginals. Let ν = {Pa, a ∈
[K]} and ν′ = {P ′

a, a ∈ [K]} be two bandit instances in FK . We recall that, when the policy π
interacts with the bandit instance ν, it induces a marginal distribution Mνπ over the sequence of
actions. We define Mν′π similarly.

The goal is to upper bound the quantity KL (Mνπ ∥Mν′π). The marginals Mνπ and Mνπ in the
sequential setting "look like" marginals generated by "product distributions". However, the hardness
of the sequential setting lies in the fact that the data-generating distributions depend on the stochastic
sequential actions chosen. Thus, the results of the previous section cannot be directly applied. To
adapt the proof ideas of the previous section to the bandit case, we introduce the idea of a coupled
bandit instance.

Let ν′′ = {P ′′
a : a ∈ [K]} be any “intermediary" bandit instance from FK . Define ca as the maximal

coupling between Pa and P ′′
a , i.e., ca := C∞(Pa, P

′′
a ). Fix a policy π = {πt}Tt=1.

Here, we build a coupled environment γ of ν and ν′′. The policy π interacts with the coupled
environment γ up to a given time horizon T to produce an augmented history {(at, rt, r′′t )}Tt=1. The
iterative steps of this interaction process are:

1. The probability of choosing an action at = a at time t is dictated only by the policy πt and
a1, r1, a2, r2, . . . , at−1, rt−1, i.e.the policy ignores {r′′s }t−1

s=1.
2. The distribution of rewards (rt, r′′t ) is cat

and is conditionally independent of the previous
observed history {(as, rs, r′′s )}t−1

t=1.

This interaction is similar to the interaction process of policy π with the first bandit instance ν, with
the addition of sampling an extra r′′t from the coupling of Pat

and P ′′
at

.

The distribution of the augmented history induced by the interaction of π and the coupled environment
can be defined as

pγπ(a1, r1, r
′′
1 . . . , aT , rT , r

′′
T ) :=

T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)cat(rt, r
′′
t ) .

To simplify the notation, let a := (a1, . . . , aT ), r := (r1, . . . , rT ), r’ := (r′1, . . . , r
′
T ) and

r” := (r′1, . . . , r
′
T ). Also, let ca(r, r”) :=

∏T
t=1 cat

(rt, r
′′
t ) and π(a | r) :=

∏T
t=1 πt(at |

a1, r1, . . . , at−1, rt−1). We put h := (a, r, r”). With the new notation

pγπ(a, r, r”) := π(a | r)ca(r, r”) .

By the definition of the couplings, we have that mνπ is the marginal of pγπ when integrated over
(r, r”), i.e.,

mνπ(a) =
∫

r,r”
pγπ(a, r, r”) dr dr” .

Now, we define a new joint distribution qγπ , inspired by the techniques used for product distributions:

qγπ(a, r, r”) := π(a | r”)
p′a(r”)
p′′a (r”)

ca(r, r”) ,

where p′a(r”) :=
∏T

t=1 p
′
at
(r′′t ), and similarly, p′′a (r”) :=

∏T
t=1 p

′′
at
(r′′t ).

First, observe that it is indeed a valid joint distribution, i.e.∑
a

∫
r,r”

qγπ(a, r, r”) dr dr” =
∑

a

∫
r,r”

π(a | r”)
p′a(r”)
p′′a (r”)

ca(r, r”) dr dr”
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=
∑

a

∫
r”
π(a | r”)p′a(r”) dr” =

∫
r”
p′a(r”) dr” = 1 ,

and that mν′π is the marginal of qγπ when integrated over (r, r”), i.e.,∫
r,r”

qγπ(a, r, r”) dr dr” =

∫
r,r”

π(a | r”)
p′a(r”)
p′′a (r”)

ca(r, r”) drdr”

=

∫
r”
π(a | r”)p′a(r”) dr” = mν′π(a) .

Using the data-processing inequality, we get

KL (Mνπ ∥Mν′π) ≤ KL (pγπ ∥ qγπ) . (13)

Now, we compute

KL (pγπ ∥ qγπ)
(a)
= Eh:=(a,r,r”)∼pγπ

log
 π(a | r)ca(r, r”)
π(a | r”) p′

a(r”)
p′′

a (r”)ca(r, r”)


(b)

≤ Eh:=(a,r,r”)∼pγπ

[
ϵdHam(r, r") + log

(
p′′a (r”)
p′a(r”)

)]
(c)
=

T∑
t=1

Eh∼pγπ

[
ϵ1 {rt ̸= r′′t }+ log

(
p′′at

(r′′t )

p′at
(r′′t )

)]
(d)
=

T∑
t=1

Eh∼pγπ

[
Eh∼pγπ [ϵ1 {rt ̸= r′′t }+ log

(
p′′at

(r′′t )

p′at
(r′′t )

)
| at]

]
(e)
=

T∑
t=1

Eh∼pγπ

[
ϵTV

(
pat

∥∥ p′′at

)
+KL

(
p′′at

∥∥ p′at

)]
(f)
= Eνπ

[
T∑

t=1

ϵTV
(
pat

∥∥ p′′at

)
+KL

(
p′′at

∥∥ p′at

)]
.

where:

(a) by the definition of the KL

(b) the group privacy property, applied to the ϵ-global DP policy, we have

π(a | r) ≤ eϵdHam(r,r"π(a | r")

(c) by the definition of dham

(d) by the towering property of conditional expectations

(e) given at, we have rt ∼ pat
, r′t ∼ p′at

and r” ∼ p′′at

(f) by linearity of the expectation, and the fact that the expression inside the expectation only depends
on the actions at
Since this is true for any “intermediary" bandit instance ν′′ ∈ FK , we take ν′′⋆ to be the environment
where the infinimum of the dϵ(Pa, P

′
a) is attained for each arm a ∈ [K]. Specifically, let ν′′⋆ =

(p⋆a, a ∈ [K]) where
p⋆a = argmin

L∈F
{ϵTV (pa ∥ L) + KL (L ∥ p′a)}

Plugging ν′′⋆ gives

KL (Mνπ ∥Mν′π) ≤ Eνπ

[
T∑

t=1

dϵ(pat
, p′at

)

]
(14)
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Let Nt,a =
∑

s<t 1 {as = a} be the counts of arm a before step t. Then, we can rewrite the bound
as

KL (Mνπ ∥Mν′π) ≤
K∑

a=1

Eνπ[NT+1,a]dϵ(pa, p
′
a) , (15)

Stopping time version of the KL decomposition for BAI under DP. Let π be an ϵ-DP BAI strategy.
Let ν and λ be two bandit instances. Denote by Mνπ the marginal distribution of the output of the
BAI strategy when π interacts with ν. By using Wald’s lemma in the proof technique seen before for
the canonical bandit setting under FC-BAI, we get that

KL (Mνπ ∥Mλπ) ≤ Eνπ

(τϵ,δ∑
t=1

dϵ(νat
, λat

)

)
=

K∑
a=1

Eνπ[Nτϵ,δ+1,a]dϵ(νa, λa) , (16)

where τ is the stopping time.

D.3 Sample Complexity Lower Bound Proof

Theorem 2 (Sample complexity lower bound for BAI under ϵ-DP). Let (ϵ, δ) ∈ R⋆
+ × (0, 1). For

any algorithm π that is δ-correct and ϵ-global DP on FK ,

Eνπ[τϵ,δ] ≥ T ⋆
ϵ (ν) log(1/(3δ))

for all ν ∈ FK with unique best arm. The inverse of the characteristic time T ⋆
ϵ (ν) is defined as

T ⋆
ϵ (ν)

−1 := sup
w∈△K

inf
κ∈Alt(ν)

K∑
a=1

wadϵ(νa, κa) , (17)

dϵ(νa, κa) := inf
φa∈F

{KL (φa ∥ κa) + ϵ · TV (νa ∥ φa)} . (18)

Proof. Let π be an ϵ-global DP δ-correct BAI strategy. Let ν be a bandit instance and λ ∈ Alt(ν).

Let Mνπ denote the probability distribution of the output when the BAI strategy π interacts with ν.
For any alternative instance λ ∈ Alt(ν), the data-processing inequality gives that

KL (Mνπ ∥Mλ,π) ≥ kl (Mνπ (ã = a⋆(ν)) ,Mλ,π (ã = a⋆(ν))) ≥ kl(1− δ, δ) , (19)

where the second inequality is because π is δ-correct, i.e., Mνπ (ã = a⋆(ν)) ≥ 1 − δ and
Mλ,π (ã = a⋆(ν)) ≤ δ, and the monotonicity of the kl. Now, using the stopping time version
of the KL decomposition for FC-BAI, we get that

kl(1− δ, δ) ≤ KL (Mν,π ∥Mλ,π) ≤
K∑

a=1

Eνπ[Nτϵ,δ+1,a]dϵ(νa, λa) .

Since this is true for all λ ∈ Alt(ν), we get

kl(1− δ, δ) ≤ inf
λ∈Alt(ν)

K∑
a=1

Eνπ[Nτϵ,δ+1,a]dϵ(νa, λa)

(a)
= E[τϵ,δ] inf

λ∈Alt(ν)

K∑
a=1

E
[
Nτϵ,δ+1,a

]
E[τϵ,δ]

dϵ(νa, λa)

(b)

≤ E[τϵ,δ]

(
sup

ω∈△K

inf
λ∈Alt(ν)

K∑
a=1

ωadϵ(νa, λa)

)
.

(a) is due to the fact that E[τϵ,δ] does not depend on λ. (b) is obtained by noting that the vector

(ωa)a∈[K] ≜

(
Eν,π[Nτϵ,δ+1,a]

Eν,π [τϵ,δ]

)
a∈[K]

belongs to the simplex △K . The theorem follows by noting

that for δ ∈ (0, 1), kl(1− δ, δ) ≥ log(1/3δ).
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E Privacy Analysis

In this section, we prove Lemma 5. First, we justify using a geometric grid for updating the means
(Lemma 8). Second, we obtain Lemma 5 as a combination of Lemma 8 and the post-processing
property of DP (Proposition 1).

E.1 Releasing partial sums privately

First, the following lemma justifies the use of geometric grids, and provides that the price of getting
rid of forgetting is summing the Laplace noise from previous phases.
Lemma 8 (Privacy of our grid-based mean estimator). Let T ∈ {1, . . . }, ℓ < T and t1, . . . tℓ, tℓ+1

be in [1, T ] such that 1 = t1 < · · · < tℓ < tℓ+1 − 1 = T .

LetM be the following mechanism:
x1
x2
...
xT

 M→


(x1 + · · ·+ xt2−1) + (Y1)

(x1 + · · ·+ xt3−1) + (Y1 + Y2)
...

(x1 + · · ·+ xT ) + (Y1 + Y2 + · · ·+ Yℓ−1)


where (Y1, . . . , Yℓ) ∼iid Lap(1/ϵ).

Then, for any {x1, . . . , xT } ∈ [0, 1]T ,M is ϵ-DP.

Proof. First, consider the following mechanism, that only computes the partial sums:
x1
x2
...
xT

→


x1 + · · ·+ xt2−1

xt2 + · · ·+ xt3−1

...
xtℓ−1

+ · · ·+ xT

 .

Because xt ∈ [0, 1], the sensitivity of each partial sum is 1. Since each partial sum is computed
over non-overlapping sequences, combining the Laplace mechanism (Theorem 1) with the parallel
composition property of DP (Lemma 3) gives that the following mechanism:


x1
x2
...
xT

 P→


x1 + · · ·+ xt2−1 + Y1
xt2 + · · ·+ xt3−1 + Y2

...
xtℓ−1

+ · · ·+ xT + Yℓ−1


is ϵ-DP, where (Y1, . . . , Yℓ−1) ∼iid Lap(1/ϵ).

Consider the post-processing function f : (x1, . . . xℓ−1)→ (x1, x1+x2, . . . , x1+x2+ · · ·+xℓ−1).
Then, we have that thatM = f ◦ P . So, by the post-processing property of DP,M is ϵ-DP.

Remark 1. Mechanism P , defined in the proof of Lemma 8, is the fundamental mechanism used by
all previous bandit algorithms [Sajed and Sheffet, 2019; Azize and Basu, 2022; Hu and Hegde, 2022;
Azize et al., 2024] to justify the use of forgetting. Our mechanismM is just summing over the partial
sums computed on each phase, and thus the price of having sums of xi that start from the beginning
(i.e. do not forget) is that we have to sum now the noise from all previous phases too.

E.2 Proof of Lemma 5

We are now ready to prove Lemma 5, i.e. that any BAI algorithm based solely on using GPEη(ϵ) to
access observations is ϵ-global DP on [0, 1].

Proof. Let π be a BAI algorithm using only GPEη(ϵ) to access observations. Let R = {x1, . . . }
and R′ = {x′1, . . . } be two neighbouring sequences of private observations, i.e. there exists a
t⋆ ∈ {1, . . . } such that xt = x′t for all t ̸= t⋆, i.e. that R and R′ only differ at t⋆.
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Fix a stopping time, recommendation and sampled actions (T +1, ã, (a1, . . . , aT )), we want to show
that

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))] ≤ eϵ Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))] .

Step 1: Probability decompositions: First, let us denote by τ , Ã andA1, . . . , Aτ the random variables
of stopping, recommendation and sampled actions, when π interacts with R. Similarly, let τ ′, Ã′

and A′
1, . . . , A

′
τ the random variables of stopping, recommendation and sampled actions, when π

interacts with R′.

We have

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))] = Pr[τ = T + 1, Ã = ã, A1 = a1, . . . , AT = aT ]

Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))] = Pr[τ ′ = T + 1, Ã′ = ã, A′
1 = a1, . . . , A

′
T = aT ]

Since for all t < t⋆, xt = x′t, the policy samples the same actions, up to step t⋆, i.e.

Pr[A1 = a1, . . . , At⋆ = at⋆ ] = Pr[A′
1 = a1, . . . , A

′
t⋆ = at⋆ ]

And thus

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))]

Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))]

=
Pr[τ = T + 1, Ã = ã, At⋆+1 = at⋆+1, . . . , AT = aT | A1 = a1, . . . , At⋆ = at⋆ ]

Pr[τ ′ = T + 1, Ã′ = ã, A′
t⋆+1 = at⋆+1, . . . , A′

T = aT | A′
1 = a1, . . . , A′

t⋆ = at⋆ ]

Let us denote by t1, . . . , tℓ the time step corresponding to the beginning of the phases when π interacts
with R, and t′1, . . . , t

′
ℓ′ the the time step corresponding to the beginning of the phases π interacts with

r’.

Also, let tk⋆
be the beginning of the phase for which t⋆ belongs in R phases. Similarly, let t′k′

⋆
be the

beginning of the phase for which t⋆ belongs in R′ phases.

Since the actions a1, . . . , aT are fixed, and rt = r′t for t < t⋆, t⋆ falls in the same phase under both
R and R′. Thus, tk⋆ = t′k′

⋆
and k⋆ = k′⋆.

Step 2: Using the structure of GPEη(ϵ)

Let S̃p
k⋆ =

∑tk⋆+1−1
s=tk⋆ xs + Yk⋆

be the noisy partial sum of observations collected at phase k⋆ for
r, where Yk⋆ ∼ Lap(1/ϵ). Similarly, let S̃′p

k⋆ =
∑tk⋆+1−1

s=tk⋆ x′s + Y ′
k⋆

be the noisy partial sum of
observations collected at phase k⋆ for r’, where Y ′

k⋆ ∼ Lap(1/ϵ). Using the structure of GPEη(ϵ),
we have that:

(a) If the value of the noisy partial sums at phase k⋆ is exactly the same between the neighbouring
R and R′, then the BAI algorithm π will sample the same sequence of actions from step t⋆ onward,
recommend the same final guess and stop at the same time, with the same probability under R and
R′. Thus, for any s ∈ R:

Pr[τ = T + 1, Ã = ã, At⋆+1 = at⋆+1, . . . , AT = aT | A1 = a1, . . . , At⋆ = at⋆ , S̃
p
k⋆ = s]

= Pr[τ ′ = T + 1, Ã′ = ã, A′
t⋆+1 = at⋆+1, . . . , A

′
T = aT | A′

1 = a1, . . . , A
′
t⋆ = at⋆ , S̃′p

k⋆ = s]
(20)

This is due to the fact that, in GPEη(ϵ), the reward at step t⋆ only affects the statistic S̃p
k⋆ , and nothing

else.

(b) Since rewards are [0, 1], using the Laplace mechanism, we have that

Pr[S̃p
k⋆ = s | A1 = a1, . . . , At⋆ = at⋆ ] ≤ eϵPr(S̃′p

k⋆ = s | A1 = a1, . . . , A
′
t⋆ = at⋆) . (21)

Step 3: Combining Eq. 20 and Eq. 21, aka post-processing:
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We have

Pr[τ = T + 1, Ã = ã, At⋆+1 = at⋆+1, . . . , AT = aT | A1 = a1, . . . , At⋆ = at⋆ ]

=

∫
s∈R

Pr[τ = T + 1, Ã = ã, At⋆+1 = at⋆+1, . . . , AT = aT | A1 = a1, . . . , At⋆ = at⋆ , S̃
p
k⋆ = s]

Pr[S̃p
k⋆ = s | A1 = a1, . . . , At⋆ = at⋆ ]

≤
∫
s∈R

eϵ Pr[τ ′ = T + 1, Ã′ = ã, A′
t⋆+1 = at⋆+1, . . . , A

′
T = aT

| A1 = a1, . . . , A
′
t⋆ = at⋆ , S̃′p

k⋆ = s]

Pr(S̃′p
k⋆ = s | A1 = a1, . . . , A

′
t⋆ = at⋆)

= eϵ Pr[τ ′ = T + 1, Ã′ = ã, A′
t⋆+1 = at⋆+1, . . . , A

′
T = aT | A′

1 = a1, . . . , A
′
t⋆ = at⋆ ] .

This concludes the proof:

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))]

Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))]
≤ eϵ .

E.3 Recalling the post-processing and composition properties of DP

Proposition 1 (Post-processing [Dwork and Roth, 2014]). LetM be a mechanism and f be an
arbitrary randomised function defined onM’s output. IfM is ϵ-DP, then f ◦M is ϵ-DP.

The post-processing property ensures that any quantity constructed only from a private output is still
private, with the same privacy budget. This is a consequence of the data processing inequality.
Proposition 2 (Simple Composition). LetM1, . . . ,Mk be k mechanisms. We define the mechanism

G : D →
k⊗

i=1

Mi
D

as the k composition of the mechanismsM1, . . . ,Mk.

If eachMi is ϵi-DP, then G is
∑k

i=1 ϵi-DP.

Proposition 3 (Parallel Composition). LetM1, . . . ,Mk be k mechanisms, such that k < n, where
n is the size of the input dataset. Let t1, . . . tk, tk+1 be indexes in [1, n] such that 1 = t1 < · · · <
tk < tk+1 − 1 = n.
Let’s define the following mechanism

G : {x1, . . . , xn} →
k⊗

i=1

Mi
{xti

,...,xti+1−1}

G is the mechanism that we get by applying each Mi to the i-th partition of the input dataset
{x1, . . . , xn} according to the indexes t1 < · · · < tk < tk+1.

If eachMi is ϵ-DP, then G is ϵ-DP.

In parallel composition, the k mechanisms are applied to different “non-overlapping" parts of the
input dataset. If each mechanism is DP, then the parallel composition of the k mechanisms is DP, with
the same privacy budget. This property will be the basis for designing private bandit algorithms.

F Concentration Results

In Appendix F, we detail the proof of all our concentration results. In Appendix F.1, we start by
introducing a variant of GLR-based stopping rule using the modified transportation costs W̃ϵ,a,b
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(see Appendix G.2.1 for details) which are defined based on the modified divergences d̃±ϵ (see
Appendix G.1.1 for details). The proof of Theorem 6 is given in Appendix F.2. In Appendix F.3, we
show tail bounds for a sum between independent Bernoulli and Laplace observations that feature the
product of the tail bounds of each process. We prove time-uniform and fixed-time tails concentration
for Laplace distribution in Appendix F.4, and recall existing results for Bernoulli in Appendix F.5.
In Appendix F.6, we provide tail bounds for a sum between independent Bernoulli and Laplace
observations that feature the modified divergence d̃ϵ defined in Eq. (32). In Appendix F.7, we give
geometric grid time uniform tails concentration for the reweighted modified divergence.

F.1 Modified GLR Stopping Rule

The modified GLR stopping rule is defined as

τMGLR
ϵ,δ = inf

n | ∀a ̸= ãn, W̃ϵ,ãn,a(µ̃n, Ñn) >
∑

b∈{ãn,a}

c̃(kn,b, δ)

 with ãn ∈ argmax
a∈[K]

[µ̃n,a]
1
0 ,

(22)
where (µ̃n, Ñn) are the outputs of GPEη(ϵ). The modified transportation costs (W̃ϵ,a,b)(a,b)∈[K]2 are
defined in Eq. (34), i.e., for all (µ,w) ∈ RK × RK

+ and all (a, b) ∈ [K]2 such that a ̸= b,

W̃ϵ,a,b(µ,w) := 1
(
[µa]

1
0 > [µb]

1
0

)
inf

u∈(0,1)

{
wad̃

−
ϵ (µa, u, r(wa)) + wbd̃

+
ϵ (µb, u, r(wb))

}
,

where r(x) := x
1+log1+η x is defined in Eq. (33) for all x ≥ 1. The modified divergence d̃±ϵ are

defined in Eq. (32), i.e., for all (λ, µ, r) ∈ R× (0, 1)× R⋆
+,

d̃−ϵ (λ, µ, r) := 1
(
µ < [λ]10

)
inf

z∈(µ,[λ]10)

{
kl(z, µ) +

1

r
h(rϵ(λ− z))

}
,

d̃+ϵ (λ, µ, r) := 1
(
µ > [λ]10

)
inf

z∈([λ]10,µ)

{
kl(z, µ) +

1

r
h(rϵ(z − λ))

}
,

where h(x) :=
√
1 + x2 − 1 + log

(
2
x2

(√
1 + x2 − 1

))
is defined in Eq. (31) for all x > 0.

Lemma 9 gives a stopping threshold under which the modified GLR stopping rule is δ-correct.
Lemma 9. Let δ ∈ (0, 1) and ϵ > 0. Let η > 0. Let s > 1 and ζ be the Riemann ζ function.
Let W−1(x) = −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch of the Lambert
W function. It satisfies W−1(x) ≈ x + log x, see Lemma 52. Given any sampling rule using the
GPEη(ϵ), combining GPEη(ϵ) with the modified GLR stopping rule as in Eq. (22) with the stopping
threshold

c̃(k, δ) =W−1

(
log

(
Kζ(s)

δ

)
+ s log(k) + 3− log 2

)
− 3 + log 2 . (23)

yields a δ-correct and ϵ-global DP algorithm for Bernoulli instances with unique best arm.

Proof. Lemma 5 yields the ϵ-global DP. Let Eδ = Eδ,a⋆,+ ∩
⋂

a ̸=a⋆ Eδ,a,− with

Eδ,a⋆,+ =
{
∀n ∈ N, Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , µa⋆ , Ñn,a⋆/kn,a⋆) ≤ c̃(kn,a⋆ , δ)

}
,

∀a ̸= a⋆, Eδ,a,− =
{
∀n ∈ N, Ñn,ad̃

−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≤ c̃(kn,a, δ)

}
,

where (µ̃n, Ñn, kn) are given by GPEη(ϵ), c̃ as in Eq. (23) and d̃±ϵ as in Eq. (32).

Using Lemmas 20 and 21, we have Pνπ(E∁δ,a,−) ≤ δ/K for all a ̸= a⋆, and Pνπ(E∁δ,a⋆,+) ≤ δ/K.
By union bound over a ∈ [K], we obtain Pνπ(E∁δ ) ≤ δ.

Let τMGLR
ϵ,δ as in Eq. (22) and ãn ∈ argmaxa∈[K][µ̃n,a]

1
0. Then, we directly have that

Pνπ

(
τMGLR
ϵ,δ < +∞, ãτMGLR

ϵ,δ
̸= a⋆

)
≤ Pνπ

(
E∁δ
)
+ Pνπ

(
Eδ ∩ {τMGLR

ϵ,δ < +∞, ãτMGLR
ϵ,δ
̸= a⋆}

)
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≤ δ + Pνπ

(
Eδ ∩ {τMGLR

ϵ,δ < +∞, ãτMGLR
ϵ,δ
̸= a⋆}

)
.

Under Eδ ∩ {τMGLR
ϵ,δ < +∞, ãτMGLR

ϵ,δ
̸= a⋆}, by definition of the stopping rule as in Eq. (7) and the

stopping threshold in Eq. (8), we obtain that there exists a ̸= a⋆ and n ∈ N such that [µ̃n,a]
1
0 >

[µ̃n,a⋆ ]10 and∑
b∈{a,a⋆}

c̃(kn,b, δ) < W̃ϵ,a,a⋆(µ̃n, Ñn)

= inf
u∈(0,1)

{
Ñn,ad̃

−
ϵ (µ̃n,a, u, r(Ñn,a)) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , u, r(Ñn,a⋆))

}
= inf

(ua,ua⋆ )∈(0,1)2, ua≤ua⋆

{Ñn,ad̃
−
ϵ (µ̃n,a, ua, r(Ñn,a)) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , ua⋆ , r(Ñn,a⋆))}

≤ Ñn,ad̃
−
ϵ (µ̃n,a, µa, r(Ñn,a)) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , µa⋆ , r(Ñn,a⋆))

≤ Ñn,ad̃
−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , µa⋆ , Ñn,a⋆/kn,a⋆) ≤

∑
b∈{a,a⋆}

c̃(kn,b, δ) ,

where we used the definition of W̃ϵ,a,a⋆ in Eq. (34) and Lemma 40 in the two equalities and µa⋆ > µa

in the following inequality. The second to last inequality uses that r(Ñn,a) ≤ Ñn,a/kn,a for all
a ∈ [K] by definition of (kn, Ñn), i.e., kn,a ≤ 1+log1+η Ñn,a ≤ kn,a+1, and that r 7→ d̃±ϵ (λ, u, r)
is non-decreasing, see Lemmas 31 and 32. The last inequality is obtained by the concentration event
Eδ. Since this yields a contradiction, we obtain Eδ ∩ {τMGLR

ϵ,δ < +∞, ãτMGLR
ϵ,δ

̸= a⋆} = ∅. This

concludes the proof, i.e., Pνπ

(
τMGLR
ϵ,δ < +∞, ãτMGLR

ϵ,δ
̸= a⋆

)
≤ δ.

F.2 Proof of Theorem 6

Lemma 5 yields the ϵ-global DP. The proof of δ-correctness is the same as the one of Lemma 9
detailed above. In particular, we use the same concentration event Eδ = Eδ,a⋆,+ ∩

⋂
a ̸=a⋆ Eδ,a,− that

satisfies Pνπ(E∁δ ) ≤ δ.

Under Eδ ∩ {τϵ,δ < +∞, ãτϵ,δ ̸= a⋆}, by definition of the GLR stopping rule as in Eq. (7)
and the stopping threshold in Eq. (8), we obtain that there exists a ̸= a⋆ and n ∈ N such that
[µ̃n,a]

1
0 > [µ̃n,a⋆ ]10,∑

b∈{a,a⋆}

(
c1(Ñn,b, δ) + c2(Ñn,b, ϵ)

)
=

∑
b∈{a,a⋆}

c(kn,b, ϵ, δ) < Wϵ,a,a⋆(µ̃n, Ñn) .

Then, we obtain

Wϵ,a,a⋆(µ̃n, Ñn) = inf
u∈[0,1]

{
Ñn,ad

−
ϵ (µ̃n,a, u) + Ñn,a⋆d+ϵ (µ̃n,a⋆ , u)

}
= inf

(ua,ua⋆ )∈[0,1]2, ua≤ua⋆

{Ñn,ad
−
ϵ (µ̃n,a, ua) + Ñn,a⋆d+ϵ (µ̃n,a⋆ , ua⋆)}

≤ Ñn,ad
−
ϵ (µ̃n,a, µa) + Ñn,a⋆d+ϵ (µ̃n,a⋆ , µa⋆) ,

where we used the definition of Wϵ,a,a⋆ in Eq. (4) and Lemma 35 in the two equalities, and
(ua⋆ , ua) = (µa⋆ , µa) ∈ [0, 1]2 that satisfies ua⋆ > ua in the following inequality.

Using Lemma 39 and initialization yields min{r(Ñn,a⋆), r(Ñn,a)} > 0 by . When [µ̃n,a]
1
0 > µa

and µa⋆ > [µ̃n,a⋆ ]10, Lemma 30 yields

Ñn,a⋆(d+ϵ (µ̃n,a⋆ , µa⋆)− d̃+ϵ (µ̃n,a⋆ , µa⋆ , r(Ñn,a⋆))) ≤ kη(Ñn,a⋆)(log(1 + 2ϵ
Ñn,a⋆

kη(Ñn,a⋆)
) + 1)

Ñn,a(d
−
ϵ (µ̃n,a, µa)− d̃−ϵ (µ̃n,a, µa, r(Ñn,a))) ≤ kη(Ñn,a)

(
log

(
1 + 2ϵ

Ñn,a

kη(Ñn,a)

)
+ 1

)
,
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where we used that (µa, µa⋆) ∈ (0, 1)2 and x/r(x) = 1+log1+η x = kη(x). When [µ̃n,a]
1
0 ≤ µa, we

have d−ϵ (µ̃n,a, µa) = 0 = d̃−ϵ (µ̃n,a, µa, r(Ñn,a)). When µa⋆ ≤ [µ̃n,a⋆ ]10, we have d+ϵ (µ̃n,a⋆ , µa⋆) =

0 = d̃+ϵ (µ̃n,a⋆ , µa⋆ , r(Ñn,a⋆)). In either case, the above inequalities are still valid since the left hand
side is null and the right hand side is positive. Therefore, we have

Ñn,ad
−
ϵ (µ̃n,a, µa) + Ñn,a⋆d+ϵ (µ̃n,a⋆ , µa⋆)

≤ Ñn,ad̃
−
ϵ (µ̃n,a, µa, r(Ñn,a)) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , µa⋆ , r(Ñn,a⋆)) +

∑
b∈{a,a⋆}

c2(Ñn,b, ϵ)

≤
∑

b∈{a,a⋆}

c̃(kn,b, δ) +
∑

b∈{a,a⋆}

c2(Ñn,b, ϵ) ≤
∑

b∈{a,a⋆}

(
c1(Ñn,b, δ) + c2(Ñn,b, ϵ)

)
,

where the second inequality uses the proof of Lemma 9, and third leverages that

c̃(kn,a, δ) ≤W−1

(
log

(
Kζ(s)

δ

)
+ s log(kη(Ñn,a)) + 3− log 2

)
− 3 + log 2 ,

by using that W−1 is increasing (Lemma 52) and kn,a ≤ 1 + log1+η Ñn,a = kη(Ñn,a) for all
a ∈ [K], as well as r(x) = x/kη(x). Combining all the above inequalities, we have shown that∑
b∈{a,a⋆}

(c1(Ñn,b, δ) + c2(Ñn,b, ϵ)) < Wϵ,a,a⋆(µ̃n, Ñn) ≤
∑

b∈{a,a⋆}

(c1(Ñn,b, δ) + c2(Ñn,b, ϵ)) .

This yields a contradiction, hence we have Eδ ∩ {τϵ,δ < +∞, ãτϵ,δ ̸= a⋆} = ∅. This concludes the
proof, i.e., Pνπ

(
τϵ,δ < +∞, ãτϵ,δ ̸= a⋆

)
≤ δ.

F.3 Fixed Time Tails Bounds for a Convolution of Probability Distributions

We derive general upper and lower bounds on the upper and lower tails of the convolution (i.e., sum)
between two independent random variables (Lemma 10). We provide upper (Lemma 12) and lower
(Lemma 12) tail bounds for a sum (i.e., convolution) between independent Bernoulli and Laplace
i.i.d. observations for a fixed time. The bounds are expressed as a function of the infimum over a
bounded interval of a − 1

t log(·) transform of the product between the (upper or lower) tail bounds of
each process. Therefore, in Lemmas 12 and 12, we can plug any bounds on the (upper or lower) tail
concentration of each process. While those bounds are standard for Bernoulli distribution (Lemma 17
in Appendix F.5), we propose new bounds for Laplace distribution (Lemma 16 in Appendix F.4).

