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Abstract

Alignment training is crucial for enabling large
language models (LLMs) to cater to human
intentions and preferences. It is typically per-
formed based on two stages with different ob-
jectives: instruction-following alignment and
human-preference alignment. However, align-
ing LLMs with these objectives in sequence
suffers from an inherent problem: the objec-
tives may conflict, and the LLMs cannot guar-
antee to simultaneously align with the instruc-
tions and human preferences well. To response
to these, in this work, we propose a Hybrid
Alignment Training (HBAT) approach, based
on alternating alignment and modified elastic
weight consolidation methods. The basic idea
is to alternate between different objectives dur-
ing alignment training, so that better collabora-
tion can be achieved between the two alignment
tasks. We experiment with HBAT on summa-
rization and dialogue tasks. Experimental re-
sults show that the proposed HBAT can signifi-
cantly outperform all baselines. Notably, HBAT
yields consistent performance gains over the
traditional two-stage alignment training when
using both proximal policy optimization and
direct preference optimization.

1 Introduction

Alignment training is a key technique to ensure that
the behaviors of large language models (LLMs) are
consistent with human intentions and preferences
(Ouyang et al., 2022; Wang et al., 2023e). It typi-
cally involves two stages: 1) using human-labeled
data to train pre-trained LLLMs via a supervised
training method, which enables LLMs to under-
stand human intentions and follow the instructions
(call it instruction-following alignment), and 2) em-
ploying approaches like proximal policy optimiza-
tion (PPO) (Schulman et al., 2017) and direct pref-
erence optimization (DPO) (Rafailov et al., 2023)
to learn preferences from human feedbacks (call it
human-preference alignment). This paradigm has

achieved promising results on several downstream
tasks, such as dialogue (OpenAl, 2022; Dubois
et al., 2023; Wang et al., 2023b), summarization
(Stiennon et al., 2020; Lee et al., 2023), and ma-
chine translation (Ramos et al., 2023).

However, this two-stage alignment training has
its inherited limitation: the optimization objec-
tives are different for each stage, which can make
an optimization conflict (French, 1999; Liu et al.,
2021). This limitation would give rise to an inferior
aligned LLM in real-world scenarios. Our analy-
sis (see Section 5.7) shows that human-preference
alignment cannot consistently improve an LLM
trained by instruction-following alignment and
sometimes reduces its performance. A similar phe-
nomenon is also described in Ouyang et al. (2022)’s
work, which is referred to as alignment tax.

To mitigate this limitation, in this work, we pro-
pose a Hybrid Alignment Training (HBAT) ap-
proach, which offers a refinement of the collab-
oration among instruction-following alignment and
human-preference alignment by using the follow-
ing two methods. For one, inspired by interactive
methods in multi-objective optimization (Mietti-
nen et al., 2008; Xin et al., 2018), we propose an
alternating alignment method, where the human-
preference alignment acts as a decision maker
and continuously interacts with the instruction-
following alignment to achieve a preferred align-
ment. Specifically, we divide the instruction-
following and human-preference training set into
equal portions of mutually exclusive subsets, re-
spectively. Then, we rearrange these subsets in
alternating orders during alignment training. Fur-
thermore, we introduce a modified Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) to
alternating alignment. EWC is a method to dynam-
ically imposing an appropriate constraint on each
parameter when training a model with a new opti-
mization objective, thereby easing an optimization
conflict with the previous objective.



We experiment with the proposed HBAT on sum-
marization and dialogue tasks based on LLaMA2-
7B and LLaMA2-13B models (Touvron et al.,
2023). Experimental results show that HBAT can
significantly surpass all baselines. Notably, based
on the LLaMA2-13B model, HBAT can yield a
+2.26 ROUGE-L points improvement for the sum-
marization task, compared to the traditional RLHF.
Additionally, our ESRL significantly outperforms
the SFT over 21.01 GPT-4 win rate points on the di-
alogue task based on the LLaMA2-13B model. Fur-
thermore, HBAT is orthogonal to other optimized
alignment approaches. For instance, when armed
with ESRL (Wang et al., 2023b), our HBAT gains
an additional improvement of 2.59 GPT-4 win rate
points on the summarization task.

