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ABSTRACT

Distribution shifts between training and test data are inevitable over the lifecycle of
a deployed model, leading to performance decay. Adapting a model on test samples
can help mitigate this drop in performance. However, most test-time adaptation
methods have focused on synthetic corruption shifts, leaving a variety of distribu-
tion shifts underexplored. In this paper, we focus on distribution shifts that evolve
gradually over time, which are common in the wild but challenging for existing
methods, as we show. To address this, we propose STAD, a probabilistic state-space
model that adapts a deployed model to temporal distribution shifts by learning the
time-varying dynamics in the last set of hidden features. Without requiring labels,
our model infers time-evolving class prototypes that act as a dynamic classification
head. Through experiments on real-world temporal distribution shifts, we show
that our method excels in handling small batch sizes and label shift.

1 INTRODUCTION

Predictive models often have an ‘expiration date.’ Real-world applications tend to exhibit distribution
shift, meaning that the data points seen at test time are drawn from a distribution that is different
than the training data’s. Moreover, the test distribution usually becomes more unlike the training
distribution as time goes on. An example of this is with recommendation systems: trends change,
new products are released, old products are discontinued, etc. Unless a model is updated, its ability
to make accurate predictions will expire, requiring the model to be taken offline and re-trained. Every
iteration of this model life-cycle can be expensive and time consuming. Allowing models to remain
‘fresh’ for as long as possible is thus an open and consequential problem.

Test-time adaptation (TTA) (Liang et al., 2024; Yu et al., 2023) has emerged as a powerful paradigm
to preserve model performance under a shifting test distribution. TTA performs online adaptation of
a model’s parameters using only test-time batches of features. By requiring neither access to labels
nor source data, TTA algorithms can be employed in resource-constrained environments, whereas
related approaches such as domain generalization, domain adaptation and test-time training cannot.
Most TTA methods operate by minimizing an entropy objective (Wang et al., 2021) or updating
normalization parameters (Schneider et al., 2020; Nado et al., 2020; Niu et al., 2023).

Synthetically corrupted images (e.g. CIFAR-10-C) are by far the most commonly used benchmark
for assessing progress on TTA—with previous work noting a lack of benchmark diversity (Zhao et al.,
2023b). These shifts increase the degree of information loss over time, and well-performing TTA
methods must learn to preserve a static underlying signal. In this work we focus on a distribution
shift of quite a different nature: Temporal distribution shifts are due to factors endogenous to
the environment and often encode structural change, not just information loss. For example, we
will experiment with the functional map of the world (FMoW) benchmark, which has the goal of
classifying how land is used as it is developed over time (e.g. rural to urban). Gradual structural
change over time has been studied in related subfields, such as temporal domain generalization
(Bai et al., 2023), yet received little attention in TTA. We show that this setting, temporal test-time
adaptation (TempTTA), poses significant challenges for existing TTA methods.

To address this gap, we propose State-space Test-time Adaptation (STAD), a method that builds on the
power of probabilistic state-space models (SSMs) to represent non-stationary data distributions over
time. STAD dynamically adapts a model’s final layer to accommodate an evolving test distribution.
Specifically, we employ a SSM to track the evolution of the weight vectors in the final layer, where
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each vector represents a class, as distribution shift occurs. For generating predictions on newly
acquired test batches, we use the SSM’s updated cluster means as the new parameters. STAD
leverages Bayesian updating and does not rely upon normalization mechanisms. As a consequence,
STAD excels in scenarios where many TTA methods collapse (Niu et al., 2023), such as adapting
with very few samples and handling online class imbalance. Our contributions are the following:
• In Sec. 2, we detail the setting of temporal test-time adaptation (TempTTA), which aims to

cope with shifts that gradually evolve due to variation in the application domain. Despite being
ubiquitous in real-world scenarios, these shifts are understudied in the TTA literature and pose
significant challenges to established methods, as we demonstrate in Sec. 5.1 (Tab. 2).

• In Sec. 3, we propose STAD, a novel method for TempTTA. It adapts to temporal distribution
shifts by modeling its dynamics in representation space. No previous work has explicitly modeled
these dynamics, which we demonstrate is crucial via an ablation study (Tab. 5).

• In Sec. 5, we conduct a comprehensive evaluation of STAD and prominent TTA baselines under
authentic temporal shifts. Our results show that STAD provides persistent performance gains,
particularly in the cases of label shift and small batch sizes.

2 PROBLEM SETTING

Data & Model We focus on the traditional setting of multi-class classification, where X ⊆ RD

denotes the input (feature) space and Y ⊆ {1, . . . ,K} denotes the label space. Let x and y be
random variables and P(x, y) = P(x) P(y|x) the unknown source data distribution. We assume
x ∈ X and y ∈ Y are realisations of x and y. The goal of classification is to find a mapping fθ, with
parameters θ, from the input space to the label space fθ : X → Y . Fitting the classifier fθ is usually
accomplished by minimizing an appropriate loss function (e.g. log loss). Yet, our method is agnostic
to how fθ is trained and therefore easy to use with, for instance, a pre-trained model from the web.

Table 1: TempTTA compared
unlabeled
test data

source
data free

evolving
test dist.

time
index

bounded
shift

TDG ✗ ✗ ✓ ✓ ✓
GDA ✓ ✗ ✗ ✓ ✓
TTA ✓ ✓ ✗ ✗ ✗
CTTA ✓ ✓ ✓ ✗ ✗
TempTTA ✓ ✓ ✓ ✓ ✓

Temporal Test-Time Adaptation (TempTTA)
We are interested in adapting a model at test-time
to a test distribution that evolves with time. Such
temporal distribution shifts have been the focus of
work in temporal domain generalization (TDG)
(Nasery et al., 2021; Qin et al., 2022; Bai et al.,
2023; Zeng et al., 2024) and gradual domain
adaptation (GDA) (Abnar et al., 2021). Our setting differs from TDG and GDA in that we do not
require access to the source data and do not alternate the training procedure. While previous work
on continual test-time adaptation (CTTA) study adaptation to changing target domains, they mostly
focus on discrete domains (e.g. different corruption types). We consider a special case of CTTA that
is defined by two key aspects: the domain index is temporal and shifts occur gradually over time.
See Tab. 1 for a comparison. More formally, let T = {1, . . . , T} be a set of T time indices. At test
time, let the data at time t ∈ T be sampled from a distribution Qt(x, y) = Qt(x) Qt(y|x). The test
distributions differ from the source distribution, Qt(x, y) ̸= P(x, y) ∀t > 0, and are non-stationary,
meaning Qt(x, y) ̸= Qt′(x, y) for t ̸= t′. However, the test distribution evolves gradually such that
the discrepancy between consecutive distributions is bounded, 0 ≤ d(Qt,Qt+1) ≤ ϵ, where d is a
divergence function (Qin et al., 2022). Like in standard TTA, we of course do not observe labels at
test time, and hence we observe only a batch of features Xt = {x1,t, . . . ,xN,t}, where xn,t ∼ Qt(x)
(i.i.d.). Given the t-th batch of features Xt, the goal is to adapt fθ, forming a new set of parameters
θt such that fθt has better predictive performance on Xt than fθ would have. Since we can only
observe features, we assume that the distribution shift must at least take the form of covariate shift:
Qt(x) ̸= P(x) ∀t > 0. In addition, a label shift may occur, which poses an additional challenge:
Qt(y) ̸= P(y) ∀t > 0.

3 TRACKING THE DYNAMICS OF TEMPORAL DISTRIBUTION SHIFTS

We now present our method: the core idea is that adaptation to temporal distribution shifts can be
done by tracking its gradual change in the model’s representations. We employ linear state-space
models (SSMs) to capture how test points evolve and drift. The SSM’s cluster representations then
serve as an adaptive classification head that evolves with the non-stationarity of the distribution shift.
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Fig. 1 illustrates our method. In Sec. 3.2, we first introduce the general model and then, in Sec. 3.3,
we propose an efficient implementation that leverages the von-Mises-Fisher distribution to model
hyperspherical features.

3.1 ADAPTATION IN REPRESENTATION SPACE

Following previous work (Iwasawa & Matsuo, 2021; Boudiaf et al., 2022), we adapt only the last layer
of the source model. This lightweight approach is reasonable for Temp-TTA since the distribution
shifts only gradually, hence constrained adaptation is needed. From a practical perspective, this
circumvents backpropagation through potentially large networks such as foundation models and
allows adaptation when only embeddings are provided e.g. by an API. More formally, let the classifier
fθ be a neural network with L total layers. We will treat the first L− 1 layers, denoted as fL−1

θ , as a
black box that transforms the original feature vector x into a new (lower-dimensional) representation,
which we denote as h. The original classifier then maps these representations to the classes as:
E[y|h] = softmaxy (W0h), where softmaxy (·) denotes the dimension of the softmax’s output
corresponding to the y-th label index and W0 are the last-layer weights. As W0 will only be valid for
representations that are similar to the training data, we will discard these parameters when performing
TempTTA, learning new parameters Wt for the t-th time step. These new parameters will be used to
generate the adapted predictions through the same link function: E[y|h] = softmaxy (Wth). In
the setting of TempTTA, we observe a batch of features Xt. Passing them through the model yields
corresponding representations Ht, and this will be the ‘data’ used for the probabilistic model we will
describe below. Specifically, we will model how the representations change from Ht to Ht+1 next.