Sketch of Proof of Lemma 10 The main difficulty when studying the sum of two random variables
lies in the fact that it involves the integral of the convolution of their probability measures. In all
generality, it is difficult to upper bound such a quantity. The main idea behind our proof technique
is to split the event of interest into a partition of carefully chosen events. Then, on each of those
smaller events, we derive a "tight" upper bound on the integral of the convolution of their probability
measures. It is reasonable to wonder how one could choose those events such that the upper bound
is easier to obtain. When the event is defined as the intersection of two independent events, then
we obtain a straightforward upper bound by the product of their respective probablities. When the
event truly mixes the distributions, we need to use a smarter approach to control the integrated
function. First, we upper bound a sub-component of this function by a maximum of the product of
their respective probablities (on a small interval that is defined by the smaller event). Second, after
this upper bound, the integrated function coincides with the hazard function, whose integral is the
cumulative hazard function. To conclude the proof, it only remains to merge together the different
upper bounds.

To the best of our knownledge, the proof technique closest to ours is the one used to prove Lemma 64
in Jourdan et al. [2022]. They control the probability that two random variables have an unexpected
empirical ranking as a function of the boundary crossing probabilities of each random variable.
While tackling a distinct problem, they adopt the same proof structure. They decompose the event
into carefully chosen events on which they can upper bound the integral of the convolution of their
probability distributions. The upper bounds are obtained similarly as ours, with fewer events to
consider.

Lemma 10 gives upper and lower bounds on the upper and lower tails of the sum of two independent
random variables. This result is of independent interest.
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Lemma 10. Let θ and λ be two independent real random variables such that (i) θ has bounded
support included in [α, β] and mean µ ∈ (α, β) and (ii) λ has zero mean. Let

∀u ∈ [0, 1], ∀v ∈ (0, 1], p(u, v) := u(1− log(u) + log(v)) .

Then, for all x > 0, we have

P(θ + λ ≥ µ+ x) ≤ P(λ ≥ x)P(θ ∈ [α, µ]) + P(λ ≤ 0)P(θ ∈ [min{β, µ+ x}, β])

+ p

(
sup

z∈(µ,min{β,µ+x})
{P(θ ∈ [z, β])P(λ ≥ µ+ x− z)} , P(θ ∈ [µ, β])P(λ ≥ 0)

)
,

P(θ + λ ≥ µ+ x) ≥ sup
z∈(µ,min{β,µ+x})

{P(θ ∈ [z, β])P(λ ≥ µ+ x− z)} ,

P(θ + λ ≤ µ− x) ≤ P(λ ≤ −x)P(θ ∈ [µ, β]) + P(λ ≥ 0)P(θ ∈ [α,max{α, µ− x}])

p

(
sup

z∈(max{α,µ−x},µ)
{P(θ ∈ [α, z])P(λ ≤ µ− x− z)} , P(θ ∈ [α, µ])P(λ ≤ 0)

)
,

P(θ + λ ≤ µ− x) ≥ sup
z∈(max{α,µ−x},µ)

{P(θ ∈ [α, z])P(λ ≤ µ− x− z)} .

Proof. I. Upper Bound on Upper Tail. We start by studying P(θ+λ ≥ µ+x) where x > 0. We can
suppose that there exists y1 ∈ (max{x+ µ− β, 0}, x) such that P(θ ≥ x+ µ− y1)P(λ ≥ y1) > 0.
Otherwise, the probability of {θ + λ ≥ µ+ x} is 0, and both bounds are 0 as well. Let y1 be such a
value, and

y3 ∈ [x, x+ µ) and y2 ∈ (min{x+ µ− β, 0}, 0] .
First, we note that − logP(θ ≥ x + µ − y1) and − logP(λ ≥ y1) are finite, since P(θ ≥ x + µ −
y1)P(λ ≥ y1) > 0 implies that min{P(θ ≥ x+ µ− y1),P(λ ≥ y1)} > 0. Second, we note that y2
only exists when x+ µ < β, i.e., (min{x+ µ− β, 0}, 0] ̸= ∅. In order to study the cases x+ µ < β
and x+ µ ≥ β simultaneously, we adopt the convention that the maximum of a positive quantity on
an empty set is defined as zero. Note that the situation x+ µ < β has more subcases.

We partition of the event {θ + λ ≥ µ+ x} into eight sets, namely

{θ + λ ≥ µ+ x, θ ∈ [α, β], λ ∈ R} = {λ ∈ (max{x+ µ− β, 0}, y1), θ ∈ [x+ µ− λ, β]}
∪ {θ ∈ [x+ µ− y1, β], λ ≥ y1}
∪ {θ ∈ (µ, x+ µ− y1), λ ≥ x+ µ− θ}
∪ {θ ∈ [x+ µ− y3, µ], λ ≥ x+ µ− θ}
∪ {θ ∈ [α, x+ µ− y3), λ ≥ x+ µ}
∪ {λ ∈ [y3, x+ µ), θ ∈ [x+ µ− λ, x+ µ− y3)}
∪ {λ ∈ [y2, 0], θ ∈ [x+ µ− λ, β]}
∪ {λ ∈ [x+ µ− θ, y2), θ ∈ [x+ µ− y2, β]} .

First, it is direct to see that

{λ ∈ [y2, 0], θ ∈ [x+ µ− λ, β]} ∪ {λ ∈ [x+ µ− θ, y2), θ ∈ [x+ µ− y2, β]}
⊆ {λ ≤ 0, θ ∈ [min{β, µ+ x}, β]} ,

{θ ∈ [x+ µ− y3, µ], λ ≥ x+ µ− θ} ∪ {θ ∈ [α, x+ µ− y3), λ ≥ x+ µ}
∪ {λ ∈ [y3, x+ µ), θ ∈ [x+ µ− λ, x+ µ− y3)} ⊆ {λ ≥ x, θ ∈ [α, µ]} .

By union bound, the probability of the union of those five events is upper bounded by the sum of the
probability of those two events, i.e., P(λ ≥ x, θ ∈ [α, µ]) + P(λ ≤ 0, θ ∈ [min{β, µ+ x}, β]).
A. Separate Conditions. Those two events and one of the three remaining do not require to control
(θ, λ) simultaneously, as they separate the conditions on (θ, λ). Thanks to the independence of
(θ, λ), the probability of those events can be simply upper bounded by the product of the respective
probability of those conditions. Therefore, we obtain

P(λ ≥ x, θ ∈ [α, µ]) + P(λ ≤ 0, θ ∈ [min{β, µ+ x}, β]) + P (θ ∈ [x+ µ− y1, β], λ ≥ y1)
= P(λ ≥ x)P(θ ∈ [α, µ]) + P(λ ≤ 0)P(θ ∈ [min{β, µ+ x}, β])
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+ P(θ ∈ [x+ µ− y1, β])P(λ ≥ y1) .

B. Mixed Conditions. The two remaining events truly require to control (θ, λ) simultaneously,
i.e., consider their convolution. The proof idea is the following: (1) we integrate one integral to
obtain one survival function, (2) we make appear the other survival function artificially, (3) we upper
bound the product of their survival functions on the whole set and (4) we integrate the remaining
hazard function, whose integral is the cumulative hazard function. Let dG and dF be the probability
measures of θ and λ on R.

For all s ∈ (max{x+ µ− β, 0}, y1), we have P(λ ≥ s) ≥ P(λ ≥ y1) > 0. Then, we obtain

P (λ ∈ (max{x+ µ− β, 0}, y1), θ ∈ [x+ µ− λ, β])

=

∫
s∈(max{x+µ−β,0},y1)

P(θ ∈ [x+ µ− s, β])dF (s)

=

∫
s∈(max{x+µ−β,0},y1)

P(λ ≥ s)P(θ ∈ [x+ µ− s, β]) 1

P(λ ≥ s)
dF (s)

≤ sup
s∈(max{x+µ−β,0},y1)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}
∫
s∈(max{x+µ−β,0},y1)

1

P(λ ≥ s)
dF (s)

≤ sup
s∈(max{x+µ−β,0},y1)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])} (− log(P(λ ≥ y1)) + log(P(λ ≥ 0))) ,

where we used that P(λ ≥ max{x+ µ− β, 0}) ≤ P(λ ≥ 0).

For all z ∈ (µ, x+ µ− y1), we have P(θ ∈ [z, β]) ≥ P(θ ∈ [x+ µ− y1, β]) > 0. Then, we obtain

P (θ ∈ (µ, x+ µ− y1), λ ≥ x+ µ− θ)

=

∫
z∈(µ,x+µ−y1)

P(λ ≥ x+ µ− z)dG(z)

=

∫
z∈(µ,x+µ−y1)

P(λ ≥ x+ µ− z)P(θ ∈ [z, β])
1

P(θ ∈ [z, β])
dG(z)

≤ sup
z∈(µ,x+µ−y1)

{P(λ ≥ x+ µ− z)P(θ ∈ [z, β])}
∫
z∈(µ,x+µ−y1)

1

P(θ ∈ [z, β])
dG(z)

≤ sup
s∈(y1,x)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}

· (− log(P(θ ∈ [x+ µ− y1, β])) + log(P(θ ∈ [µ, β]))) .

C. Combining Results. Putting everything together, we have, for all y1 ∈ (max{x+ µ− β, 0}, x),
P (θ + λ ≥ µ+ x) ≤ P(λ ≥ x)P(θ ∈ [α, µ]) + P(λ ≤ 0)P(θ ∈ [min{β, µ+ x}, β])
+ P(θ ∈ [x+ µ− y1, β])P(λ ≥ y1)
+ sup

s∈(max{x+µ−β,0},y1)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])} (− log(P(λ ≥ y1)) + log(P(λ ≥ 0)))

+ sup
s∈(y1,x)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])} (− log(P(θ ∈ [x+ µ− y1, β])) + log(P(θ ∈ [µ, β])))

≤ P(λ ≥ x)P(θ ∈ [α, µ]) + P(λ ≤ 0)P(θ ∈ [min{β, µ+ x}, β])
+ P(θ ∈ [x+ µ− y1, β])P(λ ≥ y1)
+ sup

s∈(max{x+µ−β,0},x)
{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}

· (− log(P(λ ≥ y1)P(θ ∈ [x+ µ− y1, β])) + log(P(θ ∈ [µ, β])P(λ ≥ 0))) ,

where the second inequality is obtained by extending the two suprema to (max{x+ µ− β, 0}, x),
which is possible since multiplied by a positive value, and factorizing them together. Taking

y⋆1 ∈ argmax
s∈(max{x+µ−β,0},x)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}} ,

and the change of variable z = x+ µ− s, i.e.,

sup
s∈(max{x+µ−β,0},x)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}
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= sup
z∈(µ,min{β,x+µ})

{P(θ ∈ [z, β])P(λ ≥ x+ µ− z)} ,

concludes the proof of the upper bound on the upper tail.

II. Lower Bound on Upper Tail. Let z ∈ (µ,min{β, µ+ x}). Then, we have directly that
{θ ∈ [z, β], λ ≥ µ+ x− z} ⊆ {θ + λ ≥ µ+ x} .

Using independence, we obtain
P(θ ∈ [z, β])P(λ ≥ µ+ x− z) = P(θ ∈ [z, β], λ ≥ µ+ x− z) ≤ P (θ + λ ≥ µ+ x) .

Taking the supremum over z ∈ (µ,min{β, µ+ x}) on the left hand side concludes the proof of the
lower bound on the upper tail.

III. Upper/Lower Bound on Lower Tail. The third and forth inequalities are a direct consequence
of the first and second inequalities applied to the two independent real random variables −θ and −λ
since (1) −θ has bounded support included in [−β,−α] and mean −µ ∈ (−β,−α), and (2) −λ has
zero mean. Namely,

P(θ + λ ≤ µ− x) = P(−θ − λ ≥ −µ+ x) ,

P(λ ≤ −x)P(θ ∈ [µ, β]) = P(−λ ≥ x)P(−θ ∈ [−β,−µ]) ,
P(λ ≥ 0)P(θ ∈ [α,max{α, µ− x}]) = P(−λ ≤ 0)P(−θ ∈ [min{−α, x− µ},−α]) ,
P(θ ∈ [α, µ])P(λ ≤ 0) = P(−θ ∈ [−µ,−α])P(−λ ≥ 0) ,

sup
z∈(max{α,µ−x},µ)

{P(θ ∈ [α, z])P(λ ≤ µ− x− z)}

= sup
z̃∈(−µ,min{−α,−µ+x})

{P(−θ ∈ [z̃,−α])P(−λ ≥ −µ+ x− z̃)} ,

where we used the change of variable z̃ = −z.

Properties on the Rate Function Lemma 11 gathers properties on the rate function f in Lemmas 12
and 12.
Lemma 11. Let us define

∀x ≥ 0, f(x) := (x+ 3− log 2) exp(−x) . (24)
On R+, the function f is twice continuously differentiable, positive, decreasing and strictly convex. It
satisfies f(0) > 1, limx→+∞ f(x) = 0 and

f(x) ≤ δ ⇐⇒ x ≥W−1(log (1/δ) + 3− log 2)− 3 + log 2 ,

where W−1 is defined in Lemma 52.

Proof. Direct manipulation yields f(0) = 3− log 2 > 1, limx→+∞ f(x) = 0,
∀x ≥ 0, f ′(x) = −(x+2− log 2) exp(−x) < 0 and f ′′(x) = (x+1− log 2) exp(−x) > 0 .

Using that f(x) = e3−log 2 exp(−h(x+ 3− log 2)) where h(x) = x− log(x), Lemma 52 yields

f(x) ≤ δ ⇐⇒ h(x+ 3− log 2) ≥ log
(
e3−log 2/δ

)
⇐⇒ W−1(log (1/δ) + 3− log 2)− 3 + log 2 ≤ x .

Fixed Time Upper and Lower Tails Concentration Lemma 12 gives an upper and lower tails
bound for a sum between independent Bernoulli and Laplace i.i.d. observations for a fixed time.
Lemma 12. Let µ ∈ (0, 1) and ϵ > 0. Let Zt =

∑
s∈[t]Xs where Xs ∼ Ber(µ) are i.i.d.

observations. Let St =
∑

s∈[nt]
Ys where Ys ∼ Lap(1/ϵ) are i.i.d. observations where (nt)t∈N be a

piece-wise constant increasing function from N to N. Let f as in Eq. (24). Then, for all t ∈ N and all
x > 0,

P(Zt + St ≥ t(x+ µ)) ≤ f
(
t inf
z∈(µ,min{1,x+µ})

{
−1

t
log (P(Zt ≥ tz)P(St ≥ t(x+ µ− z)))

})
P(Zt + St ≤ t(µ− x)) ≤ f

(
t inf
z∈(max{0,µ−x},µ)

{
−1

t
log (P(Zt ≤ tz)P(St ≤ t(µ− x− z)))

})
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Proof. Let t ∈ N and x > 0. Then, Zt and St are two independent real random variables such that
(1) Zt has bounded support included in [0, t] and mean tµ ∈ (0, t) and (ii) St has zero mean. By
symmetry of Lap(1/ϵ) around 0, the cumulative sum of nt observations (i.e., St) is also symmetric
around 0. However, Zt follows Bin(t, µ) which can be skewed. Therefore, we have

P(St ≥ 0) = 1/2 = P(St ≤ 0) and max{P(Zt ∈ [tµ, t]),P(Zt ∈ [0, tµ])} ≤ 1 ,

∀z ∈ [0, 1], P(Zt ∈ [tz, t]) = P(Zt ≥ tz) and P(Zt ∈ [0, tz]) = P(Zt ≤ tz) .

Using that z 7→ P(Zt ≥ tz) is decreasing on (µ,min{1, x+ µ}) and z 7→ P(St ≥ t(µ− x− z) is
increasing on (µ,min{1, x+ µ}), we obtain

max{P(Zt ≥ tmin{1, x+ µ}))P(St ≤ 0),P(St ≥ tx)P(Zt ≤ tµ)}
≤ sup

z∈(µ,min{1,x+µ})
{P(Zt ≥ tz)P(St ≥ t(x+ µ− z))} .

Let us define g(x) := x(3− log(2)− log(x)). Using Lemma 10 for (Zt, St) and considering tx > 0
and z ∈ (µ,min{β, µ+ x}) (i.e., tz ∈ (tµ, tmin{β, µ+ x})), we obtain

P(Zt + St ≥ t(x+ µ)) ≤ g

(
sup

z∈(µ,min{1,x+µ})
{P(Zt ≥ tz)P(St ≥ t(x+ µ− z))}

)
.

Let f as in Eq. (24) of Lemma 11. Then, we have f(x) = g(exp(−x)). This concludes the proof of
the upper bound on the upper tail. The second result is obtained similarly based on Lemma 10 and
the above results.

F.4 Tails Concentration of Cumulative Laplace Distributions

We derive time-uniform (Lemma 15) and fixed-time (Lemma 16) tails concentration for the cumulative
sum of i.i.d. Laplace observations. Our proof technique is based on the Chernoff method and Ville’s
inequality as in Eq. (26). Therefore, we need to derive the convex conjuguate of the moment
generating function of a Laplace distribution (Lemma 13). While the time-uniform result requires
using the peeling method, the proof of the fixed-time concentration is simpler. To use the peeling
method, we need to control the deviation of the process on slices of time (Lemma 14).

Convex Conjuguate of the Moment Generating Function of Laplace Distribution Let ϵ > 0.
The moment generating function of the Laplace distribution Lap(1/ϵ) is defined as

∀λ ∈ (0, ϵ), ψLap,ϵ(λ) = logEX∼Lap(1/ϵ) [exp(λX)] = − log(1− λ2/ϵ2) . (25)

Lemma 13 explicits the convex conjuguate of ψLap,ϵ and its associated maximizer.
Lemma 13. Let ψLap,ϵ as in Eq. (25). Let us define

∀x > 0, ψ⋆
Lap,ϵ(x) := max

λ∈(0,ϵ)
{λx− ψLap,ϵ(λ)} and λ(x) := argmax

λ∈(0,ϵ)

{λx− ψLap,ϵ(λ)} .

Then, for all x > 0, we have

λ(x) =
1

x

(√
1 + (xϵ)2 − 1

)
∈ (0, ϵ) and ψ⋆

Lap,ϵ(x) = h(ϵx) > 0 .

where h is defined in Eq. (31).

Proof. Let f(λ) = λx− ψLap,ϵ(λ) for all λ ∈ (0, ϵ). Direct manipulation yields that

∀λ ∈ (0, ϵ), f ′(λ) = x− 2λ

ϵ2 − λ2
and f ′′(λ) = −2 ϵ2 + λ2

(ϵ2 − λ2)2
< 0 .

Moreover, for all λ ∈ (0, ϵ), we have

f ′(λ) = 0 ⇐⇒ λ2 + 2λ/x− ϵ2 = 0 ⇐⇒ λ =
1

x

(√
1 + (xϵ)2 − 1

)
.

We used that the second solution to the second order polynomial equation is negative, hence not in
(0, ϵ). Moreover, it is direct to see that 1

x

(√
1 + (xϵ)2 − 1

)
∈ (0, ϵ) since

√
1 + x2 − 1 ≤ x, as it
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is equivalent to 1 + x2 ≤ (x+ 1)2 which is true when x > 0. Since f is strictly concave, the above
computation gives its unique maximizer on (0, ϵ), namely we have λ(x) = 1

x

(√
1 + (xϵ)2 − 1

)
.

Moreover, the convex conjuguate of ψLap,ϵ is

ψ⋆
Lap,ϵ(x) = f(λ(x)) =

√
1 + (xϵ)2 − 1 + log

(
1− 1

(xϵ)2

(√
1 + (xϵ)2 − 1

)2)
=
√
1 + (xϵ)2 − 1 + log

(
2

(xϵ)2

(√
1 + (xϵ)2 − 1

))
.

This concludes the proof.

Test Martingale for Cumulative Laplace Observations Let ϵ > 0 and St =
∑

s∈[t] Ys where
Ys ∼ Lap(1/ϵ) are i.i.d. observations. Let us define

∀λ ∈ (0, ϵ), Mt(λ) := exp(λSt − tψLap,ϵ(λ)) .

It is direct to see that M0(λ) = 0 almost surely and

E[Mt(λ) | Ft−1] =Mt−1(λ)EX∼Lap(1/ϵ)[exp(λX − ψLap,ϵ(λ))] =Mt−1(λ) .

Therefore, Mt(λ) is a test martingale. Using Ville’s inequality [Ville, 1939] yields that

∀δ ∈ (0, 1), ∀λ ∈ (0, ϵ), P (∃t ∈ N, λSt − tψLap,ϵ(λ) ≥ log(1/δ)) ≤ δ . (26)

Time Uniform Tails Concentration Lemma 14 controls the deviation of the process on slices of
time.

Lemma 14. Let ϵ > 0 and St =
∑

s∈[t] Ys where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Let N > 0.
For all x > 0, there exists λ(x) such that for all t ≥ N ,

{St ≥ tx} ⊆ {λ(x)St − tψLap,ϵ(λ(x)) ≥ Nh(ϵx)} ,

where λ(x) as in Lemma 13 and h as in Eq. (31).

Proof. Using Lemma 13, we obtain λ(x) ∈ (0, ϵ) and ψ⋆
Lap,ϵ(x) = h(ϵx) > 0, hence tψ⋆

Lap,ϵ(x) ≥
Nψ⋆

Lap,ϵ(x) for t ≥ N . Then, direct computations yield

St ≥ tx =⇒ λ(x)St − tψLap,ϵ(λ(x)) ≥ t (xλ(x)− ψLap,ϵ(λ(x))) = tψ⋆
Lap,ϵ(x)

=⇒ λSt − tψLap,ϵ(λ) ≥ Nψ⋆
Lap,ϵ(x) = Nh(ϵx) .

This concludes the proof.

Lemma 15 gives time-uniform tails concentration for the cumulative sum of i.i.d. Laplace observations.
It is obtained by applying Lemma 14 on slices of time with geometric growth rate.

Lemma 15. Let δ ∈ (0, 1). Let γ > 0, s > 1 and ζ be the Riemann ζ function. Let h−1 be the
inverse of h defined as in Eq. (31), which is well-defined by Lemma 28. Let ϵ > 0 and St =

∑
s∈[t] Ys

where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Then,

P
(
∃t ∈ N, St ≥

t

ϵ
h−1

(
1 + γ

t

(
log

(
ζ(s)

δ

)
+ s log

(
1 + log1+γ t

))))
≤ δ ,

P
(
∃t ∈ N, St ≤ −

t

ϵ
h−1

(
1 + γ

t

(
log

(
ζ(s)

δ

)
+ s log

(
1 + log1+γ t

))))
≤ δ .

Proof. Let us define the geometric grid Ni = (1 + γ)i−1, hence we have N =
⋃

i∈N[Ni, Ni+1). For
all i ∈ N, let xi(δ) > 0 to be defined later, and λ(xi(δ)) as in Lemma 14. For all t ∈ N, let g(t, δ) to
be defined later such that g(t, δ) ≥ xi(δ) for t ∈ [Ni, Ni+1). Using Lemma 14 with xi(δ) > 0 and
g(t, δ) ≥ xi(δ) for t ∈ [Ni, Ni+1), a union bound yields that

P (∃t ∈ N, St ≥ tg(t, δ))
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≤
∑
i∈N

P (∃t ∈ [Ni, Ni+1) : St ≥ txi(δ))

≤
∑
i∈N

P (∃t ∈ [Ni, Ni+1) : λ(xi(δ))St − tψLap,ϵ(λ(xi(δ))) ≥ Nih(ϵxi(δ)))

≤
∑
i∈N

e−Nih(ϵxi(δ)) ,

where the last inequality uses Ville’s inequality as in Eq. (26) for all i ∈ N. Let us define

g(t, δ) =
1

ϵ
h−1

(
1 + γ

t

(
log

(
ζ(s)

δ

)
+ s log

(
1 + log1+γ(t)

)))
,

xi(δ) =
1

ϵ
h−1

(
1

Ni
log

(
isζ(s)

δ

))
.

Using Lemma 28, we obtain that xi(δ) > 0 and that h−1 is increasing on R⋆
+. Using t ∈ [Ni, Ni+1)

and i = 1 + log1+γ Ni, we obtain

g(t, δ) ≥ 1

ϵ
h−1

(
1

Ni

(
log

(
ζ(s)

δ

)
+ s log

(
1 + log1+γ(t)

)))
≥ 1

ϵ
h−1

(
1

Ni
log

(
isζ(s)

δ

))
= xi(δ) .

Therefore, we have

P (∃t ∈ N, St ≥ tg(t, δ)) ≤
∑
i∈N

e−Nih(ϵxi(δ)) ≤ δ

ζ(s)

∑
i∈N

1

is
= δ .

This concludes the proof of the first result.

By symmetry of the Lap(1/ϵ) around zero, the cumulative sum of i.i.d. observations is symmetric
around zero. Combining the first result with the symmetry around zero yields the second result.

Fixed Time Tails Concentration When the time is fixed and not random, there is no need to
consider slices of time and we can directly control the deviation of the process.

Lemma 16. Let ϵ > 0 and St =
∑

s∈[t] Ys where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Let h as in
Eq. (31). Then,

∀t ∈ N,∀x > 0, P(St ≥ tx) ≤ exp(−th(ϵx)) ,
∀t ∈ N,∀x > 0, P(St ≤ −tx) ≤ exp(−th(ϵx)) .

Proof. The first result can be obtained with the same manipulation as in the proof of Lemma 15, i.e.,
combining Ville’s inequality in Eq. (26) with Lemma 14 at N = t.

By symmetry of the Lap(1/ϵ) around zero, the cumulative sum of i.i.d. observations is symmetric
around zero. Combining the first result with the symmetry around zero yields the second result.

F.5 Fixed Time Tails Concentration of Cumulative Bernoulli Distributions

The fixed time upper and lower tail concentration of cumulative Bernoulli distributions are well-
studied. Using the Chernoff method yields Lemma 17, whose proof is omitted since it is a classic
result.

Lemma 17 (Chernoff Tail Bound for Bernoulli Distributions [Boucheron et al., 2013]). Let µ ∈ (0, 1)
and Zt =

∑
s∈[t]Xs where Xs ∼ Ber(µ) are i.i.d. observations. Then,

∀t ∈ N,∀x ∈ (µ, 1), P(Zt ≥ tx) ≤ exp(−tkl(x, µ)) ,
∀t ∈ N,∀x ∈ (0, µ), P(Zt ≤ tx) ≤ exp(−tkl(x, µ)) .
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F.6 Fixed Time Tails Concentration for a Convolution between Bernoulli and Laplace
Distributions

We provide upper (Lemma 18) and lower (Lemma 19) tail concentrations for a sum (i.e., convolution)
between independent Bernoulli and Laplace i.i.d. observations for a fixed time.

Fixed Time Upper Tail Concentration Lemma 18 shows an upper tail concentration on the sum
(i.e., convolution) between independent Bernoulli and Laplace i.i.d. observations.
Lemma 18. Let µ ∈ (0, 1) and Zt =

∑
s∈[t]Xs where Xs ∼ Ber(µ) are i.i.d. observations. Let

(nt)t∈N be a piece-wise constant increasing function from N to N. Let ϵ > 0 and St =
∑

s∈[nt]
Ys

where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Then,

∀t ∈ N, ∀x > 0, P(Zt + St ≥ t(µ+ x)) ≤ f
(
td̃−ϵ (µ+ x, µ, t/nt)

)
,

where f is defined in Eq. (24) and d̃−ϵ is defined in Eq. (32).

Proof. Let t ∈ N and x > 0. Combining Lemmas 16 and 17, we obtain, for all x > 0 and all
z ∈ (µ,min{1, x+ µ}),

−1

t
log
(
Ḡt(tz)F̄nt

(t(x+ µ− z))
)
≥ kl(z, µ) +

nt
t
h

(
t

nt
ϵ(x+ µ− z)

)
,

where we used that x + µ − z > 0. Taking the infimum on (µ,min{1, x + µ}) on both sides and
using that [x+ µ]10 = min{1, x+ µ} > µ, we obtain

inf
z∈(µ,min{1,x+µ})

{
−1

t
log
(
Ḡt(tz)F̄nt

(t(x+ µ− z))
)}
≥ d̃−ϵ (µ+ x, µ, t/nt) ,

where d̃−ϵ is defined in Eq. (32). Since f is decreasing on R+ (Lemma 11), using Lemma 12 yields

P(Zt + St ≥ t(x+ µ)) ≤ f
(
td̃−ϵ (µ+ x, µ, t/nt)

)
.

which concludes the proof.

Fixed Time Lower Tail Concentration Lemma 19 shows a lower tail concentration on the sum
(i.e., convolution) between independent Bernoulli and Laplace i.i.d. observations.
Lemma 19. Let µ ∈ (0, 1) and Zt =

∑
s∈[t]Xs where Xs ∼ Ber(µ) are i.i.d. observations. Let

(nt)t∈N be a piece-wise constant increasing function from N to N. Let ϵ > 0 and St =
∑

s∈[nt]
Ys

where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Then,

∀t ∈ N, ∀x > 0, P(Zt + St ≤ t(µ− x)) ≤ f
(
td̃+ϵ (µ− x, µ, t/nt)

)
,

where f is defined in Eq. (24) and d̃+ϵ is defined in Eq. (32).

Proof. Let t ∈ N and x > 0. Combining Lemmas 16 and 17, we obtain, for all x > 0 and all
z ∈ (max{0, µ− x}, µ),

−1

t
log (Gt(tz)Fnt

(t(µ− x− z))) ≥ kl(z, µ) +
nt
t
h

(
t

nt
ϵ(z + x− µ)

)
,

where we used that µ− x− z < 0. Taking the infimum on z ∈ (max{0, µ− x}, µ) on both sides
and using that [µ− x]10 = max{0, µ− x} < µ, we obtain

inf
z∈(max{0,µ−x},µ)

{
−1

t
log (Gt(tz)Fnt

(t(µ− x− z)))
}
≥ d̃+ϵ (µ− x, µ, t/nt) ,

where d̃+ϵ is defined in Eq. (32). Since f is decreasing on R+ (Lemma 11), using Lemma 12 yields

P(Zt + St ≥ t(µ− x)) ≤ f
(
td̃+ϵ (µ− x, µ, t/nt)

)
,

which concludes the proof.
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F.7 Geometric Grid Time Uniform Tails Concentration for a Convolution between Bernoulli
and Laplace Distributions

We provide upper (Lemma 20) and lower (Lemma 21) tail concentrations for a sum (i.e., convolution)
between independent Bernoulli and Laplace i.i.d. observations that holds time uniformly on a
geometric grid.

Geometric Grid Time Uniform Upper Tail Concentration Lemma 20 gives a threshold ensuring
that a geometric grid time uniform upper tail concentration holds with probability at least 1− δ.

Lemma 20. Let δ ∈ (0, 1). Let (µ̃n, Ñn, kn) are given by GPEη(ϵ). Let s > 1 and ζ be the Riemann
ζ function. Let W−1(x) = −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch of the
Lambert W function. It satisfies W−1(x) ≈ x+ log x, see Lemma 52. Let us define

c(k, δ) =W−1 (log (1/δ) + s log(k) + log(ζ(s)) + 3− 2 log 2)− 3 + 2 log 2 . (27)

For all a ∈ [K], let us define

Eδ,a,− =
{
∀n ∈ N, Ñn,ad̃

−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≤ c(kn,a, δ)

}
, (28)

where d̃−ϵ is defined in Eq. (32). Then, we have Pνπ(E∁δ,a,−) ≤ δ for all a ∈ [K].

Proof. Let us define the geometric grid Ni = (1 + η)i−1, hence we have N =
⋃

i∈N[Ni, Ni+1). Let
a ∈ [K]. If Ñn,a ∈ [Ni, Ni+1), then we have Ñn,a = ⌈Ni⌉ and kn,a = i. By union bound, we
obtain

Pνπ(E∁δ,a,−) = Pνπ

(
∃n ∈ N, Ñn,ad̃

−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≥ c(kn,a, δ)

)
≤
∑
i∈N

Pνπ

(
∃i ∈ N, (Ñn,a, kn,a) = (⌈Ni⌉, i) ∧ Ñn,ad̃

−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≥ c(kn,a, δ)

)
=
∑
i∈N

P
(
⌈Ni⌉d̃−ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ c(i, δ)

)
,

where Z⌈Ni⌉ is the cumulative sum of ⌈Ni⌉ i.i.d. observations from Ber(µa) and Si is the cumulative
sum of i i.i.d. observations from Lap(1/ϵ).