2 Related Work

Alignment Training for LLMs. Recently, many
efforts have been made to improve the LLM align-
ment for different tasks (Stiennon et al., 2020;
Nakano et al., 2021; Wang et al., 2023c; Hu et al.,
2023). These works mainly focused on optimiz-
ing each stage of alignment training, including
instruction-following alignment (also referred to
as SFT) and human-preference alignment (also
referred to as RLHF). For example, Zhou et al.
(2023) designed data selection schemes to provide
high-quality instruction-following data. Moreover,
Wang et al. (2022) proposed an efficient approach
for producing instruction-following data. Likewise,
some works aimed to efficiently produce human-
preference data (Lee et al., 2023; Dubois et al.,
2023; Wang et al., 2023a). Apart from the train-
ing data improvements, another line of improving
the alignment training is to explore better reward
models and optimization objectives, such as the
use of fine-grained reward models (Coste et al.,
2023; Wu et al., 2023) and the design of direct
preference optimization objective (Rafailov et al.,
2023). Although previous works improve the per-
formance of instruction-following alignment and
human-preference alignment, they rarely consider
the optimization conflict limitation between them.
Researchers have been aware of this (Ouyang et al.,
2022), but it is still rare to see studies on this issue.

Multi-objective Optimization. Multi-objective
optimization problem involves optimizing multi-
ple optimization objectives simultaneously (Hwang
and Masud, 2012). However, there does not typ-
ically exist a feasible solution that minimizes all

objective functions. Therefore, researchers always
explored a Pareto optimal solution that cannot be
improved in any of the objectives without impair-
ing at least one of the other objectives. Recent
works on this exploration could be classified into
three groups. The first group focused on Pareto
dominance-based method. This method maintains
the individual elements of the solution vectors as in-
dependent during optimization (Cheng et al., 2015;
Wu and Pan, 2019). The second group tended to
design an quality indicator, such as hypervolume
(Bader and Zitzler, 2011) and R2 (Wagner et al.,
2013), to act as a proxy objective instead of op-
timization objectives. The third group that has
attracted attention commonly aimed to solve multi-
objective optimization problems through an interac-
tive method. A typical interactive method requires
a decision maker to offer preference information,
which allows to search for the most preferred Pareto
optimal solution after each optimization (Xin et al.,
2018; Misitano et al., 2021; Pereira et al., 2022).

Although the alignment training is not a stan-
dard multi-objective optimization problem, its goal
remains consistent, i.e., seeking an aligned LLM
that simultaneously aligns instructions and human
preferences well.

3 Background

Despite the extensive knowledge endowed from
pre-training, LLMs are difficult to produce con-
tent that humans want. This is because that pre-
trained LLMs lack understanding of input instruc-
tions and human preferences. To address this, we
often perform alignment training on them, first
for instruction-following alignment and then for
human-preference alignment.

3.1 Instruction-Following Alignment

Instruction-following alignment enables the pre-
trained language model to acquire the capability to
understand and follow instructions in the prompt
by mimicking the human-labeled response. Specif-
ically, given a human prompt = and the labeled
response of N tokens y = {y1,...,yn}, where
each token g is drawn from a vocabulary. In the
training process, the LLM learns the probability:

N
po(yle) = [ [ po(wely<, x) (1)
t=1

where y; is the prefix {y1,y2,...,4—1}, and 6
is a trained parameter set. The standard training
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Figure 1: Architecture of HBAT. We introduce the alternating alignment and the modified EWC methods to design
HBAT, which enables it to address optimization conflict problem in the process of LLM alignment training. Here,
black solid arrows (—) denote learning from the subsets D, and Dfjp, via Eq. 8 and Eq. 5, respectively. Black
dashed arrows (- - ») denote computing the amount of parameter changes before and after training and blue dashed
arrows (- - ») denote accumulating the parameter changes resulting from learning all previous subsets (see Section
4.1). IFA: instruction-following alignment; HPA: human-preference alignment.

objective is to maximize the likelihood over all
the tokens of the labeled response, i.e., maximum
likelihood estimation (MLE) (Myung, 2003). The
corresponding loss function can be defined by:

Lyie = — Y log po(yily<i, o) ©))
t

3.2 Human-Preference Alignment

This process of human-preference alignment con-
sists of two main steps: 1) learning a preference
model from comparison response pairs to act as
a reward model, and 2) maximizing the reward,
written as arg maxg Epg(y|z)[r(7)], where § is a
generated response and 7(-) denotes the computa-
tion of the reward for ¢ using a reward model. We
usually employ an RL algorithm to achieve step 2.
Taking PPO as an instance, the corresponding loss
for this training sample is given by:

Lepo =— > logpy(ijlz)r(f)
9e8)(x)

P6,4(3)

3

—

where () is the output space which comprises
all possible responses for prompt x, 0,4 is the
parameter set of the LLLM trained via instruction-
following alignment, and « is a KL reward coeffi-
cient which controls the strength of the KL penalty
log(%). Here, Q(z) is approximated using
the M(;lr;ite Carlo method (Williams, 1992).

To bypass the complex RL procedure, Rafailov
et al. (2023) proposed DPO method, which em-
ploys a reward model training objective to maxi-
mize rewards. It gives a new loss function:

p@(yw‘x) )
peold(yw\l')

po(yi|z)
~Bloel )

Lppo = — log o[ log(
“4)

where (yy,, y;) is two of the different responses and
Y aligns better with human preferences than ;. 3
is a scaling factor and o is a Sigmoid function.

4 Method

In this work, our aim is to solve an optimization
conflict limitation during alignment training. We
propose the HBAT to achieve this. The overview
of HBAT is depicted in Figure 1. As shown in the
figure, we propose the alternating alignment and
modified EWC in HBAT to achieve our goal. In the
following subsections, we will describe them.

4.1 Alternating Alignment

We first introduce the optimization conflict problem
in the alignment training. Suppose that we have
training datasets Dipa and Dypa for instruction-
following alignment and human-preference align-
ment, respectively. We expect that the LLM will
simultaneously aligns instructions and human pref-
erences well by learning from both datasets. How-
ever, during the traditional two-stage alignment
training, while the LLM learns from new training
samples in Dypa, it may have conflicts with previ-
ous knowledge learned from Dipa .

Inspired by the success of interactive meth-
ods in multi-objective optimization, we propose
an alternating alignment method. In the alter-
nating alignment, we redesign the relationship
between the instruction-following alignment and
human-preference alignment to offer a refinement
of the collaboration among them. Specifically,
we divide the datasets Dipa and Dypa into N
mutually exclusive splits {Dpa, DZon, - -+ » Dhoa }
and {Diipps Dipa, -+ » DApa }» respectively. The
LLM performs an alternating alignment by sequen-
tially learning from {Dips, Dipa,- - ,DI]}[’P nNZ
In each round of alternate training, the human-
preference alignment acts as a “decision maker”



to offer preference information. This preference
information enables an LLM to align human pref-
erences following instruction alignment.

4.2 Elastic Weight Consolidation

To further solve the optimization conflict, we in-
troduce a modified EWC to alternating alignment.
Firstly, we add EWC to the process of human-
preference alignment to mitigate optimization con-
flicts with instruction-following alignment. The
loss of human-preference alignment with EWC is:

A
Lupra = Lppo + Z §F¢IFA(9z‘ — 02 (5)

where 7 is the index corresponding to each parame-
ter within the LLM, A is the parameter set of the
LLM trained by instruction-following alignment, A
is a balance factor, and F' is the diagonal of the em-
pirical Fisher matrix (Pascanu and Bengio, 2014).
Here, FiIFA denotes how important the ¢-th param-
eter H%F A is to the instruction-following alignment.
Note that we can replace Lppo with other loss
functions, such as Lppo, which can align LLMs
with human preferences.

Modified EWC for LLMs. However, the orig-
inal EWC introduces a large computational over-
head on the alignment training. This is because es-
timating FiIFA requires the LLM to be additionally
trained multiple times on the whole training set (see
Appendix B). To mitigate this problem, we redesign
this estimation approach, and use the amount of pa-
rameter changes before and after model training
to compute the F'. Furthermore, considering that
LLMs typically have a large number of parame-
ters and the size of the F' will be enormous, we
attempt to implement EWC at the granularity of
parameter units. Specifically, we redefine F' as a
numerical value, with F/F representing how im-
portance of the parameter unit GZIFA as a whole to
the instruction-following alignment. This redefined
F' can be given by:
eCZIFA
Fi™ = Frae X <z (6)
>iet

where Fq, is the maximum value of F'. C’iIFA
denotes the amount of parameter #; changes before
and after instruction-following alignment training
for the LLM, written as:

|6; ]