3.2 A PROBABILISTIC MODEL OF SHIFT DYNAMICS

Figure 1: STAD illustrated: It adapts to distri-
bution shifts by inferring dynamic class proto-
types wt,k for each class k (different colors)
at each test time point. It operates on the rep-
resentation space of the penultimate layer.

We now describe our general method for a time-
evolving adaptive classification head. We assume
that, while the representations Ht are changing grad-
ually over time, they are still maintaining some class
structure in the form of clusters. Our model will seek
to track this structure as it evolves. For the intuition
of the approach, see Fig. 1. The blue red, and green
clusters represent classes of a classification problem.
As the distribution shifts from time step t = 1 to
t = 3, the class clusters shift in representation space.
Using latent variables wt,k for the cluster centers, we
will assume each representation is drawn conditioned
on K latent vectors: ht,n ∼ p (ht|wt,1, . . . ,wt,K),
where K is equal to the number of classes in the prediction task. After fitting the unsupervised model,
the K latent vectors will be stacked to create Wt, the last-layer weights of the adapted predictive
model (as introduced in Sec. 3.1). We now move on to a technical description.

ct−1,n ct,n

ht−1,n ht,n

wt−1,k wt,k . . .. . .

πt−1,k πt,k

ψtrans

ψemsN1 N2

K

Figure 2: Graphical Model: Rep-
resentations ht,n are modeled with
a dynamic mixture model. Latent
class prototypes wt,k evolve at each
time step, cluster assignments ct,n
determine class membership.

Notation and Variables Let Ht = (ht,1, . . . ,ht,Nt
) ∈

RD×Nt denote the neural representations for Nt data points
at test time t. Let Wt = (wt,1, . . . ,wt,K) ∈ RD×K denote
the K weight vectors at test time t. As discussed above, the
weight vector wt,k can be thought of as a latent prototype for
class k at time t. We denote with Ct = (ct,1, . . . , ct,Nt

) ∈
{0, 1}K×Nt the Nt one-hot encoded latent class assignment
vectors ct,n ∈ {0, 1}K at time t. The k-th position of ct,n is
denoted with ct,n,k and is 1 if ht,n belongs to class k and 0
otherwise. Like in standard (static) mixture models, the prior of
the latent class assignments p(ct,n) is a categorical distribution,
p(ct,n) = Cat(πt) with πt = (πt,1, . . . , πt,K) ∈ [0, 1]K and∑K

k=1 πt,k = 1. The mixing coefficient πt,k gives the a priori
probability of class k at time t and can be interpreted as the
class proportions. Next, we formally describe how we model the temporal drift of class prototypes.
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Dynamics Model Fig. 2 depicts the plate diagram of our method. We model the evolution of the K
prototypes Wt = (wt,1, . . . ,wt,K) with K independent Markov processes. The resulting transition
model is then:

Transition model: p(Wt|Wt−1, ψ
trans) =

K∏
k=1

p(wt,k|wt−1,k, ψ
trans), (1)

where ψtrans denote the parameters of the transition density, notably the transition noise. At each
time step, the feature vectors Ht are generated by a mixture distribution over the K classes,

Emission model: p(Ht|Wt, ψ
ems) =

Nt∏
n=1

K∑
k=1

πt,k · p(ht,n|wt,k, ψ
ems). (2)

where ψems are the emission parameters. We thus assume at each time step a standard mixture model
over the K classes where the class prototype wt,k defines the latent class center and πt,k the mixture
weight for class k. The joint distribution of representations, prototypes and class assignments can be
factorised as follows,

p(H1:T ,W1:T ,C1:T ) = p(W1)

T∏
t=1

p(Ct)p(Ht|Wt,Ct, ψ
ems)

T∏
t=2

p(Wt|Wt−1, ψ
trans) (3)

=

K∏
k

p(w1,k)

T∏
t=1

Nt∏
n=1

p(ct,n)

K∏
k=1

p(ht,n|wt,k, ψ
ems)ct,n,k

T∏
t=2

K∏
k=1

p(wt,k|wt−1,k, ψ
trans). (4)

We use the notation H1:T = {Ht}Tt=1 to denote the representation vectors Ht for all time steps T
and analogously for W1:T and C1:T . We next outline how we infer the latent class prototypes W1:T .

Posterior Inference & Adapted Predictions The primary goal is to update the class prototypes
Wt with the information obtained by the Nt representations of test time t. At each test time t, we
are thus interested in the posterior distribution of the prototypes p(Wt|H1:t). Once p(Wt|H1:t) is
known, we can update the classification weights with the new posterior mean. The class weights Wt

and class assignments Ct can be inferred using the Expectation-Maximization (EM) algorithm. In the
E-step, we compute p(W1:TC1:T |H1:T ). In the M-Step, we maximize the expected complete-data
log likelihood with respect to the model parameters:

ϕ∗ = argmax
ϕ

Ep(W,C|H)

[
log p(H1:T ,W1:T ,C1:T )

]
, (5)

where ϕ denotes the parameters of the transition and emission density as well as the mixing coef-
ficients, ϕ = {ψtrans, ψems,π1:T }. After one optimization step, we collect the K class prototypes
into a matrix Wt. Using the same hidden representations used to fit Wt, we generate the predictions
using the original predictive model’s softmax parameterization:

yt,n ∼ Cat
(
yt,n; softmax(Wtht,n)

)
(6)

where yt,n denotes a prediction sampled for the representation vector ht,n. Note that adaptation can
be performed online by optimizing Eqn. (5) incrementally, considering only up to point t. To omit
computing the complete-data log likelihood for an increasing sequence as time goes on, we employ a
sliding window approach.

Gaussian Model The simplest parametric form for the transition and emissions models is Gaussian.
The transition noise follows a multivariate Gaussian distribution with zero mean and global covariance
Σtrans ∈ RD×D. The resulting model can be seen as a mixture of K Kalman filters (KFs). For
posterior inference, thanks to the linearity and Gaussian assumptions, the posterior expectation
Ep(W,C|H)[·] in Eqn. (5) can be computed analytically using the well known KF predict, update
and smoothing equations (Calabrese & Paninski, 2011; Bishop & Nasrabadi, 2006). However, the
closed-form computations come at a cost as they involve inverting matrices of dimensionality D×D.
Moreover, the parameter size scales asK×D2, risking overfitting and consuming substantial memory.
These are limitations of the Gaussian formulation making it costly for high-dimensional feature
spaces and impractical in low resource environments requiring instantaneous predictions. In the next
section, we discuss a model for spherical features that circumvents these limitations.
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3.3 VON MISES-FISHER MODEL FOR HYPERSPHERICAL FEATURES

w
t+2,2

wt+1,2

wt,
2

wt+
2,1

wt+1,1

w
t,1

Ht|Ct

Ht+1|Ct+1

Ht+2|Ct+2

Ht|Ct

Ht+1|Ct+1

Ht+2|Ct+2

Figure 3: STAD-vMF: Representations lie on
the unit sphere. STAD adapts to the distribu-
tion shift – induced by changing demograph-
ics and styles – by directing the last layer
weights wt,k towards the representations Ht

Choosing Gaussian densities for the transition and
emission models, as discussed above, assumes the
representation space follows an Euclidean geometry.
However, prior work has shown that assuming the
hidden representations lie on the unit hypersphere
results in a better inductive bias for OOD generaliza-
tion (Mettes et al., 2019; Bai et al., 2024). This is due
to the norms of the representations being biased by
in-domain information such as class balance, making
angular distances a more reliable signal of class mem-
bership in the presence of distribution shift (Mettes
et al., 2019; Bai et al., 2024). We too employ the
hyperspherical assumption by normalizing the hid-
den representations such that ||h||2 = 1 and model
them with the von Mises-Fisher (vMF) distribution
(Mardia & Jupp, 2009),

vMF(h;µk, κ) = CD(κ) exp
{
κ · µT

k h
}

(7)

where µk ∈ RD with ||µk||2 = 1 denotes the mean direction of class k, κ ∈ R+ the concentration
parameter, and CD(κ) the normalization constant. High values of κ imply larger concentration
around µk. The vMF distribution is proportional to a Gaussian distribution with isotropic variance
and unit norm. While previous work (Mettes et al., 2019; Ming et al., 2023; Bai et al., 2024) has
mainly explored training objectives to encourage latent representations to be vMF-distributed, we
apply Eqn. (7) to model the evolving representations.

Hyperspherical State-Space Model Returning to the SSM given above, we specify both
transition and emission models as vMF distributions, resulting in a hyperspherical transition
model, p(Wt|Wt−1) =

∏K
k=1 vMF(wt,k|wt−1,k, κ

trans), and hyperspherical emission model,
p(Ht|Wt) =

∏Nt

n=1

∑K
k=1 πt,kvMF(ht,n|wt,k, κ

ems). The parameter size of the vMF formula-
tion only scales linearly with the feature dimension, i.e. O(DK) instead of O(D2K) as for the
Gaussian case. Notably, the noise parameters, κtrans, κems simplify to scalar values which reduces
memory substantially. Fig. 3 illustrates this STAD-vMF variant.