For all i ∈ N, let xi > 0 be the unique solution of ⌈Ni⌉d̃−ϵ (x + µa, µa, ⌈Ni⌉/i) = c(i, δ), which
exists by Lemma 33. Then, we obtain

P
(
⌈Ni⌉d̃−ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ c(i, δ)

)
= P

(
d̃−ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ d̃−ϵ (xi + µa, µa, ⌈Ni⌉/i)

)
≤ P(Z⌈Ni⌉ + Si ≥ ⌈Ni⌉(xi + µa)) ≤ f

(
⌈Ni⌉d̃−ϵ (xi + µa, µa, ⌈Ni⌉/i)

)
= f (c(i, δ)) ,

where f(x) := (x+ 3− log 2) exp(−x) for all x ≥ 0. The first and the last equalities are otained by
definition of xi, i.e., ⌈Ni⌉d̃−ϵ (x+ µa, µa, ⌈Ni⌉/i) = c(i, δ). The first inequality is obtained by using
Lemma 34, and the second inequality is obtained by using Lemma 18. Using Lemma 11 yields

f(x) ≤ δ ⇐⇒ W−1(log (1/δ) + 3− log 2)− 3 + log 2 ≤ x .

Taking
c(i, δ) =W−1(log (i

sζ(s)/δ) + 3− log 2)− 3 + log 2 ,

we can conclude the proof since Pνπ(E∁δ,a,−) ≤
∑

i∈N f (c(i, δ)) ≤
∑

i∈N
δ

ζ(s)is ≤ δ.

Geometric Grid Time Uniform Lower Tail Concentration Lemma 21 gives a threshold ensuring
that a geometric grid time uniform lower tail concentration holds with probability at least 1− δ.
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Lemma 21. Let δ ∈ (0, 1). Let (µ̃n, Ñn, kn) are given by GPEη(ϵ). Let c as in Eq. (27). For all
a ∈ [K], let us define

Eδ,a,+ =
{
∀n ∈ N, Ñn,ad̃

+
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≤ c(kn,a, δ)

}
, (29)

where d̃+ϵ is defined in Eq. (32). Then, we have Pνπ(E∁δ,a,+) ≤ δ for all a ∈ [K].

Proof. Let us define the geometric grid Ni = (1 + η)i−1, hence we have N =
⋃

i∈N[Ni, Ni+1). Let
a ∈ [K]. If Ñn,a ∈ [Ni, Ni+1), then we have Ñn,a = ⌈Ni⌉ and kn,a = i. By union bound, we
obtain

Pνπ(E∁δ,a,+) = Pνπ

(
∃n ∈ N, Ñn,ad̃

+
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≥ c(kn,a, δ)

)
≤
∑
i∈N

Pνπ

(
∃i ∈ N, (Ñn,a, kn,a) = (⌈Ni⌉, i) ∧ Ñn,ad̃

+
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≥ c(kn,a, δ)

)
=
∑
i∈N

P
(
⌈Ni⌉d̃+ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ c(i, δ)

)
,

where Z⌈Ni⌉ is the cumulative sum of ⌈Ni⌉ i.i.d. observations from Ber(µa) and Si is the cumulative
sum of i i.i.d. observations from Lap(1/ϵ).

For all i ∈ N, let xi > 0 be the unique solution of ⌈Ni⌉d̃+ϵ (µa − x, µa, ⌈Ni⌉/i) = c(i, δ), which
exists by Lemma 33. Then, we obtain

P
(
⌈Ni⌉d̃+ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ c(i, δ)

)
= P

(
d̃+ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ d̃+ϵ (µa − xi, µa, ⌈Ni⌉/i)

)
≤ P(Z⌈Ni⌉ + Si ≤ ⌈Ni⌉(µa − xi)) ≤ f

(
⌈Ni⌉d̃+ϵ (µa − xi, µa, ⌈Ni⌉/i)

)
= f (c(i, δ)) ≤ δ

ζ(s)is

where f(x) := (x+ 3− log 2) exp(−x) for all x ≥ 0. The first and the last equalities are otained by
definition of xi, i.e., ⌈Ni⌉d̃+ϵ (µa − x, µa, ⌈Ni⌉/i) = c(i, δ). The first inequality is obtained by using
Lemma 34, and the second inequality is obtained by using Lemma 19. The last inequality uses the
same derivations based on Lemma 11 as in the proof of Lemma 20 by taking

c(i, δ) =W−1(log (i
sζ(s)/δ) + 3− log 2)− 3 + log 2 .

This concludes the proof since Pνπ(E∁δ,a,−) ≤
∑

i∈N
δ

ζ(s)is ≤ δ.

G Divergence, Transportation Cost and Characteristic Time

Appendix G is organized as follow. First, we derive regularity properties for the signed (modified)
divergences d±ϵ (Appendix G.1) and d̃±ϵ (Appendix G.1.1). Second, we derive regularity properties
the (modified) transportation costs Wϵ,a,b (Appendix G.2) and W̃ϵ,a,b (Appendix G.2.1) for a pair of
arms (a, b). Third, we study the characteristic time for ϵ-global DP BAI (Appendix G.3).

G.1 Signed Divergence

Recall [x]10 := max{0,min{1, λ}} and

∀(λ, µ) ∈ (0, 1)2, kl(λ, µ) := λ log

(
λ

µ

)
+ (1− λ) log

(
1− λ
1− µ

)
where kl is infinity when {µ, λ} ∩ {0, 1} ≠ ∅. The signed divergences d±ϵ are defined in Eq. (3), i.e.,

∀(λ, µ) ∈ R× [0, 1], d−ϵ (λ, µ) := 1
(
µ < [λ]10

)
inf

z∈[µ,[λ]10]

{
kl(z, µ) + ϵ([λ]10 − z)

}
,

d+ϵ (λ, µ) := 1
(
µ > [λ]10

)
inf

z∈[[λ]10,µ]

{
kl(z, µ) + ϵ(z − [λ]10)

}
.

Lemma 22 relates dϵ and d±ϵ .
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Lemma 22. Let d±ϵ and dϵ as in Eq. (3) and (1). Let (κ, ν) ∈ F2 with means (λ, µ) ∈ (0, 1)2. Then,

dϵ(κ, ν) =


0 if λ = µ

d−ϵ (λ, µ) if µ < λ

d+ϵ (λ, µ) if µ > λ

.

Proof. When λ = µ, we have dϵ(κ, ν) = 0 by taking φ = ν and using the non-negativity of dϵ.

Let φ ∈ F with mean z ∈ (0, 1). When µ < λ, we have
dϵ(κ, ν) = min{ inf

z∈(0,µ)
{kl(z, µ) + ϵ(λ− z)} , inf

z∈[µ,λ]
{kl(z, µ) + ϵ(λ− z)} ,

inf
z∈(λ,1)

{kl(z, µ) + ϵ(z − λ)}}

= inf
z∈[µ,λ]

{kl(z, µ) + ϵ(λ− z)} = d−ϵ (λ, µ) ,

where we partitioned (0, 1) and used that (1) z 7→ kl(z, µ) + ϵ(z − λ) is increasing on (λ, 1), hence
the infimum on this interval is achieved at λ, and (2) z 7→ kl(z, µ)+ ϵ(λ− z), is decreasing on (0, µ),
hence the infimum on this interval is achieved at µ.

When µ > λ, we have
dϵ(κ, ν) = min{ inf

z∈(0,λ)
{kl(z, µ) + ϵ(λ− z)} , inf

z∈[λ,µ]
{kl(z, µ) + ϵ(z − λ)} ,

inf
z∈(µ,1)

{kl(z, µ) + ϵ(z − λ)}}

= inf
z∈[λ,µ]

{kl(z, µ) + ϵ(z − λ)} = d+ϵ (λ, µ) ,

where we partitioned (0, 1) and used that (1) z 7→ kl(z, µ) + ϵ(z − λ) is increasing on (µ, 1), hence
the infimum on this interval is achieved at µ, and (2) z 7→ kl(z, µ)+ ϵ(λ− z), is decreasing on (0, λ),
hence the infimum on this interval is achieved at λ.

Lemma 23 shows a strong link between d±ϵ . This symmetry property can be used to carry regularity
properties from d+ϵ to d−ϵ , and vice versa.
Lemma 23. Let d±ϵ as in Eq. 3. For all µ ∈ [0, 1] and all λ ∈ R,

d+ϵ (1− λ, 1− µ) = d−ϵ (λ, µ) and d−ϵ (1− λ, 1− µ) = d+ϵ (λ, µ) .

Proof. By definitions and change of variable z̃ = 1− z and kl(1− z̃, 1− µ) = kl(z̃, µ), we obtain

d+ϵ (1− λ, 1− µ) = 1
(
µ < [λ]10

)
inf

z∈[1−[λ]10,1−µ]
{kl(z, 1− µ) + ϵ(max{0,min{1, λ} − (1− z))}

= 1
(
µ < [λ]10

)
inf

z̃∈[µ,[λ]10]
{kl(1− z̃, 1− µ) + ϵ(max{0,min{1, λ} − z̃)}

= 1
(
µ < [λ]10

)
inf

z̃∈[µ,[λ]10]
{kl(z̃, µ) + ϵ(max{0,min{1, λ} − z̃)} = d−ϵ (λ, µ) .

The second equality is a consequence of the first.

Lemma 24 gathers regularity properties on the functions g±ϵ that appear in the explicit solutions of
d±ϵ , as shown below. Intuitively, those functionals govern locally the separation between the low
privacy regime where d±ϵ is equals to the kl and the high privacy regime where the divergence has to
be modified to account for the privacy budget ϵ.
Lemma 24. Let ϵ > 0. Let g±ϵ defined as

∀x ∈ [0, 1], g+ϵ (x) :=
x

x(1− eϵ) + eϵ
and g−ϵ (x) :=

xeϵ

x(eϵ − 1) + 1
. (30)

On [0, 1], the function g+ϵ is twice continuously differentiable, increasing and strictly convex. It
satisfies g+ϵ (0) = 0, g+ϵ (1) = 1 and g+ϵ (x) < x on (0, 1). On [0, 1], the function g−ϵ is twice
continuously differentiable, increasing and strictly concave. It satisfies g−ϵ (0) = 0, g−ϵ (1) = 1 and
g−ϵ (x) > x on (0, 1). For all x ∈ [0, 1], we have g+ϵ (g

−
ϵ (x)) = x and g−ϵ (1 − x) + g+ϵ (x) = 1.

For all x ∈ [0, 1], we have limϵ→0 g
+
ϵ (x) = limϵ→0 g

−
ϵ (x) = x; it satisfies limϵ→+∞ g−ϵ (x) = 1 if

x ̸= 0 and limϵ→+∞ g+ϵ (x) = 0 if x ̸= 1.
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Proof. Using that eϵ > 1, direct computations yield that, for all x ∈ [0, 1],

(g+ϵ )
′(x) =

eϵ

(x(1− eϵ) + eϵ)2
> 0 and (g+ϵ )

′′(x) = −2 eϵ(1− eϵ)
(x(1− eϵ) + eϵ)2

> 0 ,

(g−ϵ )
′(x) =

eϵ

(x(eϵ − 1) + 1)2
> 0 and (g−ϵ )

′′(x) = −2 eϵ(eϵ − 1)

(x(eϵ − 1) + 1)3
< 0 .

Therefore, g+ϵ is twice continuously differentiable, increasing and strictly convex on [0, 1] and g−ϵ
is twice continuously differentiable, increasing and strictly concave on [0, 1]. It is direct to see
that g+ϵ (0) = g−ϵ (0) = 0 and g+ϵ (1) = g−ϵ (1) = 1. Since they are strictly convex and strictly
concave, we obtain g+ϵ (x) < x and g−ϵ (x) > x for all x ∈ (0, 1). It is direct to see that, for
all x ∈ [0, 1], we have g+ϵ (g

−
ϵ (x)) = x and 1 − g+ϵ (x) = g−ϵ (1 − x). It is direct to see that,

limϵ→0 g
+
ϵ (x) = limϵ→0 g

−
ϵ (x) = x for all x ∈ [0, 1], and limϵ→+∞ g+ϵ (x) = 0 if x ̸= 1 and

limϵ→+∞ g−ϵ (x) = 1 if x ̸= 0.

Lemma 25 gathers regularity properties of d+ϵ . In particular, it gives a closed-form solution, which is
a key property used in our implementation to reduce the computational cost.
Lemma 25. Let d+ϵ as in Eq. (3), and g±ϵ as in Eq. (30). For all µ ∈ [0, 1] and λ ∈ R, we have

d+ϵ (λ, µ) =


0 if µ ∈ [0, [λ]10]

− log (1− µ(1− e−ϵ))− ϵ[λ]10 if µ ∈ (g−ϵ ([λ]
1
0), 1]

kl (λ, µ) if λ ∈ (0, 1) ∧ µ ∈ ([λ]10, g
−
ϵ ([λ]

1
0)]

.

The function (λ, µ) 7→ d+ϵ (λ, µ) is jointly continuous on R× [0, 1]. For all µ ∈ [0, 1], the function
λ 7→ d+ϵ (λ, µ) is constant on (−∞, 0] and on [1,+∞). Then,

∀λ ∈ (0, 1),∀µ ∈ [0, 1], d+ϵ (λ, µ) =


0 if µ ∈ [0, λ]

kl (λ, µ) µ ∈ (λ, g−ϵ (λ)]

− log (1− µ(1− e−ϵ))− ϵλ if µ ∈ (g−ϵ (λ), 1]

.

For all µ ∈ [0, 1], the function λ 7→ d+ϵ (λ, µ) is continuously differentiable, positive, decreasing
and convex on (0, µ); it is affine with negative slope −ϵ on (0, g+ϵ (µ)) and twice continuously
differentiable and strictly convex on (g+ϵ (µ), µ).

For all λ ∈ (0, 1), the function µ 7→ d+ϵ (λ, µ) is positive, three times differentiable with continuous
first derivative, increasing and strictly convex on (λ, 1]; its second derivative is discontinuous at

g−ϵ (λ) with gap ∂2d+
ϵ

∂µ2 (λ, g−ϵ (λ))− limµ→g−
ϵ (λ)+

∂2d+
ϵ

∂µ2 (λ, µ) > 0. Moreover, we have

∀µ ∈ (λ, 1],
∂d+ϵ
∂µ

(λ, µ) =

{
1−e−ϵ

1−µ(1−e−ϵ) if µ ∈ (g−ϵ (λ), 1]
µ−λ

µ(1−µ) if µ ∈ (λ, g−ϵ (λ)]
.

The function d+ϵ is jointly convex on (0, 1)× [0, 1].

Proof. Recall that d+ϵ (λ, µ) = 1
(
µ > [λ]10

)
infz∈[[λ]10,µ]

f+ϵ ([λ]10, µ, z) where f+ϵ (λ, µ, z) =

kl(z, µ) + ϵ(z − λ). Direct computations yield that, for all z ∈ ([λ]10, µ),

∂f+ϵ
∂z

(λ, µ, z) = log

(
z(1− µ)
(1− z)µ

)
+ ϵ and

∂f+ϵ
∂z

(λ, µ, z) = 0 ⇐⇒ z = g+ϵ (µ) ,

∂2f+ϵ
∂z2

(λ, µ, z) =
1

z(1− z)
> 0 .

Therefore, z → f+ϵ (λ, µ, z) is twice continuously differentiable, positive and strictly convex on
([λ]10, µ). Moreover, z → f+ϵ (λ, µ, z) is decreasing on ([λ]10,max{g+ϵ (µ), λ}) and increasing on
(max{g+ϵ (µ), λ}, µ). Using Lemma 24, we obtain

f+ϵ (λ, µ, λ) = kl (λ, µ) ,

kl(g+ϵ (µ), µ) = −(g+ϵ (µ) + g−ϵ (1− µ)) log (µ(1− eϵ) + eϵ) + ϵg−ϵ (1− µ)
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= − log
(
1− µ(1− e−ϵ)

)
− ϵg+ϵ (µ) ,

f+ϵ (λ, µ, g+ϵ (µ)) = − log
(
1− µ(1− e−ϵ)

)
− ϵλ .

By definition of the indicator function, we have d+ϵ (λ, µ) = 0 if µ ∈ [0, [λ]10]. When λ ≤ 0, for all
µ ∈ (0, 1), we have

∀µ ∈ (0, 1), d+ϵ (λ, µ) = f+ϵ ([λ]10, µ, g
+
ϵ (µ)) = − log

(
1− µ(1− e−ϵ)

)
− ϵ[λ]10 ,

by using the properties of z → f+ϵ (λ, µ, z) on (0, 1) = (g−ϵ ([λ]
1
0), 1) by Lemma 24. This function

can be extended by continuity to µ = 0 = g−ϵ ([λ]
1
0) with value d+ϵ (λ, 0) = 0. When λ ∈ (0, 1) and

µ ∈ (g−ϵ (λ), 1), we have

∀µ ∈ (0, 1), d+ϵ (λ, µ) = f+ϵ ([λ]10, µ, g
+
ϵ (µ)) = − log

(
1− µ(1− e−ϵ)

)
− ϵ[λ]10 ,

by using the properties of z → f+ϵ (λ, µ, z) on (g−ϵ (λ), 1) = (g−ϵ ([λ]
1
0), 1) by Lemma 24. This

function can be extended by continuity to (λ, µ) = (0, 0) = limλ→0+(λ, g
−
ϵ ([λ]

1
0)) with value

d+ϵ (0, 0) = 0. In both cases, this function can be extended by continuity to µ = 1 with value
d+ϵ (λ, 1) = ϵ(1− [λ]10).

When λ ∈ (0, 1), i.e., [λ]10 = λ, and µ ∈ (λ, g−ϵ (λ)) ⊆ (0, 1) by Lemma 24, we have

d+ϵ (λ, µ) = f+ϵ (λ, µ, λ) = kl (λ, µ) .

This function can be extended by continuity to µ = λ with value d+ϵ (λ, λ) = 0 since kl (λ, λ) = 0.
Using Lemma 24, this function can be extended by continuity to µ = g−ϵ (λ) (i.e., λ = g+ϵ (µ)) with
value

d+ϵ (λ, g
−
ϵ (λ)) = kl

(
λ, g−ϵ (λ)

)
= kl

(
g+ϵ (µ), µ

)
= − log

(
1− µ(1− e−ϵ)

)
− ϵg+ϵ (µ) .

Therefore, we have

∀λ ∈ (0, 1), ∀µ ∈ [λ, g−ϵ (λ)], d+ϵ (λ, µ) = kl (λ, µ) .

Using that limλ→0+ [λ, g
−
ϵ (λ)] = {0}, this function can be extended by continuity to λ = 0 with

value 0. Using that limλ→1− [λ, g
−
ϵ (λ)] = {1}, this function can be extended by continuity to λ = 1

with value 0 = lim(µ,λ)→1− − log (1− µ(1− e−ϵ))− ϵ[λ]10.

Putting all the continuity arguments together, we have shown that (λ, µ) → d+ϵ (λ, µ) is jointly
continuous on R×[0, 1]. Moreover, it is direct to see that, for all µ ∈ [0, 1], the function λ→ d+ϵ (λ, µ)
is constant on (−∞, 0] and on [1,+∞). Then,

∀λ ∈ (0, 1),∀µ ∈ [0, 1], d+ϵ (λ, µ) =


0 if µ ∈ [0, λ]

kl (λ, µ) µ ∈ (λ, g−ϵ (λ)]

− log (1− µ(1− e−ϵ))− ϵλ if µ ∈ (g−ϵ (λ), 1]

.

Let µ ∈ [0, 1] and λ ∈ (0, µ). Using that µ ∈ (g−ϵ (λ), 1] if and only if λ ∈ (0, g+ϵ (µ)). For all
µ ∈ [0, 1], the function λ → d+ϵ (λ, µ) is positive and affine with negative slope −ϵ on (0, g+ϵ (µ)).
Let λ ∈ (g+ϵ (µ), µ). Direct computation yields that

∂d+ϵ
∂λ

(λ, µ) =
∂kl

∂λ
(λ, µ) = log

(
λ(1− µ)
(1− λ)µ

)
< 0 ,

lim
λ→g+

ϵ (µ)+

∂d+ϵ
∂λ

(λ, µ) = −ϵ = lim
λ→g+

ϵ (µ)−

∂d+ϵ
∂λ

(λ, µ) ,

∂2d+ϵ
∂λ2

(λ, µ) =
∂2kl

∂λ2
(λ, µ) =

1

λ(1− λ)
> 0 .

For all µ ∈ [0, 1], the function λ→ d+ϵ (λ, µ) is continuously differentiable, positive, decreasing and
convex on (0, µ). For all µ ∈ [0, 1], the function λ→ d+ϵ (λ, µ) is twice continuously differentiable,
positive and strictly convex on (g+ϵ (µ), µ). Combining the above results concludes the part of
λ 7→ d+ϵ (λ, µ) on (0, µ).

Let λ ∈ (0, 1). Let a > 0 and k ∈ N. The k-th derivative of u(x) = a(1 − ax)−1 on [0, 1] is
u(k)(x) = (k − 1)!ak+1(1− ax)−(k+1). Then,

∀µ ∈ (g−ϵ (λ), 1], ∀k ∈ N,
∂kd+ϵ
∂µk

(λ, µ) =
(1− e−ϵ)k(k − 1)!

(1− µ(1− e−ϵ))k
> 0 ,
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∀µ ∈ (λ, g−ϵ (λ)],
∂d+ϵ
∂µ

(λ, µ) =
µ− λ
µ(1− µ)

> 0 ,

∂2d+ϵ
∂µ2

(λ, µ) =
(µ− λ)2 + λ(1− λ)

µ2(1− µ)2
> 0 ,

∂3d+ϵ
∂µ3

(λ, µ) > 0 .

Direct computation yields

lim
µ→g−

ϵ (λ)

µ− λ
µ(1− µ)

= (1− e−ϵ)(1 + λ(eϵ − 1)) ,

lim
µ→g−

ϵ (λ)

1− e−ϵ

1− µ(1− e−ϵ)
= (1− e−ϵ)(1 + λ(eϵ − 1)) ,

lim
µ→g−

ϵ (λ)

{
(µ− λ)2 + λ(1− λ)

µ2(1− µ)2
− (1− e−ϵ)2

(1− µ(1− e−ϵ))2

}
=

λ(1− λ)
g−ϵ (λ)2(1− g−ϵ (λ))2

> 0 .

For all λ ∈ (0, 1), the function µ→ d+ϵ (λ, µ) is positive, three times differentiable with continuous
first derivative and increasing on (λ, 1]. For all λ ∈ (0, 1), the function µ → d+ϵ (λ, µ) is strictly
convex on (λ, g−ϵ (λ)] and (g−ϵ (λ), 1]. The second derivative is discontinuous at g−ϵ (λ) with gap
∂2d+

ϵ

∂µ2 (λ, g−ϵ (λ))− limµ→g−
ϵ (λ)+

∂2d+
ϵ

∂µ2 (λ, µ) > 0. Thanks to the continuity of the first derivative and
the sign of the second derivative, the function µ→ d+ϵ (λ, µ) is strict convexity on (λ, 1].

Let (µ1, µ2) ∈ [0, 1]2 and (λ1, λ2) ∈ (0, 1)2. On the convex set F0 = {(λ, µ) ∈ (0, 1)× [0, 1] | µ ∈
[0, λ]}, the function d−ϵ is null hence jointly convex. Let ((µ1, λ1), (µ2, λ2)) ∈ (((0, 1)×[0, 1])\F0)

2.
Let (z1, z2) ∈ [λ1, µ1]× [λ2, µ2] be the minimizers realizing d+ϵ (λ1, µ1) and d+ϵ (λ2, µ2). Since it is
a convex set, we have (αλ1 +(1−α)λ2, αµ1 +(1−α)µ2) ∈ ((0, 1)× [0, 1]) \F0 for all α ∈ [0, 1].
Moreover, we have αz1+(1−α)z2 ∈ [αλ1+(1−α)λ2, αµ1+(1−α)µ2] for all α ∈ [0, 1]. Using
the definition of d+ϵ as an infimum, we obtain

d+ϵ (αλ1 + (1− α)λ2, αµ1 + (1− α)µ2)

≤ kl(αz1 + (1− α)z2, αµ1 + (1− α)µ2) + ϵ(αz1 + (1− α)z2 − (αλ1 + (1− α)λ2))
≤ α (kl(z1, µ1) + ϵ(z1 − λ1)) + (1− α) (kl(z2, µ2) + ϵ(z2 − λ2))
= αd+ϵ (λ1, µ1) + (1− α)d+ϵ (λ2, µ2)

where the second inequality comes from the joint convexity of the Kullback-Leibler divergence.
Combining both results, we have shown that the function d+ϵ is jointly convex on (0, 1)× [0, 1].

Lemma 26 gather regularity properties of d−ϵ . In particular, it gives a closed-form solution, which is a
key property used in our implementation to reduce the computational cost.

Lemma 26. Let d−ϵ as in Eq. (3), and g±ϵ as in Eq. (30). For all µ ∈ [0, 1] and all λ ∈ R, we have

d−ϵ (λ, µ) =


0 if µ ∈ [[λ]10, 1]

− log (1 + µ(eϵ − 1)) + ϵ[λ]10 if µ ∈ [0, g+ϵ ([λ]
1
0))

kl(λ, µ) if λ ∈ (0, 1) and µ ∈ [g+ϵ ([λ]
1
0), [λ]

1
0)

.

The function (λ, µ) 7→ d−ϵ (λ, µ) is jointly continuous on R× [0, 1]. For all µ ∈ [0, 1], the function
λ 7→ d−ϵ (λ, µ) is constant on (−∞, 0] and on [1,+∞). Then,

∀λ ∈ (0, 1),∀µ ∈ [0, 1], d−ϵ (λ, µ) =


0 if µ ∈ [λ, 1]

kl (λ, µ) if µ ∈ [g+ϵ (λ), λ)

− log (1 + µ(eϵ − 1)) + ϵλ if µ ∈ [0, g+ϵ (λ))

.

For all µ ∈ [0, 1], the function λ 7→ d−ϵ (λ, µ) is continuously differentiable, positive, increasing and
convex on (µ, 1); it is affine with positive slope ϵ on (g−ϵ (µ), 1) and twice continuously differentiable
and strictly convex on (µ, g−ϵ (µ)).
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For all λ ∈ (0, 1), the function µ 7→ d−ϵ (λ, µ) is positive, three times differentiable with continuous
first derivative, decreasing and strictly convex on [0, λ); its second derivative is discontinuous at

g+ϵ (λ) with gap limµ→g+
ϵ (λ)−

∂2d−
ϵ

∂µ2 (λ, µ)− ∂2d−
ϵ

∂µ2 (λ, g+ϵ (λ)) < 0. Moreover, we have

∀µ ∈ [0, λ),
∂d−ϵ
∂µ

(λ, µ) =

{
− eϵ−1

1+µ(eϵ−1) if µ ∈ [0, g+ϵ (λ))

− λ−µ
µ(1−µ) if µ ∈ [g+ϵ (λ), λ)

.

The function d−ϵ is jointly convex on (0, 1)× [0, 1].

Proof. Using Lemmas 23 and 24, we have

d−ϵ (λ, µ) = d+ϵ (1− λ, 1− µ) and g+ϵ (λ) = 1− g−ϵ (1− λ) ,
∂d−ϵ
∂µ

(λ, µ) = −∂d
+
ϵ

∂µ
(1− λ, 1− µ) and

∂2d−ϵ
∂µ2

(λ, µ) =
∂2d+ϵ
∂µ2

(1− λ, 1− µ) .

Moreover, we have kl(λ, µ) = kl(1− λ, 1− µ) and

− log (1 + µ(eϵ − 1)) + ϵ[λ]10 = − log
(
1− (1− µ)(1− e−ϵ)

)
− ϵ[1− λ]10 .

Combining the above with properties of d+ϵ in Lemma 25 concludes the proof.

G.1.1 Modified Divergence

Let us define

∀x > 0, h(x) :=
√
1 + x2 − 1 + log

(
2

x2

(√
1 + x2 − 1

))
. (31)

For all (λ, µ, r) ∈ R× (0, 1)× R⋆
+, we define

d̃−ϵ (λ, µ, r) := 1
(
µ < [λ]10

)
inf

z∈(µ,[λ]10)

{
kl(z, µ) +

1

r
h(rϵ(λ− z))

}
,

d̃+ϵ (λ, µ, r) := 1
(
µ > [λ]10

)
inf

z∈([λ]10,µ)

{
kl(z, µ) +

1

r
h(rϵ(z − λ))

}
. (32)

Lemma 27 shows a strong link between d̃±ϵ . This symmetry property can be used to carry regularity
properties from d̃+ϵ to d̃−ϵ , and vice versa.

Lemma 27. Let d̃±ϵ as in Eq. (32). For all (λ, µ) ∈ R× [0, 1], we have

d̃+ϵ (1− λ, 1− µ, r) = d̃−ϵ (λ, µ, r) and d̃−ϵ (1− λ, 1− µ, r) = d̃+ϵ (λ, µ, r) .

Proof. Using the definitions, the change of variable z̃ = 1− z and kl(1− z̃, 1− µ) = kl(z̃, µ), we
obtain

d̃+ϵ (1− λ, 1− µ, r) = 1
(
µ < [λ]10

)
inf

z∈[1−[λ]10,1−µ]

{
kl(z, 1− µ) + 1

r
h (rϵ(λ− (1− z)))

}
= 1

(
µ < [λ]10

)
inf

z̃∈[µ,[λ]10]

{
kl(1− z̃, 1− µ) + 1

r
h (rϵ(λ− z̃))

}
= 1

(
µ < [λ]10

)
inf

z̃∈[µ,[λ]10]

{
kl(z̃, µ) +

1

r
h (rϵ(λ− z̃))

}
= d̃−ϵ (λ, µ, r) .

The second equality is a consequence of the first.

Lemma 28 gathers regularity properties of the function h defined in Eq. (31).
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Lemma 28. Let h as in Eq. (31). Then,

∀x > 0, h′(x) =
x√

x2 + 1 + 1
> 0 and h′′(x) =

1

1 + x2 +
√
1 + x2

> 0 .

On R⋆
+, the function h is twice continuously differentiable, increasing and strictly convex. Moreover,

it satisfies
h(x) =x→0 x

2/4 +O(x4) and h(x) =x→+∞ x−O(log(x)) .

Proof. For all x > 0, h1(x) = x+ log(x), h2(x) =
√
1 + x2 − 1 and h3(x) =

√
1 + x2 − x. Then

h′1(x) = 1 +
1

x
, h′2(x) =

x√
1 + x2

and h′3(x) =
x√

1 + x2
− 1 ,

Then, we have
∀x > 0, h(x) = h1(h2(x))− 2 log(x) + log 2 .

Therefore, we have

h′(x) = h′2(x)h
′
1(h2(x))−

2

x
=

x√
1 + x2

(
1 +

1√
1 + x2 − 1

)
− 2

x

=
x√

1 + x2 − 1
− 2

x
=

√
1 +

1

x2
− 1

x
= h3(1/x) .

Note that √
1 +

1

x2
− 1

x
=

x√
x2 + 1 + 1

.

Moreover, we have w

h′′(x) = − 1

x2
h′3(1/x) = −

1

x2

(
1/x√

1 + (1/x)2
− 1

)
=

1

1 + x2 +
√
1 + x2

.

By taking the limit, we have limx→0+ h(x) = 0. Moreover, we see that limx→0+ h
′(x) = 0 and

limx→0+ h
′′(x) = 1/2. Therefore, one can conclude that h(x) =x→0 x

2/4 + O(x4) by Taylor
expansion. The second result is obtained directly by limit.