1
IFA 2 : before IFAN\2
e

Algorithm 1 Hybrid Alignment Training

Input: the pre-trained LLM M; the instruction-following
alignment training dataset Dira ; the human-preference
alignment training dataset Dupa

Output: the aligned LLM M;

1: divide Dira and Dupa into NN subsets respectively;

2: forn =1to N do

3 if n==1 then

4: train M on first subset of Dira via Eq. 2;

5: else

6: compute the FT via Eq. 9;

7 train M on n-th subset of Dira via Eq. 8;

8 end if
9: compute the F'™ via Eq. 6;

10: train M on n-th subset of Dupa via Eq. 5;

11: end for

12: return M

where 7 is the index corresponding to each neu-
ron within a parameter, |6;| is the number of neu-
rons contained in the parameter 6;, and 6%/ is
the parameter set of the LLLM before instruction-
following alignment training.

4.3 EWC for Alternating Alignment

We apply EWC on a global scale during alternate
alignment training. Specifically, we add the mod-
ified EWC not only when learning each divided
subset from Dygppa as described in Section 4.2, but
also when learning each divided subset from Dipy .
The motivation is that the instruction-following
alignment can likewise lead to an optimization con-
flict with human-preference alignment. Lipaz can
be induced by:

A
Lipa = Lyie + ) §F¢HPA(9i - 67" ®)

where 61PA is the parameters of the LLM trained

by human-preference alignment. Here, similar to
F¥A| FHPA can be computed by:

HPA
eci

FHPA _ W )

—Fmaxx

where CHPA denotes the amount of parameter 6;
changes before and after human-preference align-
ment training for the LLM. It can be computed via
Eq. 7. Note that when learning the first subset
DIlF A since the LLM has not yet been trained with
human preferences, we only employ the Ly 5.

In the process of alternating alignment training,
learning a new subset from one alignment training
dataset can produce optimization conflicts. These
conflicts arise not only with the closest subset from
another alignment training dataset but also with



all the previous subsets within this dataset. Thus,
when estimating F', we consider the parameter
changes resulting from all previous subsets in an-
other alignment training dataset. To this end, we
replace the CZ-IFA and C’ZHPA in Egs. 8 and 5 with ac-
cumulated parameter changes ACI™ and ACHPA
from all previous subsets in Dipa and Dypa, re-
spectively. Here, when learning from n-th subset,
we compute AC’Z-IEA and ACEE A by:

ACIA =N "ot AciTh =y oMt (10
k=1 k=1

where CZ-IF,CA and C’Z-H,f A are the amount of parameter
changes i)roduced at learning k-th subset in Dipa
and Dypa, respectively. The process of our HBAT
is also described in Algorithm 1.

5 Experimental Setup

We evaluated HBAT on summarization and dia-
logue tasks based on the commonly used LLaMA2-
7B and LLaMAZ2-13B models.

5.1 Datasets

The datasets used for each task are as follows:

We used the same dataset as
1

Summarization.
Stiennon et al. (2020), which is a filtered version
of the TL;DR dataset (Volske et al., 2017). The
filtered training set consists of 120k Reddit posts
with accompanying summaries. For instruction-
following training and human-preference align-
ment training, we used all posts in a filtered training
set, respectively. The filtered test set and validation
set contain 6,553 posts and 6,447 posts respectively,
which would result in a huge computational cost
when used on a large scale. Thus, we randomly
selected 10% of posts from them as a test set and
a validation set in our experiments, respectively.
For training reward models, we employed the open-
source 92.9k summary comparisons?.

Dialogue. We conducted experiments on the Al-
paca data (Taori et al., 2023a) which contains
52k training samples. Here, we employed the
sliced data splits® released by AlpacaFarm (Dubois

'https://github.com/openai/
summarize-from-feedback

https://huggingface.co/datasets/
openai/summarize_from_feedback

Shttps://huggingface.co/datasets/
tatsu-lab/alpaca_farm

et al., 2023) to conduct instruction-following align-
ment training, reward model training, and human-
preference alignment training. Note that we used
the human preferences rather than the simulated
preferences to train our reward models. In the eval-
uation, we employed the AlpacaFarm evaluation set
which consists of 805 instructions. We randomly
select 200 instructions from them as our validation
set and the rest as our test set.