Posterior Inference Unlike in the linear Gaussian case, the vMF distribution is not closed under
marginalization. Consequentially, the posterior distribution required for the expectation in Eqn. (5),
p(W1:TC1:T |H1:T ), cannot be obtained in closed form. We employ a variational EM objective,
approximating the posterior with mean-field variational inference, following Gopal & Yang (2014):

q(wt,k) = vMF( · ;ρt,k, γt,k) q(cn,t) = Cat( · ;λn,t) ∀t, n, k. (8)

The variational distribution q(W,C) factorizes over n, t, k and the objective from Eqn. (5) becomes
argmaxϕ Eq(W,C)

[
log p(H1:T ,W1:T ,C1:T )

]
. More details including the full maximisation steps

for ϕ = {κtrans, κems, {{πt,k}Tt=1}Kk=1} can be found in App. B.1. Notably, posterior inference for
the vMF model is much more scalable than the Gaussian case. It operates with linear complexity in
D, rather than cubic, reducing runtime significantly. Algorithm 1 (App. B.2) summarizes the method.

Recovering the Softmax Predictive Distribution In addition to the inductive bias that is beneficial
under distribution shift, using the vMF distribution has an additional desirable property: classification
via the cluster assignments is equivalent to the original softmax-parameterized classifier. The
equivalence is exact under the assumption of equal class proportions and sharing κ across classes:

p(ct,n,k = 1|ht,n,wt,1, . . . ,wt,K , κ
ems) =

vMF(ht,n;wt,k, κ
ems)∑K

j=1 vMF(ht,n;wt,j , κems)

=
CD(κems) exp

{
κems ·wT

t,kht,n

}
∑K

j=1 CD(κems) exp
{
κems ·wT

t,jht,n

} = softmax
(
κems ·WT

t ht,n

)
,

(9)
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which is equivalent to a softmax with temperature-scaled logits, with the temperature set
to 1/κems. Temperature scaling only affects the probabilities, not the modal class predic-
tion. If using class-specific κems values and assuming imbalanced classes, then these terms
show up as class-specific bias terms: p(ct,n,k = 1|ht,n,wt,1, . . . ,wt,K , κ

ems
1 , . . . , κems

K ) ∝
exp

{
κems
k ·wT

t,kht,n + logCD(κems
k ) + log πt,k

}
where CD(κems

k ) is the vMF’s normalization
constant and πt,k is the mixing weight.

4 RELATED WORK

State-Space Models for Deep Learning Probabilistic state-space models, and the Kalman filter
(Kalman, 1960) in particular, have found diverse use in deep learning as a principled way of updating
a latent state with new information. In sequence modelling, filter-based architectures are used to
learn the latent state of a trajectory in both discrete (Krishnan et al., 2015; Karl et al., 2017; Fraccaro
et al., 2017; Becker et al., 2019) and continuous time (Schirmer et al., 2022; Ansari et al., 2023; Zhu
et al., 2023). Recent work on structured state-space models (Gu et al., 2022; Smith et al., 2023; Gu &
Dao, 2023) has pushed the state-of-the-art in sequence modeling. However, in this setting, the SSM
models the dynamics for an individual sequence while we are interested in modeling the dynamics of
the data stream as a whole. The latter is also the subject of supervised online learning, and Chang
et al. (2023) and Titsias et al. (2023) employ Kalman filters in the supervised, non-stationary setting.
While Titsias et al. (2023) also infer the evolution of a linear classification head with an SSM, they
require labels for weight updates, whereas our method is fully unsupervised.

Domain Generalization (DG) The goal of domain generalization (Zhou et al., 2022a) is to learn a
predictive model that can generalize well to any unseen domains assuming access to multiple source
domains at the training stage. Examples of common approaches are domain-invariant feature learning
(Arjovsky et al., 2019) and data augmentation (Zhang, 2018). The most relevant subfield to this work
is TDG (Nasery et al., 2021; Qin et al., 2022; Bai et al., 2023; Zeng et al., 2024; Cai et al., 2024),
which models dynamics from sequential source domains to generalize to evolving target domains.
While both TDG and TempTTA address temporal shifts, TDG operates during training and requires a
sequence of labeled source domains, whereas our approach improves the performance of arbitrary
pre-trained models at test time using only a stream of unlabeled data.

Unsupervised Domain Adaptation (UDA) Unsupervised Domain adaptation improves generaliza-
tion by exploiting both labeled source data and unlabeled target data. Most related to our setting is
GDA (Hoffman et al., 2014; Wulfmeier et al., 2018; Bobu et al., 2018; Kumar et al., 2020; Abnar
et al., 2021; Wang et al., 2022a), which aims to adapt to a target domain by exploiting intermediate
domains with bounded distribution shift between source and target. GDA methods rely on access to
both source and target data for distribution alignment. However, in many practical scenarios, source
data may be unavailable due to e.g. privacy concerns, motivating the need for test-time adaptation.

Test-Time Adaptation (TTA) TTA adapts an off-the-shelf pre-trained model directly during
inference without access to source data. Early TTA approaches focused on recalculating batch
normalization (BN) statistics from test data (Nado et al., 2020; Schneider et al., 2020). This has often
been combined with minimizing entropy (Liang et al., 2020; Wang et al., 2021; Zhang et al., 2022; Yu
et al., 2024; Gao et al., 2024). Alternative objectives leverage contrastive learning (Chen et al., 2022),
invariance regularization (Nguyen et al., 2023), and Hebbian learning (Tang et al., 2023). While many
of these methods can be applied online, they don’t fully address the challenges of non-stationary test
streams. CTTA aims to handle changing distributions without forgetting source knowledge, using
strategies such as episodic resets (Press et al., 2024), student-teacher models (Wang et al., 2022b;
Döbler et al., 2023; Brahma & Rai, 2023), masking (Liu et al., 2024), and regularization (Niu et al.,
2022; Song et al., 2023). However, temporally correlated data remains challenging as they can cause
online class imbalance and disrupt BN statistics, leading to model collapse. Solutions include adapted
BN strategies (Zhao et al., 2023a; Lim et al., 2023), reservoir sampling (Gong et al., 2022; Yuan
et al., 2023), filtering unreliable samples (Niu et al., 2023), and tracking label distributions (Zhou
et al., 2023). Methods that bypass BN and instead adapt the classification head avoid collapse under
temporal correlation (Boudiaf et al., 2022; Jang et al., 2023). Most similar to our method, T3A
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(Iwasawa & Matsuo, 2021) recomputes prototypes from representations. However, T3A relies upon
heuristics while STAD explicitly models dynamics using a SSM.

5 EXPERIMENTS

We evaluate our method, STAD, against various baselines on a range of datasets under challenging
settings. In Sec. 5.1, we study temporal distribution shifts as defined in Sec. 2, demonstrating the
difficulty of the task and STAD’s robustness in practical settings. In Sec. 5.2, we go beyond temporal
shifts and find that STAD is competitive on reproduction datasets and synthetic corruptions as well.
Finally, in Sec. 5.3, we provide insights into STAD’s mechanisms, confirming the reliability of its
prototypes and highlighting the importance of modeling shift dynamics through an ablation study.
We now describe the datasets, source architectures, and baselines. Further details are listed in App. D.

Datasets Our primary focus is on temporal distribution shifts. To further evaluate the effectiveness
of our method we also test its performance on reproduction datasets (CIFAR-10-1, ImageNetV2) and
standard image corruptions (CIFAR-10-C). Details on those are listed in App. D.1.

• Yearbook (Ginosar et al., 2015): a dataset of portraits of American high school students taken
across eight decades. Data shift in the students’ visual appearance is introduced by changing
beauty standards, group norms, and demographic changes. We use the Wild-Time (Yao et al.,
2022) pre-processing and evaluation procedure resulting into 33,431 images from 1930 to 2013.
Each 32× 32 pixel, grey-scaled image is associated with the student’s gender as a binary target
label. Images from 1930 to 1969 are used for training; the years 1970 - 2013 for testing.

• EVIS: the evolving image search (EVIS) dataset (Zhou et al., 2022b) consists of images of 10
electronic product and vehicle categories retrieved from Google search, indexed by upload date.
The dataset captures shift caused by rapid technological advancements, leading to evolving designs
across time. It includes 57,600 RGB images of 256x256 pixels from 2009 to 2020. Models are
trained on images from 2009-2011 and evaluated on images from 2012-2020.

• FMoW-Time: the functional map of the world (FMoW) dataset (Koh et al., 2021) maps 224×224
RGB satellite images to one of 62 land-use categories. Distribution shift is introduced by technical
advancement and economic growth changing how humans make use of the land. FMoW-Time
(Yao et al., 2022) is an adaptation of FMoW-WILDS (Koh et al., 2021; Christie et al., 2018),
splitting 141,696 images into a training period (2002-2012) and a testing period (2013-2017).