Lemma 29 provides upper and lower bound on the function r 7→ h(rx)/r involved in the definition
of d̃±ϵ .
Lemma 29. Let h as in Eq. (31). Let κ(r, x) = h(rx)/r − x for all r > 0 and all x ∈ R⋆

+. Then,
we have

∀r > 0,
∂κ

∂r
(r, x) =

rxh′(rx)− h(rx)
r2

= log

(
1

2
(
√
1 + (rx)2 + 1)

)
> 0 .

On R⋆
+, the function r 7→ κ(r, x) is increasing. Moreover, we have

∀r > 0,∀x ∈ R+, 0 ≤ rκ(r, x) + log(1 + 2xr) + 1 ≤ 1 + log 4 ,

Proof. Using Lemma 28 and the definition in Eq. (31), we obtain that

∀x > 0, xh′(x)− h(x) = − log

(
2

x2

(√
1 + x2 − 1

))
= log

(
1

2
(
√
1 + x2 + 1)

)
> 0 ,

where we used that
√
1 + x2 + 1 > 2 for the last inequality. Let us define

∀x ∈ R+, g1(x) =
2(1 + 2x)√
1 + x2 + 1

.

Then, we obtain g1(0) = 1, limx→+∞ g1(x) = 4 and

g′1(x) = 2
2 + 2

√
1 + x2 − x√

1 + x2(
√
1 + x2 + 1)2

> 2
2 + x√

1 + x2(
√
1 + x2 + 1)2

> 0 .
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Since g1 is strictly increasing on R⋆
+, we obtain log g1(x) ≥ log g1(0) = 0 and log g1(x) ≤ log 4 for

all x ∈ R+.

By definition, we obtain

rκ(r, x) + log(1 + 2xr) + 1 = h(rx)− rx+ 1 + log(1 + 2xr)

=
√

1 + (rx)2 − rx+ log

(
2(1 + 2xr)√
1 + r2x2 + 1

)
.

Using that 0 ≤
√
1 + x2 − x ≤ 1 on R+, we obtain

rκ(r, x) + log(1 + 2xr) + 1 ≥ log

(
2(1 + 2xr)√
1 + r2x2 + 1

)
= log(g1(rx)) ≥ 0 ,

rκ(r, x) + log(1 + 2xr) + 1 ≤ 1 + log(g1(rx)) ≤ 1 + log 4 .

This concludes the proof.

Lemma 30 provides lower and upper bounds on the gap between d̃±ϵ and d±ϵ .

Lemma 30. Let d±ϵ and d̃±ϵ as in Eq. (3) and (32). For all (λ, µ, r) ∈ R × (0, 1) × R⋆
+ such that

[λ]10 < µ. Then,

d+ϵ (λ, µ) ≤ d̃+ϵ (λ, µ, r) +
log(1 + 2ϵr) + 1

r
.

For all (λ, µ, r) ∈ R× (0, 1)× R⋆
+ such that [λ]10 > µ. Then,

d−ϵ (λ, µ) ≤ d̃−ϵ (λ, µ, r) +
log(1 + 2ϵr) + 1

r
.

For all (λ, µ, r) ∈ [0, 1]× (0, 1)× R⋆
+ such that λ < µ. Then,

d+ϵ (λ, µ) ≥ d̃+ϵ (λ, µ, r)−
log 4

r
.

For all (µ, λ, r) ∈ [0, 1]× R⋆
+ such that λ > µ. Then,

d−ϵ (λ, µ) ≥ d̃−ϵ (λ, µ, r)−
log 4

r
.

Proof. Since µ ∈ (0, 1), we have [λ]10 = max{0, λ}. Therefore, we have z − λ ≥ z − [λ]10 and
z − [λ]10 ∈ (0, µ − [λ]10) ⊂ (0, 1) for all z ∈ ([λ]10, µ). Using Lemmas 28 and 29 and ϵ > 0, we
obtain, for all r > 0 and all z ∈ ([λ]10, µ),

ϵ(z − [λ]10) ≤
1

r
h(rϵ(z − [λ]10)) +

log(1 + 2ϵ(z − [λ]10)r) + 1

r

≤ 1

r
h(rϵ(z − λ)) + log(1 + 2ϵr) + 1

r
.

Therefore, for all z ∈ ([λ]10, µ), we obtain that

kl(z, µ) + ϵ(z − [λ]10) ≤ kl(z, µ) +
1

r
h(rϵ(z − λ)) + log(1 + 2ϵr) + 1

r
.

Taking the infimum over z ∈ ([λ]10, µ) on both sides of both inequalities and using that

d+ϵ (λ, µ) = inf
z∈[[λ]10,µ]

{
kl(z, µ) + ϵ(z − [λ]10)

}
= inf

z∈([λ]10,µ)

{
kl(z, µ) + ϵ(z − [λ]10)

}
,

d̃+ϵ (λ, µ, r) = inf
z∈([λ]10,µ)

{
kl(z, µ) +

1

r
h(rϵ(z − λ))

}
,

we obtain

d+ϵ (λ, µ) ≤ d̃+ϵ (λ, µ, r) +
log(1 + 2ϵr) + 1

r
.
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This concludes the proof of the first result. Using Lemmas 23 and 27 yields the second result.

Suppose that λ ∈ [0, 1], hence λ = [λ]10. Using Lemmas 28 and 29 and ϵ > 0, we obtain, for all
r > 0 and all z ∈ ([λ]10, µ),

1

r
h(rϵ(z − λ)) ≤ ϵ(z − λ) + log 4− log(1 + 2ϵ(z − λ)r)

r
≤ ϵ(z − [λ]10) +

log 4

r
.

Adding kl(z, µ) on both sides and taking the infimum over z ∈ ([λ]10, µ) on both sides of both
inequalities yields the proof of third result. Using Lemmas 23 and 27 yields the forth result.

Lemma 31 gathers regularity properties on the modified divergences d̃+ϵ . In particular, it gives a
closed-form solution based on an implicit solution of a fixed-point equation. This is a key property
used in our implementation to reduce the computational cost.

Lemma 31. Let d̃+ϵ as in Eq. (32), and g±ϵ as in Eq. (30). For all µ ∈ (0, 1), λ ∈ R and r > 0, we
have

d̃+ϵ (λ, µ, r)

=

{
0 if µ ∈ (0, [λ]10]

kl(x+ϵ (λ, µ, r) + g+ϵ (µ), µ) +
1
rh(rϵ(x

+
ϵ (λ, µ, r) + g+ϵ (µ)− λ)) if µ ∈ ([λ]10, 1)

,

where x+ϵ (λ, µ, r) ∈ (max{0, λ− g+ϵ (µ)}, µ− g+ϵ (µ)) is the unique solution for x ∈ (max{0, λ−
g+ϵ (µ)}, µ− g+ϵ (µ)) of the equation

log

(
1 +

x

g+ϵ (µ)(1− x− g+ϵ (µ))

)
+ ϵ

 rϵ(x+ g+ϵ (µ)− λ)√
(rϵ(x+ g+ϵ (µ)− λ))2 + 1 + 1

− 1

 = 0 .

For all (µ, r) ∈ (0, 1) × R⋆
+, the function λ 7→ d̃+ϵ (λ, µ, r) is positive, twice continuously differ-

entiable, decreasing and strictly convex on (−∞, µ); it satisfies limλ→µ− d̃+ϵ (λ, µ, r) = 0 and
limλ→−∞ d̃+ϵ (λ, µ, r) = +∞.

For all (λ, r) ∈ R× R⋆
+, the function µ 7→ d̃+ϵ (λ, µ, r) is positive, twice continuously differentiable,

increasing and strictly convex on ([λ]10, 1). Moreover, we have

∀µ ∈ ([λ]10, 1),
∂d̃+ϵ
∂µ

(λ, µ, r) =
µ− g+ϵ (µ)− x+ϵ (λ, µ, r)

µ(1− µ)
.

For all (λ, µ) ∈ R× (0, 1) such that µ ∈ (0, [λ]10], the function r 7→ d̃+ϵ (λ, µ, r) is the zero function.
For all (λ, µ) ∈ R × (0, 1) such that µ ∈ ([λ]10, 1), the function r 7→ d̃+ϵ (λ, µ, r) is positive,
continuously differentiable and increasing on R+.

Proof. By definition of the indicator function, we have d̃+ϵ (λ, µ, r) = 0 if µ ∈ (0, [λ]10]. Let (λ, µ)
such that µ /∈ (0, [λ]10], i.e., ([λ]10, µ) is non-empty. Since µ ∈ (0, 1), this implies that λ ∈ (−∞, 1)
necessarily, i.e., [λ]10 = max{0, λ}.

Recall that d̃+ϵ (λ, µ, r) = 1
(
µ > [λ]10

)
infz∈([λ]10,µ)

f̃+ϵ (λ, µ, r, z) where f̃+ϵ (λ, µ, r, z) = kl(z, µ)+
1
rh(rϵ(z − λ)). Using Lemma 28, direct computations yield that, for all z ∈ ([λ]10, µ),

∂f̃+ϵ
∂z

(λ, µ, r, z) = log

(
z(1− µ)
(1− z)µ

)
+ ϵh′(rϵ(z − λ))

= log

(
z(1− µ)
(1− z)µ

)
+ ϵ

rϵ(z − λ)√
(rϵ(z − λ))2 + 1 + 1

,

∂2f̃+ϵ
∂z2

(λ, µ, r, z) =
1

z(1− z)
+ rϵ2h′′(rϵ(z − λ)) > 0 .
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Therefore, z → f̃+ϵ (λ, µ, r, z) is twice continuously differentiable, positive and strictly convex on
([λ]10, µ). Moreover, we have

lim
z→µ

∂f̃+ϵ
∂z

(λ, µ, r, z) = ϵh′(rϵ(µ− λ)) > 0 ,

∂f̃+ϵ
∂z

(λ, µ, r, g+ϵ (µ)) = −ϵ

(
1− rϵ(z − λ)√

(rϵ(z − λ))2 + 1 + 1

)
< 0 ,

When [λ]10 > g+ϵ (µ),
∂f̃+ϵ
∂z

(λ, µ, r, λ) = log

(
λ(1− µ)
(1− λ)µ

)
< 0 .

Note that max{[λ]10, g+ϵ (µ)} = max{λ, g+ϵ (µ)} since µ ∈ (0, 1). Using that z → ∂f̃+
ϵ

∂z (λ, µ, r, z)

is continuously differentiable and increasing on ([λ]10, µ), with negative value at max{λ, g+ϵ (µ)}
and finite positive limit at µ, z 7→ f̃+ϵ (λ, µ, r, z) admit a unique minimizer on (max{λ, g+ϵ (µ)}, µ).
Let g̃+ϵ (λ, µ, r) ∈ (max{λ, g+ϵ (µ)}, µ) be defined as this unique minimizer, defined implicitly as
solution for z ∈ (max{λ, g+ϵ (µ)}, µ) of the equation

log

(
z(1− µ)
(1− z)µ

)
+ ϵ

rϵ(z − λ)√
(rϵ(z − λ))2 + 1 + 1

= 0 .

Then, we have ∂f̃+
ϵ

∂z (λ, µ, r, z) = 0 if and only if z = g̃+ϵ (λ, µ, r). Moreover, z 7→ f̃+ϵ (λ, µ, r, z) is
decreasing on ([λ]10, g̃

+
ϵ (λ, µ, r)) and increasing on (g̃+ϵ (λ, µ, r), µ).

Let us define z = g+ϵ (µ) + x where x ∈ (max{0, λ− g+ϵ (µ)}, µ− g+ϵ (µ)). Then, we have

∂f̃+ϵ
∂z

(λ, µ, r, g+ϵ (µ) + x)

= log

(
1 +

x

g+ϵ (µ)(1− x− g+ϵ (µ))

)
+ ϵ

 rϵ(x+ g+ϵ (µ)− λ)√
(rϵ(x+ g+ϵ (µ)− λ))2 + 1 + 1

− 1


Therefore, we have g̃+ϵ (λ, µ, r) = g+ϵ (µ) + x+ϵ (λ, µ, r) where x+ϵ (λ, µ, r) ∈ (max{0, λ −
g+ϵ (µ)}, µ− g+ϵ (µ)) is the solution for x ∈ (max{0, λ− g+ϵ (µ)}, µ− g+ϵ (µ)) of the equation

log

(
1 +

x

g+ϵ (µ)(1− x− g+ϵ (µ))

)
+ ϵ

 rϵ(x+ g+ϵ (µ)− λ)√
(rϵ(x+ g+ϵ (µ)− λ))2 + 1 + 1

− 1

 = 0 .

When λ ∈ (0, 1) and µ→ λ = [λ]10, it is direct to see that g̃+ϵ (λ, µ, r)→ λ. Then, we have

lim
µ→λ+

d̃+ϵ (λ, µ, r) = lim
µ→λ+

{kl(g̃+ϵ (λ, µ, r), µ)}+
1

r
lim

g̃+
ϵ (λ,µ,r)→λ+

{h(rϵ(g̃+ϵ (λ, µ, r)− λ))} = 0 .

Direct computation yields that, for z ∈ ([λ]10, µ) ⊂ (0, 1),

∂f̃+ϵ
∂µ

(λ, µ, r, z) =
µ− z

µ(1− µ)
> 0 ,

∂2f̃+ϵ
∂µ2

(λ, µ, r, z) =
(µ− z)2 + z(1− z)

µ2(1− µ)2
> 0 ,

∂2f̃+ϵ
∂z2

(λ, µ, r, z) =
1

z(1− z)
+ rϵ2h′′(rϵ(z − λ)) > 0 ,

∂2f̃+ϵ
∂µ∂z

(λ, µ, r, z) = − 1

µ(1− µ)
< 0 .

Since ∂f̃+
ϵ

∂z (λ, µ, r, g+ϵ (λ, µ, r)) = 0, the implicit function theorem yields that

∂g̃+ϵ
∂µ

(λ, µ, r) = −
∂2f+

ϵ

∂µ∂z (λ, µ, r, g
+
ϵ (λ, µ, r))

∂2f̃+
ϵ

∂z2 (λ, µ, r, g+ϵ (λ, µ, r))
> 0 .
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Moreover, for µ ∈ ([λ]10, 1),

∂d̃+ϵ
∂µ

(λ, µ, r) =
∂f̃+ϵ
∂µ

(λ, µ, r, g̃+ϵ (λ, µ, r)) +
∂g̃+ϵ
∂µ

(λ, µ, r)
∂f̃+ϵ
∂z

(λ, µ, r, g̃+ϵ (λ, µ, r))

=
∂f̃+ϵ
∂µ

(λ, µ, r, g̃+ϵ (λ, µ, r)) =
µ− g+ϵ (µ)− x+ϵ (λ, µ, r)

µ(1− µ)
> 0 ,

∂2d̃+ϵ
∂µ2

(λ, µ, r) =
∂2f̃+ϵ
∂µ2

(λ, µ, r, g̃+ϵ (λ, µ, r))
∂g̃+ϵ
∂µ

(λ, µ, r) > 0 .

Therefore, for all (λ, r) ∈ R × R⋆
+, the function µ 7→ d̃+ϵ (λ, µ, r) is positive, twice continuously

differentiable, increasing and strictly convex on ([λ]10, 1).

Let (µ, r) ∈ (0, 1)× R⋆
+. Direct computation yields that, for z ∈ ([λ]10, µ) ⊂ (0, 1),

∂f̃+ϵ
∂λ

(λ, µ, r, z) = −ϵh′(rϵ(z − λ)) < 0 ,

∂2f̃+ϵ
∂λ∂z

(λ, µ, r, z) = −rϵ2h′′(rϵ(z − λ)) < 0 .

Since ∂f̃+
ϵ

∂z (λ, µ, r, g+ϵ (λ, µ, r)) = 0, the implicit function theorem yields that

∂g̃+ϵ
∂λ

(λ, µ, r) = −
∂2f+

ϵ

∂λ∂z (λ, µ, r, g
+
ϵ (λ, µ, r))

∂2f̃+
ϵ

∂z2 (λ, µ, r, g+ϵ (λ, µ, r))
=

rϵ2h′′(rϵ(g+ϵ (λ, µ, r)− λ))
1

z(1−z) + rϵ2h′′(rϵ(g+ϵ (λ, µ, r)− λ))
< 1 .

Direct computation yields that, for λ ∈ (−∞, µ),

∂d̃+ϵ
∂λ

(λ, µ, r) =
∂f̃+ϵ
∂λ

(λ, µ, r, g̃+ϵ (λ, µ, r)) +
∂g̃+ϵ
∂λ

(λ, µ, r)
∂f̃+ϵ
∂z

(λ, µ, r, g̃+ϵ (λ, µ, r))

=
∂f̃+ϵ
∂λ

(λ, µ, r, g̃+ϵ (λ, µ, r)) = −ϵh′(rϵ(g̃+ϵ (λ, µ, r)− λ)) < 0 ,

∂2d̃+ϵ
∂λ2

(λ, µ, r) = rϵ2
(
1− ∂g̃+ϵ

∂λ
(λ, µ, r)

)
h′′(rϵ(g̃+ϵ (λ, µ, r)− λ)) > 0 .

Therefore, for all (µ, r) ∈ (0, 1)× R⋆
+, the function λ 7→ d̃+ϵ (λ, µ, r) is positive, twice continuously

differentiable, decreasing and strictly convex on (−∞, µ). Similarly as above, it is direct to see that
limλ→µ− d̃+ϵ (λ, µ, r) = 0 and limλ→−∞ d̃+ϵ (λ, µ, r) = +∞.

Let (λ, µ) ∈ R × (0, 1). When µ ∈ (0, [λ]10], we have d̃+ϵ (λ, µ, r) = 0 for all r ∈ [1,+∞), hence
r 7→ d̃+ϵ (λ, µ, r) is non-decreasing. Let κ as in Lemma 29. Using Lemma 29, we have

∀z > λ,
∂f̃+ϵ
∂r

(λ, µ, r, z) =
∂κ

∂r
(r, ϵ(z − λ)) > 0 .

When µ ∈ ([λ]10, 1), we have g̃+ϵ (λ, µ, r) ∈ (max{λ, g+ϵ (µ)}, µ) and, for all r > 0,

∂d̃+ϵ
∂r

(λ, µ, r) =
∂f̃+ϵ
∂r

(λ, µ, r, g̃+ϵ (λ, µ, r)) +
∂g̃+ϵ
∂r

(λ, µ, r)
∂f̃+ϵ
∂z

(λ, µ, r, g̃+ϵ (λ, µ, r))

=
∂f̃+ϵ
∂r

(λ, µ, r, g̃+ϵ (λ, µ, r)) > 0 ,

where we used that g̃+ϵ (λ, µ, r) > λ. This concludes the last part of the proof.

Lemma 32 gathers regularity properties on the modified divergences d̃−ϵ . In particular, it gives a
closed-form solution based on an implicit solution of a fixed-point equation. This is a key property
used in our implementation to reduce the computational cost.
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Lemma 32. Let d̃−ϵ as in Eq. (32), and g±ϵ as in Eq. (30). For all µ ∈ (0, 1), λ ∈ R and r > 0, we
have

d̃−ϵ (λ, µ, r)

=

{
0 if µ ∈ [[λ]10, 1)

kl(g−ϵ (µ)− x−ϵ (λ, µ, r), µ) + 1
rh(rϵ(x

−
ϵ (λ, µ, r) + λ− g−ϵ (µ))) if µ ∈ (0, [λ]10)

,

where x−ϵ (λ, µ, r) := x+ϵ (1 − λ, 1 − µ, r) ∈ (max{g−ϵ (µ) − λ, 0}, g−ϵ (µ) − µ) is the solution for
x ∈ (max{g−ϵ (µ)− λ, 0}, g−ϵ (µ)− µ) of the equation

log

(
1 +

x

(1− g−ϵ (µ))(g−ϵ (µ)− x)

)
+ ϵ

 rϵ(x− g−ϵ (µ) + λ)√
(rϵ(x− g−ϵ (µ) + λ))2 + 1 + 1

− 1

 = 0 .

For all (µ, r) ∈ (0, 1) × R⋆
+, the function λ 7→ d̃−ϵ (λ, µ, r) is positive, twice continuously dif-

ferentiable, increasing and strictly convex on (µ,+∞); it satisfies limλ→µ+ d̃+ϵ (λ, µ, r) = 0 and
limλ→+∞ d̃−ϵ (λ, µ, r) = +∞.

For all (λ, r) ∈ R× R⋆
+, the function µ 7→ d̃−ϵ (λ, µ, r) is positive, twice continuously differentiable,

decreasing and strictly convex on (0, [λ]10). Moreover, we have

∀µ ∈ (0, [λ]10),
∂d̃−ϵ
∂µ

(λ, µ, r) =
µ− g−ϵ (µ) + x−ϵ (λ, µ, r)

µ(1− µ)
.

For all (λ, µ) ∈ R× (0, 1) such that µ ∈ (0, [λ]10], the function r 7→ d̃−ϵ (λ, µ, r) is the zero function.
For all (λ, µ) ∈ R × (0, 1) such that µ ∈ ([λ]10, 1), the function r 7→ d̃−ϵ (λ, µ, r) is positive,
continuously differentiable and increasing on R+.

Proof. Using Lemmas 27 and 24, we have

d̃−ϵ (λ, µ, r) = d̃+ϵ (1− λ, 1− µ, r) and g+ϵ (λ) = 1− g−ϵ (1− λ) ,

∂d̃−ϵ
∂µ

(λ, µ, r) = −∂d̃
+
ϵ

∂µ
(1− λ, 1− µ, r) and

∂2d̃−ϵ
∂µ2

(λ, µ, r) =
∂2d̃+ϵ
∂µ2

(1− λ, 1− µ, r) .

Let x+ϵ (1 − λ, 1 − µ, r) ∈ (max{0, g−ϵ (µ) − λ}, g−ϵ (µ) − µ) be the unique solution for x ∈
(max{0, g−ϵ (µ)− λ}, g−ϵ (µ)− µ) of the equation

log

(
1 +

x

(1− g−ϵ (µ))(g−ϵ (µ)− x)

)
+ ϵ

 rϵ(x− g−ϵ (µ) + λ)√
(rϵ(x− g−ϵ (µ) + λ))2 + 1 + 1

− 1

 = 0 ,

where we used g+ϵ (1− µ) = 1− g−ϵ (µ) to simplify the formula given in Lemma 31. Therefore, we
define x−ϵ (λ, µ, r) = x+ϵ (1− λ, 1− µ, r). Then, we have

kl(g−ϵ (µ)− x−ϵ (λ, µ, r), µ) +
1

r
h(rϵ(x−ϵ (λ, µ, r) + λ− g−ϵ (µ))) =

kl(x+ϵ (1− λ, 1− µ, r) + g+ϵ (1− µ), 1− µ) +
h(rϵ(x+ϵ (1− λ, 1− µ, r) + g+ϵ (1− µ)− 1 + λ))

r

where we used that kl(g−ϵ (µ)− x−ϵ (λ, µ, r), µ) = kl(1− g−ϵ (µ) + x−ϵ (λ, µ, r), 1− µ). Combining
the above with the properties on d̃+ϵ in Lemma 31 concludes the proof.

Lemma 33 shows that we can invert d̃±ϵ with respect to their first argument, which is a key property
used in Appendix F.

Lemma 33. Let d̃±ϵ as in Eq. (32). For all (µ, r, c) ∈ (0, 1) × R⋆
+ × R⋆

+, there exists x > 0 such
that d̃+ϵ (µ − x, µ, r) = c. For all (µ, r, c) ∈ (0, 1) × R⋆

+ × R⋆
+, there exists x > 0 such that

d̃−ϵ (µ+ x, µ, r) = c.
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Proof. Let us define f(x) = d̃+ϵ (µ − x, µ, r) for all x > 0. Using Lemma 31, we know that f is
continuous and increasing on R⋆

+ and it satisfies limx→0+ f(x) = 0 and limx→+∞ f(x) = +∞.
Therefore, there exists a unique x > 0 such that d̃+ϵ (µ − x, µ, r) = c. Using Lemma 32, we can
conclude similarly for d̃−ϵ .

Lemma 33 shows that d̃±ϵ is non-decreasing with respect to their first argument, which is a key
property used in Appendix F.

Lemma 34. Let d̃±ϵ as in Eq. (32). For all (µ, r) ∈ (0, 1)× R⋆
+ and all (λ1, λ2) ∈ R× (−∞, µ),

d̃+ϵ (λ1, µ, r) ≥ d̃+ϵ (λ2, µ, r) =⇒ λ1 ≤ λ2
For all (µ, r) ∈ (0, 1)× R⋆

+ and all (λ1, λ2) ∈ R× (µ,+∞),

d̃−ϵ (λ1, µ, r) ≥ d̃−ϵ (λ2, µ, r) =⇒ λ1 ≥ λ2

Proof. Using Lemma 31, we known that λ 7→ d̃+ϵ (λ, µ, r) is decreasing on (−∞, µ). Let (λ1, λ2) ∈
R× (−∞, µ). Then, we have

λ1 > λ2 =⇒ d̃+ϵ (λ1, µ, r) < d̃+ϵ (λ2, µ, r) ,

which is equivalent to the statement of the lemma by contraposition. Using Lemma 32, we can
conclude similarly for d̃−ϵ .

G.2 Transportation Cost

Recall that Wϵ,a,b is defined in Eq. (50), i.e., for all (µ,w) ∈ RK × RK
+ ,

∀(a, b) ∈ [K]2, Wϵ,a,b(µ,w) := 1
(
[µa]

1
0 > [µb]

1
0

)
inf

u∈[0,1]

{
wad

−
ϵ (µa, u) + wbd

+
ϵ (µb, u)

}
,

where d±ϵ are defined in Eq. (3).

Lemma 35 gathers regularity properties on the transportation costs.
Lemma 35. Let d±ϵ as in Eq. (3). For all (λ, µ) ∈ (0, 1)2 such that λ ≥ µ and w ∈ R2

+.

• The function u 7→ w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u) is strictly convex on [µ, λ] when

max{w1, w2} > 0 and on [0, 1] when min{w1, w2} > 0. Then,

inf
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = inf

u∈[µ,λ]
{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} .

• The function (λ, µ,w) 7→ infu∈[0,1]{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is continuous on (0, 1)×

(0, 1)× R2
+.

• If max{w1, w2} > 0, u⋆(λ, µ,w) = argminu∈[0,1]{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is unique

and continuous on (0, 1)× (0, 1)× R2
+.

• If min{w1, w2} > 0 and λ > µ, u⋆(λ, µ,w) ∈ (µ, λ) and
min{d−ϵ (λ, u⋆(λ, µ,w)), d+ϵ (µ, u⋆(λ, µ,w))} > 0.

Moreover,

inf
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = inf

(u1,u2)∈[0,1]2 : u1≤u2

{w1d
−
ϵ (λ, u1) + w2d

+
ϵ (µ, u2)} .

Proof. These results are obtained by leveraging Lemmas 25 and 26 at each step.

For u ≤ µ, the function is equal to w1d
−
ϵ (λ, u), which is decreasing and strictly convex on [0, λ)

unless w1 = 0 since u ≤ µ ≤ λ. Therefore, the minimum over that interval is attained at µ. For
u ≥ λ, the function is equal to w2d

+
ϵ (µ, u), which is increasing and strictly convex on (µ, 1] unless

w2 = 0 since u ≥ λ ≥ µ. Therefore, the minimum over that interval is attained at λ. On the interval
(µ, λ), the function is equal to w1d

−
ϵ (λ, u)+w2d

+
ϵ (µ, u), hence it is the sum of two convex functions,
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one of which is strictly convex. Furthermore, the function is continuous at µ and λ. This concludes
the first part of the proof.

As we have just shown, we can restrict the infimum to [µ, λ]. We apply Berge’s Maximum theorem
[Berge, 1997, page 116]. Let

ϕ(u, λ, µ, w) = −w1d
−
ϵ (λ, u)− w2d

+
ϵ (µ, u) ,

Γ(λ, µ,w) = [µ, λ] ,

M(λ, µ,w) = max{ϕ(u, λ, µ, w) | u ∈ Γ(λ, µ,w)} ,
Φ(λ, µ,w) = argmax{ϕ(u, λ, µ, w) | u ∈ Γ(λ, µ,w)} .

We verify the hypotheses of the theorem:

• ϕ is continuous on [µ, λ] × (0, 1) × (0, 1) × R2
+, by using the properties in Lemmas 25

and 26 since (λ, µ) ∈ (0, 1)2.

• Γ is nonempty, compact-valued and continuous (since constant).

We obtain that M is continuous on (0, 1)× (0, 1)× R2
+ and that Φ is upper hemicontinuous. This

concludes the second part of the proof.

When max{w1, w2} > 0, we have just shown that ϕ is a strictly concave function of u. Combining
this with the fact that Γ is convex, we can argue as in [Sundaram, 1996, Theorem 9.17] to prove
that Φ is a single-valued upper hemicontinuous correspondence, hence a continuous function. This
concludes the third part of the proof.

Suppose that min{w1, w2} > 0 and λ > µ. Using Lemmas 25 and 26, the function u 7→
w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u) is continuously differentiable on (µ, λ) with derivative w1

∂d−
ϵ

∂u (λ, u) +

w2
∂d+

ϵ

∂u (µ, u) where

∀u ∈ (µ, 1],
∂d+ϵ
∂u

(µ, u) =

{
1−e−ϵ

1−u(1−e−ϵ) if u ∈ (g−ϵ (µ), 1]
u−µ

u(1−u) if u ∈ (µ, g−ϵ (µ)]
,

∀u ∈ [0, λ),
∂d−ϵ
∂u

(λ, u) =

{
− eϵ−1

1+u(eϵ−1) if u ∈ [0, g+ϵ (λ))

− λ−u
u(1−u) if u ∈ [g+ϵ (λ), λ)

.

Since ∂d−
ϵ

∂u (λ, u)→u→λ− 0 and ∂d+
ϵ

∂u (µ, u)→u→µ+ 0, we obtain

lim
u→λ−

{
w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u)

}
= w2

∂d+ϵ
∂u

(µ, λ) > 0 ,

lim
u→µ+

{
w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u)

}
= w1

∂d−ϵ
∂u

(λ, µ) < 0 .

Therefore, the infimum is attained inside the open interval. Using Lemmas 25 and 26, we can
conclude the proof of the first part of the fourth property.

Using the strict convexity of u1 7→ w1d
−
ϵ (λ, u1) and u2 7→ w2d

+
ϵ (µ, u2) on (µ, λ), we obtain that

inf
u∈(µ,λ)

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = inf

(u1,u2) : µ<u1≤u2<λ
{w1d

−
ϵ (λ, u1) + w2d

+
ϵ (µ, u2)} .

Re-using the same arguments as above, we obtain that

inf
(u1,u2) : µ<u1≤u2<λ

{w1d
−
ϵ (λ, u1) + w2d

+
ϵ (µ, u2)}

= inf
(u1,u2)∈[0,1]2 : u1≤u2

{w1d
−
ϵ (λ, u1) + w2d

+
ϵ (µ, u2)} .

This concludes the proof of the second part of the fourth property.

Lemma 36 relates the transportation costs Wϵ,a⋆,a with the transportation costs used in Eq. (2) to
define the characteristic time. Crucially, this shows the equivalence with the definitions in Eq. (35).
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Lemma 36. Let Wϵ,a⋆,a and dϵ as in Eq. (4) and (1). Let µ ∈ (0, 1)K such that a⋆(µ) = {a⋆}. Let
Alt(µ) = {λ ∈ (0, 1)K | a⋆(λ) ̸= {a⋆}}. Then,

∀w ∈ △K , inf
λ∈Alt(µ)

∑
a∈[K]

wadϵ(µa, λa) = min
a ̸=a⋆

Wϵ,a⋆,a(µ,w) .

Proof. It is direct to see that Alt(µ) =
⋃

a̸=a⋆ Ca where Ca = {λ ∈ (0, 1)K | λa ≥ λa⋆}. Then,

∀w ∈ △K , inf
λ∈Alt(µ)

∑
a∈[K]

wadϵ(µa, λa) = min
a̸=a⋆

inf
λ∈Ca

∑
c∈[K]

wcdϵ(µc, λc) .