5.2 Settings

We trained reward models with the ranking loss
for all tasks, following Stiennon et al. (2020). For
instruction-following alignment training, we em-
ployed the cross-entropy loss on batches of prompts
concatenated with responses, computing the loss
only on the response tokens. For human-preference
alignment training, we used PPO and DPO as our
base algorithms. We followed an existing PPO im-
plementation in t r1x* for training the LLM. For
HBAT, we set the number of dataset splits to 2 and
10 for summarization and dialogue tasks, respec-
tively. Additionally, we employed a top-p sampling
strategy for generation, where the temperature and
p were set to 0.75 and 0.95, respectively, values
that are commonly used in real-world applications.
More training details are shown in Appendix A.

5.3 Evaluation Metrics

For the summarization task, we measured the sum-
mary quality by computing ROUGE (Lin, 2004)
and BARTScore (Yuan et al., 2021), respectively.
For the dialogue task, we measured the response
quality with PandaLLM (Wang et al., 2023d) which
can distinguish the superior model from some
LLMs. To further evaluate the performance of the
model, we employed GPT-4 as a proxy for human
evaluation of summary and response quality in the
dialogue and summarization tasks, where the used
evaluation prompts were the same as in Rafailov
et al. (2023). We used reference summaries and re-
sponses in the test set as the baseline. Additionally,
following Stiennon et al. (2020)’s work, we evalu-
ated the model by computing the reward scores of
test sets via our reward models.

5.4 Baselines

Our baselines are the standard two-stage align-
ment training (referred to as RLHF/DPO) and the
commonly used instruction-following alignment

*https://github.com/CarperAI/trlx
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Summarization

Dialogue

Method #Param PPO DPO

ROUGE-L BS Reward Win PandaLM Reward Win
Based on LLaMA2-7B Model
SFT 7B 22.60 -5.46 3.72 53.20 54.76 -6.79  43.49
RLHF 7B v 25.85 -4.27 443 63.80 69.79 -5.81 55.63
RLHF+pt 7B v 22.25 -5.64 3.74 56.26 53.52 -7.09  54.18
SFT+ppo 7B v 13.75 -5.78 2.40 18.91 45.32 -8.60 42.25
HBAT-Freeze 7B e 25.33 -4.28 5.26 64.79 69.91 -5.91 56.19
HBAT (Ours) 7B v 26.18 -3.82 5.74 72.52 70.88 -5.37 57.12
DPO 7B v 22.96 -5.13 4.27 61.37 70.74 =572 54.23
HBAT-Freeze 7B v 23.01 -5.05 4.45 64.18 68.78 -5.41 56.95
HBAT (Ours) 7B v 23.14 -4.18 4.95 70.58 74.78 -5.22 58.10
Based on LLaMA2-13B Model
SFT 13B 23.27 -5.12 4.01 57.91 62.16 -6.32  46.11
RLHF 13B v 24.51 -3.96 5.55 71.67 72.21 -5.65 61.16
RLHF+pt 13B v 22.92 -5.49 3.97 64.42 63.67 -6.97 5445
SFT+ppo 13B v 13.84 -5.97 2.53 28.97 54.00 793  43.12
HBAT-Freeze 13B v 25.80 -3.63 6.18 77.22 71.31 -5.49  56.37
HBAT (Ours) 13B v 26.77 -3.51 6.41 78.81 72.83 -5.11 62.32
DPO 13B v 23.02 -5.39 4.55 69.40 75.00 -5.07 6431
HBAT-Freeze 13B v 23.10 -5.08 4.85 71.44 76.87 -5.01 65.62
HBAT (Ours) 13B v 24.12 -4.05 5.40 74.92 77.79 -4.78  67.45

Table 1: Results on summarization and dialogue tasks. The best results for each group are in bold. The “BS” and
“Win” columns report the BARTScore and the win rate as assessed by GPT-4, respectively. The “PPO” and “DPO”
columns denote that we employ PPO and DPO during human-preference alignment training, respectively.

training (referred to as SFT). Furthermore, we
compare the proposed HBAT with commonly used
multi-objective optimization methods, including
adding a pre-training loss in the human-preference
alignment training (RLHF+pt) (Ouyang et al.,
2022) and adding a human-preference alignment
loss in the instruction-following alignment training
(SFT+ppo) (Wang et al., 2023a). To evaluate the
effectiveness of EWC, we also chose the HBAT-
Freeze method as a baseline, where we directly
froze important parameters instead of EWC.