Source Architectures and Baselines We employ a variety of source architectures to demonstrate
the model-agnostic nature of our method. They notably vary in backbone architecture (we use CNN,
DenseNet, ResNet, WideResNet) and dimensionality of the representation space (from 32 up to
2048). We list details in App. D.2. In addition to the source model, we compare against 7 baselines
representing fundamental approaches to TTA. Five of them adapt the feature extractor: Batch norm
adaptation (BN) (Schneider et al., 2020; Nado et al., 2020), TENT (Wang et al., 2021), CoTTA (Wang
et al., 2022b), SHOT (Liang et al., 2020) and SAR (Niu et al., 2023). Like our method STAD, two
baselines adapt the last linear layer: T3A (Iwasawa & Matsuo, 2021) and LAME (Boudiaf et al.,
2022). More details are provided in App. D.3. Batch sizes are the same for all baselines (App. D.4).
To ensure optimal performance on newly studied datasets, we conduct an extensive hyperparameter
search for each baseline, following the hyperparameters and value ranges suggested in the original
papers. We then report the best settings. App. D.4 specifies the grid searches we conducted.

5.1 TEMPORAL DISTRIBUTION SHIFTS

We start by evaluating the adaptation abilities to temporal distribution shift on three image clas-
sification datasets (Yearbook, EVIS, FMoW-Time), which vary in number of classes (2, 10, 62,
respectively), representation dimension (32, 512, 1024, respectively) and shift dynamics (recurring,
progressive and rapid, respectively as visible in Fig. 4). For the low-dimensional representations of
Yearbook, we also evaluate our computationally costly Gaussian model (STAD-Gauss). We evaluate
two settings: (i) covariate shift with a uniform label distribution and (ii) covariate shift with
additional shift in the label distribution Qt(y). Having a uniform label distribution—samples are
evenly shuffled, making test batches nearly class balanced—has been the standard evaluation setting
for TTA. However, particularly in temporal distribution shifts, it is highly unlikely that samples arrive
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Table 2: Accuracy on temporal distribution shifts and label shifts, averaged over three random
seeds. Colors highlight performance that either improves or degrades relative to the source model.
Best model in bold, second-best underlined.

Yearbook EVIS FMoW-Time
Method covariate shift + label shift covariate shift + label shift covariate shift + label shift

Source model 81.30 ± 4.18 56.59 ± 0.92 68.94 ± 0.20

adapt feature extractor
BN 84.54 ± 2.10 70.47 ± 0.33 45.72 ± 2.79 14.48 ± 1.02 67.60 ± 0.44 10.14 ± 0.04
TENT 84.53 ± 2.11 70.47 ± 0.33 45.73 ± 2.78 14.49 ± 1.02 67.86 ± 0.54 10.21 ± 0.01
CoTTA 84.35 ± 2.13 66.12 ± 0.87 46.13 ± 2.86 14.71 ± 1.00 68.50 ± 0.25 10.19 ± 0.04
SHOT 85.17 ± 1.89 70.71 ± 0.20 45.93 ± 2.75 14.51 ± 1.00 68.02 ± 0.51 10.08 ± 0.07
SAR 84.54 ± 2.10 70.47 ± 0.33 45.78 ± 2.80 14.63 ± 1.00 67.87 ± 0.51 10.27 ± 0.10
RoTTA 80.49 ± 3.48 80.15 ± 3.50 44.28 ± 3.02 45.38 ± 2.88 67.43 ± 0.67 65.77 ± 0.68

adapt classifier
LAME 81.60 ± 3.99 82.70 ± 4.55 56.67 ± 0.99 69.37 ± 5.37 68.32 ± 0.32 83.05 ± 0.48
T3A 83.49 ± 2.55 83.46 ± 2.59 57.63 ± 0.77 57.32 ± 0.77 66.77 ± 0.26 66.83 ± 0.27
STAD-vMF (ours) 85.50 ± 1.34 84.46 ± 1.19 56.67 ± 0.82 62.08 ± 1.11 68.87 ± 0.06 86.25 ± 1.18
STAD-Gauss (ours) 86.22 ± 0.84 84.67 ± 1.46 – – – –

Figure 4: Accuracy over time for temporal distribution shifts: On Yearbook, for instance, STAD
mitigates distribution shifts, improving 10 points over the source model for certain years (1980s).
Some baselines perform similarly, shown by overlaying accuracy trajectories. Error bars can be tiny.
in this iid-manner. Instead, temporally correlated test streams often observe consecutive samples
from the same class (Gong et al., 2022). We follow Lim et al. (2023), ordering the samples by class
and thus inducing an extreme label shift. We draw the class order uniformly at random.

Temporal shifts pose challenges for existing TTA methods. Tab. 2 shows overall accuracy,
averaged over all time steps and three random training seeds. Results that do not outperform the
source model are highlighted in red and ones that do in blue. Methods that primarily adapt the feature
extractor are shown in the upper section of the table. Ones that, like ours, adapt the classifier are
shown in the lower section. To summarize the results: on Yearbook, all methods perform well without
label shift, and with label shift, only classifier-based methods improve upon the source baseline.
Feature-based methods completely fail on EVIS, and all models, except LAME and STAD-vMF
under label shift, fail on FMoW-Time. This leads us to three key takeaways: first, these TempTTA
tasks are inherently difficult, leading to smaller adaptation gains overall compared to traditional
corruption experiments. Second, methods that adapt only the last layer clearly perform better on
temporal distribution shifts under both label distribution settings. This indicates that perhaps ‘less is
more’ for TempTTA. Third, STAD demonstrates the most consistent performance, ranking as the
best or second-best model across all datasets and settings. On Yearbook, both the Gaussian and vMF
variants outperform the baselines, with the fully parameterized Gaussian model better capturing the
distribution shift than the more lightweight vMF model. Fig. 4 displays adaptation performance over
different timestamps. We see that on EVIS (middle) the methods markedly separate, which reflects
the aforementioned gap between feature-based and classifier-based approaches. The reader may also
wonder if STAD can be stacked on top of a feature-based approach. We present results exemplary for
BN in Tab. 8 (App. E.2) but found that it offers no significant improvement to STAD’s performance.

STAD excels under label shift Tab. 2 demonstrates that STAD performs particularly well under
imbalanced label distributions, delivering the best results on both Yearbook and FMoW-Time. This
advantage stems from STAD’s clustering approach, where a higher number of samples from the same
ground truth class provides a stronger learning signal, leading to more accurate prototype estimates.
This is particularly notable on FMoW, where STAD improves upon the source model by more than
17 points. Further, the performance gap between classifier and feature extractor adaptation methods
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Figure 5: Batch size effects under covariate shift (first row) and additional label shift (second row):
Compared to most baselines, STAD-vMF (dark blue) is relatively robust to very small batch sizes.
For label shift on EVIS and FMoW-Time, we observe a sweet spot around batch size 16.

becomes even more pronounced in this setting. This is not surprising as the latter typically depend
heavily on current test-batch statistics, making them vulnerable to imbalanced class distributions (Niu
et al., 2023). In contrast, having fewer classes to cause confusion allows classifier-based methods to
benefit from label shift, with STAD delivering the most persistent adaptation gains.

STAD is robust to small batch sizes Adapting to a small number of samples is crucially valuable,
as one does not have to wait for a large batch to accumulate in order to make adapted predictions.
We next evaluate performance across 12 different batch sizes ranging from 1 to 2048 under both
covariate shift and additional label shift. Fig. 5, displays results. STAD-vMF (dark blue line) is able
to maintain stable performance under all batch sizes. In Tab. 7 (App. E.1), we report values for batch
size 1 showing that STAD adapts successfully even in the most difficult setting. In contrast, methods
relying on normalization statistics collapse when not seeing enough samples per adaptation step. For
example, on FMoW, feature-based methods collapse to nearly random guessing at the smallest batch
sizes. When batch sizes are large, note that TENT, CoTTA, SHOT, and SAR hit memory constraints
on FMoW-Time, failing to close the gap to the source model performance in the label shift scenario.

5.2 BEYOND TEMPORAL SHIFTS: REPRODUCTION DATASETS AND SYNTHETIC CORRUPTIONS

Although STAD is designed for temporal distribution shifts, we are also interested in the applicability
of our method to other types of shifts. Next we report performance on reproduction datasets and
synthetic image corruptions.

Table 3: Accuracy on reproduction datasets and label shifts,
averaged over three random data seeds.

CIFAR-10.1 ImageNetV2
Method covariate shift + label shift covariate shift + label shift

Source model 88.25 63.18

adapt feature extractor
BN 86.45 ± 0.28 23.83 ± 0.31 62.69 ± 0.15 43.20 ± 0.28
TENT 86.75 ± 0.35 23.87 ± 0.06 63.00 ± 0.16 43.20 ± 0.28
CoTTA 86.75 ± 0.17 22.37 ± 0.25 61.66 ± 0.29 43.73 ± 0.33
SHOT 86.50 ± 0.23 23.83 ± 0.31 62.97 ± 0.22 43.10 ± 0.34
SAR 86.45 ± 0.28 23.82 ± 0.33 62.99 ± 0.10 43.19 ± 0.25
RoTTA 87.17 ± 0.21 87.85 ± 0.35 63.39 ± 0.20 63.20 ± 0.21

adapt classifier
LAME 88.20 ± 0.09 92.42 ± 0.28 63.15 ± 0.10 80.47 ± 0.32
T3A 88.28 ± 0.06 89.00 ± 0.66 62.86 ± 0.04 63.47 ± 0.09
STAD-vMF (ours) 88.42 ± 0.10 92.23 ± 0.70 62.39 ± 0.05 81.46 ± 0.24

Reproduction Datasets We eval-
uate our method on reproduction
datasets (CIFAR-10.1 and Ima-
geNetV2), which have recently
gained attention as benchmarks
for more realistic and challenging
distribution shifts (Zhao et al., 2023b).
We use a batch size of 100 for
CIFAR-10.1 and 64 for ImageNetV2.
Tab. 3 confirms the difficulty of
adapting to more natural distribution
shifts. For CIFAR-10.1, only T3A
and STAD outperform the source
model for both with and without label shift, with STAD adapting best. For ImageNetV2, none of the
methods improve upon the source model when the label distribution is uniform. We again observe
that classifier-adaptation methods handle label shifts better by a significant margin.