By non-negativity of dϵ(µa, λa) for all a ∈ [K], we obtain

inf
λ∈Ca

∑
c∈[K]

wcdϵ(µc, λc) = inf
λ∈Ca

∑
c∈{a,a⋆}

wcdϵ(µc, λc)

= inf
(λa,λa⋆ )∈(0,1)2, λa≥λa⋆

∑
c∈{a,a⋆}

wcdϵ(µc, λc) ,

where the two equalities are obtained by choosing λ(a) ∈ (0, 1)K such that λ(a)b = µb for all
b /∈ {a, a⋆} with the two other coordinates choosen freely such that λ(a)a ≥ λ(a)a⋆ . Using that
µa⋆ > µa, we can partition this set as follows

Ca,a⋆ = {(λa, λa⋆) ∈ (0, 1)2 | λa ≥ λa⋆} = {(λa, λa⋆) ∈ (0, µa)
2 | λa ≥ λa⋆}

∪ {(λa, λa⋆) ∈ [µa, µa⋆ ]× (0, µa)}
∪ {(λa, λa⋆) ∈ (µa⋆ , 1)2 | λa ≥ λa⋆}
∪ {(λa, λa⋆) ∈ (µa⋆ , 1)× [µa, µa⋆ ]}
∪ {(λa, λa⋆) ∈ [µa, µa⋆ ]2 | λa ≥ λa⋆} .

Using Lemma 22, µa⋆ > µa and Lemmas 25 and 26, we obtain

inf
(λa,λa⋆ )∈(0,µa)2| λa≥λa⋆

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈(0,µa)2| λa≥λa⋆

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
−
ϵ (µa, λa)} = wa⋆d−ϵ (µa⋆ , µa) ,

inf
(λa,λa⋆ )∈[µa,µa⋆ ]×(0,µa)

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈[µa,µa⋆ ]×(0,µa)

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)} = wa⋆d−ϵ (µa⋆ , µa) ,

inf
(λa,λa⋆ )∈(µa⋆ ,1)2| λa≥λa⋆

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈(µa⋆ ,1)2| λa≥λa⋆

{wa⋆d+ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)} = wad

+
ϵ (µa, µa⋆) ,

inf
(λa,λa⋆ )∈(µa⋆ ,1)×[µa,µa⋆ ]

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈(µa⋆ ,1)×[µa,µa⋆ ]

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)} = wad

+
ϵ (µa, µa⋆) ,

inf
(λa,λa⋆ )∈[µa,µa⋆ ]2| λa≥λa⋆

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈[µa,µa⋆ ]2| λa≥λa⋆

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)} .

Therefore, we obtain

inf
(λa,λa⋆ )∈Ca,a⋆

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈[µa,µa⋆ ]2| λa≥λa⋆

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)}

= inf
u∈[µa,µa⋆ ]2

{wa⋆d−ϵ (µa⋆ , u) + wad
+
ϵ (µa, u)}

= inf
u∈[0,1]

{wa⋆d−ϵ (µa⋆ , u) + wad
+
ϵ (µa, u)} =Wϵ,a⋆,a(µ,w) ,
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where the second equality is obtained similarly as in Lemma 35 by leveraging the strict convexity
of d±ϵ in their second argument (see Lemmas 25 and 26). We used Lemma 35 and the definition of
Wϵ,a⋆,a(µ,w) for the last two equalities. This concludes the proof.

Lemma 37 gathers additional properties on the transportation costs.
Lemma 37. Let d±ϵ as in Eq. (3).

• Let (λ, µ) ∈ (0, 1)2 such that λ > µ. When w2 > 0, the function w1 7→
minu∈[0,1]{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is increasing on R+. When w1 > 0, the function

w2 7→ minu∈[0,1]{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is increasing on R+.

• Let (λ, µ) ∈ (0, 1)2 and µ ∈ (0, 1)K . The function w 7→
minu∈[0,1]{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is concave on R2

+. The function
w 7→ mina∈[K]\{1} minu∈[0,1]{w1d

−
ϵ (µ1, u) + wad

+
ϵ (µa, u)} is concave on RK

+ .

Proof. Let w2 > 0 and w′
1 > w1 ≥ 0. Using Lemma 35, since w′

1 > 0, there exists u′ ∈ [0, 1] with
d−ϵ (λ, u

′) > 0 such that

min
u∈[0,1]

{w′
1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = w′

1d
−
ϵ (λ, u

′) + w2d
+
ϵ (µ, u

′)

> w1d
−
ϵ (λ, u

′) + w2d
+
ϵ (µ, u

′)

≥ min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} .

Let w1 > 0 and w′
2 > w2 ≥ 0. Then, we can show similarly by using Lemma 35 that

min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w′

2d
+
ϵ (µ, u)} > min

u∈[0,1]
{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} .

This concludes the first part of the proof. The proof of the second part is direct since those functions
are minimum of linear functions, hence concave.

Lemma 38 gives a closed-form solution for the transportation costs. This is a key property used in
our implementation to reduce the computational cost.
Lemma 38. Let d±ϵ and g±ϵ as in Eq. (3) and (30). For all (a, c) ∈ R2

+ and b ∈ R, let r1,+(a, b, c) :=√
b2+4ac−b

2a . For all (λ, µ) ∈ (0, 1)2 and w ∈ R2
+ such that min{w1, w2} > 0 and λ > µ.

• When (1) g−ϵ (µ) ≥ λ, or (2) g−ϵ (µ) < λ, g+ϵ (λ) ≤ g−ϵ (µ) and w2µ+w1λ
w2+w1

∈ [g+ϵ (λ), g
−
ϵ (µ)], we

have u⋆(λ, µ,w) = w2µ+w1λ
w2+w1

and

min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = w1kl(λ, u⋆(λ, µ,w)) + w2kl(µ, u⋆(λ, µ,w)) .

• When (3) g−ϵ (µ) < λ, g+ϵ (λ) > g−ϵ (µ) and u3,⋆(w) ∈ [g−ϵ (µ), g
+
ϵ (λ)] where

u3,⋆(w) :=
w1(e

ϵ − 1)− w2(1− e−ϵ)

(w2 + w1)(1− e−ϵ)(eϵ − 1)
,

we have u⋆(λ, µ,w) = u3,⋆(w) and

min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)}

= w1 (− log (1 + u3,⋆(w)(e
ϵ − 1)) + ϵλ) + w2

(
− log

(
1− u3,⋆(w)(1− e−ϵ)

)
− ϵµ

)
.

• When (4) g−ϵ (µ) < λ, g+ϵ (λ) ≤ g−ϵ (µ) and w2µ+w1λ
w2+w1

∈ (µ, g+ϵ (λ)), or (5) g−ϵ (µ) < λ, g+ϵ (λ) >
g−ϵ (µ) and u3,⋆(w) < g−ϵ (µ), we have u⋆(λ, µ,w) = u1,⋆(µ,w) and

u1,⋆(µ,w) := r1,+ ((w2 + w1)(e
ϵ − 1), (w2 − (w2µ+ w1)(e

ϵ − 1)) , w2µ) ,

min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)}
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= w1 (− log (1 + u1,⋆(µ,w)(e
ϵ − 1)) + ϵλ) + w2kl(µ, u1,⋆(µ,w)) .

• When (6) g−ϵ (µ) < λ, g+ϵ (λ) ≤ g−ϵ (µ) and w2µ+w1λ
w2+w1

∈ (g−ϵ (µ), λ), or (7) g−ϵ (µ) < λ, g+ϵ (λ) >
g−ϵ (µ) and u3,⋆(w) > g+ϵ (λ), we have u⋆(λ, µ,w) = u2,⋆(λ,w) and

u2,⋆(λ,w) := 1− r1,+ ((w2 + w1)(e
ϵ − 1), (w1 − (w1(1− λ) + w2)(e

ϵ − 1)) , w1(1− λ)) ,
min

u∈[0,1]
{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)}

= w1kl(λ, u2,⋆(λ,w)) + w2

(
− log

(
1− u2,⋆(λ,w)(1− e−ϵ)

)
− ϵµ

)
.

Proof. Suppose that g−ϵ (µ) ≥ λ. Using Lemma 24, we know that g−ϵ (µ) ≥ λ if and only if
µ ≥ g+ϵ (λ). Therefore, for all u ∈ (µ, λ), we have

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
λ− u
u(1− u)

+ w2
u− µ
u(1− u)

=
(w2 + w1)u− (w2µ+ w1λ)

u(1− u)
.

Therefore, we have

u⋆(λ, µ,w) =
w2µ+ w1λ

w2 + w1
∈ (µ, λ) .

Suppose that g−ϵ (µ) < λ. Using Lemma 24, we know that g−ϵ (µ) < λ if and only if µ < g+ϵ (λ).
Using strict convexity of the function on (µ, λ), it is enough to exhibit one local minimum to obtain a
global minimum on (µ, λ).

Suppose that g+ϵ (λ) ≤ g−ϵ (µ). Similarly as above, we obtain, for all u ∈ [g+ϵ (λ), g
−
ϵ (µ)],

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) =
(w2 + w1)u− (w2µ+ w1λ)

u(1− u)
.

Suppose that w2µ+w1λ
w2+w1

∈ [g+ϵ (λ), g
−
ϵ (µ)]. Then, we can conclude as above that

u⋆(λ, µ,w) =
w2µ+ w1λ

w2 + w1
∈ [g+ϵ (λ), g

−
ϵ (µ)] ,

since it is a local minimum of a strictly convex function.

Suppose that w2µ+w1λ
w2+w1

< g+ϵ (λ). Since the gradient is positive on [g+ϵ (λ), g
−
ϵ (µ)], we know that

the minimum on (µ, λ) is achieved on (µ, g+ϵ (λ)), i.e., u⋆(λ, µ,w) ∈ (µ, g+ϵ (λ)). Then, for all
u ∈ (µ, g+ϵ (λ)),

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
eϵ − 1

1 + u(eϵ − 1)
+ w2

u− µ
u(1− u)

.

Using Lemma 24, direct computation yields

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) > 0 ⇐⇒ µ < u

(
1 +

w1

w2

(
1− g−ϵ (u)

u

))
,

lim
u→µ+

u

(
1 +

w1

w2

(
1− g−ϵ (u)

u

))
= µ

(
1 +

w1

w2

(
1− g−ϵ (µ)

µ

))
< µ ,

lim
u→g+

ϵ (λ)−
u

(
1 +

w1

w2

(
1− g−ϵ (u)

u

))
= g+ϵ (λ)

(
1 +

w1

w2

(
1− λ

g+ϵ (λ)

))
> µ ,

where the second result uses that u < g−ϵ (u) and the last result is obtained by continuity of the
differentials (Lemmas 25 and 26) and the positivity on [g+ϵ (λ), g

−
ϵ (µ)]. For all (a, c) ∈ R2

+ and
b ∈ R, we define r1,+(a, b, c) =

√
b2+4ac−b

2a . Therefore, we have

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = 0

⇐⇒ (w2 + w1)(e
ϵ − 1)u2 + (w2 − (w2µ+ w1)(e

ϵ − 1))u− w2µ = 0

⇐⇒ u⋆(λ, µ,w) = r1,+ ((w2 + w1)(e
ϵ − 1), (w2 − (w2µ+ w1)(e

ϵ − 1)) , w2µ) ∈ (µ, g+ϵ (λ))
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where we used that u⋆(λ, µ,w) ∈ (µ, g+ϵ (λ)) is unique for the last equivalence, and that the second
root of the second order polynomial equation is negative. Notice that u⋆(λ, µ,w) is independent of λ.

Suppose that w2µ+w1λ
w2+w1

> g−ϵ (µ). Since the gradient is negative on [g+ϵ (λ), g
−
ϵ (µ)], we know that

the minimum on (µ, λ) is achieved on (g−ϵ (µ), λ), i.e., u⋆(λ, µ,w) ∈ (g−ϵ (µ), λ). Then, for all
u ∈ (g−ϵ (µ), λ),

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
λ− u
u(1− u)

+ w2
1− e−ϵ

1− u(1− e−ϵ)
.

Using Lemma 24, direct computation yields

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) < 0 ⇐⇒ λ > u

(
1 +

w2

w1

(
1− g+ϵ (u)

u

))
,

lim
u→λ−

u

(
1 +

w2

w1

(
1− g+ϵ (u)

u

))
= λ

(
1 +

w2

w1

(
1− g+ϵ (λ)

λ

))
> λ ,

lim
u→g−

ϵ (µ)+
u

(
1 +

w2

w1

(
1− g+ϵ (u)

u

))
= g−ϵ (µ)

(
1 +

w2

w1

(
1− µ

g−ϵ (µ)

))
< λ ,

where the second result uses that u > g+ϵ (u) and the last result is obtained by continuity of the
differentials (Lemmas 25 and 26) and the negativity on [g+ϵ (λ), g

−
ϵ (µ)].

Using Lemma 23, we obtain

argmin
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = 1− argmin

u∈[0,1]

{w1d
+
ϵ (1− λ, u) + w2d

−
ϵ (1− µ, u)} .

Using Lemma 24, we obtain

g−ϵ (µ) < λ ⇐⇒ g−ϵ (1− λ) < 1− µ ,
w2µ+ w1λ

w2 + w1
∈ (g−ϵ (µ), λ) ⇐⇒ w2(1− µ) + w1(1− λ)

w2 + w1
∈ (1− λ, g+ϵ (1− µ)) .

Therefore, we can leverage the above case to obtain u⋆(λ, µ,w) = u2,⋆(λ,w) where

u2,⋆(λ,w) = 1− r1,+ ((w2 + w1)(e
ϵ − 1), (w1 − (w1(1− λ) + w2)(e

ϵ − 1)) , w1(1− λ))
Notice that u⋆(λ, µ,w) is independent of µ.

Suppose that g−ϵ (µ) < λ and g+ϵ (λ) > g−ϵ (µ). Similarly as above, we obtain, for all u ∈
[g−ϵ (µ), g

+
ϵ (λ)],

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
eϵ − 1

1 + u(eϵ − 1)
+ w2

1− e−ϵ

1− u(1− e−ϵ)
.

Therefore, we obtain

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) > 0

⇐⇒ w2(1− e−ϵ)(1 + u(eϵ − 1))− w1(e
ϵ − 1)(1− u(1− e−ϵ)) > 0

⇐⇒ u > u3,⋆(w) :=
w1(e

ϵ − 1)− w2(1− e−ϵ)

(w2 + w1)(1− e−ϵ)(eϵ − 1)
.

Suppose that u3,⋆(w) ∈ [g−ϵ (µ), g
+
ϵ (λ)]. Then, we can conclude as above that

u⋆(λ, µ,w) = u3,⋆(w) ∈ [g−ϵ (µ), g
+
ϵ (λ)] ,

since it is a local minimum of a strictly convex function. Notice that u3,⋆(w) is independent of (λ, µ).

Suppose that u3,⋆(w) > g+ϵ (λ). Since the gradient is negative on [g−ϵ (µ), g
+
ϵ (λ)], we know that

the minimum on (µ, λ) is achieved on (g+ϵ (λ), λ), i.e., u⋆(λ, µ,w) ∈ (g+ϵ (λ), λ). Then, for all
u ∈ (g+ϵ (λ), λ),

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
λ− u
u(1− u)

+ w2
1− e−ϵ

1− u(1− e−ϵ)
.
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This recovers the condition solved above. As we know that u⋆(λ, µ,w) ∈ (g+ϵ (λ), λ), we obtain
u⋆(λ, µ,w) = u2,⋆(λ,w) where

u2,⋆(λ,w) = 1− r1,+ ((w2 + w1)(e
ϵ − 1), (w1 − (w1(1− λ) + w2)(e

ϵ − 1)) , w1(1− λ))

Suppose that u3,⋆(w) < g−ϵ (µ). Since the gradient is positive on [g−ϵ (µ), g
+
ϵ (λ)], we know that

the minimum on (µ, λ) is achieved on (µ, g−ϵ (µ)), i.e., u⋆(λ, µ,w) ∈ (µ, g−ϵ (µ)). Then, for all
u ∈ (µ, g−ϵ (µ)),

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
eϵ − 1

1 + u(eϵ − 1)
+ w2

u− µ
u(1− u)

.

This recovers the condition solved above. As we know that u⋆(λ, µ,w) ∈ (µ, g−ϵ (µ)), we obtain
u⋆(λ, µ,w) = u1,⋆(µ,w) where

u1,⋆(µ,w) = r1,+ ((w2 + w1)(e
ϵ − 1), (w2 − (w2µ+ w1)(e

ϵ − 1)) , w2µ) .

This concludes the proof.

G.2.1 Modified Transportation Cost

Let η > 0 be the geometric parameter used for the geometric grid update of our private empirical
mean estimator. Let us define

∀x ≥ 1, r(x) :=
x

1 + log1+η x
, (33)

which is increasing if and only if x > e
1+η . For all (µ,w) ∈ RK × RK

+ and all (a, b) ∈ [K]2 such
that a ̸= b, we define

W̃ϵ,a,b(µ,w) := 1
(
[µa]

1
0 > [µb]

1
0

)
inf

u∈(0,1)

{
wad̃

−
ϵ (µa, u, r(wa)) + wbd̃

+
ϵ (µb, u, r(wb))

}
, (34)

where d̃±ϵ are defined in Eq. (32).

Lemma 39 gathers regularity properties of the function r defined in Eq. (33).
Lemma 39. Let r as in Eq. (33). Then,

∀x ≥ 1, r′(x) =
log(x(1 + η)/e)

log(1 + η)(1 + log1+η x)
2
,

r′′(x) = − 1

x(log(1 + η))2
log((1 + η)xe−2)

(1 + log1+η x)
3
.

On [1,+∞), the function r is twice continuously differentiable. It is decreasing on [1, e/(1 + η))
and increasing on (e/(1 + η),+∞); its minium is r(e/(1 + η)) ∈ (0, 1). It is strictly convex on
[1, e2/(1 + η)) and strictly concave on (e2/(1 + η),+∞).

Proof. The proof is obtained by direct differentiation and manipulation. We have

∀η > 0, r(e/(1 + η)) =
e log(1 + η)

1 + η
∈ (0, 1) .

Lemma 40 shows that the modified transportation costs can be rewritten differently, which is a key
property used in Appendix F.

Lemma 40. Let d̃±ϵ as in Eq. (32), and r as in Eq. (33). For all (λ, µ) ∈ R2 such that [λ]10 > [µ]10
and (w1, w2) ∈ [1,+∞)2. Then,

inf
u∈(0,1)

{w1d̃
−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
u∈([µ]10,[λ]

1
0)
{w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
(u1,u2)∈(0,1)2: u1≤u2

{w1d̃
−
ϵ (λ, u1, r(w1)) + w2d̃

+
ϵ (µ, u2, r(w2))} .
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Proof. These results are obtained by leveraging Lemmas 31 and 32.

Note that the condition [λ]10 > [µ]10 implies that µ ∈ (−∞, 1) and λ ∈ (0,+∞), i.e., [µ]10 =
max{0, µ} and [λ]10 = min{1, λ}.
Suppose that µ ≤ 0 and λ ≥ 1. Then, we have [µ]10 = 0 and [λ]10 = 1. Therefore, the first part of the
result holds by definition.

Suppose that µ ≤ 0 and λ ∈ (0, 1). Then, we have [µ]10 = 0 and [λ]10 = λ. For u ∈ [λ, 1), the
function is equal to w2d̃

+
ϵ (µ, u, r(w2)), which is increasing and strictly convex on (0, 1). There-

fore, the minimum over that interval is attained at λ. For u ∈ (0, λ), the function is equal to
w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2)). Since it is the sum of two strictly convex function, the

minimum over that interval is achieved in (0, λ). This concludes the proof of the first part of the
result for this case.

Suppose that µ ∈ (0, 1) and λ ≥ 1. Then, we have [µ]10 = µ and [λ]10 = 1. For u ∈ (0, µ], the
function is equal to w1d̃

−
ϵ (λ, u, r(w2)), which is decreasing and strictly convex on (0, 1). There-

fore, the minimum over that interval is attained at µ. For u ∈ (µ, 1), the function is equal to
w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2)). Since it is the sum of two strictly convex function, the

minimum over that interval is achieved in (µ, 1). This concludes the proof of the first part of the
result for this case.

Suppose that (µ, λ) ∈ (0, 1)2. Then, we have [µ]10 = µ and [λ]10 = λ. For u ∈ [λ, 1), the function
is equal to w2d̃

+
ϵ (µ, u, r(w2)), which is increasing and strictly convex on (0, 1). Therefore, the

minimum over that interval is attained at λ. For u ∈ (0, µ], the function is equal tow1d̃
−
ϵ (λ, u, r(w2)),

which is decreasing and strictly convex on (0, 1). Therefore, the minimum over that interval is attained
at µ. For u ∈ (µ, λ), the function is equal to w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2)). Since it is

the sum of two strictly convex function, the minimum over that interval is achieved in (µ, λ). This
concludes the proof of the first part of the result for this case.

In summary, we have shown that

inf
u∈(0,1)

{w1d̃
−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
u∈([µ]10,[λ]

1
0)
{w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))} .

Using the strict convexity of u1 7→ w1d̃
−
ϵ (λ, u1, r(w1)) and u2 7→ w2d̃

+
ϵ (µ, u2, r(w2)) on

([µ]10, [λ]
1
0), we obtain that

inf
u∈([µ]10,[λ]

1
0)
{w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
(u1,u2) : [µ]10<u1≤u2<[λ]10

{w1d̃
−
ϵ (λ, u1, r(w1)) + w2d̃

+
ϵ (µ, u2, r(w2))} .

Re-using the same arguments as above, we obtain that

inf
(u1,u2) : [µ]10<u1≤u2<[λ]10

{w1d̃
−
ϵ (λ, u1, r(w1)) + w2d̃

+
ϵ (µ, u2, r(w2))} =

= inf
(u1,u2)∈(0,1)2: u1≤u2

{w1d̃
−
ϵ (λ, u1, r(w1)) + w2d̃

+
ϵ (µ, u2, r(w2))} .

This concludes the proof.

Lemma 41 gives a closed-form solution for the modified transportation costs based on an implicit
solution of a fixed-point equation. This is a key property used in our implementation to reduce the
computational cost.

Lemma 41. Let d̃±ϵ as in Eq. (32), x±ϵ as in Lemmas 31 and 32, and r as in Eq. (33). For all
(λ, µ) ∈ R2 such that [λ]10 > [µ]10 and w ∈ [1,+∞)2. Then,

inf
u∈(0,1)

{w1d̃
−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= w1d̃
−
ϵ (λ, u

⋆(λ, µ,w), r(w1)) + w2d̃
+
ϵ (µ, u

⋆(λ, µ,w), r(w2)) ,
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where u⋆(λ, µ,w) ∈ ([µ]10, [λ]
1
0) is the unique solution for u ∈ ([µ]10, [λ]

1
0) of the equation

u(w1 + w2)− w1g
−
ϵ (u)− w2g

+
ϵ (u) + w1x

−
ϵ (λ, u, r(w1))− w2x

+
ϵ (µ, u, r(w2)) = 0 .

Proof. Using Lemma 40, we have

inf
u∈(0,1)

{w1d̃
−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
u∈([µ]10,[λ]

1
0)
{w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))} .

Using Lemmas 32 and 31, we obtain

∀u ∈ (0, [λ]10),
∂d̃−ϵ
∂u

(λ, u, r(w1)) =
u− g−ϵ (u) + x−ϵ (λ, u, r(w1))

u(1− u)
,

∀u ∈ ([µ]10, 1),
∂d̃+ϵ
∂u

(µ, u, r(w2)) =
u− g+ϵ (u)− x+ϵ (µ, u, r(w2))

u(1− u)
.

Therefore, for all u ∈ ([µ]10, [λ]
1
0),

w1
∂d̃−ϵ
∂u

(λ, u, r(w1)) + w2
∂d̃+ϵ
∂u

(µ, u, r(w2))

=
w1(u− g−ϵ (u) + x−ϵ (λ, u, r(w1))) + w2(u− g+ϵ (u)− x+ϵ (µ, u, r(w2)))

u(1− u)

=
u(w1 + w2)− (w1g

−
ϵ (u) + w2g

+
ϵ (u)) + w1x

−
ϵ (λ, u, r(w1))− w2x

+
ϵ (µ, u, r(w2))

u(1− u)
.

For u ∈ ([µ]10, [λ]
1
0), let us define

g1(u) := u(w1 + w2)− w1g
−
ϵ (u)− w2g

+
ϵ (u) + w1x

−
ϵ (λ, u, r(w1))− w2x

+
ϵ (µ, u, r(w2)) .

Using the proof of Lemmas 32 and 31, we know that

lim
u→[µ]10

∂d̃+ϵ
∂u

(µ, u, r(w1)) = 0 and lim
u→[λ]10

∂d̃−ϵ
∂u

(λ, u, r(w1)) = 0 ,

∀u ∈ (0, [λ]10),
∂d̃−ϵ
∂u

(λ, u, r(w1)) < 0 and ∀u ∈ ([µ]10, 1),
∂d̃+ϵ
∂u

(µ, u, r(w1)) > 0 .

Combined with the strict convexity of d̃±ϵ in their second argument, the equation g1(u) = 0 admits
a unique solution on ([µ]10, [λ]

1
0). Since u(1 − u) > 0, we obtain the implicit equation defining

u⋆(λ, µ,w) as above.

G.3 Characteristic Time

Let ν be a Bernoulli instance with means µ ∈ (0, 1)2 and unique best arm a⋆ ∈ [K], i.e.,
argmaxa∈[K] µa = {a⋆}. For all β ∈ (0, 1), we define

T ⋆
ϵ (ν)

−1 = sup
w∈△K

min
a̸=a⋆

Wϵ,a⋆,b(µ,w) and w⋆
ϵ (ν) = argmax

w∈△K

min
a̸=a⋆

Wϵ,a⋆,b(µ,w) , (35)

T ⋆
ϵ,β(ν)

−1 = sup
w∈△K ,wa⋆=β

min
a̸=a⋆

Wϵ,a⋆,b(µ,w) and w⋆
ϵ,β(ν) = argmax

w∈△K ,wa⋆=β
min
a ̸=a⋆

Wϵ,a⋆,b(µ,w)

where Wϵ,a,b are defined in Eq. (4).

Lemma 42 gathers regularity properties on the characteristic times and their optimal allocations.
Lemma 42. Let Wϵ,a,b as in Eq. (4). Let (T ⋆

ϵ , T
⋆
ϵ,β) and (w⋆

ϵ , w
⋆
ϵ,β) as in Eq. (35). The function

(µ,w) 7→ mina ̸=a⋆(µ)Wϵ,a⋆(µ),a(µ,w) is continuous on (0, 1)K×△K . The functions ν 7→ T ⋆
ϵ (ν)

−1

and ν 7→ T ⋆
ϵ,β(ν)

−1 are continuous on FK . The correspondences ν 7→ w⋆
ϵ (ν) and ν 7→ w⋆

ϵ,β(ν)

are upper hemicontinuous on FK with compact convex values.
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Proof. Let FK
a =

{
ν ∈ FK | a ∈ a⋆(ν)

}
. Since

⋃
a∈[K] FK

a = FK , it is enough to show the
property for all FK

a for a ∈ [K]. Let a⋆ ∈ [K].

First, the function (w,ν) 7→ mina̸=a⋆ infu∈[0,1] {wa⋆d−ϵ (µa⋆ , u) + wad
+
ϵ (µa⋆ , u)} is continuous on

△K ×FK by Lemma 35 and the fact that a minimum of continuous functions is continuous. It is
concave in w by Lemma 37.

The correspondence (w,ν) 7→ △K is nonempty compact-valued and continuous (since constant). By
Berge’s maximum theorem, we get that ν 7→ T ⋆

ϵ (ν)
−1 is continuous on FK

a⋆ and that ν 7→ w⋆
ϵ (ν) is

upper hemicontinuous with compact values. By [Sundaram, 1996, Theorem 9.17], the concavity of
the function being maximized implies that ν 7→ w⋆

ϵ (ν) is convex-valued.

The correspondence (w,ν) 7→ △K ∩{wa⋆ = β} is nonempty compact-valued and continuous (since
constant). By Berge’s maximum theorem, we get that ν 7→ T ⋆

ϵ,β(ν)
−1 is continuous on FK

a⋆ and
that w⋆

β(ν) is upper hemicontinuous with compact values. By [Sundaram, 1996, Theorem 9.17], the
concavity of the function being maximized implies that ν 7→ w⋆

ϵ,β(ν) is convex-valued.

Lemma 43 provides additional properties on the characteristic times and their optimal allocations.
In particular, this results show that the (β-)optimal allocations is unique, has positive allocation for
each arm and that the transportation costs are equal at equilibrium. Those properties are key in the
analysis of a sampling rule.
Lemma 43. Let Wϵ,a,b as in Eq. (4). Let (T ⋆

ϵ , T
⋆
ϵ,β) and (w⋆

ϵ , w
⋆
ϵ,β) as in Eq. (35). Let β ∈ (0, 1)

and ν ∈ FK such that a⋆(ν) = {a⋆} is a singleton.

• T ⋆
ϵ (ν)

−1 > 0 and T ⋆
ϵ,β(ν)

−1 > 0.

• mina∈[K] w
⋆
a > 0 and mina∈[K] w

⋆
β,a > 0 for all w⋆ ∈ w⋆

ϵ (ν) and w⋆
β ∈ w⋆

ϵ,β(ν).

• the (β-)optimal allocations are unique and the transportation costs are all equals at equilibrium
w⋆

ϵ (ν) = {w⋆
ϵ } and ∀a ̸= a⋆, inf

u∈[0,1]

{
w⋆

ϵ,a⋆d−ϵ (µa⋆ , u) + w⋆
ϵ,ad

+
ϵ (µa, u)

}
= T ⋆

ϵ (ν)
−1 ,

w⋆
ϵ,β(ν) = {w⋆

ϵ,β} and ∀a ̸= a⋆, inf
u∈[0,1]

{
w⋆

ϵ,β,a⋆d−ϵ (µa⋆ , u) + w⋆
ϵ,β,ad

+
ϵ (µa, u)

}
= T ⋆

ϵ,β(ν)
−1

Proof. Using the definition of the supremum with 1K/K ∈ △K and Lemma 35, we obtain

T ⋆
ϵ (ν)

−1 = sup
w∈△K

min
a ̸=a⋆

inf
u∈[0,1]

{
wa⋆d−ϵ (µa⋆ , u) + wad

+
ϵ (µa, u)

}
≥ 1

K
min
a ̸=a⋆

inf
u∈[0,1]

{
d−ϵ (µa⋆ , u) + d+ϵ (µa, u)

}
> 0 ,

where the last inequality strict uses Lemma 35 and µa < µa⋆ for all a ̸= a⋆. Similarly, we can prove
that T ⋆

ϵ,β(ν)
−1 > 0. This concludes the first part of the proof.

We proceed towards contradiction. Suppose that there exists w⋆ ∈ w⋆
ϵ (ν) and b with w⋆

b = 0. Then,
we will show T ⋆

ϵ (ν)
−1 = 0, which is a contradiction with the above result. If b = a⋆ we have

T ⋆
ϵ (ν)

−1 = min
a ̸=a⋆

inf
u∈[0,1]

w⋆
ad

+
ϵ (µa, u) ≤ min

a ̸=a⋆
w⋆

ad
+
ϵ (µa, µa) = 0 .

If b ̸= a⋆, we have
T ⋆
ϵ (ν)

−1 = min
a̸=a⋆

inf
u∈[0,1]

{
w⋆

a⋆d−ϵ (µa⋆ , u) + w⋆
ad

+
ϵ (µa, u)

}
≤ inf

u∈[0,1]

{
w⋆

a⋆d−ϵ (µa⋆ , u) + w⋆
bd

+
ϵ (µb, u)

}
= inf

u∈[0,1]
w⋆

a⋆d−ϵ (µa⋆ , u) = 0 .

A similar proof allows to show the result for w⋆
ϵ,β(ν) by reasoning on T ⋆

ϵ,β(ν)
−1. This concludes the

second part of the proof.