5.5 Experimental Results

Table 1 displays the experimental results on sum-
marization and dialogue tasks.

Results of Summarization. First, compared
with the traditional two-stage alignment training
and instruction-following alignment training, the
proposed HBAT can achieve optimal results on both
of LLaMA2-7B and LLaMA2-13B. Notably, HBAT
outperforms RLHF by 7.14 points on the GPT-4
win rate when using PPO on the LLaMA2-13B
model. Second, compared with multi-task learning-
based methods, including RLHF+pt and SFT+ppo,

we can see that HBAT has significant improvements
on all evaluation metrics. For instance, compared
to RLHF+pt, HBAT yields a +3.93 ROUGE-L im-
provement on the LLaMA2-7B model. Also, we
see that the multi-objective optimization method
can hurt alignment, e.g., RLHF+pt loses 0.69 Re-
ward points on the LLaMA2-7B model. The
phenomenon aligns with observation reported in
Ouyang et al. (2022)’s work. One potential ex-
planation can be that while these multi-objective
optimization methods achieve optimization of these
objectives simultaneously, they still suffer from se-
rious optimization conflict (Zhang and Yang, 2021).
Third, when using DPO during human-preference
alignment training, our HBAT is consistently better
than all baselines. For a LLaMA?2-13B model, it
obtains a GPT-4 win rate of 74.92. Additionally,
as the comparison of the “ROUGE-L”, “BS”, and
“Reward” columns in Table 1, we observe that the
same phenomenon with “Win” that HBAT can also
outperform all baselines by a large margin.

Results of Dialogue. We also evaluated the pro-
posed HBAT on the dialogue task. Similarly, when
using PPO during human-preference alignment



Method PandaLM Reward Win

SFT 43.64 -6.80  43.08
DPO 69.97 -5.68  53.80
HBAT 75.76 -5.11  60.10
w/o EWC 67.53 -5.776  54.75
w/o Alternating Alignment 70.50 -5.26  56.92

Table 2: Ablation studies on the components of HBAT.
We report the scores for the dialogue validation set.

Category SFT DPO HBAT

Generic 8.28 8.22 (4+0.06) 9.00 (40.72)
Knowledge 8.00 9.20 (+1.20) 9.21 (+1.21)
Roleplay 8.17 17.71(—0.46) 8.21(+0.04)
Common-sense 8.29 8.68 (+0.39) 8.78 (4+0.49)
Fermi 3.13 2.78(—0.35) 5.12(+1.99)
Counterfactual 5.57 5.23(—0.34) 6.14 (+0.57)
Coding 3.00 4.00(4+1.00) 5.12(42.21)
Math 250 1.33(—1.17) 2.67 (+0.17)
Writing 6.67 8.33(+1.66) 8.50 (+1.83)

Table 3: Vicuna’s scores evaluated by GPT-4. We report
the difference with SFT’s scores in parentheses.

training, we can observe that HBAT outperforms
RLHF by a large margin (e.g., 2.21 PandalLM and
0.54 Reward benefits on the LLaMA2-13B model).
However, different from the summarization task,
we find that DPO can achieve better performance
than PPO on the dialogue task. For instance, when
using LLaMA2-13B, HBAT with DPO can outper-
form PPO by a margin of 5.13 points on the GPT-4
win rate. We assume that this is attributed to the re-
ward model quality. To verify this assumption, we
conduct tests on the employed reward models and
find a significant difference in accuracy between
the two tasks: the accuracy of the reward model for
the summarization task significantly exceeds that
of the dialogue task, achieving 0.75 compared to
0.65, respectively.

Furthermore, compared with HBAT-Freeze, we
see that HBAT achieves better performance on all
tasks. It demonstrates that freezing specific param-
eters is inferior to constraining specific parameters.
We attribute this to the fact that the freezing oper-
ation reduces the amount of learnable parameters,
which imposes a hurdle to learn new knowledge.