Synthetic Corruptions Lastly, we test our method on gradually increasing noise corruptions of
CIFAR-10-C, a standard TTA benchmark. We use a batch size of 100. Tab. 4 shows the accuracy
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Table 4: Accuracy on CIFAR-10-C across dif-
ferent levels of synthetic corruptions

Corruption severity
Method 1 2 3 4 5 Mean

Source 86.90 81.34 74.92 67.64 56.48 73.46

adapt feature extractor
BN 90.18 88.16 86.24 83.18 79.27 85.41
TENT 90.87 89.70 88.32 85.89 83.09 87.57
CoTTA 90.62 89.42 88.55 87.28 85.27 88.23
SHOT 90.31 88.66 87.31 85.02 82.13 86.69
SAR 90.16 88.09 86.26 83.32 79.48 85.46
RoTTA 90.60 89.41 88.14 85.88 83.37 87.48

adapt classifier
LAME 86.94 81.39 74.93 67.69 56.47 73.48
T3A 87.83 82.75 76.77 69.43 57.90 74.94
STAD-vMF (ours) 88.21 83.68 78.42 72.19 62.44 76.99

averaged across all corruption types. We make
three key observations. First, performance gains
are much higher than on previous datasets indi-
cating the challenge posed by non-synthetic shifts.
Second, as expected, methods adapting the back-
bone model are more performative on input-level
noise, since such shifts primarily affect earlier lay-
ers. (Tang et al., 2023; Lee et al., 2023). Lastly,
STAD is consistently the best method amongst
those adapting only the last linear layer.

5.3 ANALYSIS OF TRACKING ABILITIES

Lastly, we seek to further understand the reasons behind STAD’s strong performance. At its core,
STAD operates through a mechanism of dynamic clustering. We next inspect the importance of
STAD’s dynamics component and assess the fidelity of its clustering.

Figure 6: Cluster fidelity on CIFAR-10-C

Clusters are reliable. We evaluate
how well STAD’s inferred cluster cen-
ters align with the ground truth cluster
centers (computed using labels). We
chose the progressively increasing dis-
tribution shift of CIFAR-10-C as this
dataset represents a bigger challenge for
STAD. Fig. 6 (left) shows distance (in
angular degrees) to the ground truth cluster centers for both the source model and STAD. STAD
(blue line) adapts effectively, significantly reducing the angular distance to the ground truth cluster
centers. For the source model, the progressive distribution shift causes the ground truth cluster centers
to drift increasingly further from the source prototypes (grey line). Additionally, by computing
dispersion (Ming et al., 2023) (Fig. 6, middle), which measures the spread of the prototypes (in
angular degrees), we find that STAD mirrors the ground truth trend (yellow line) of clusters becoming
closer together. This is a promising insight, as it suggests that STAD’s cluster dispersion could
potentially serve as an unsupervised metric to proactively flag when clusters start overlapping and
estimate adaptation accuracy. In Fig. 6 (right), we plot accuracy vs dispersion of STAD’s prototypes
for different corruptions and severity levels, confirming that they positively correlate.

Table 5: Accuracy of dynamic and static versions
of STAD (i.e. when removing the transition model)

Variant Yearbook FMoW CIFAR-10-C

STAD-vMF with dynamics 85.50 ± 1.30 86.25 ± 1.18 76.99
STAD-vMF w/o dynamics 61.03 ± 2.92 68.87 ± 0.28 73.57

Delta –24.47 –17.38 –3.41

STAD-Gauss with dynamics 86.22 ± 0.84 – –
STAD-Gauss w/o dynamics 57.79 ± 2.14 – –

Delta –28.43 – –

Dynamics are crucial. STAD is proposed
with the assumption that adapting the class pro-
totypes based on those of the previous time step
facilitates rapid and reliable adaptation. How-
ever, one could also consider a static version
of STAD that does not have a transition model
(Eqn. (1)). Rather, the class prototypes are com-
puted as a standard mixture model (Eqn. (2))
and without considering previously inferred pro-
totypes. Tab. 5 presents the accuracy differences between the static and dynamic versions of STAD in
percentage points. Removing STAD’s transition model results in a substantial performance drop of
up to 28 points. This supports our assumption that SSMs are well-suited for TempTTA.

6 CONCLUSION

We have presented State-space Test-time ADaptation (STAD), a novel test-time adaptation strategy
based on probabilistic state-space models that addresses the challenges of temporal distribution
shifts. Our Gaussian and vMF variants of STAD effectively track the evolution of the last layer under
distribution shifts, enabling unsupervised adaptation in deployed models. Our extensive experiments
highlight the significant challenges that temporal distribution shifts present for existing TTA methods.
Future work on TempTTA could explore incorporating temporal information, such as timestamps, to
better model the passage of time and extend the approach to irregularly sampled settings.
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APPENDIX

The appendix is structured as follows:

• App. A provides details on the Gaussian formulation of STAD (STAD-Gauss) stating the
employed transition and emission model.

• App. B details the von Mises-Fisher formulation (STAD-vMF). In App. B.1, we provide the
inference scheme including all update equations for the variational EM step. In App. B.2,
we provide the algorithmic overview of STAD-vMF.

• Sec. 4 discusses further TTA settings that aim for realistic evaluations.
• App. D contains various implementation details.
• App. E shows additional experimental results on single sample adaptation (App. E.1), STAD

in combination with BN (App. E.2), domain adaptation benchmarks (App. E.3), comparison
to supervised oracle (App. E.4), visualizations of representation space (App. E.5) runtime
comparisons (App. E.6) and sensitivity to hyperparameters (App. E.7).

A DETAILS ON STAD-GAUSSIAN

A.1 MODEL FORMULATION

We use a linear Gaussian transition model to describe the weight evolution over time: For each class
k, the weight vector evolves according to a linear drift parameterized by a class-specific transition
matrix Ak ∈ RD×D. This allows each class to have independent dynamics. The transition noise
follows a multivariate Gaussian distribution with zero mean and global covariance Σtrans ∈ RD×D.
The transition noise covariance matrix is a shared parameter across classes and time points to prevent
overfitting and keep parameter size at bay. Eqn. (10) states the Gaussian transition density.

Transition model: p(Wt|Wt−1) =

K∏
k=1

N (wt,k|Akwt−1,k,Σ
trans) (10)

Emission model: p(Ht|Wt) =

Nt∏
n=1

K∑
k=1

πt,kN (ht,n|wt,k,Σ
ems) (11)

Eqn. (11) gives the emission model of the observed features Ht at time t. As in Eqn. (2), the features
at a given time t are generated by a mixture distribution with mixing coefficient πt,k. The emission
density of each of the K component is a multivariate normal with the weight vector of class k at
time t as mean and Σems ∈ RD×D as class-independent covariance matrix. The resulting model can
be seen as a mixture of K Kalman filters. Variants of it has found application in applied statistics
(Calabrese & Paninski, 2011).

Posterior inference We use the EM objective of Eqn. (5) to maximize for the model parameters
ϕ = {{Ak, {πt,k}Tt=1}Kk=1,Σ

trans,Σems}. Thanks to the linearity and Gaussian assumptions, the
posterior expectation Ep(W,C|H)[·] in Eqn. (5) can be computed analytically using the well known
Kalman filter predict, update and smoothing equations (Calabrese & Paninski, 2011; Bishop &
Nasrabadi, 2006).

Complexity The closed form computations of the posterior p(Wt|H1:t) and smoothing
p(Wt|H1:T ) densities come at a cost as they involve amongst others matrix inversions of dimension-
ality D ×D. This results in considerable computational costs and can lead to numerical instabilities
when feature dimension D is large. In addition, the parameter size scales K ×D2 risking overfitting
and consuming substantial memory. These are limitations of the Gaussian formulation making it
costly for high-dimensional feature spaces and impractical in low resource environments requiring
instant predictions.
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B DETAILS ON STAD-VMF

B.1 INFERENCE

Complete-data log likelihood Using the von Mises-Fisher distribution as hyperspherical transition
and emission model, the log of the complete-data likelihood in Eqn. (3) becomes

log p(H1:T ,W1:T ,C1:T ) =

K∑
k

log p(w1,k) (12)

+

T∑
t=1

Nt∑
n=1

log p(ct,n) +

K∑
k=1

ct,n,k log p(ht,n|wt,k, κ
ems) (13)

+

T∑
t=2

K∑
k=1

log p(wt,k|wt−1,k, κ
trans) (14)

=

K∑
k

logCD(κ0,k) + κ0,kµ
T
0,kw1,k (15)

+

T∑
t=1

Nt∑
n=1

K∑
k=1

cn,t,k
(
log πt,k + logCD(κems) + κemswT

t,kht,n

)
(16)

+

T∑
t=2

K∑
k=1

logCD(κtrans) + κtranswT
t−1,kwt,k (17)

where κ0,k and µ0,k denote the parameters of the first time step. In practise, we set µ0,k to the source
weights and κ0,k = 100 (see App. D).