For notational simplicity, we assume without loss of generality that a⋆ = 1 is the best arm. At the
optimal allocations, all wa are positive. Let us define Gb(x) = infu∈[0,1] {d−ϵ (µ1, u) + xd+ϵ (µb, u)}
for all b ̸= 1. Let w⋆ ∈ w⋆

ϵ (ν). Then, we have

T ⋆
ϵ (ν)

−1 = max
w∈△K ,w1>0

w1 min
b ̸=1

Gb

(
wb

w1

)
and w⋆ ∈ argmax

w∈△K

w1 min
b̸=1

Gb

(
wb

w1

)
.
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Introducing x⋆b =
w⋆

b

w⋆
1

for all b ̸= 1, using that
∑

b∈[K] w
⋆
b = 1, one has

w⋆
1 =

1

1 +
∑

c̸=1 x
⋆
c

and ∀b ̸= 1, w⋆
b =

x⋆b
1 +

∑
c̸=1 x

⋆
c

.

If x⋆ is unique, then so is w⋆. Since it is optimal, {x⋆b}Kb=2 ∈ RK−1 belongs to

argmax
{xb}K

b=2∈RK−1

minb ̸=1Gb (xb)

1 +
∑K

c=2 xc
. (36)

Let’s show that all the Gb (x
⋆
b) have to be equal. Let O =

{a ∈ [K] \ {1} | Ga (x
⋆
a) = minb ̸=1Gb (x

⋆
b)} and A = [K] \ ({1} ∪ O). Assume that A ̸= ∅. For

all a ∈ A and b ∈ O, one has Gb (x
⋆
b) > Ga (x

⋆
a). Using the continuity of the Gb functions and the

fact that they are increasing (Lemma 37), there exists ϵ > 0 such that

∀b ∈ A, a ∈ O, Gb (x
⋆
b − ϵ/|A|) > Ga (x

⋆
a + ϵ/|O|) > Ga (x

⋆
a) .

We introduce x̄b = x⋆b − ϵ/|A| for all b ∈ A and x̄a = x⋆a + ϵ/|O| for all a ∈ O, hence
∑K

b=2 x̄b =∑K
b=2 x

⋆
b . There exists a ∈ O such that minb̸=1Gb (x̄b) = Ga (x

⋆
a + ϵ/|O|), hence

minb̸=1Gb (x̄b)

1 + x̄2 + . . . x̄K
=

Ga (x
⋆
a + ϵ/|O|)

1 + x⋆2 + · · ·+ x⋆K
>

Ga (x
⋆
a)

1 + x⋆2 + · · ·+ x⋆K
=

minb ̸=1Gb (x
⋆
b)

1 + x⋆2 + · · ·+ x⋆K
.

This is a contradiction with the fact that x⋆ belongs to (36). Therefore, we have A = ∅.
We have proved that there is a unique value by y⋆ ∈ R+, such that for all b ̸= 1, Gb (x

⋆
b) = y⋆. Now

since Gb is increasing, this defines a unique value for x⋆b , equal to G−1
b (y⋆).

For y in the intersection of the ranges of all Gb, let xb(y) = G−1
b (y). Then, y⋆ belongs to

argmax
y∈[0,minb̸=1 lim+∞ Gb(x))

y

1 +
∑

b ̸=1 xb(y)
. (37)

For β ∈ (0, 1), the same results (and proof) hold for w⋆
ϵ,β(ν) by noting that

T ⋆
ϵ,β(ν)

−1 = max
w∈△K :w1=β

βmin
b̸=1

Gb (wb/β) .

Let w⋆
ϵ,β ∈ w⋆

ϵ,β(ν), since we have equality at the equilibrium, we obtain βGb

(
w⋆

ϵ,β,b/β
)

=

T ⋆
ϵ,β(ν)

−1 for all b ̸= 1. Using the inverse mapping xb, we obtain w⋆
ϵ,β,b = βxb

(
T ⋆
ϵ,β(ν)

−1/β
)

for
all b ̸= 1. This concludes the third part of the proof.

Lemma 44 shows that an asymptotically 1/2-optimal algorithm has an asymptotic expected sample
complexity which is at worse twice the asymptotic expected sample complexity of an asymptotically
optimal algorithm. This result motivates the recommendation to the practitioner of using β = 1/2
when no prior information is available on the true instance ν.

Lemma 44. Let (T ⋆
ϵ , T

⋆
ϵ,β , w

⋆
ϵ ) as in Eq. (35). Let β ∈ (0, 1) and ν ∈ FK such that a⋆(ν) = {a⋆}

is a singleton. Then,

T ⋆
ϵ,1/2(ν) ≤ 2T ⋆

ϵ (ν) and
T ⋆
ϵ (ν)

−1

T ⋆
ϵ,β(ν)

−1
≤ max

{
β⋆

β
,
1− β⋆

1− β

}
with β⋆ = w⋆

ϵ,a⋆ .

Proof. Define for each non-negative vector ψ ∈ RK
+ ,

f(ψ) := min
a ̸=a⋆

inf
u∈[0,1]

{
ψa⋆d−ϵ (µa⋆ , u) + ψad

+
ϵ (µa, u)

}
.

T ⋆
ϵ (ν)

−1 is the maximum of f(ψ) over probability vectors ψ ∈ △K . Here, we instead define f for
all non-negative vectors, and proceed by varying the total budget of measurement effort available
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∑
a∈[K] ψa. Using Lemma 37, f is non-decreasing in ψa for all a. f is homogeneous of degree 1.

That is f(cψ) = cf(ψ) for all c ≥ 1. For each c1, c2 > 0 define

g (c1, c2) = max

f(ψ) | ψ ∈ RK
+ , ψa⋆(ν) = c1,

∑
a̸=a⋆(ν)

ψa ≤ c2,

 .

The function g inherits key properties of f ; it is also non-decreasing and homogeneous of degree 1.
We have

T ⋆
ϵ,β(ν)

−1 = max

f(ψ) | ψ ∈ RK
+ , ψa⋆ = β,

∑
a∈[K]

ψa = 1


= max

f(ψ) | ψ ∈ RK
+ , ψa⋆ = β,

∑
a ̸=a⋆

ψa ≤ 1− β

 = g(β, 1− β) ,

where the second equality uses that f is non-decreasing. Similarly, T ⋆
ϵ (ν)

−1 = g (β⋆, 1− β⋆) where
β⋆ = w⋆

ϵ,a⋆ . Setting r := max
{

β⋆

β ,
1−β⋆

1−β

}
implies rβ ≥ β⋆ and r(1− β) ≥ 1− β⋆. Therefore

rT ⋆
ϵ,β(ν)

−1 = rg(β, 1− β) = g(rβ, r(1− β)) ≥ g (β⋆, 1− β⋆) = T ⋆
ϵ (ν)

−1 .

Taking β = 1
2 , yields that T ⋆

ϵ (ν)
−1 ≤ 2max{β⋆, 1− β⋆}T ⋆

1/2(ν)
−1 ≤ 2T ⋆

1/2(ν)
−1.

Lemma 45 gives sufficient conditions on the means and allocations in order for the transportation
costs to be equals to the non-private transportation costs. Moreover, it gives sufficient conditions on
the means in order for this equality to hold irrespective of the considered allocation. Taken together,
this result allows to have fine and coarse understanding of the separation between the high privacy
regime and the low privacy regime for ϵ-global DP BAI.
Lemma 45. Let Wϵ,a,b as in Eq. (4). Let µ ∈ (0, 1)K such that a⋆ = argmaxa∈[K] µa is unique.

Let w ∈ (R⋆
+)

K . Let ϵ > 0. For all x ∈ (0, 1), we define fϵ(x) := (1 − x)
(
1− 1

1+x(eϵ−1)

)
=

(1 − x)g−ϵ (x)(1 − e−ϵ). Let us define µw
a⋆,a := wa⋆µa⋆+waµa

wa⋆+wa
for all a ̸= a⋆. For all a ̸= a⋆, we

have

µa⋆ − µa ≤ min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
=⇒ Wϵ,a⋆,a(µ,w) = wa⋆kl(µa⋆ , µw

a⋆,a) + wakl(µa, µ
w
a⋆,a) .

Moreover, we have

max
a⋆∈[K], µ∈(0,1)K , a⋆(µ)={a⋆}, w∈(R⋆

+)K
min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
≤ ϵ/2

and, for all a ̸= a⋆, we have

ϵ ≥ log

(
µa⋆(1− µa)

µa(1− µa⋆)

)
=
∂kl

∂x1
(µa⋆ , µa) =

∂kl

∂x1
(µa, µa⋆)

=⇒ ∀w ∈ (R⋆
+)

K , Wϵ,a⋆,a(µ,w) = wa⋆kl(µa⋆ , µw
a⋆,a) + wakl(µa, µ

w
a⋆,a) .

Proof. Let us define fϵ(x) = (1− x)
(
1− 1

1+x(eϵ−1)

)
for all x ∈ (0, 1). Then, we have

µa(1− µa)(e
ϵ − 1)

1 + µa(eϵ − 1)
= (1− µa)

(
1− 1

1 + µa(eϵ − 1)

)
= fϵ(µa) ,

µa⋆(1− µa⋆)(eϵ − 1)

eϵ − µa⋆(eϵ − 1)
= µa⋆

(
1− 1

1 + (1− µa⋆)(eϵ − 1)

)
= fϵ(1− µa⋆) .

Using Lemma 24, direct manipulation yields that

fϵ(1− µa⋆) < µa⋆ − µa ⇐⇒ g+ϵ (µa⋆) > µa ⇐⇒ fϵ(µa) < µa⋆ − µa

70



g−ϵ (µa) < µw
a⋆,a ⇐⇒ fϵ(µa) <

wa⋆

wa⋆ + wa
(µa⋆ − µa) ,

g+ϵ (µa⋆) > µw
a⋆,a ⇐⇒ fϵ(1− µa⋆) <

wa

wa⋆ + wa
(µa⋆ − µa) .

Using that max
{

wa

wa⋆+wa
, wa⋆

wa⋆+wa

}
≤ 1, we obtain that

(
g−ϵ (µa) < µa⋆ ∧ g−ϵ (µa) < µw

a⋆,a

)
⇐⇒

(
1 +

wa

wa⋆

)
fϵ(µa) < µa⋆ − µa ,(

g−ϵ (µa) < µa⋆ ∧ g+ϵ (µa⋆) > µw
a⋆,a

)
⇐⇒

(
1 +

wa⋆

wa

)
fϵ(1− µa⋆) < µa⋆ − µa ,(

g−ϵ (µa) ≥ µa⋆ ∨
(
g−ϵ (µa) < µa⋆ ∧ µw

a⋆,a ∈ [g+ϵ (µa⋆), g−ϵ (µa)]
))

⇐⇒
(
g−ϵ (µa) ≥ µa⋆ ∨ µw

a⋆,a ∈ [g+ϵ (µa⋆), g−ϵ (µa)]
)

⇐⇒ (min{fϵ(µa), fϵ(1− µa⋆)} ≥ µa⋆ − µa

∨ µa⋆ − µa ≤ min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

})
⇐⇒ µa⋆ − µa ≤ max {min{fϵ(µa), fϵ(1− µa⋆)},

min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}}
⇐⇒ µa⋆ − µa ≤ min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
.

Combining those conditions with Lemma 38 concludes the first part of the proof.

For all x ∈ (0, 1), we have

f ′ϵ(x) =
(1− x)(eϵ − 1)− x(eϵ − 1)(1 + x(eϵ − 1))

(1 + x(eϵ − 1))2
= −(eϵ − 1)

x2(eϵ − 1) + 2x− 1

(1 + x(eϵ − 1))2
,

f ′ϵ(x) = 0 ⇐⇒ x =
eϵ/2 − 1

eϵ − 1
,

f ′′ϵ (x) = −2(eϵ − 1)
(1 + x(eϵ − 1))2 − (eϵ − 1)

(
x2(eϵ − 1) + 2x− 1

)
(1 + x(eϵ − 1))3

= − 2eϵ(eϵ − 1)

(1 + x(eϵ − 1))3
≤ 0 .

As fϵ is strictly concave, the maximum is achieved at eϵ/2−1
eϵ−1 with value

max
x∈(0,1)

fϵ(x) = fϵ

(
eϵ/2 − 1

eϵ − 1

)
=
eϵ − eϵ/2

eϵ − 1

(
1− e−ϵ/2

)
=

(eϵ/2 − 1)2

eϵ − 1
.

Let κ1(x) = x(ex − 1)− 4(ex/2 − 1)2 for all x > 0. Then, we have

(eϵ/2 − 1)2

eϵ − 1
≤ ϵ/4 ⇐⇒ κ1(ϵ) ≥ 0 .

Then, we have κ1(0) = 0 and

κ′1(x) = 4ex/2 − 3ex − 1 + xex and κ′′1(x) = ex
(
2(e−x/2 − 1) + x

)
.

Using that e−x/2 − 1 ≥ −x/2, we obtain κ′′1(x) ≥ 0. Using that κ′1(0) = 0, we obtain κ′1(x) ≥ 0.
Using that κ1(0) = 0, we obtain κ1(x) ≥ 0. Therefore, we have shown that

∀ϵ > 0, max
x∈(0,1)

fϵ(x) ≤ ϵ/4 .

Direct manipulation yields that

min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
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≤
(
1 + min

{
wa⋆

wa
,
wa

wa⋆

})
max

x∈(0,1)
fϵ(x) ≤ ϵ/2 .

Taking the supremum over w ∈ (R⋆
+)

K , µ ∈ (0, 1)K such that a⋆ = a⋆(µ) and over a⋆ ∈ [K]
concludes the second part of the proof.

Let a ̸= a⋆. Direct manipulations yield that

µa⋆ − µa ≤ min{fϵ(1− µa⋆), fϵ(µa)}

=⇒ ∀w ∈ (R⋆
+)

K , µa⋆ − µa ≤ min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
=⇒ ∀w ∈ (R⋆

+)
K , Wϵ,a⋆,a(µ,w) = wa⋆kl(µa⋆ , µw

a⋆,a) + wakl(µa, µ
w
a⋆,a) .

Recall that fϵ(x) = (1− x)
(
1− 1

1+x(eϵ−1)

)
. Then, we have directly that

fϵ(x) ≥ y ⇐⇒ 1− x− y
1− x

≥ 1

1 + x(eϵ − 1)
⇐⇒ (y + x)(1− x)

x(1− x− y)
≤ eϵ .

Plugging this result, we obtain

µa⋆ − µa ≤ min{fϵ(1− µa⋆), fϵ(µa)} ⇐⇒ eϵ ≥ µa⋆(1− µa)

µa(1− µa⋆)

⇐⇒ ϵ ≥ log

(
µa⋆(1− µa)

µa(1− µa⋆)

)
.

Recall that
∂kl

∂x1
(µa⋆ , µa) =

∂kl

∂x1
(µa, µa⋆) = log

(
µa⋆(1− µa)

µa(1− µa⋆)

)
.

This concludes the proof of the last part of the result.

Lemma 46 shows that our lower bound is larger (hence better) than the one derived in Azize et al.
[2024].

Lemma 46. Let T ⋆
g (ν, ϵ) as in Theorem 13 in Azize et al. [2024], and T ⋆

ϵ (ν) as in Eq. (35). Then,
we have T ⋆

g (ν, ϵ) ≤ T ⋆
ϵ (ν).

Proof. Let T ⋆
g (ν, ϵ) as in Theorem 13 in Azize et al. [2024]. A sufficient condition to obtain

T ⋆
g (ν, ϵ) ≤ T ⋆

ϵ (ν) is to show that, for all λ ∈ Alt(µ), we have

∑
a∈[K]

wadϵ(µa, λa) ≤ min

 ∑
a∈[K]

wakl(µa, λa), 6ϵ
∑

a∈[K]

wa|µa − λa|

 ,

since we can conclude by taking the infimum over λ ∈ Alt(µ) and the supremum over w ∈ △K on
both sides of the inequalities. By definition of dϵ and evaluation the function at z = µ and z = λ
respectively, we obtain

dϵ(λ, µ) = inf
z∈(0,1)

{kl(z, µ) + ϵ|λ− z|} ≤ min {kl(λ, µ), ϵ|λ− µ|} .

By summing those inequalities over arms a ∈ [K], we obtain∑
a∈[K]

wadϵ(µa, λa) ≤
∑

a∈[K]

wa min {kl(µa, λa), ϵ|µa − λa|}

≤ min

 ∑
a∈[K]

wakl(µa, λa), ϵ
∑

a∈[K]

wa|µa − λa|

 .

Using that
∑

a∈[K] wa|µa − λa| ≥ 0 and 6ϵ ≥ ϵ, this concludes the proof.
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In Garivier and Kaufmann [2016], the authors show how to rewrite the optimization problem
underlying the characteristic time and its optimal allocation as a simpler optimization problem.
Lemma 47 shows that similar properties holds for ϵ-global DP BAI. In particular, it shows that
computing the characteristic time T ⋆

ϵ (ν) and their optimal allocation w⋆
ϵ (ν) can be done explicitly

based on solving nested fixed-point equations. This result is key to implement computationally
tractable Track-and-Stop algorithms. Additionally, Lemma 47 gives an explicit lower bound on the
characteristic time T ⋆

ϵ (ν).
Lemma 47. Let d±ϵ as in Eq. (3), and (T ⋆

ϵ , w
⋆
ϵ ) as in Eq. (35). Let a ̸= a⋆. For x ∈ [0,+∞), let

Ga(x) := inf
u∈[0,1]

{
d−ϵ (µa⋆ , u) + xd+ϵ (µa, u)

}
andua(x) := argmin

u∈[µa,µa⋆ ]

{d−ϵ (µa⋆ , u)+xd+ϵ (µa, u)} .

• The function Ga is an increasing and strictly concave one-to-one mapping from [0,+∞) to
[0, d−ϵ (µa⋆ , µa)); it satisfies that Ga(0) = 0 and limx→+∞Ga(x) = d−ϵ (µa⋆ , µa).

• The function ua is a decreasing one-to-one mapping from [0,+∞) to (µa, µa⋆ ]; it satisfies
that ua(0) = µa⋆ and limx→+∞ ua(x) = µa.

• Let xa(y) be defined as the unique solution of Ga(x) = y for all y ∈ [0, d−ϵ (µa⋆ , µa)). The
function xa is an increasing and strictly convex one-to-one mapping from [0, d−ϵ (µa⋆ , µa))
to [0,+∞); it satisfies that xa(0) = 0 and limy→d−

ϵ (µa⋆ ,µa)
xa(y) = +∞.

For all y ∈ [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)), let us define

G(y) :=
y

1 +
∑

a ̸=a⋆ xa(y)
and F (y) :=

∑
a ̸=a⋆

d−ϵ (µa⋆ , ua(xa(y)))

d+ϵ (µa, ua(xa(y)))
.

• The function F is an increasing one-to-one mapping from [0,mina̸=a⋆ d−ϵ (µa⋆ , µa)) to
[0,+∞); it satisfies that F (0) = 0 and limy→mina̸=a⋆ d−

ϵ (µa⋆ ,µa)
F (y) = +∞.

• On [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)), the function G is maximized at the unique y⋆ solution in
[0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)) of the fixed-point equation F (y) = 1. Moreover, we have
w⋆

ϵ (ν)a = w⋆
ϵ (ν)a⋆xa(y

⋆) for all a ̸= a⋆,

w⋆
ϵ (ν)a⋆ =

1

1 +
∑

a ̸=a⋆ xa(y⋆)
and T ⋆

ϵ (ν)
−1 =

y⋆

1 +
∑

a̸=a⋆ xa(y⋆)
.

• Moreover, we have

T ⋆
ϵ (ν) ≥

1

mina̸=a⋆ d−ϵ (µa⋆ , µa)
+
∑
a̸=a⋆

1

d+ϵ (µa, µa⋆)
.

If ϵ < log
(

µa(1−µb)
µb(1−µa)

)
, we have d+ϵ (µa, µa⋆) = − log (1− µa⋆(1− e−ϵ)) − ϵµa and

d−ϵ (µa⋆ , µa) = − log (1 + µa(e
ϵ − 1)) + ϵµa⋆ .

Proof. Using Lemma 37, we know that Ga is concave. Let ua(x) ∈
argminu∈[0,1] {d−ϵ (µa⋆ , u) + xd+ϵ (µa, u)} for all x ∈ [0,+∞), whose explicit formula is
given in Lemma 45. It is direct to see that Ga(0) = 0 and ua(0) = µa⋆ . Using the optimality
condition of ua(x), we obtain, for all x ∈ [0,+∞),

G′
a(x) = u′a(x)

(
∂d−ϵ
∂u

(µa⋆ , ua(x)) + x
∂d+ϵ
∂u

(µa, ua(x))

)
+ d+ϵ (µa, ua(x))

= d+ϵ (µa, ua(x)) > 0 ,

where the last inequality is obtained by Lemma 35 and using that d+ϵ (µa, ua(0)) = d+ϵ (µa, µa⋆) > 0.
Therefore, Ga is an increasing one-to-one mapping from [0,+∞) to [0, limx→+∞Ga(x)).

Let µx
a⋆,a = µa⋆+xµa

1+x for all x ∈ [0,+∞). It is easy to see that Ga(0) = 0, ua(0) = µa⋆ and
limx→+∞ µx

a⋆,a = µa. Using Lemma 45, we obtain that

lim
x→+∞

min {(1 + 1/x) fϵ(1− µa⋆), (1 + x) fϵ(µa)} = fϵ(1− µa⋆) .
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When µa⋆ − µa ≤ fϵ(1− µa⋆), we obtain

lim
x→+∞

Ga(x) = lim
x→+∞

{
kl(µa⋆ , µx

a⋆,a) + xkl(µa, µ
x
a⋆,a)

}
= kl(µa⋆ , µa) + lim

x→+∞

{
xkl(µa, µ

x
a⋆,a)

}
= kl(µa⋆ , µa) ,

where we used that

xkl(µa, µ
x
a⋆,a) = x

(
µa log

(
1− µa⋆ − µa

µa(1− µa)

1
µa⋆

µa
+ x

)
+ log

(
1 +

µa⋆ − µa

1− µa

1
1−µa⋆

1−µa
+ x

))
,

lim
x→+∞

{
xkl(µa, µ

x
a⋆,a)

}
=

(µa⋆ − µa)
2

µa(1− µa)2
lim

x→+∞

 x(
µa⋆

µa
+ x
)(

1−µa⋆

1−µa
+ x
)
 = 0 ,

where we used that log(1 + x) =x→0 x+O(x2). Using Lemma 26 and the proof of Lemma 45, we
know that µa⋆ −µa ≤ fϵ(1−µa⋆) if and only if µa ∈ [g+ϵ (µa⋆), µa⋆), hence we have kl(µa⋆ , µa) =
d−ϵ (µa⋆ , µa). This concludes the proof in the first case.

When µa⋆ − µa > fϵ(1− µa⋆), we obtain

lim
x→+∞

Ga(x) = lim
x→+∞

{− log (1 + u1,⋆(µa, x)(e
ϵ − 1)) + ϵµa⋆ + xkl(µa, u1,⋆(µa, x)} ,

where

u1,⋆(µa, x) =√
(x(1− µa(eϵ − 1))− (eϵ − 1))

2
+ 4(1 + x)(eϵ − 1)xµa − (x(1− µa(e

ϵ − 1))− (eϵ − 1))

2(1 + x)(eϵ − 1)
.

Direct manipulation yields that limx→+∞ u1,⋆(µa, x) = µa, hence

lim
x→+∞

Ga(x) = − log (1 + µa(e
ϵ − 1)) + ϵµa⋆ + lim

x→+∞
{xkl(µa, u1,⋆(µa, x)} .

Let us denote v1,⋆(µa, x) = u1,⋆(µa, x)− µa ≥ 0, i.e., limx→+∞ v1,⋆(µa, x) = 0. Direct manipula-
tion yields that

v1,⋆(µa, x)

=
1 + µa(e

ϵ − 1)

2(eϵ − 1)

(
1− 1

x+ 1

)
(√

1− 2x(1− µa(eϵ + 1))(eϵ − 1)− (eϵ − 1)2

x2(1 + µa(eϵ − 1))2
− 1 +

(eϵ − 1)(1− 2µa)

x(1 + µa(eϵ − 1))

)

=

√
1− 2x(1− µa(eϵ + 1))(eϵ − 1)− (eϵ − 1)2

x2(1 + µa(eϵ − 1))2
− 1 +

(eϵ − 1)(1− 2µa)

x(1 + µa(eϵ − 1))

=x→+∞
(eϵ − 1)(1− 2µa)

x(1 + µa(eϵ − 1))
− 2x(1− µa(e

ϵ + 1))(eϵ − 1)− (eϵ − 1)2

2x2(1 + µa(eϵ − 1))2
+O(1/x2)

=x→+∞
2x(eϵ − 1)2(1− µa)µa(e

ϵ − 1) + (eϵ − 1)2

2x2(1 + µa(eϵ − 1))2
+O(1/x2) ,

hence v1,⋆(µa, x) =x→+∞
2(1− µa)µa(e

ϵ − 1)2

x(1 + µa(eϵ − 1))2
+O(1/x2) .

where we used that
√
1− x− 1 =x→0 −x/2 +O(x2) to obtain the last result. Similarly as before,

we derive

xkl(µa, u1,⋆(µa, x)) = x

(
µa log

(
1− 1

µa(1− µa)

v1,⋆(µa, x)

1 + v1,⋆(µa, x)/µa

)
+ log

(
1 +

1

1− µa

v1,⋆(µa, x)

1− v1,⋆(µa, x)/(1− µa)

))
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lim
x→+∞

{
xkl(µa, µ

x
a⋆,a)

}
=

1

µa(1− µa)2
lim

x→+∞

 xv1,⋆(µa, x)
2(

1− v1,⋆(µa,x)
1−µa

)(
1 +

v1,⋆(µa,x)
µa

)


=
limx→+∞ xv1,⋆(µa, x)

2

µa(1− µa)2
= 0 ,

where we used that v1,⋆(µa, x) =x→+∞ O(1/x) to conclude. Therefore, we have shown that
limx→+∞Ga(x) = − log (1 + µa(e

ϵ − 1)) + ϵµa⋆ . Using Lemma 26 and the proof of Lemma 45,
we know that µa⋆ − µa > fϵ(1 − µa⋆) if and only if µa ∈ [0, g+ϵ (µa⋆)), hence we have
− log (1 + µa(e

ϵ − 1)) + ϵµa⋆ = d−ϵ (µa⋆ , µa). This concludes the proof in the second case.

Therefore, Ga is a strictly increasing one-to-one mapping from [0,+∞) to [0, d−ϵ (µa⋆ , µa)). Using
the implicit function theorem, we obtain

∀x ∈ [0,+∞), u′a(x) = −
∂d+

ϵ

∂u (µa, ua(x))

∂2d−
ϵ

∂u2 (µa⋆ , ua(x)) + x∂2d+
ϵ

∂u2 (µa, ua(x))
< 0 ,

where the strict inequality is obtained by using properties in Lemmas 25 and 26, since ua(x) ∈
(µa, µa⋆) by Lemmas 35 and 25. Similarly, we obtain

∀x ∈ [0,+∞), G′′
a(x) = u′a(x)

∂d+ϵ
∂u

(µa, ua(x)) > 0 ,

Therefore, we have shown that Ga is strictly concave and that ua is decreasing.

Let us define xa(y) as the unique solution of Ga(x) = y, which is well-defined based on our above
computations. Therefore, we have

y = d−ϵ (µa⋆ , ua(xa(y))) + xa(y)d
+
ϵ (µa, ua(xa(y))) .

Using the derivative of the inverse function, we obtain

∀y ∈ [0, d−ϵ (µa⋆ , µa)), x′a(y) =
1

G′
a(xa(y))

=
1

d+ϵ (µa, ua(xa(y)))
> 0 ,

hence xa is increasing on [0, d−ϵ (µa⋆ , µa)). Moreover, we have

∀y ∈ [0, d−ϵ (µa⋆ , µa)), x′′a(y) = −
u′a(xa(y))

d+ϵ (µa, ua(xa(y)))3
∂d+ϵ
∂u

(µa, ua(xa(y)) > 0 ,

hence xa is strictly convex on [0, d−ϵ (µa⋆ , µa)).

For all y ∈ [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)), let us define G(y) = y
1+

∑
a ̸=a⋆ xa(y)

and F (y) =∑
a ̸=a⋆

d−
ϵ (µa⋆ ,ua(xa(y)))

d+
ϵ (µa,ua(xa(y)))

. Using the above results, direct manipulations yield that, for all y ∈
[0,mina̸=a⋆ d−ϵ (µa⋆ , µa)),

G′(y) =
1 +

∑
a̸=a⋆ xa(y)− y

∑
a ̸=a⋆ x′a(y)

(1 +
∑

a̸=a⋆ xa(y))2
=

1 +
∑

a ̸=a⋆ xa(y)−
∑

a ̸=a⋆
y

d+
ϵ (µa,ua(xa(y)))

(1 +
∑

a ̸=a⋆ xa(y))2

=
1− F (y)

(1 +
∑

a̸=a⋆ xa(y))2
,

hence we obtain that G′(y) = 0 if and only if F (y) = 1. Using that xa(0) = 0, ua(0) = µa⋆ and
d−ϵ (µa⋆ , µa⋆) = 0, we obtain that F (0) = 0.

Using that limy→d−
ϵ (µa⋆ ,µa)

xa(y) = +∞, limx→+∞ ua(x) = µa, d−ϵ (µa⋆ , µa) > 0 and
d+ϵ (µa, µa) = 0, we obtain that limy→mina ̸=a⋆ d−

ϵ (µa⋆ ,µa)
F (y) = +∞.

Let H(y) =
∑

a̸=a⋆
1

d+
ϵ (µa,ua(xa(y)))

for all y ∈ [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)). Then, we have∑
a ̸=a⋆

xa(y) = yH(y)− F (y) ,
∑
a ̸=a⋆

x′a(y) = H(y) ,
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∂d−ϵ
∂u

(µa⋆ , ua(x)) + x
∂d+ϵ
∂u

(µa, ua(x)) = 0 ,

d−ϵ (µa⋆ , ua(xa(y))) + xa(y)d
+
ϵ (µa, ua(xa(y))) = y .

Then, for all y ∈ [0,mina̸=a⋆ d−ϵ (µa⋆ , µa)), we have

H ′(y) = −
∑
a ̸=a⋆

u′a(xa(y))x
′
a(y)

(d+ϵ (µa, ua(xa(y))))2
∂d+ϵ
∂u

(µa, ua(xa(y)))

= −
∑
a ̸=a⋆

u′a(xa(y))

(d+ϵ (µa, ua(xa(y))))3
∂d+ϵ
∂u

(µa, ua(xa(y))) ,

F ′(y) =
∑
a̸=a⋆

u′a(xa(y))x
′
a(y)

(d+ϵ (µa, ua(xa(y))))2(
d+ϵ (µa, ua(xa(y)))

∂d−ϵ
∂u

(µa⋆ , ua(xa(y)))− d−ϵ (µa⋆ , ua(xa(y)))
∂d+ϵ
∂u

(µa, ua(xa(y)))

)
= −

∑
a ̸=a⋆

u′a(xa(y))x
′
a(y)

(d+ϵ (µa, ua(xa(y))))2
∂d+ϵ
∂u

(µa, ua(xa(y)))(
xa(y)d

+
ϵ (µa, ua(xa(y))) + d−ϵ (µa⋆ , ua(xa(y)))

)
= −y

∑
a ̸=a⋆

u′a(xa(y))x
′
a(y)

(d+ϵ (µa, ua(xa(y))))2
∂d+ϵ
∂u

(µa, ua(xa(y))) = yH ′(y) ,

Therefore, showing that H is increasing is a sufficient condition to show that F is increasing. Using
the above results, we have, for all a ̸= a⋆ and all y ∈ [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)), we have

1

(d+ϵ (µa, ua(xa(y))))3
∂d+ϵ
∂u

(µa, ua(xa(y))) > 0 and u′a(xa(y)) < 0 .

Therefore, H is increasing as a summation of increasing function, hence F is increasing.

Let y⋆ such that F (y⋆) = 1. Reusing the above manipulation, we obtain

G′′(y) = −
F ′(y)(1 +

∑
a̸=a⋆ xa(y)) + 2(1− F (y))

∑
a ̸=a⋆ x′a(y)

(1 +
∑

a̸=a⋆ xa(y))3

= −yH
′(y)(1 + yH(y)− F (y)) + 2(1− F (y))H(y)

(1 + yH(y)− F (y))3
,

G′′(y⋆) = − H ′(y⋆)

y⋆H(y⋆)2
< 0 ,

Therefore, y⋆ is the unique maximum of G. We conclude this part of the proof by using the
intermediate results in the proof of Lemma 43.