5.6 Ablation Studies

In this section, we present detailed ablation stud-
ies to explore the effects of EWC and alternating
alignment with DPO on the LLaMA2-7B model.
The experiments are conducted on the dialogue
dataset, and the impacts of removing each method
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Figure 2: Performance of HBAT with different number
of dataset splits (i.e., [N) and the maximum values of F’
(i.e., Fy,qz) on the dialogue validation set.

are thoroughly examined. The results are summa-
rized in Table 2. From the results, we see that the
modified EWC can significantly improve response
quality. Notably, HBAT obtains a +5.35 points im-
provement on GPT-4 win rate with the modified
EWC. Additionally, the results indicate a signifi-
cant dependency of our HBAT on the alternating
alignment. The absence of this method results in
HBAT fails a well-performed dialogue model.

5.7 Analysis

Limitations of Two-stage Alignment Training.
To test the effect of human-preference alignment on
instruction-following alignment, we report 9 cate-
gories of prompt scores in Vicuna benchmark (Chi-
ang et al., 2023) respectively, where the scores are
evaluated by GPT-4 following Zheng et al. (2023)’s
work. The results are presented in Table 3. From
the results, we can observe that human-preference
alignment sometimes hurts the performance of an
LLM trained by instruction-following alignment.
Based on this observation, we have the following
suggestion: the LLMs could achieve superior align-
ment if it retains all knowledge learned from one
alignment while learning from another. We also
see that HBAT can achieve this by preventing opti-
mization objective conflicts.

Effect of the Number of Dataset Splits. Based
on the LLaMA2-7B model, we investigate the im-
pact of dividing the dataset into different numbers
of splits. As shown in Figure 2 (top), we swept over
different numbers: {1,2,3,4,5}. From the results,
we find that excessive dataset splits can hurt the per-
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Figure 3: GPT-4 win rates for different sampling tem-
peratures on the LLaMA2-7B model. For each dialogue
model, we conduct the generation three times and report
the mean score of these generated responses.

formance of the aligned LLM. We conjecture the
underlying reason is that when datasets are heav-
ily divided, each subset does not have sufficient
samples for training.

Effect of F),, 4. on Performance. The maximum
value of F', F} 4z, is a key factor that controls the
strength of parameter constraints. We conduct ex-
periments to study the impact of setting different
values of F),q.: {1,50,100,150,200}. The corre-
sponding Reward and Pandal.M scores are listed
in Figure 2 (bottom). From the results, we see that
the use of different values of F,,,; can result in dif-
ferent performance gains. We find that the optimal
Frnaz 18 50, and this setting allows for appropriate
control over parameter constraints. We conduct
similar experiments to determine the optimal val-
ues for N and F,,,, for the summarization task,
which are found to be 10 and 50 respectively.

Performance on Different Temperature Settings.
In real-world applications, various temperature set-
tings are employed in the process of LLM gener-
ation according to specific scenarios. To this end,
we compute the PandalLM scores under different
temperature settings on the dialogue task to provide
a comprehensive evaluation. The results are shown
in Figure 3. From the results, we can observe that
HBAT exceeds DPO’s best-case performance on the
dialogue task while being more robust to changes
in the temperature setting.

Comparison of Training Process on Different
Methods. We analyze the training process of our
HBAT on the dialogue task. Figure 4 shows the Pan-
dalLM on the validation set of the LLMs aligned by
HBAT and the traditional two-stage alignment meth-
ods. We observe that alignment training with HBAT
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<
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Figure 4: PandalLM score over training steps for the
HBAT and traditional two-stage alignment training.

Method Summarization Dialogue

BS Win PandaLM  Win
PPO -427  63.80 69.79 55.63
HBAT -3.82 7252 70.88 61.45
ESRL -4.01 6590 70.33 58.54
HBAT+ESRL -3.65 7511 7291 62.56

Table 4: Performance on summarization and dialogue
tasks, using the LLaMA2-7B model aligned with HBAT
and ESRL. We implemented ESRL on our test bed with
the same setups as in Wang et al. (2023b).

improves performance more efficiently than that
with the two-stage method. Furthermore, when us-
ing PPO during human-preference alignment train-
ing, we can observe that HBAT can mitigate reward
model overoptimization (Gao et al., 2023).