Variational EM objective As described in Sec. 3.3, we approximate the posterior
p(W1:T ,C1:T |H1:T ) with a variational distribution q(W1:T ,C1:T ) assuming the factorised form

q(W1:T ,C1:T ) =

T∏
t=1

K∏
k=1

q(wt,k)

Nt∏
n=1

q(cn,t), (18)

where we parameterise q(wt,k) and q(cn,t) with

q(wt,k) = vMF( · ;ρt,k, γt,k) q(cn,t) = Cat( · ;λn,t) ∀t, n, k. (19)

We obtain the variational EM objective

argmax
ϕ

Eq

[
log p(H1:T ,W1:T ,C1:T )

]
, (20)

where Eq(W1:T ,C1:T ) is denoted Eq to reduce clutter.

E-step Taking the expectation of the complete-data log likelihood (Eqn. (12)) with respect to the
variational distribution (Eqn. (18)) gives

Eq[log p(H1:T ,W1:T ,C1:T )] =

K∑
k

logCD(κ0,k) + κ0,kµ
T
0,kEq[w1,k] (21)

+

T∑
t=1

Nt∑
n=1

K∑
k=1

Eq[cn,t,k]
(
log πt,k + logCD(κems) + κemsEq[wt,k]

Tht,n

)
(22)

+

T∑
t=2

K∑
k=1

logCD(κtrans) + κtransEq[wt−1,k]
TEq[wt,k] (23)
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Solving for the variational parameters, we obtain

λn,t,k =
βn,t,k∑K
j=1 βn,t,j

with βn,t,k = πt,kCD(κems) exp(κemsEq[wt,k]
Thn,t) (24)

ρt,k =
κtransEq[wt−1,k] + κems

∑Nt

n=1 Eq[cn,t,k]hn,t + κtransEq[wt+1,k]

γt,k
(25)

γt,k = ||ρt,k|| (26)

The expectations are given by

E[cn,t,k] = λn,t,k (27)
E[wt,k] = AD(γt,k)ρt,k, (28)

where AD(κ) =
ID/2(κ)

ID/2−1(κ)
and Iv(a) denotes the modified Bessel function of the first kind with

order v and argument a.

M-step Maximizing objective (Eqn. (20)) with respect to the model parameters ϕ =
{κtrans, κems, {πt,k}Tt=1}Kk=1} gives

κ̂trans =
r̄transD − (r̄trans)3

1− (r̄trans)2
with r̄trans =

∥∥∥∥∥
∑T

t=2

∑K
k=1 Eq[wt−1,k]

TEq[wt,k]

(T − 1)×K

∥∥∥∥∥ (29)

κ̂ems =
r̄emsD − (r̄ems)3

1− (r̄ems)2
with r̄ems =

∥∥∥∥∥
∑T

t=2

∑K
k=1

∑Nt

n=1 Eq[cn,t,k]Eq[wt,k]
Thn,t∑T

t=1Nt

∥∥∥∥∥ (30)

πt,k =

∑Nt

n=1 E[cn,t,k]
Nt

(31)

Here we made use of the approximation from Banerjee et al. (2005) to compute an estimate for κ,

κ̂ =
r̄D − r̄3

1− r̄2
with r̄ = AD(κ̂). (32)
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B.2 ALGORITHMIC OVERVIEW

Algorithm 1 STAD-vMF

1: Input: source model fθ, test batches {Xt}Tt=1, sliding window size s
2: Initialize: mixing coefficients πt,k ← 1

K ∀t, k, weights Wt ←W0∀t, transition concentration
κtrans and emission concentration κems

3: for t ∈ T do
4: Define sliding window St = {τ | max(1, t− s) ≤ τ ≤ t}
5: Get representations Ht ← fL−1

θ (Xt)
E-step:

6: for τ ∈ St do
7: for k = 1, . . . ,K do
8: for n = 1, . . . , Nt do
9: Compute E[cn,τ,k] by Eqn. (27) ▷ Cluster assignments

10: end for
11: Compute E[wτ,k] by Eqn. (28) ▷ Prototype dynamics
12: end for
13: end for

M-Step:
14: for τ ∈ St do
15: Compute πτ by Eqn. (31) ▷ Label distribution
16: end for
17: Compute κems by Eqn. (30) (optional)
18: Compute κtrans by Eqn. (29) (optional)

Predict:
19: Get predictions {yt,n}Nt

n=1 by Eqn. (6)
20: end for
21: return Predictions {yt,n}Nt

n=1

C FURTHER RELATED WORK ON REALISTIC TTA

Realistic TTA aims to provide evaluation settings that reflect challenging test conditions possibly
encountered in the real world. Past work mostly focuses on the ordering of samples in a test stream
taking into account two main components: the domain index and the class index. In the standard
setting (fully TTA) the test stream contains a single domain and test data is iid sampled resulting
in a uniform label distribution per batch. Continual TTA (Wang et al., 2022b) expands on this
setting by considering several domains sequentially. Non-iid TTA (Gong et al., 2022) is another
extension of Fully TTA that challenges the iid assumption by introducing temporal correlation in the
sampling procedure resulting in class imbalances per test batch. The Practical TTA setting (Yuan
et al., 2023) combines CTTA and Non-iid TTA and considers continually changing domains and
temporal correlation simultaneously. TRIBE [2] adds on Practical TTA by also controlling global
class imbalance over the entire data stream. Instead of regrouping the data stream by domain, ROID
(Marsden et al., 2024) introduces mixed domains per batch as an additional option for both iid and
non-iid sampled class labels. Lastly UniTTA (Du et al., 2024) comprises a combined set of 36
sampling strategies considering both ordering and imbalance of both domains and class labels.
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D EXPERIMENTAL DETAILS

We next list details on the experimental setup and hyperparameter configurations. All experiments
are performed on NVIDIA RTX 6000 Ada with 48GB memory.

D.1 DATASETS BEYOND TEMPORAL DISTRIBUTION SHIFTS

• CIFAR-10.1 (Recht et al., 2019): a reproduction of CIFAR-10 (Krizhevsky et al., 2009) assembled
from the same data source by following the same cleaning procedure. The dataset contains 2,000
32× 32 pixel images of 10 classes. Models are trained on the original CIFAR-10 train set.

• ImageNetV2 (Recht et al., 2019): a reproduction of ImageNet (Deng et al., 2009) with 10,000
images of 1,000 classes scaled to 224× 224 pixels. Models are trained on the original ImageNet.

• CIFAR-10-C: a dataset derived from CIFAR-10, to which 15 corruption types are applied with
5 severity levels (Hendrycks & Dietterich, 2019). We mimic a gradual distribution shift by
increasing the corruption severity starting from the lowest level (severity 1) to the most sever
corruption (severity 5). This results in a test stream of 5× 10, 000 images per corruption type.

D.2 SOURCE ARCHITECTURES

• CNN: We employ the four-block convolutional neural network trained by Yao et al. (2022) to
perform the binary gender prediction on the yearbook dataset. Presented results are averages
over three different seeds trained with empirical risk minimization. The dimension of the latent
representation space is 32.

• WideResNet: For the CIFAR-10 experiments, we follow Song et al. (2023); Wang et al. (2021) and
use the pre-trained WideResNet-28 (Zagoruyko & Komodakis, 2016) model from the RobustBench
benchmark (Croce et al., 2021). The latent representation have a dimension of 512.

• DenseNet: For FMoW-Time, we follow the backbone choice of Koh et al. (2021); Yao et al.
(2022) and use DenseNet121 (Huang et al., 2017) for the land use classification task. Weights for
three random trainings seeds are provided by Yao et al. (2022). We use the checkpoints for plain
empirical risk minimization. The latent representation dimension is 1024.

• ResNet: For EVIS, we follow Zhou et al. (2022b) and use their ResNet-18 (He et al., 2016) model
with a representation dimension of 512 and train on three random seeds. For ImageNet, we follow
Song et al. (2023) and employ the standard pre-trained ResNet-50 model from RobustBench
(Croce et al., 2021). Latent representations are of dimension 2048.

D.3 BASELINES

• Source Model: the un-adapted original model.
• BatchNorm (BN) Adaptation (Schneider et al., 2020; Nado et al., 2020): aims to adapt the

source model to distributions shift by collecting normalization statistics (mean and variance) of
the test data.

• Test Entropy Minimization (TENT) (Wang et al., 2021): goes one step further and optimizes
the BN transformation parameters (scale and shift) by minimizing entropy on test predictions.

• Continual Test-Time Adaptation (CoTTA) (Wang et al., 2022b): takes a different approach by
optimizing all model parameters with an entropy objective on augmentation averaged predictions
and combines it with stochastic weight restore to prevent catastrophic forgetting.

• Source HypOthesis Transfer (SHOT) (Liang et al., 2020) adapts the feature extractor via an
information maximization loss in order to align the representations with the source classifier.

• Sharpness-Aware Reliable Entropy Minimization (SAR) (Niu et al., 2023) filters out samples
with large gradients based on their entropy values and encourages convergence to a flat minimum.