By strict convexity of xa and using its properties proven above, we obtain

xa(y) ≥ xa(0) + yx′a(0) =
y

d+ϵ (µa, µa⋆)
.

Summing those inequalities, we obtain

∀y ∈ [0, min
a ̸=a⋆

d−ϵ (µa⋆ , µa)), G(y) =
y

1 +
∑

a̸=a⋆ xa(y)
≤ 1

1
y +

∑
a ̸=a⋆

1
d+
ϵ (µa,µa⋆ )

.

Using that y 7→ 1/(1/y + α) is increasing for α > 0, we obtain that

T ⋆
ϵ (ν)

−1 = max
y∈[0,mina ̸=a⋆ d−

ϵ (µa⋆ ,µa))
G(y) ≤ 1

1
mina ̸=a⋆ d−

ϵ (µa⋆ ,µa))
+
∑

a ̸=a⋆
1

d+
ϵ (µa,µa⋆ )

.

This concludes the proof of the second to last result. The last result is obtained by combining
Lemmas 26 and 25 and the derivation in the proof of Lemma 45.
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Lemma 48 is a technical result used in the proof of sufficient exploration of our sampling rule.

Lemma 48. Let d±ϵ as in Eq. (3). Let µ ∈ (0, 1)K . There exists α > 0 such that

Cµ := min
(a,b):µa>µb

inf
λa,λb:

maxc∈{a,b} |µc−λc|≤α

inf
u∈[0,1]

{
d−ϵ (λa, u) + d+ϵ (λb, u)

}
> 0 . (38)

Proof. Using Lemma 35 for w1 = w2 = 1, the function µ 7→ infu∈[0,1] {d−ϵ (µa, u) + d+ϵ (µb, u)} is
continuous on FK . Since it has strictly positive values when µa > µb (Lemma 35), there exists α
such that

inf
λa,λb:

maxc∈{a,b} |µc−λc|≤α

inf
u∈[0,1]

{
d−ϵ (λa, u) + d+ϵ (λb, u)

}
> 0 .

Further lower bounding by a finite number of strictly positive constants yields the result.

Lemma 48 is a technical result used in the proof of convergence towards the optimal allocation of our
sampling rule.

Lemma 49. Let d±ϵ as in Eq. (3). Let (ϕ1, ϕ2) ∈ (0, 1)2. Let Ia :=
{
µ ∈ (0, 1)K | a ∈ a⋆(µ)

}
for

all a ∈ [K]. For all a⋆ ∈ [K], all µ ∈ Ia⋆ , all (a, b) ∈ ([K] \ {a⋆})2 such that a ̸= b, and all
β ∈ [0, 1], define

Ga,b(µ, β) := inf
u∈[0,1]

{
βd−ϵ (µa⋆ , u) + ϕ1d

+
ϵ (µa, u)

}
− inf

u∈(0,1)

{
βd−ϵ (µa⋆ , u) + ϕ2d

+
ϵ (µb, u)

}
.

The function (µ, β) 7→ Ga,b(µ, β) is continuous on (0, 1)K × [0, 1]. For all ξ > 0, the function
(µ, β) 7→ inf β̃:|β−β̃|≤ξ Ga,b(µ, β) is continuous on (0, 1)K .

Proof. Since
⋃

a∈[K] IKa = (0, 1)K , it is enough to show the property for all a ∈ [K]. Let a⋆ ∈ [K],
µ ∈ Ia⋆ , (a, b) ∈ ([K] \ {a⋆})2 such that a ̸= b. As done in Lemma 42 by using Lemma 35,
we obtain that the function (µ, β) 7→ Ga,b(µ, β) is continuous on Ia⋆ × [0, 1] for all a⋆ ∈ [K],

hence on (0, 1)K × [0, 1]. Let Φ : µ 7→
{
β̃ : |β − β̃| ≤ ξ

}
, it is a continuous (constant), compact

valued and non-empty correspondence. Using the above continuity, Berge’s theorem yields that
µ 7→ inf β̃:|β−β̃|≤ξ Ga,b(µ, β̃) is continuous on (0, 1)K .

H Asymptotic Upper Bound on the Expected Sample complexity

Let ν be a Bernoulli instance with means µ ∈ (0, 1)2 and unique best arm a⋆ ∈ [K], i.e.,
argmaxa∈[K] µa = {a⋆}. Let β ∈ (0, 1). Let w⋆

ϵ,β(ν) = {w⋆
ϵ,β} be the unique β-optimal al-

location defined in Eq. (35), which satisfies mina∈[K] w
⋆
ϵ,β,a > 0 by Lemma 43. At equilibrium, we

have equality of the transportation costs by Lemma 43, namely

∀a ̸= a⋆, Wϵ,a⋆,a(µ,w
⋆
ϵ,β) = T ⋆

ϵ,β(ν)
−1 , (39)

where Wϵ,a,b is defined in Eq. (4) and T ⋆
ϵ,β is defined in Eq. (35).

Let γ > 0. Let ω ∈ △K be any allocation over arms such that mina ωa > 0. We denote by Tγ(ω) the
convergence time towards ω, which is a random variable quantifying the number of samples required
for the global empirical allocations Nn/(n− 1) to be γ-close to ω for any subsequent time, namely

Tγ(ω) := inf

{
T ≥ 1 | ∀n ≥ T,

∥∥∥∥ Nn

n− 1
− ω

∥∥∥∥
∞
≤ γ

}
. (40)

The proof of Theorem 7 follows the same analysis as the unified analysis of Top Two algorithms, see,
e.g., Jourdan et al. [2022]. Appendix H is organised as follows. After recalling some technical results
(Appendix H.1), we prove sufficient exploration of our sampling rule (Appendix H.2). Second, we
prove that convergence time towards the β-optimal allocation of our sampling rule (Appendix H.3)
has finite expectation. Finally, we conclude the proof of Theorems 7 (Appendix H.4).
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H.1 Technical Results from the Literature

Lemma 50 relates the global counts (Nn,a)a∈[K] and the local counts (Ñn,a)a∈[K].

Lemma 50. Let η > 0 be the geometric parameter used for the geometric grid update of our private
empirical mean estimator. For all (a, k) ∈ [K] × N s.t. Eνπ[Tk(a)] < +∞, NTk(a),a = Ñk,a =

⌈(1 + η)k−1⌉. For all a ∈ [K] and all n ∈ N, Nn,a ≥ Ñn,a ≥ Nn,a/(1 + η).

Proof. Let a ∈ [K]. After initialisation, we have k = 1, T1(a) = K + 1 and NT1(a),a = 1.
Using the definition of the phase switch, it is direct to see that NT2(a),a = Ñ2,a = ⌈1 + η⌉ when
Eνπ[T2(a)] < +∞. Similarly, we obtainNTk(a),a = Ñk,a = ⌈(1+η)k−1⌉when Eνπ[Tk(a)] < +∞.
The last result is a direct consequence of the definition of the per-arm geometric update grid.

Lemma 51 controls the deviation Na
n,a − βLn,a enforced by the tracking procedure.

Lemma 51 (Lemma 2.2 in Jourdan and Degenne [2024]). For all n > K and all a ∈ [K], −1/2 ≤
Na

n,a − βLn,a ≤ 1.

Lemma 52 gathers properties on the W−1 function used in the stopping threshold.

Lemma 52 (Jourdan et al. [2023]). Let W−1(x) := −W−1(−e−x) for all x ≥ 1, where W−1 is the
negative branch of the Lambert W function. The function W−1 is increasing on (1,+∞) and strictly

concave on (1,+∞). In particular, W
′
−1(x) =

(
1− 1

W−1(x)

)−1

for all x > 1. Then, for all y ≥ 1

and x ≥ 1,
W−1(y) ≤ x ⇐⇒ y ≤ x− log(x) .

Moreover, for all x > 1,

x+ log(x) ≤W−1(x) ≤ x+ log(x) + min

{
1

2
,

1√
x

}
.

Lemma 53 gives an upper bound on a time define implicit as a function of W−1, namely it is an
inversion result.

Lemma 53 (Lemma 32 in Azize et al. [2024]). LetW−1 defined in Lemma 52. LetA > 0,B > 0 such
that B/A + logA > 1 and C(A,B) = sup {x | x < A log x+B}. Then, C(A,B) < h1(A,B)
with h1(z, y) = zW−1 (y/z + log z).

Lemma 54 shows that upon correction the supremum of sub-exponential random variables is also a
sub-exponential random variable.

Lemma 54 (Lemma 72 in Jourdan et al. [2022]). Suppose that (Xn)n≥1 are sub-exponential random
variables with constants (Cn), such that c := infn Cn > 0. Then supn(Xn/ log(e + n)) is sub-
exponential.

Lemma 55 gives a coarse convergence rate of the private empirical estimators of the means towards
their true means.

Lemma 55. There exist sub-exponential random variable Wµ such that almost surely, for all a ∈ [K]

and all n such that Ñn,a ≥ 1,

Ñn,a|µ̃n,a − µa| ≤Wµ log(e+ Ñn,a) .

In particular, any random variable which is polynomial in Wµ has a finite expectation.

Proof. Let us define

Wµ = max
a∈[K]

sup
n∈N

Ñn,a|µ̃n,a − µa|
log(e+ Ñn,a)

.

Let a ∈ [K]. Let us define the geometric grid Nk = ⌈(1 + η)k−1⌉ for all k ∈ N, on which we
effectively need to control the concentration. The maximum of a finite number of sub-exponential
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random variables is sub-exponential. Therefore, using the geometric update grid, it suffices to show
that

sup
k∈N

Nk|(ZNk
+ Sk)/Nk − µa|

log(e+Nk)

is sub-exponential, where ZNk
is the cumulative sum of Nk i.i.d. observations from Ber(µa) and Sk

is the cumulative sum of k i.i.d. observations from Lap(1/ϵ).

Using that ZNk
−Nkµa is sub-Gaussian and Sk is sub-exponential, for a fixed k, |ZNk

−Nkµa+Sk|
is sub-exponential. Applying Lemma 54, we obtain that

sup
k∈N

Nk|(ZNk
+ Sk)/Nk − µa|

log(e+Nk)

is sub-exponential. We finally obtain that the maximum over the finitely many arms has the same
property.

H.2 Sufficient Exploration

The first step of in the generic analysis of Top Two algorithms [Jourdan et al., 2022] consists in
showing sufficient exploration. The main idea is that, if there are still undersampled arms, either the
leader or the challenger will be among them. Therefore, after a long enough time, no arm can still
be undersampled. We emphasise that there are multiple ways to select the leader/challenger pair in
order to ensure sufficient exploration. Therefore, other choices of leader/challenger pair would yield
similar results.

Given an arbitrary phase p ∈ N, we define the sampled enough set, i.e., the arms having reached
phase p, and the arm with highest mean in this set (when not empty) as

Sp
n = {a ∈ [K] | Nn,a ≥ (1 + η)p−1} and a⋆n = argmax

a∈Sp
n

µa . (41)

Since mina̸=b |µa − µb| > 0, a⋆n is unique. Let p ∈ N such that (p− 1)/4 ∈ N. We define the highly
and the mildly under-sampled sets as

Up
n := {a ∈ [K] | Nn,a < (1 + η)(p−1)/2} and V p

n := {a ∈ [K] | Nn,a < (1 + η)3(p−1)/4} .
(42)

Those arms have not reached phase (p− 1)/2 and phase 3(p− 1)/4, respectively.

Lemma 56 shows that, when the leader is sampled enough, it is the arm with highest true mean among
the sampled enough arms.
Lemma 56. Let Sp

n and a⋆n as in (41). There exists p0 with Eνπ[exp(αp0)] < +∞ for all α > 0
such that if p ≥ p0, for all n such that Sp

n ̸= ∅, we have

• For all a ∈ Sp
n, we have µ̃n,a ∈ (0, 1) and a⋆n = argmaxa∈Sp

n
µ̃n,a.

• If Bn ∈ Sp
n, then Bn = a⋆n.

Proof. Let p0 to be specified later. Let p ≥ p0. Let n ∈ N such that Sp
n ̸= ∅, where Sp

n and a⋆n as
in Equation (41). Since Nn,a ≥ (1 + η)p−1 for all a ∈ Sp

n, we have Ñn,a ≥ (1 + η)p−1. Using
Lemma 55 and x→ log(e+ x)/x is decreasing, we obtain that

µ̃n,a⋆
n
≥ µa⋆

n
−Wµ

log(e+ (1 + η)p−1)

(1 + η)p−1
,

∀a ∈ Sp
n \ {a⋆n}, µ̃n,a ≤ µa +Wµ

log(e+ (1 + η)p−1)

(1 + η)p−1
.

Let ∆min = mina ̸=b |µa − µb| and ∆0 = mina∈[K] min{µa, 1 − µa} > 0. By assumption on the
considered instances, we know that ∆min > 0. Let p1 = ⌈log1+η(X1 − e)⌉+ 1 with

X1 = sup
{
x > 1 | x ≤ 4(min{∆min,∆0})−1Wµ log x+ e

}
≤ h1(4(min{∆min,∆0})−1Wµ, e) ,
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where we used Lemma 53, and h1 defined therein. Then, for all p ∈ N such that p ≥ p1 + 1 and all
n ∈ N such that Sp

n ̸= ∅, we have

∀a ∈ Sp
n, µa −min{∆min,∆0}/4 ≤ µ̃n,a ≤ µa +min{∆min,∆0}/4 .

Therefore, we have µ̃n,a ∈ (0, 1) for all a ∈ Sp
n. Since µ̃n,a⋆

n
≥ µa⋆

n
− min{∆min,∆0}/4 and

µ̃n,a ≤ µa + min{∆min,∆0}/4 for all a ∈ Sp
n \ {a⋆n}, we obtain a⋆n = argmaxa∈Sp

n
µ̃n,a since

argmaxa∈Sp
n
µ̃n,a is unique. The leader is defined as Bn = argmaxa∈[K][µ̃n,a]

1
0. If Bn ∈ Sp

n, we
obtain

Bn = argmax
a∈Sp

n

[µ̃n,a]
1
0 = argmax

a∈Sp
n

µ̃n,a = a⋆n .

For all α ∈ R+, we have exp(αp1) ≤ e3α(X1 − e)α/ log 2, hence Eνπ[exp(αp1)] < +∞ by using
Lemma 55 and h1(x, e) ∼x→+∞ x log x to obtain that exp(αp1) is at most polynomial in Wµ.
Taking p0 = p1 concludes the proof.

Lemma 57 shows that the transportation costs between the sampled enough arms with largest true
means and the other sampled enough arms are increasing fast enough.

Lemma 57. Let Sp
n as in Eq. (41). There exists p1 with Eνπ[exp(αp1)] < +∞ for all α > 0 such

that if p ≥ p1, for all n such that Sp
n ̸= ∅, for all (a, b) ∈ (Sp

n)
2 such that µa > µb, we have

Wϵ,a,b(µ̃n, Nn) ≥ (1 + η)p−1Cµ ,

where Cµ > 0 is a problem dependent constant.

Proof. Let p0 as in Lemma 56. Let p ≥ p0. Let n ∈ N such that Sp
n ̸= ∅, where Sp

n as in Eq. (41).
Since Nn,a ≥ (1 + η)p−1 for all a ∈ Sp

n, we have Ñn,a ≥ (1 + η)p−1 by using Lemma 50. Let
(a, b) ∈ (Sp

n)
2 such that µa > µb. Using Lemma 48, there exists αµ > 0 such that

Cµ = min
(a,b):µa>µb

inf
λa,λb:

maxc∈{a,b} |µc−λc|≤αµ

inf
u∈[0,1]

{
d−ϵ (λa, u) + d+ϵ (λb, u)

}
> 0 .

Let η > 0 s.t. η < 1
4 min{∆min,∆0, αµ} where ∆min = mina̸=b |µa − µb| and ∆0 =

mina∈[K] min{µa, 1 − µa}. Similarly as in the proof of Lemma 56, we can construct p2 with
Eνπ[exp(αp2)] < +∞ for all α > 0 such that if p ≥ p2, for all n such that Sp

n ̸= ∅, we have
|µ̃n,a − µa| ≤ η for all a ∈ Sp

n. Therefore, we have µ̃n,a = [µ̃n,a]
1
0 and [µ̃n,b]

1
0 = µ̃n,b. Moreover,

we have µ̃n,a ≥ µa − η > µb + η ≥ µ̃n,b. Then, we obtain

Wϵ,a,b(µ̃n, Nn) = inf
u∈[0,1]

{
Nn,ad

−
ϵ (µ̃n,a, u) +Nn,bd

+
ϵ (µ̃n,b, u)

}
≥ (1 + η)p−1 inf

u∈[0,1]

{
d−ϵ (µ̃n,a, u) + d+ϵ (µ̃n,b, u)

}
≥ (1 + η)p−1 inf

λa,λb:
maxc∈{a,b} |µc−λc|≤αµ

inf
u∈[0,1]

{
d−ϵ (λa, u) + d+ϵ (λb, u)

}
≥ (1 + η)p−1Cµ .

This concludes the proof.

Lemma 58 shows that the transportation costs between sampled enough arms and undersampled arms
are not increasing too fast.

Lemma 58. Let Sp
n be as in Eq. (41). There exists p2 with Eνπ[exp(αp2)] < +∞ for all α > 0 such

that if p ≥ p2, for all n such that Sp
n ̸= ∅, For all p ≥ p2 and all n such that Sp

n ̸= ∅, for all a ∈ Sp
n

and b /∈ Sp
n,

Wϵ,a,b(µ̃n, Nn) ≤ (1 + η)p−1Dµ ,

where Dµ ∈ (0,+∞) is a problem dependent constant.

Proof. Let n ∈ N such that Sp
n ̸= ∅, where Sp

n as in Eq. (41). Since Nn,a ≥ (1 + η)p−1 for all
a ∈ Sp

n, we have Ñn,a ≥ (1 + η)p−1 by using Lemma 50. Likewise, Nn,b < (1 + η)p−1 for all
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b /∈ Sp
n, we have Ñn,b < (1 + η)p−1. Let a ∈ Sp

n and b /∈ Sp
n. Since the result is direct when

[µ̃n,a]
1
0 ≤ [µ̃n,b]

1
0, we assume [µ̃n,a]

1
0 > [µ̃n,b]

1
0 in the following.

Let η > 0 s.t. η < 1
4 min{∆min,∆0} where ∆min = mina̸=b |µa − µb| and ∆0 =

mina∈[K] min{µa, 1 − µa} > 0. Similarly as in the proof of Lemma 56, we can construct p2
with Eνπ[exp(αp2)] < +∞ for all α > 0 such that if p ≥ p2, for all n such that Sp

n ̸= ∅, we have
|µ̃n,a − µa| ≤ η for all a ∈ Sp

n. Let g+ϵ (x) =
x

x(1−eϵ)+eϵ as in Lemma 24. Using Lemma 24, for all
a ∈ Sp

n, we have

1 > µa +min{∆min,∆0}/4 ≥ µ̃n,a > g+ϵ (µ̃n,a) ≥ g+ϵ (µa −min{∆min,∆0}/4) > 0 .

Taking u = µ̃n,a ∈ [0, 1] and using that d−ϵ (µ̃n,a, µ̃n,a) = 0, we obtain

Wϵ,a,b(µ̃n, Nn) = inf
u∈[0,1]

{
Nn,ad

−
ϵ (µ̃n,a, u) +Nn,bd

+
ϵ (µ̃n,b, u)

}
≤ Nn,bd

+
ϵ (µ̃n,b, µ̃n,a) ≤ (1 + η)p−1d+ϵ (µ̃n,b, µ̃n,a) ,

where the last term is positive since µ̃n,a > [µ̃n,b]
1
0 and µ̃n,a ∈ (0, 1) by Lemma 25.

When µ̃n,b ≤ 0, Lemma 25 yields that

d+ϵ (µ̃n,b, µ̃n,a) = − log
(
1− µ̃n,a(1− e−ϵ)

)
≤ ϵ ,

where we used that x→ − log (1− x(1− e−ϵ)) is increasing on (0, 1). When µ̃n,b ∈ (0, g+ϵ (µ̃n,a)),
Lemma 25 yields that

d+ϵ (µ̃n,b, µ̃n,a) = − log
(
1− µ̃n,a(1− e−ϵ)

)
− ϵµ̃n,b ≤ ϵ .

When µ̃n,b ∈ [g+ϵ (µ̃n,a), µ̃n,a), Lemma 25 yields that

d+ϵ (µ̃n,b, µ̃n,a) = kl(µ̃n,b, µ̃n,a) ≤ − logmin{µ̃n,a, 1− µ̃n,a}
≤ − logmin{µa −min{∆min,∆0}/4, 1− µa −min{∆min,∆0}/4} ,

where we used the classical result that kl(q, p) ≤ − logmin{p, 1− p}. Let us define

Dµ = ϵ+ max
a∈[K]

{
− logmin{µa −min{∆min,∆0}/4, 1− µa −min{∆min,∆0}/4}

}
.

Then, we have shown that d+ϵ (µ̃n,b, µ̃n,a) ≤ Dµ where Dµ ∈ (0,+∞). This yields the result.

Lemma 59 shows that the challenger is mildly undersampled if the leader is not mildly undersampled.

Lemma 59. Let V p
n be as in Equation (42). There exists p3 with Eνπ[exp(αp3)] < +∞ for all

α > 0 such that if p ≥ p3, for all n such that Up
n ̸= ∅, Bn /∈ V p

n implies Cn ∈ V p
n .

Proof. Let p3 to be specified later. Let p ≥ p3. Let n ∈ N such that Up
n ̸= ∅ and V p

n ̸= [K], where
Up
n ⊆ V p

n are defined in Eq. (42). Since the statement holds when Bn ∈ V p
n , we suppose that

Bn /∈ V p
n in the following.

Let p0 as in Lemma 56, p1 and Cµ as in Lemma 57, and p2 and Dµ as in Lemma 58. Let p4 =
max{2p2 − 1, 43 max{p0, p1} − 1/3}, which satisfied that Eνπ[exp(αp4)] < +∞ for all α > 0 by
using Lemmas 56, 57 and 58. Then, for all p ≥ p4 = max{2p2− 1, 43 max{p0, p1}− 1/3} and all n
such that Bn /∈ V p

n , we have µ̃n,a ∈ (0, 1) for all a /∈ V p
n , Bn = b⋆n := argmaxa/∈V p

n
µa, Bn /∈ Up

n
and

∀b /∈ {b⋆n} ∪ V p
n , Wϵ,b⋆n,b

(µ̃n, Nn) + logNn,b ≥ (1 + η)3(p−1)/4Cµ +
3(p− 1)

4
log(1 + η) ,

∀b ∈ Up
n, Wϵ,b⋆n,b

(µ̃n, Nn) + logNn,b ≤ (1 + η)(p−1)/2Dµ +
p− 1

2
log(1 + η) ,

where we used Lemmas 56, 57 and 58. Direct manipulations yield that

(1 + η)3(p−1)/4Cµ +
3(p− 1)

4
log(1 + η) ≥ (1 + η)(p−1)/2Dµ +

p− 1

2
log(1 + η)
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⇐= p ≥ p5 = 4⌈log1+η (Dµ/Cµ)⌉+ 1 ,

where Eνπ[exp(αp5)] < +∞ for all α > 0 since it is a deterministic constant. Let p3 = max{p4, p5}
which satisfies Eνπ[exp(αp3)] < +∞ for all α > 0. Then, we have shown that for all p ≥ p3, for
all n such that Bn /∈ V p

n , we have Bn = b⋆n and

min
b/∈{b⋆n}∪V p

n

{Wϵ,b⋆n,b
(µ̃n, Nn) + logNn,b} > max

b∈Up
n

{Wϵ,b⋆n,b
(µ̃n, Nn) + logNn,b} .

By definition of the TC challenger, i.e., Cn ∈ argminb̸=Bn
{Wϵ,Bn,b(µ̃n, Nn) + logNn,b}, we

obtain that Cn ∈ V p
n . Otherwise, there would be a contradiction since we assumed Up

n ̸= ∅. This
concludes the proof.

Lemma 60 shows that all the arms are sufficient explored for large enough n.
Lemma 60. There exists N0 with Eνπ[N0] < +∞ such that, for all n ≥ N0 and all a ∈ [K],
Nn,a ≥

√
n/K.

Proof. Let p0 and p3 as in Lemmas 56 and 59. Combining Lemmas 56 and 59 yields that, for all p ≥
p4 = max{p3, 4p0/3− 1/3} and all n such that Up

n ̸= ∅, we have Bn ∈ V p
n or Cn ∈ V p

n . We have
Eνπ[(1+η)

p2 ] < +∞. We have (1+η)p−1 ≥ K(1+η)3(p−1)/4 for all p ≥ p5 = 4⌈log1+ηK⌉+1.
Let p ≥ max{p5, p4}. For notational simplicity, we conduct the proof as if that k(1 + η)p−1 ∈ N for
all k ∈ [K]. It is direct to adapt the proof by using the operator ⌈·⌉.
Suppose towards contradiction that Up

K(1+η)p−1 is not empty. Then, for any 1 ≤ t ≤ K(1 + η)p−1,
Up
t and V p

t are non empty as well. Using the pigeonhole principle, there exists some a ∈ [K] such
that N(1+η)p−1,a ≥ (1 + η)3(p−1)/4. Thus, we have

∣∣∣V p
(1+η)p−1

∣∣∣ ≤ K − 1. Our goal is to show

that
∣∣∣V p

2(1+η)p−1

∣∣∣ ≤ K − 2. A sufficient condition is that one arm in V p
(1+η)p−1 is pulled at least

(1 + η)3(p−1)/4 times between (1 + η)p−1 and 2(1 + η)p−1 − 1.

Case 1. Suppose there exists a ∈ V p
(1+η)p−1 such that L2(1+η)p−1,a − L(1+η)p−1,a ≥

β−1
(
(1 + η)3(p−1)/4 + 3/2

)
. Using Lemma 51, we obtain

Na
2(1+η)p−1,a −N

a
(1+η)p−1,a ≥ β(L2(1+η)p−1,a − L(1+η)p−1,a)− 3/2 ≥ (1 + η)3(p−1)/4 ,

hence a is sampled (1 + η)3(p−1)/4 times between (1 + η)p−1 and 2(1 + η)p−1 − 1.

Case 2. Suppose that for all a ∈ V p
(1+η)p−1 , we have L2(1+η)p−1,a − L(1+η)p−1,a <

β−1
(
(1 + η)3(p−1)/4 + 3/2

)
. Then,∑

a/∈V p

(1+η)p−1

(L2(1+η)p−1,a − L(1+η)p−1,a) ≥ (1 + η)p−1 −Kβ−1
(
(1 + η)3(p−1)/4 + 3/2

)
.

Using Lemma 51, we obtain∣∣∣∣∣∣∣
∑

a/∈V p

(1+η)p−1

(Na
2(1+η)p−1,a −N

a
(1+η)p−1,a)− β

∑
a/∈V p

(1+η)p−1

(L2(1+η)p−1,a − L(1+η)p−1,a)

∣∣∣∣∣∣∣
≤ 3(K − 1)/2 .

Combining all the above, we obtain∑
a/∈V p

(1+η)p−1

(L2(1+η)p−1,a − L(1+η)p−1,a)−
∑

a/∈V p

(1+η)p−1

(Na
2(1+η)p−1,a −N

a
(1+η)p−1,a)

≥ (1− β)
∑

a/∈V p

(1+η)p−1

(L2(1+η)p−1,a − L(1+η)p−1,a)− 3(K − 1)/2

≥ (1− β)
(
(1 + η)p−1 −Kβ−1

(
(1 + η)3(p−1)/4 + 3/2

))
− 3(K − 1)/2 ≥ K(1 + η)3(p−1)/4
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where the last inequality is obtained for p ≥ p6 + 1 with

p6 = sup

{
p ∈ N | (1− β)

(
(1 + η)p−1 −Kβ−1

(
(1 + η)3(p−1)/4 + 3/2

))
− 3

2
(K − 1)

< K(1 + η)3(p−1)/4
}
.

The left hand side summation is exactly the number of times where an arm a /∈ V p
(1+η)p−1 was leader

but wasn’t sampled, hence we have shown that

2(1+η)p−1−1∑
t=(1+η)p−1

1
(
Bt /∈ V p

(1+η)p−1 , at = Ct

)
≥ K(1 + η)3(p−1)/4 .

For any (1+ η)p−1 ≤ t ≤ 2(1+ η)p−1− 1, Up
t is non-empty, hence we have Bt /∈ V p

(1+η)p−1 (hence
Bt /∈ V p

t ) implies Ct ∈ V p
t ⊆ V

p
(1+η)p−1 . Therefore, we have shown that

2(1+η)p−1−1∑
t=(1+η)p−1

1
(
at ∈ V p

(1+η)p−1

)
≥

2(1+η)p−1−1∑
t=(1+η)p−1

1
(
Bt /∈ V p

(1+η)p−1 , at = Ct

)
≥ K(1+η)3(p−1)/4

Therefore, there is at least one arm in V p
(1+η)p−1 that is sampled (1 + η)3(p−1)/4 times between

(1 + η)p−1 and 2(1 + η)p−1 − 1.

In summary, we have shown
∣∣∣V p

2(1+η)p−1

∣∣∣ ≤ K − 2 for all p ≥ p7 = max{p6, p4, p5}. By

induction, for any 1 ≤ k ≤ K, we have
∣∣∣V p

k(1+η)p−1

∣∣∣ ≤ K − k, and finally Up
K(1+η)p−1 = ∅ for all

p ≥ p7. Defining N0 = K(1 + η)p7−1, we have Eνπ[N0] < +∞ by using Lemmas 56 and 59 for
p4 = max{p3, 4p0/3−1/3} and p6 and p5 are deterministic. For all n ≥ N0, we let (1+η)p−1 = n

K .

Then, by applying the above, we have Up
K(1+η)p−1 = U

log1+η(n/K)+1
n is empty, which shows that

Nn,a ≥
√
n/K for all a ∈ [K].

H.3 Convergence Towards β-Optimal Allocation

The second step of in the generic analysis of Top Two algorithms Jourdan et al. [2022] is to show
the convergence of the empirical proportions towards the β-optimal allocation. First, we show that
the leader coincides with the best arm. Hence, the tracking procedure will ensure that the empirical
proportion of time we sample it is exactly β. Second, we show that a sub-optimal arm whose empirical
proportion overshoots its β-optimal allocation will not be sampled next as challenger. Therefore,
this “overshoots implies not sampled” mechanism will ensure the convergence towards the β-optimal
allocation. We emphasise that there are multiple ways to select the leader/challenger pair in order to
ensure convergence towards the β-optimal allocation. Therefore, other choices of leader/challenger
pair would yield similar results. Note that our results heavily rely on having obtained sufficient
exploration first.

Lemma 61 shows the leader and the candidate answer are equal to the best arm for large enough n.

Lemma 61. Let N0 be as in Lemma 60. There exists N1 ≥ N0 with Eνπ[N1] < +∞ such that, for
all n ≥ N1, we have µ̃n ∈ (0, 1)K and ãn = Bn = a⋆.

Proof. Let ∆min = mina ̸=a⋆(µa⋆ − µa) and ∆0 = mina∈[K] min{µa, 1 − µa} > 0. Using
Lemma 55, we obtain, for all n ≥ N0,

µ̃n,a⋆ ≥ µa⋆ −Wµ
log(e+

√
n/K/(1 + η))√

n/K/(1 + η)

∀a ̸= a⋆, µ̃n,a ≤ µa +Wµ
log(e+

√
n/K/(1 + η))√

n/K/(1 + η)
,
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where we used that x→ log(e+ x)/x is decreasing and Ñn,a ≥ Nn,a/(1 + η) ≥
√
n/K/(1 + η).