• Laplacian Adjusted Maximum likelihood Estimation (LAME) (Boudiaf et al., 2022) reg-
ularizes the likelihood of the source model with a Laplacian correction term that encourages
neighbouring representations to be assigned to the same class.

• Test-Time Template Adjuster (T3A) (Iwasawa & Matsuo, 2021) computes new class prototypes
by a running average of low entropy representations.
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D.4 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

By the nature of test-time adaptation, choosing hyperparameters is tricky (Zhao et al., 2023b) since
one cannot assume access to a validation set of the test distribution in practise. To ensure we report
the optimal performance on new or barely used datasets (Yearbook, EVIS, FMoW, CIFAR-10.1 and
ImageNetV2), we perform a grid search over hyperparameters as suggested in the original papers.
We perform separate grid searches for the uniform label distribution and online imbalanced label
distribution setting. Reported performance correspond to the best setting. If the baselines were
studied in the gradual CIFAR-10-C setting by Wang et al. (2022b), we use their hyperparameter setup;
otherwise, we conduct a grid search as described earlier. Unless there is a built-in reset (SAR) or
convergence criteria (LAME) all methods run without reset and one optimization step is performed.
We use the same batch sizes for all baselines. For Yearbook we comprise all samples of a year in one
batch resulting in a batch size of 2048. To create online class imbalance, we reduce the batch size to
64. We use a batch size of 100 for EVIS, CIFAR.10.1 and CIFAR-10-C and 64 for FMoW-Time and
ImageNetV2.

BN (Schneider et al., 2020; Nado et al., 2020) Normalization statistics during test-time adaptation
are a running estimates of both the training data and the incoming test statistics. No hyperparameter
optimization is necessary here.

TENT (Wang et al., 2021) Like in BN, the normalization statistics are based on both training and test
set. As in Wang et al. (2021), we use the same optimizer settings for test-time adaptation as used for
training, except for the learning rate that we find via grid search on {1e−3, 1e−4, 1e−5, 1e−6, 1e−7}.
Adam optimizer (Kingma & Ba, 2015) is used. For CIFAR-10-C, we follow the hyperparameter
setup of Wang et al. (2022b) and use Adam optimizer with learning rate 1e− 3.

CoTTA (Wang et al., 2022b) We use the same optimizer as used during training (Adam optimizer
Kingma & Ba (2015)). For hyperparameter optimization we follow the parameter suggestions by
Wang et al. (2022b) and conduct a grid search for the learning rate ({1e−3, 1e−4, 1e−5, 1e−6, 1e−7}),
EMA factor ({0.99, 0.999, 0.9999}) and restoration factor ({0, 0.001, 0.01, 0.1}). Following Wang
et al. (2022b), we determine the augmentation confidence threshold by the 5% percentile of the
softmax prediction confidence from the source model on the source images. For the well-studied
CIFAR-10-C dataset, we follow the setting of Wang et al. (2022b) and use Adam optimizer with
learning rate 1e−3. The EMA factor is set to 0.999, the restoration factor is 0.01 and the augmentation
confidence threshold is 0.92.

SHOT (Liang et al., 2020) We perform a grid search for the learning rate over {1e− 3, 1e− 4}
and for β, the scaling factor for the loss terms, over {0.1, 0.3}.

SAR (Niu et al., 2023) We conduct a grid search over the learning rate selecting among {1e −
2, 1e− 3, 1e− 4, 0.00025}. Like the authors, we compute the E0 threshold as a function of number
of classes 0.4× lnK, use SDG, a moving average factor of 0.9, and the reset threshold of 0.2. The
updated layers include all of batch, group, and layer normalization where present in the source model.

LAME (Boudiaf et al., 2022) The only hyperparameter is the choice of affinity matrix. Like
Boudiaf et al. (2022) we use a k-NN affinity matrix and select the number of nearest neighbours
among {1, 3, 5}.

T3A (Iwasawa & Matsuo, 2021) We test different values for the hyperparameter M . The M -th
largest entropy values are included in the support set used for computing new prototypes. We test the
values {1, 5, 20, 50, 100,None}. None corresponds to no threshold, i.e. all samples are part of the
support set.

STAD-vMF The hyperparameters are the initialization values of the transition concentration
parameter κtrans, emission concentration parameter κems and the sliding window size s. We chose
the concentration parameters from {100, 1000}. Tab. 6 lists employed settings. We use a default
window size of s = 3. For Yearbook, we employ class specific noise parameters κtransk and κems

k
as discussed in Sec. 3.3. For the other datasets, we found a more restricted noise model beneficial.
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Particularly, we use global concentration parameters, κtrans and κems, and follow suggestions by
Gopal & Yang (2014) to keep noise concentration parameters fixed instead of learning them via
maximum likelihood (see line 17 and 18 in Algorithm 1). Keeping them fix acts as a regularization
term as it controls the size of the cluster (via κems) and the movement of the prototypes (via κtrans).
Low concentration values generally correspond to more adaptation flexibility while larger values
results in a more conservative and rigid model.

STAD-Gauss We initialize the mixing coefficients with πt,k = 1
K ∀t, k, the transition covariance

matrix with Σtrans = 0.01 × I and the emission covariance matrix with Σems = 0.5 × I. We
found a normalization of the representations to be also beneficial for STAD-Gauss. Note that despite
normalization, the two models are not equivalent. STAD-Gauss models the correlation between
different dimensions of the representations and is therefore more expressive, while STAD-vMF
assumes an isotropic variance.

Table 6: Hyperparameters employed for STAD-vMF

Dataset κtrans κems

Yearbook (covariate shift) 100 100
Yearbook (+ label shift) 1000 100
EVIS (covariate shift) 1000 1000
EVIS (+ label shift) 1000 100
FMoW-Time (covariate shift) 100 100
FMoW-Time (+ label shift) 1000 100
CIFAR-10.1 (covariate shift) 1000 1000
CIFAR-10.1 (+ label shift) 1000 100
ImageNetV2 (covariate shift) 100 1000
ImageNetV2 (+ label shift) 1000 100
CIFAR-10-C (covariate shift) 1000 100
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E ADDITIONAL RESULTS

E.1 SINGLE SAMPLE ADAPTATION

Table 7: Adaptation accuracy on temporal distribution shift with single sample adaptation (batch size
1) for both covariate shift and additional online label shift: Table shows values as plotted in Fig. 5.
Most methods collapse when only provided with one sample per adaptation step. STAD can improve
upon the source model in 4 out of 6 scenarios.

Yearbook EVIS FMoW
Model covariate shift + label shift covariate shift + label shift covariate shift + label shift

Source 81.30 ± 4.18 56.59 ± 0.92 68.94 ± 0.20

BN 73.32 ± 6.90 73.32 ± 6.90 11.12 ± 0.97 11.12 ± 0.97 3.46 ± 0.03 3.46 ± 0.03
TENT 61.33 ± 9.42 61.45 ± 9.46 10.80 ± 0.84 10.78 ± 0.81 4.00 ± 0.87 3.99 ± 0.87
CoTTA 55.91 ± 5.26 56.71 ± 6.12 10.04 ± 0.08 9.88 ± 0.34 3.42 ± 0.14 3.42 ± 0.03
SHOT 53.71 ± 3.77 51.48 ± 1.68 20.23 ± 1.40 16.36 ± 1.67 3.84 ± 0.21 4.01 ± 0.44
SAR 73.32 ± 6.89 73.38 ± 7.01 11.12 ± 0.97 11.12 ± 0.97 3.46 ± 0.03 3.46 ± 0.03
T3A 83.51 ± 2.54 83.44 ± 2.60 57.63 ± 0.77 57.40 ± 0.76 66.78 ± 0.24 66.87 ± 0.27
LAME 81.29 ± 4.18 81.30 ± 4.18 56.59 ± 0.91 56.59 ± 0.91 68.94 ± 0.20 68.94 ± 0.20
STAD-vMF 84.32 ± 2.03 81.49 ± 4.23 56.15 ± 0.98 58.02 ± 0.77 68.88 ± 0.29 71.22 ± 0.40

E.2 STAD IN COMBINATION WITH BN

Table 8: We explored whether STAD, which adapts the classifier, can be effectively combined with
TTA methods like BN adaptation, which targets the feature extractor. The results are mixed. On the
covariate shift of Yearbook, combining the two methods improves performance beyond what each
achieves individually. However, on other datasets, the combination generally results in decreased
performance.

Yearbook EVIS FMoW
Model covariate shift + label shift covariate shift + label shift covariate shift + label shift

Source 81.30 ± 4.18 56.59 ± 0.92 68.94 ± 0.20

BN 84.54 ± 2.10 70.47 ± 0.33 45.72 ± 2.79 14.48 ± 1.02 67.60 ± 0.44 10.14 ± 0.04
STAD-vMF 85.50 ± 1.34 84.46 ± 1.19 56.67 ± 0.82 62.08 ± 1.11 68.87 ± 0.06 86.25 ± 1.18
STAD-vMF + BN 86.20 ± 1.23 69.96 ± 0.39 44.23 ± 2.88 15.18 ± 1.68 66.97 ± 0.46 9.26 ± 1.97
STAD-Gauss 86.22 ± 0.84 84.67 ± 1.46 – – – –
STAD-Gauss + BN 86.56 ± 1.08 70.12 ±0.33 – – – –

E.3 DOMAIN ADAPTATION BENCHMARKS

To study the limitations and applicability of our method STAD, we also test adaptation performance
on non-gradual shifts. For that, we use the domain adaptation benchmark PACS, which comprises
images of 10 classes across four categorical domains (photo, art-painting, cartoon and sketch). We
use DomainBed (Gulrajani & Lopez-Paz, 2021) to train a ResNet-50 model with BN. We test two
settings. In the first setting, we follow Iwasawa & Matsuo (2021); Jang et al. (2023) and train the
model on three domains and adapt it on the held-out domain. In the second setting, we follow
Gui et al. (2024) and train the model on the photo domain and adapt it on the remaining domains
sequentially. The second setting is more difficult as the model is exposed to only a single domain
during training and needs to leverage several abrupt changes in the distribution over a longer test
stream.

Tab. 9 shows adaptation performance for the first setting. Adaptation gains are generally smaller than
on corruption datasets, with TENT, RoTTA, and SAR improving most upon the source model by
2–3 percentage points. While STAD achieves a more modest improvement of 1 percentage point, it
remains the best-performing method among classifier adaptation approaches.
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Table 9: Accuracy on domain adaptation benchmarks under covariate shift and uniform label
distribution. The source model is trained on three domains and tested on the remaining one, rotating
the test domain for averaging.

Method PACS

Source model 82.99 ± 8.87

adapt feature extractor
BN 82.85 ± 9.57
TENT 85.30 ± 7.33
CoTTA 83.59 ± 8.46
SHOT 83.30 ± 9.01
SAR 85.03 ± 7.71
RoTTA 85.11 ± 7.73

adapt classifier
LAME 83.31 ± 8.90
T3A 83.68 ± 9.14
STAD-vMF (ours) 83.91 ± 8.58

Results for the second setting are shown in Tab. 10. Consistent with Gui et al. (2024), we observe
a decreasing performance across all TTA methods over the course of adaptation, highlighting the
challenge posed by multiple non-gradual domain shifts. Nevertheless, all TTA methods, except
LAME, improve upon the source model by over 10 percentage points on average. Despite the highly
non-gradual nature of this test setting, STAD-vMF performs comparably to the baselines, achieving
the third-best performance overall. These findings strengthens the results in Sec. 5.2, which suggest
that STAD is applicable beyond gradual, temporal distribution shifts similar as other TTA methods.

Table 10: Accuracy on domain adaptation benchmarks under covariate shift and uniform label
distribution. The source model is trained on the photo domain and TTA methods adapt to the
remaining domains sequentially. Results show average over three random training seeds. N/A
indicates that adaptation is not applied to the source domain.

Domain
Method P → A → C → S Mean

Source 99.34 ± 0.57 63.10 ± 1.55 38.37 ± 4.99 41.51 ± 2.99 47.66 ± 1.29

adapt feature extractor
BN N/A 68.03 ± 1.98 61.15 ± 0.34 49.64 ± 0.28 59.61 ± 0.52
TENT N/A 68.05 ± 2.11 61.53 ± 0.52 51.33 ± 1.35 60.30 ± 0.28
CoTTA N/A 63.82 ± 3.23 59.36 ± 1.35 56.74 ± 2.70 59.97 ± 2.17
SHOT N/A 67.91 ± 2.04 63.17 ± 0.86 57.90 ± 1.22 62.99 ± 0.58
SAR N/A 68.34 ± 1.81 61.49 ± 0.36 52.06 ± 1.10 60.63 ± 0.67
RoTTA N/A 68.73 ± 1.13 58.52 ± 1.32 52.43 ± 1.19 59.89 ± 0.19

adapt classifier
LAME N/A 62.73 ± 1.72 37.80 ± 5.09 41.01 ± 2.90 47.18 ± 1.26
T3A N/A 68.28 ± 1.55 62.05 ± 0.67 54.80 ± 0.97 61.71 ± 0.40
STAD-vMF (ours) N/A 68.59 ± 2.51 61.65 ± 0.39 52.16 ± 0.49 60.80 ± 0.72

E.4 COMPARISON TO SUPERVISED ORACLE

We investigate how far STAD, which operates unsupervised and does not require labels, can close the
gap to a supervised approach that makes use of labels. Obviously, a supervised approach is superior,
as it can directly learn the function mapping input samples to target labels. In contrast, TTA methods
rely solely on signals from the input and therefore have strictly less information available. To evaluate
how far this gap can be bridged, we continuously fine-tune the source model at each timestep using a
small portion of labeled samples. For this, we use another held-out set from the Wild-Time pipeline,
which is 10% the size of the adaptation test stream. At each timestep, we fine-tune the model for one
epoch on this split and then evaluate the performance on the regular test set.

We find that the supervised model achieves an average accuracy of 90.67% over the entire test
stream. Comparing this to the source model at 81.30%, STAD-Gauss at 86.22%, and STAD-vMF at
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85.50% (see Tab. 2), we observe that STAD can partially close the gap between the unadapted source
model and the fine-tuned model. Fig. 7 further reveals that STAD-vMF is on par with the fine-tuned
classifier at certain time steps (1986, 1995, 1997). Additionally, we observe that the severity of the
shift hampers the supervised model’s ability to regain in-distribution accuracy. For instance, in the
1970s and 1980s, the performance of the supervised model is 20 points lower than its in-distribution
accuracy (nearly 100%).

Figure 7: Accuracy over time for the temporal distribution shift on Yearbook averaged over three
random training seeds.
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E.5 CLUSTER VISUALIZATION

Figure 8: t-SNE visualization of the representation space of FMoW-Time (year 2013) under joint
covariate and label shift: We visualize the cluster structure in representation space. Colors indicate
ground truth class labels for the 10 most common classes. Adapting with BN destroys the cluster
structure, resulting in inseparable clusters. In contrast, STAD operates on linearly separable represen-
tations.

E.6 RUNTIME

Table 11: Relative runtime per batch compared to the source model: BN and T3A are the fastest for
adaptation, while STAD takes significantly less time than CoTTA, which updates all model parameters.
Note that baselines like TENT and CoTTA benefit from highly optimized backpropagation code,
whereas our codebase has not been optimized for speed. Improving the efficiency of our code would
make STAD likely faster.

Methods Yearbook FMoW-Time

Source Model 1.0 1.0

Batch Norm (BN) 1.0 1.1
TENT 1.4 6.4
CoTTA 17.1 200
SHOT 1.3 6.3
SAR 1.5 7.1
T3A 1.1 1.8
LAME 1.2 2.9
STAD-vMF 2.5 30.8
STAD-Gauss 3.3 -

E.7 SENSITIVITY TO HYPERPARAMETERS

In this section, we conduct a sensitivity analysis of the hyperparameters involved in STAD. We
analyze sensitivity on two datasets: the temporal shift dataset Yearbook and the commonly used
corruption benchmark CIFAR-10-C. All experiments are conducted under a uniform label distribution.
When testing the sensitivity to a specific hyperparameter, all other hyperparameters are fixed at their
default values (see App. D). Results show the average over three random training seeds for Yearbook
and the average over 15 corruption types for CIFAR-10-C.

Sensitivity to sliding window size s The window size determines the number of past time steps
considered by the dynamic model. A small s limits the influence of past prototypes, whereas a larger
s extends the considered history, giving more weight to past prototypes. However, large values of
s come at the cost of increased computational burden, as runtime scales linearly with window size.
Tab. 12 suggests that increasing the window size could improve adaptation performance.
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Table 12: Accuracy of STAD for different values of s

s 3 5 7

Yearbook 85.4975 ± 1.34 85.5022 ± 1.30 85.5029 ± 1.31
CIFAR-10-C 76.9683 ± 11.25 76.9735 ± 11.25 76.9823 ± 11.24

Sensitivity to κtrans The transition concentration parameter κtrans regulates the transition noise
and determines how far cluster prototypes move between different time steps. A high concentration
value κtrans implies little movement of class prototypes, whereas low κtrans allows prototypes to
move more. This parameter thus acts as a regularization factor between a more static and a more
dynamic model. Tab. 13 displays the results. Performance changes only marginally for different
values of the concentration parameter.

Table 13: Accuracy of STAD-vMF for different values of κtrans

κtrans 50 100 500 1000 5000

Yearbook 85.5034 ± 1.3031 85.5034 ± 1.3031 85.5034 ± 1.3031 85.5034 ± 1.3031 85.4980 ± 1.3099
CIFAR-10-C 76.9684 ± 11.2540 76.9683 ± 11.2543 76.9685 ± 11.2538 76.9685 ± 11.2538 76.9688 ± 11.2552

Sensitivity to κems The emission concentration parameter κems regulates the emission noise and
determines the spread of clusters. A high concentration value κems implies small, compact clusters,
while low κems allows for widespread clusters. Results are shown in Tab. 14.

Table 14: Accuracy of STAD-vMF for different values of κems

κems 50 100 500 1000 5000

Yearbook 85.5022 ± 1.3036 85.5034 ± 1.3031 85.5043 ± 1.3019 85.5058 ± 1.3001 85.5058 ± 1.3001
CIFAR-10-C 76.9679 ± 11.2543 76.9683 ± 11.2543 76.9689 ± 11.2529 76.9700 ± 11.2514 76.9700 ± 11.2513
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