Let N1 = max{N0, ⌈K(1 + η)2X2
1⌉} where

X1 = sup
{
x > 1 | x ≤ 4(∆min,∆0)

−1Wµ log x+ e
}
≤ h1(4(∆min,∆0)

−1Wµ, e) ,

where we used Lemma 53, and h1 defined therein. Using Lemmas 55 and 60, we obtain Eνπ[N1] <
+∞. Then, we have 0 < µa −∆0/4 ≤ µ̃n,a ≤ µa +∆0/4 < 1 for all a ∈ [K]. Moreover, for all
n ≥ N1, we have µ̃n,a⋆ ≥ µa⋆ −∆min/4 and µ̃n,a ≤ µa +∆min/4 for all a ̸= a⋆, hence

a⋆ = argmax
a∈[K]

µ̃n,a = argmax
a∈[K]

[µ̃n,a]
1
0 = ãn = Bn .

This concludes the proof.

Lemma 62 shows that that the pulling proportion of the best arm converges towards β. It is a direct
consequence of Lemma 61 by using the same proof as Lemma 39 in Azize et al. [2024], hence we
omit the proof.
Lemma 62 (Lemma 39 in Azize et al. [2024]). Let γ > 0, and N1 be as in Lemma 61. There exists a
deterministic constant C0 ≥ 1 such that, for all n ≥ C0N1, we have

∣∣∣Nn,a⋆

n−1 − β
∣∣∣ ≤ γ.

Lemma 63 shows that if a sub-optimal arm overshoots its β-optimal allocation then it cannot be
selected as challenger for large enough n.
Lemma 63. Let γ ∈ (0, γµ) where γµ is a problem dependent constant. Let N1 and C0 be as in
Lemma 61 and 62. There exists N2 ≥ C0N1 with Eνπ[N2] < +∞ such that, for all n ≥ N2,

∃a ̸= a⋆,
Nn,a

n− 1
≥ γ + ω⋆

ϵ,β,a =⇒ Cn ̸= a .

Proof. Let η > 0 and γ > 0 be small enough, which we will specify below. Let γ̃ ∈ (0, γ). Let N1

as in Lemma 61 and C0 as in Lemma 62 for γ̃. Let n ≥ C0N1. Therefore, we have µ̃n ∈ (0, 1)K and
ãn = Bn = a⋆ and

∣∣∣Nn,a⋆

n−1 − β
∣∣∣ ≤ γ̃. Using the same proof as in Lemma 61, there exists N3 with

Eνπ[N3] < +∞ such that, for all n ≥ N3, we have ∥µ̃n − µ∥∞ ≤ η. Let n ≥ max{C0N1, N3}.

Let a ̸= a⋆ such that Nn,a

n−1 ≥ ω⋆
ϵ,β,a + γ. Suppose towards contradiction that Nn,b

n−1 > ω⋆
ϵ,β,b for all

b /∈ {a⋆, a}. Then, for all n ≥ C0N1, we have

1− β + γ̃ ≥ 1− Nn,a⋆

n− 1
=
∑
b ̸=a⋆

Nn,b

n− 1
> γ +

∑
b̸=a⋆

ω⋆
ϵ,β,b = 1− β + γ ,

which yields a contradiction since γ̃ < γ. Therefore, for all n ≥ C0N1, we have

∃a ̸= a⋆,
Nn,a

n− 1
≥ ω⋆

ϵ,β,a + γ =⇒ ∃b /∈ {a⋆, a}, Nn,b

n− 1
≤ ω⋆

ϵ,β,b .

Let b /∈ {a⋆, a} such that Nn,b

n−1 ≤ ω
⋆
ϵ,β,b. By definition of the TC challenger, we obtain

Cn ̸= a ⇐= Wϵ,a⋆,a(µ̃n, Nn) + logNn,a > Wϵ,a⋆,b(µ̃n, Nn) + logNn,b

⇐= 1

n− 1
(Wϵ,a⋆,a(µ̃n, Nn)−Wϵ,a⋆,b(µ̃n, Nn)) >

1

n− 1
log

ω⋆
ϵ,β,b

ω⋆
ϵ,β,a + γ

⇐= 1

n− 1
(Wϵ,a⋆,a(µ̃n, Nn)−Wϵ,a⋆,b(µ̃n, Nn)) >

1

n− 1
max
a ̸=b

∣∣∣∣∣log ω⋆
ϵ,β,b

ω⋆
ϵ,β,a

∣∣∣∣∣ ,
where we used the positivity of the β-optimal allocation (Lemma 43) to ensure that
maxa̸=b

∣∣∣log ω⋆
ϵ,β,b

ω⋆
ϵ,β,a

∣∣∣ ∈ (0,+∞). Using that µ̃n,a⋆ > max{µ̃n,a, µ̃n,b}, we obtain

1

n− 1
(Wϵ,a⋆,a(µ̃n, Nn)−Wϵ,a⋆,b(µ̃n, Nn))

≥ inf
u∈[0,1]

{
Nn,a⋆

n− 1
d−ϵ (µ̃n,a⋆ , u) + (ω⋆

ϵ,β,a + γ)d+ϵ (µ̃n,a, u)

}
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− inf
u∈[0,1]

{
Nn,a⋆

n− 1
d−ϵ (µ̃n,a⋆ , u) + ω⋆

ϵ,β,bd
+
ϵ (µ̃n,b, u)

}
≥ inf

β̃:|β̃−β|≤γ̃
Ga,b(µ̃n, β̃) ≥ inf

λ:∥λ−µ∥∞≤η
inf

β̃:|β̃−β|≤γ̃
Ga,b(λ, β̃) ,

where, for all (a, b) ∈ ([K] \ {a⋆})2 such that a ̸= b,

Ga,b(λ, β̃) = inf
u∈[0,1]

{
β̃d−ϵ (λa⋆ , u) + (ω⋆

ϵ,β,a + γ)d+ϵ (λa, u)
}

− inf
u∈[0,1]

{
β̃d−ϵ (λa⋆ , u) + ω⋆

ϵ,β,bd
+
ϵ (λb, u)

}
.

Using the equality at equilibrium from (39) (see Lemma 43) and the fact that the transportation
costs are increasing in their allocation argument (see Lemma 37), we obtain Ga,b(µ, β) > 0 for all
(a, b) ∈ ([K] \ {a⋆})2 such that a ̸= b, since

inf
u∈[0,1]

{
βd−ϵ (µa⋆ , u) + (ω⋆

ϵ,β,a + γ)d+ϵ (µa, u)
}
> Wϵ,a⋆,a(µ,w

⋆
ϵ,β) =Wϵ,a⋆,b(µ,w

⋆
ϵ,β) .

By Lemma 49, the functions (λ, β̃)→ Ga,b(λ, β̃) and λ→ inf β̃:|β̃−β|≤γ̃ Ga,b(λ, β̃) are continuous.
Therefore, there exists ηµ and γµ small enough such that

inf
λ:∥λ−µ∥∞≤η

inf
β̃:|β̃−β|≤γ̃

Ga,b(λ, β̃) ≥ Ga,b(µ, β)/2 ≥
1

2
min

a ̸=b,a̸=a⋆,b ̸=a⋆
Ga,b(µ, β) > 0 ,

where the last strict inequality uses that the minimum of a finite number of positive constants
is also positive. Considering such (ηµ, γµ) at the beginning of the proof and taking N2 =
max{C0N1, N3, κµ} where

κµ = 2 +
2maxa ̸=b

∣∣∣log ω⋆
ϵ,β,b

ω⋆
ϵ,β,a

∣∣∣
mina̸=b,a̸=a⋆,b̸=a⋆ Ga,b(µ, β)

< +∞ ,

As it satisfies Eνπ[N2] < +∞, this concludes the proof.

Lemma 64 shows that the convergence time towards the β-optimal allocation has finite expectation.
It is a direct consequence of Lemmas 61, 62 and 63 by using the same proof as Lemma 41 in Azize
et al. [2024], hence we omit the proof.

Lemma 64 (Lemma 41 in Azize et al. [2024]). Let γ ∈ (0, γµ) where γµ is a problem dependent
constant, and Tγ(w) as in Eq. (40). Then, we have Eνπ[Tγ(ω

⋆
ϵ,β)] < +∞.

H.4 Asymptotic Upper Bound

The final step of the generic analysis of Top Two algorithms [Jourdan et al., 2022] is to invert the
GLR stopping rule in Eq. (7) by leveraging the convergence of the empirical proportions towards
the β-optimal allocation. Provided this convergence is shown, the asymptotic upper bound on the
expected sample complexity only depends on the dependence in log(1/δ) of the threshold that ensures
δ-correctness. Compared to the non-private GLR stopping rule, the GLR stopping rule in Eq. (7) pay
an extra cost to ensure privacy.

Lemma 65. Let ϵ > 0, η > 0 and (δ, β) ∈ (0, 1)2. Let T ⋆
ϵ,β(ν) as in Eq. (35) and ω⋆

ϵ,β be its
associated β-optimal allocation. Assume that there exists γµ > 0 such that Eνπ[Tγ(ω

⋆
ϵ,β)] < +∞

for all γ ∈ (0, γµ), where Tγ(w) is defined in Eq. (40). Combining such a sampling rule, using the
GPEη(ϵ) update, with the GLR stopping rule as in Eq. (7) and the stopping threshold c as in Eq. (8)
yields an ϵ-global DP and δ-correct algorithm which satisfies that, for all ν with mean µ such that
|a⋆(µ)| = 1,

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ 2(1 + η)T ⋆

ϵ,β(ν) .

Proof. Lemma 5 yields the ϵ-global DP. Theorem 6 yields the δ-correctness.
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Let ζ > 0 and a⋆ be the unique best arm. Using the equality at equilibrium from (39) (see Lemma 43)
and the continuity of (µ,w) 7→ mina̸=a⋆(µ)Wϵ,a⋆(µ),a(µ,w) (see Lemma 42), there exists γζ > 0

such that
∥∥∥ Nn

n−1 − ω
⋆
ϵ,β

∥∥∥
∞
≤ γζ and ∥µ̃n − µ∥∞ ≤ γζ implies that

∀a ̸= a⋆, Wϵ,a⋆,a(µ̃n, Nn/(n− 1)) ≥ (1− ζ)
T ⋆
ϵ,β(ν)

.

We choose such a γζ . Let γµ > 0 be such that for Eνπ[Tγ(ω
⋆
ϵ,β)] < +∞ for all γ ∈ (0, γµ), where

Tγ(ω) is defined in Eq. (40). Let γ ∈ (0,min{γµ, γζ ,mina∈[K] ω
⋆
ϵ,β,a/4,∆min/4,∆0/4}) where

∆min = mina̸=a⋆(µa⋆ − µa) and ∆0 = mina∈[K] min{µa, 1− µa}. For all n ≥ Tγ(ω⋆
ϵ,β), we have

Ñn,a ≥ Nn,a/(1 + η) ≥ (n− 1)(ω⋆
ϵ,β,a − γ)/(1 + η) ≥ (n− 1)

3

4(1 + η)
min
a∈[K]

ω⋆
ϵ,β,a > 0 ,

where the last inequality used the positivity of the β-optimal allocation (Lemma 43). Since arms
are sampled linearly, it is direct to construct N3 ≥ Tγ(ω

⋆
ϵ,β) with Eνπ[N3] < +∞ such that

∥µ̃n − µ∥∞ ≤ γ and
∥∥∥ Nn

n−1 − ω
⋆
ϵ,β

∥∥∥
∞
≤ γ (as well as mina∈[K]Nn,a > e trivially).

Recall that c(n, ϵ, δ) = c1(n, δ)+ c2(n, ϵ) where n 7→ c1(n, δ) and n 7→ c1(n, δ) are increasing (see
Lemmas 52 and 39). Since Ñn,a ≤ Nn,a ≤ n, we obtain∑

b∈{a⋆,a}

c(Ñn, ϵ, δ) ≤ 2(c1(n, δ) + c2(n, ϵ)) .

Using Lemma 37 and Ñn,a ≥ Nn,a/(1 + η) for all a ∈ [K] (Lemma 50), we obtain

Wϵ,a⋆,a(µ̃n, Ñn) ≥
n− 1

1 + η
Wϵ,a⋆,a

(
µ̃n,

Nn

n− 1

)
.

Let κ ∈ (0, 1) and T > N3/κ. For all n ∈ [κT, T ], we have ãn = a⋆ and, for all a ̸= a⋆,

τϵ,δ > n

=⇒ ∃a ̸= a⋆, Wϵ,a⋆,a(µ̃n, Ñn) ≤
∑

b∈{a⋆,a}

c(Ñn, ϵ, δ)

=⇒ ∃a ̸= a⋆,
n− 1

1 + η
Wϵ,a⋆,a

(
µ̃n,

Nn

n− 1

)
≤ 2(c1(n, δ) + c2(n, ϵ))

=⇒ ∃a ̸= a⋆,
n− 1

1 + η

(1− ζ)
T ⋆
ϵ,β(ν)

≤ 2c1(T, δ) + 2c2(T, ϵ) ,

where we used that n 7→ c1(n, δ) and n 7→ c2(n, ϵ) are increasing and n ≤ T . Therefore, we obtain

min {τϵ,δ, T} ≤ κT +

T∑
n=κT

1 (τδ > n)

≤ κT +

T∑
n=κT

1

(
n− 1

1 + η

(1− ζ)
T ⋆
ϵ,β(ν)

≤ 2c1(T, δ) + 2c2(T, ϵ)

)

≤ κT + 1 +
2(1 + η)T ⋆

ϵ,β(ν)

1− ζ
(c1(T, δ) + c2(T, ϵ)) .

Let Tζ(δ) defined as

Tζ(δ) := inf

{
T ≥ 1 | 1

1− κ

(
1 +

2(1 + η)T ⋆
ϵ,β(ν)

1− ζ
(c1(T, δ) + c2(T, ϵ))

)
≤ T

}
.

Using Lemma 52, we know that W−1(x) =x→∞ x + log x, hence we have
lim supδ→0 c1(T, δ)/ log(1/δ) ≤ 1. Since limδ→0 c2(T, ϵ)/ log(1/δ) = 0, we obtain
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lim supδ→0
Tζ(δ)

log(1/δ) ≤
2(1+η)T⋆

ϵ,β(ν)

(1−ζ)(1−κ) . For every T ≥ max{Tζ(δ), N3/κ}, we have τϵ,δ ≤ T ,
hence Eνπ [τϵ,δ] ≤ Tζ(δ) + Eνπ [N3] /κ < +∞. Therefore, for all ζ, κ > 0, we obtain

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ lim sup

δ→0

Tζ(δ)

log(1/δ)
≤

2(1 + η)T ⋆
ϵ,β(ν)

(1− ζ)(1− κ)
.

Letting ζ and κ go to zero concludes the proof.

Proof of Theorem 7 The proof is obtained by combining Theorem 6 and Lemmas 5, 60, 64 and 65.

I Variants of Algorithms

In Appendix I, we propose several variants of the algorithmic components used in our algorithm. The
objective is to give freedom of choice for the practitioners interested in solving ϵ-global DP BAI.
Given the rich literature on BAI, it is unreasonable to provide details for the ϵ-global DP version of
all the existing BAI algorithms. Therefore, we settle for a few instances that has received increased
scrutiny in the BAI literature.

First, we adapt the Track-and-Stop sampling rule [Garivier and Kaufmann, 2016] to solve ϵ-global
DP BAI (Appendix I.1). This leverages the computational tractable procedure to compute the optimal
allocation w⋆

ϵ derived in Lemma 47. Second, we explore some alternative choices of components of
the Top Two sampling rule for ϵ-global DP BAI (Appendix I.2). This includes adaptive choice of
target for the leader, hence aiming at achieving T ⋆

ϵ (ν) instead of T ⋆
ϵ,β(ν). Third, we adapt the LUCB

sampling rule [Kalyanakrishnan et al., 2012] for ϵ-global DP BAI (Appendix I.3).

I.1 Track-and-Stop Sampling Rule

The Track-and-Stop (TaS) sampling rule was introduced in the seminal paper [Garivier and Kaufmann,
2016]. At each time n, it solves the optimization problem defining the characteristic time for the
current empirical estimator µ̃n. When µ̃n ∈ (0, 1)K , we define w̃n = w⋆

ϵ (ν̃n) where ν̃n is the
Bernoulli instance with means µ̃n. When µ̃n /∈ (0, 1)K , [µ̃n]

1
0 corresponds to a degenerate Bernoulli

instance, hence we define w̃n = 1K/K. Since µ̃n is updated on a per-arm geometric grid governed
by η, the optimal allocation w̃n is updated on the same per-arm geometric grid. Therefore, choosing
a larger η yields lower computational cost of TaS at the cost of larger expected sampled complexity,
i.e., asymptotic multiplicative factor 1 + η due to the update grid.

Given the vector w̃n ∈ △K , the next arm an to sample is obtained by using C-Tracking [Garivier and
Kaufmann, 2016] with forced exploration in order to ensure that sufficient exploration holds. This is
done here by projecting on△ϵ

K = {w ∈ [ϵ, 1]K |
∑

a∈[K] wa = 1} for a well chosen ϵ ∈ (0, 1/K].
Let w̃ϵn

n be the ℓ∞ projection of w̃n on △ϵn
K with ϵn = (K2 + n)−1/2/2. While we consider a

projection that changes at each time n (due to ϵn), w̃ϵn
n could also be updated on a per-arm geometric

grid, i.e., when w̃n is updated itself. For all n ≥ K + 1, the TaS sampling rule defines

an ∈ argmax
a∈[K]

∑
t∈[n]

w̃ϵt
t,a −Nn,a

 . (43)

In summary, our proposed Track-and-Stop algorithm is defined as in DP-TT with the sole modification
that Lines 13-14 are replaced by the sampling rule defined in Eq. (43).

Optimal Allocation Oracle In Lemma 47, we show that w⋆
ϵ (ν) can be computed explicitly based

on the unique fixed-point solution Fµ(y) = 1 for y ∈ [0,mina̸=a⋆(µ) d
−
ϵ (µa⋆(µ), µa)), where Fµ is

an increasing one-to-one mapping from [0,mina̸=a⋆(µ) d
−
ϵ (µa⋆(µ), µa)) to [0,+∞) defined as

Fµ(y) =
∑

a ̸=a⋆(µ)

d−ϵ (µa⋆(µ), ua(xa(y)))

d+ϵ (µa, ua(xa(y)))
. (44)

The definitions of ua and xa is defered to Lemma 47, ua is decreasing and xa is increasing and
strictly convex.
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Asymptotic Expected Sample Complexity Combining the TaS sampling rule an as in Eq. (43)
with the GPEη(ϵ) update and the GLR stopping rule as in Eq. (7) for the stopping threshold as in
Eq. (8) yields a δ-correct and ϵ-global DP algorithm (see Lemma 5 and Theorem 6). Moreover, we
conjecture that its satisfies that, for all ν ∈ FK with unique best arm,

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ 2(1 + η)T ⋆

ϵ (ν) .

The multiplicative factor 1+ η comes from the per-arm geometric update grid, and the factor 2 comes
from the asymptotic scaling in 2 log(1/δ) of the stopping threshold. Using Theorem 7 for β = 1/2
and T ⋆

ϵ,1/2(ν) ≤ 2T ⋆
ϵ (ν) (Lemma 44), proving this conjecture would only yield an asymptotic

improvement by a factor of at most 2. However, this would come at the price of a significantly higher
computational cost.

Proof Sketch of Conjecture While the detailed proof of this conjecture is beyond the scope of this
work, an astute reader could notice that all the necessary steps were proven to derive Theorem 7 for
DP-TT. At a high level, it is intuitive that the asymptotic analysis of Track-and-Stop is simpler than
the one of DP-TT.

First, the forced exploration is enforced algorithmically, hence an equivalent of Lemma 60 can be
shown for the Track-and-Stop sampling rule. In contrast, the proof of sufficient exploration for DP-TT
is more challenging and involves a subbtle reasoning towards contradiction, see Appendix H.2 for
more details.

Second, the convergence towards the optimal allocation is also enforced algorithmically. Thanks to
the forced exploration and due to the continuity of ν 7→ w⋆

ϵ (ν) (Lemma 42) and the convergence
µ̃n →n→+∞ µ, the empirical optimal allocation w̃n converges towards the true optimal allocation
w⋆

ϵ (ν). Therefore, an equivalent of Lemma 64 can be shown for the Track-and-Stop sampling rule.
In contrast, the proof of convergence towards β-optimal allocation for DP-TT is more challenging
and leverage subbtle regularity properties of the β characteristic time and its optimal allocation, e.g.,
the equality at equilibrium of all the transportations costs in Eq. (39), see Appendix H.3 for more
details.

Third, the invertion of the GLR stopping rule can be done similarly as for DP-TT. The sole modifica-
tion lies in using our derived regularity properties for w⋆

ϵ (ν) instead of w⋆
ϵ,β(ν), e.g., the equality at

equilibrium of all the transportations costs in Lemma 43. Therefore, an equivalent of Lemma 65 can
be shown for the Track-and-Stop sampling rule with 2(1 + η)T ⋆

ϵ (ν) instead of 2(1 + η)T ⋆
ϵ,β(ν), see

Appendix H.4 for more details.

I.2 Top Two Sampling Rule

As detailed in Chapter 2.2 in Jourdan [2024], a Top Two sampling rule is defined by four choices:
a leader arm Bn ∈ [K], a challenger arm Cn ∈ [K] \ {Bn}, a target βn(Bn, Cn) ∈ [0, 1] and a
mechanism to reach the target, i.e., an ∈ {Bn, Cn} by using βn(Bn, Cn). For instance, the sampling
rule in DP-TT uses the EB leader, the TCI challenger, a fixed target β ∈ (0, 1) and K independent
β-tracking procedures (one per leader). We propose adaptive choice of target (Appendix I.2.1), as
well as leader fostering implicit exploration (Appendix I.2.2).

I.2.1 Adaptive Target

When the target is fixed to β beforehand, the Top Two sampling rule can achieve T ⋆
ϵ,β(ν) at best. We

propose adaptive choices of the target inspired by the recent literature on asymptotically optimal Top
Two algorithms [You et al., 2023; Bandyopadhyay et al., 2024].

BOLD Target Given the EB-TCI leader/challenger pair (Bn, Cn) defined in DP-TT, we adapt the
BOLD target from Bandyopadhyay et al. [2024]. Let us define

uϵ,Bn,a(µ̃n, Nn) = argmin
u∈[0,1]

{
Nn,Bnd

−
ϵ (µ̃n,Bn , u) +Nn,ad

+
ϵ (µ̃n,b, u)

}
, (45)
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whose closed-form solution is given in Lemma 45. Then, the deterministic BOLD target defines the
next arm to pull as

an = Bn if
∑
a ̸=Bn

d−ϵ (µ̃n,Bn , uϵ,Bn,a(µ̃n, Nn))

d+ϵ (µ̃n,a, uϵ,Bn,a(µ̃n, Nn))
> 1 and an = Cn otherwise. (46)

In summary, the sole modification in DP-TT is Line 14 that is replaced by the sampling rule defined
in Eq. (46).

For any single-parameter exponential family of distributions, Bandyopadhyay et al. [2024] shows
that the BOLD target allows to reach asymptotic optimality. Forced exploration is added by Bandy-
opadhyay et al. [2024] to ensure that sufficient exploration holds. Showing that the BOLD target
can achieve asymptotic optimality without forced exploration, i.e., meaning that it ensures sufficient
exploration on its own, is an open problem.

IDS Target Given the EB-TCI leader/challenger pair (Bn, Cn) defined in DP-TT, we adapt the
IDS target from You et al. [2023]. Namely, the randomized IDS target defines the next arm to pull
from as

an =

{
Bn with proba βn(Bn, Cn)

Cn otherwise
where βn(Bn, Cn) =

Nn,Bn
d−ϵ (µ̃n,Bn

, uϵ,Bn,Cn
(µ̃n, Nn)

Wϵ,Bn,Cn
(µ̃n, Nn)

,

(47)
where uϵ,Bn,Cn

(µ̃n, Nn) is defined in Eq. (45). In summary, the sole modification in DP-TT is Line
14 that is replaced by the sampling rule defined in Eq. (47).

While we could use K(K − 1) tracking procedures to select an ∈ {Bn, Cn}, we use randomization
above for the sake of simplicity. For Gaussian distributions with known variance, You et al. [2023]
shows that the IDS target allows to reach asymptotic optimality. Showing that the IDS target can
achieve optimality for other classes of distributions is an open problem.

Asymptotic Expected Sample Complexity Sampling an as in Eq. (46) or (47) for the EB-TCI
leader/challenger pair (Bn, Cn) defined in DP-TT based on the GPEη(ϵ) update and the GLR stopping
rule as in Eq. (7) for the stopping threshold as in Eq. (8) yields a δ-correct and ϵ-global DP algorithm
(see Lemma 5 and Theorem 6).

While we conjecture that their asymptotic expected sample complexities lim supδ→0
Eνπ [τϵ,δ]
log(1/δ) are

both upper bounded by 2(1+ η)T ⋆
ϵ (ν), we emphasize that our analysis doesn’t provide the necessary

steps for this result to hold. This is an interesting research direction left for future work.

I.2.2 Implicit Exploring Leaders and TC Chalenger

The empirical best (EB) leader is a greedy choice of leader that doesn’t foster implicit exploration.
Without additional exploration mechanism, it can suffer from large empirical stopping time despite
being enough for an asymptotic analysis, see [Jourdan et al., 2022]. This motivated the choice of
the TCI challenger for DP-TT, since it fosters additional implicit exploration by penalizing over
sampled challengers with the logNn,a term. We propose other choices of leaders that foster implicit
exploration, and define the TC challenger that removes this penalization.

The UCB leader is defined as

BUCB
n ∈ argmax

a∈[K]

Un,a where Un,a = max
{
u ∈ [0, 1] | Nn,ad

+
ϵ ([µ̃n,a]

1
0, u) ≤ log(n)

}
. (48)

By adding a bonus to the empirical mean, we are optimistic since we consider that the means are
better than suggested by our observations.

The IMED leader builds on the IMED algorithm [Honda and Takemura, 2015] is defined as

BIMED
n ∈ argmin

a∈[K]

{
Nn,ad

+
ϵ ([µ̃n,a]

1
0, µ̃

⋆
n) + logNn,a

}
where µ̃⋆

n = max
a∈[K]

[µ̃n,a]
1
0 . (49)

The TC challenger is defined as

CTC
n ∈ argmin

a ̸=Bn

Wϵ,Bn,b(µ̃n, Nn) , (50)
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where Wϵ,a,b is defined as in Eq. (4).

In summary, the sole modification in DP-TT is Line 13 which can be replaced by choosing the leader
as in Eq. (48) or Eq. (49), or choosing the challenger as in Eq. (50).

Asymptotic Expected Sample Complexity Choosing the leader as in Eq. (48) or Eq. (49) or the
challenger as in Eq. (50) based on the β-tracking as in DP-TT, the GPEη(ϵ) update and the GLR
stopping rule as in Eq. (7) for the stopping threshold as in Eq. (8) yields a δ-correct and ϵ-global
DP algorithm (see Lemma 5 and Theorem 6). Moreover, we conjecture that its satisfies that, for all
ν ∈ FK with distinct means,

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ 2(1 + η)T ⋆

ϵ,β(ν) .

While the detailed proof of this conjecture is beyond the scope of this work, an astute reader could
notice that all the necessary steps were proven to derive Theorem 7 for DP-TT. When using the TC
challenger as in Eq. (50), the proofs of Lemmas 59 and 63 can be readily adapted. When using the
UCB leader as in Eq. (48) or the IMED leader as in Eq. (49), the proofs of Lemmas 56 and 61 could
also be adapted.

I.3 LUCB Sampling Rule

While the Top Two terminology was introduced in Russo [2016], the first sampling rule having a Top
Two structure is the greedy sampling strategy in LUCB1 introduced by Kalyanakrishnan et al. [2012].
At each time n, it selects the EB leader BEB

n = ãn and the UCB challenger defined as
CUCB

n ∈ argmax
a ̸=BEB

n

Un,a where Un,a as in Eq. (48) . (51)

Then, it samples both BEB
n and CUCB

n . Instead of using the GLR stopping rule as in Eq.(7), LUCB1
stops when the LCB (lower confidence bound) of the leader exceeds the UCB of the challenger, i.e.,

τLUCB1
ϵ,δ = inf

{
n | L̃n,BEB

n
> Un,CUCB

n

}
, (52)

where
L̃n,a = max

{
u ∈ [0, 1] | Nn,ad

−
ϵ ([µ̃n,a]

1
0, u) ≤ log(n)

}
. (53)

In summary, the modifications in DP-TT are: (1) the sampling rule in Lines 13-15 is replaced by
sampling both BEB

n and CUCB
n , and (2) the stopping rule in Line 10 is replaced by Eq. (52). While

studying this algorithm is beyond the scope of this work, we emphasize that LUCB is known to not
reach asymptotic (β-)optimality.

J Implementation Details and Supplementary Experiments

Appendix J is organized as follows. First, we provide additional detail on the implementation details
for our algorithm (Appendix J.1). Second, we provide supplementary experiments to illustrate the
good performance of our algorithm (Appendix J.2).

J.1 Implementation Details

We present additional experiments comparing the algorithms in different bandit instances with
Bernoulli distributions, as defined by Sajed and Sheffet [2019], namely
µ1 = (0.95, 0.9, 0.9, 0.9, 0.5), µ2 = (0.75, 0.7, 0.7, 0.7, 0.7),

µ3 = (0.1, 0.3, 0.5, 0.7, 0.9), µ4 = (0.75, 0.625, 0.5, 0.375, 0.25)},
µ5 = (0.75, 0.53125, 0.375, 0.28125, 0.25), µ6 = (0.75, 0.71875, 0.625, 0.46875, 0.25)}.

For each Bernoulli instance, we implement the algorithms with
ϵ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 10, 100, 125} .

The risk level is set at δ = 0.01. We verify empirically that the algorithms are δ-correct by running
each algorithm 1000 times.

We implement all the algorithms in Python (version 3.8) and on an 8 core 64-bits Intel i5@1.6 GHz
CPU.
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Choice of Hyperparameters The default choice β = 1/2 is motivated by the worst-case inequality
T ⋆
ϵ,1/2(ν) ≤ 2T ⋆

ϵ (ν) proven in Lemma 44. It implies that an asymptotically 1/2-optimal algorithm
has an expected sample complexity that is at worst twice as high as an asymptotically optimal
algorithm. Moreover, this choice ensures that we sample the leader arm (i.e., the empirical estimate
for a⋆) half of the time, and spend the remaining samples to explore all the other suboptimal arms
(i.e., the challengers) until we are confident enough about ãn being a⋆.

The default choice η = 1 is motivated by the trade-off existing between theoretical guarantees
and empirical performance. Based on Theorem 7, smaller η yields “better” theoretical asymptotic
guarantees, i.e., smaller upper bound on the expected sample complexity of DP-TT. However, the
asymptotic regime of δ → 0 fails to capture the empirical trade-off for moderate values of δ. Choosing
δ arbitrarily close to 0 will result in a large stopping threshold as kη scales as 1/ log(1 + η), see
Eq. (8) in Theorem 6. Smaller η also implies that a larger cumulative Laplacian noise is added to the
cumulative Bernoulli signal. The limit η = 0 coincides with adding one Laplace noise per Bernoulli
observation. The concentration results in Appendix F.6 (Lemmas 18 and 19) show that the rate is
governed by d̃±ϵ (µ± x, µ, 1), which is not equivalent to d±ϵ (µ± x, µ) asymptotically.
Remark 2. To implement the thresholds of AdaP-TT, AdaP-TT⋆ and DP-TT, we use empirical
thresholds that we get by approximating the theoretical thresholds. The expressions of the empirical
thresholds used can be found in the code in the supplementary material.

J.2 Supplementary Experiments

Figure 2 confirms our experimental findings from Section 6. DP-TT outperforms all the other
δ-correct and ϵ-global DP BAI algorithms, for different values of ϵ and in all the instances tested.
The empirical performance of DP-TT demonstrates two regimes. A high-privacy regime, where the
stopping time depends on the privacy budget ϵ, and a low privacy regime, where the performance
of DP-TT is independent of ϵ, and requires twice the number of samples used by the non-private
EB-TCI-β.
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Figure 2: Empirical stopping time τϵ,δ (mean ±2 std. over 1000 runs) for δ = 10−2 with respect to
the privacy budget ϵ for ϵ-global DP on Bernoulli instances µ3, µ4, µ5 and µ6 (top left to bottom
right). The shaded vertical line separates the two privacy regimes.
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