Integration of Efficient Sampling Method. Our
HBAT is orthogonal to the other mainstream meth-
ods for improving LLM alignment. Here, we take
ESRL, an efficient sampling-based reinforcement
learning method (Wang et al., 2023b), as an in-
stance. Specifically, we incorporate ESRL into
the PPO algorithm inside our HBAT. In ESRL,
we employ the predicted reward score to estimate
model capability. Table 4 shows that the integrated
method achieves superior performance.
See more analysis in Appendix B.

6 Conclusion

In this paper, we focus on solving the optimiza-
tion conflict of alignment training in LLMs. We
have proposed a hybrid alignment training (HBAT)
via the alternating alignment and modified elastic
weight consolidation methods. Our extensive ex-
periments show that our HBAT can significantly
outperform all baselines.



7 Limitations

In this section, we discuss some limitations of this
work as follows:

* We did not verify HBAT in other NLP tasks.
There are so many NLP tasks that we cannot
verify our HBAT one by one. Thus, we take
summarization and dialogue as instances in
this paper. The summarization is a commonly
used task for verifying the effectiveness of
LLM alignment methods. Additionally, in the
dialogue task, the Alpaca dataset we used con-
sists of many NLP tasks (Taori et al., 2023b),
including machine translation, sentiment clas-
sification, and text simplification.

* We did not attempt more preference-alignment
methods. In this work, we verify the effective-
ness of HBAT based on representative PPO,
DPO, and ESRL, i.e., it can offer a refine-
ment of the collaboration among instruction-
following alignment and human-preference
alignment. Although there are some other
preference-alignment methods that we did not
experiment with, such as RRHF (Yuan et al.,
2023), RAFT (Dong et al., 2023), and RL4F
(Akytirek et al., 2023), HBAT is a general ap-
proach and can be easily extended to these.
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A Experimental Details

A.1 Setups

Instruction-Following Alignment. We set the
learning rate, batch size, and training epoch to le-
5, 64, and 3. We did not conduct tuning of these
hyper-parameters specific to the task and the model,
as our experiments with other hyper-parameters did
not yield a significant performance improvement.

Reward Model Training. We initialized the
model using the LLM trained by instruction-
following alignment training. For all tasks, we
trained the reward model for 2 epochs with a learn-
ing rate of le-5 and a batch size of 64.

PPO Training. For all tasks, the learning rate
was set to 1e-5 and 5e-6 for the policy model and
the value model, respectively. We settled on a batch
size of 64 for each PPO step, which consisted of 1
epoch of gradient steps and 4 epochs of mini-batch
PPO steps. To address the overoptimization issue
as described in Gao et al. (2023)’s work, we imple-
mented a strategy that saves checkpoints at regular
intervals during the training process. Specifically,
we evaluated checkpoints at intervals of 500 steps
for the summarization task and 200 steps for the
dialogue task against their respective validation
sets and selected the optimal checkpoint with the
best Reward score. Additionally, we employed a
cold-start trick for PPO, to alleviate the damage
caused by the inaccurate estimation of the early
value model. Specifically, we updated only the
value model and did not update the policy model
during the first 50 steps of PPO training. The se-
tups of advantage estimation and KL regularizer
coefficient were the same as in t r1X.

DPO Training. We used a batch size of 64, a
learning rate of le-6, and a training epoch of 2
for DPO training. Apart from these parameters,

the rest of our training setups were the same as in
Rafailov et al. (2023).

HBAT. F,,; was set to 50 and 100 on the sum-
marization task and the dialogue task, respectively.
A and N were set 1 and 10 for all tasks. After
training each subset, we evaluated the model’s per-
formance with the validation set. The model that
has the highest Reward score was selected as the
optimal one. Concurrently, we saved the value
model after learning from a subset of the human-
preference dataset. This saved model was utilized
to initialize the value model for subsequent learning
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of a new subset of the human-preference dataset.
Furthermore, in HBAT-Freeze, we froze the top
20% important parameters based on the computed
parameter importance scores.

A.2 Evaluation

PandalLM. In this section, we describe how we
compute the PandalLM score. Given the pairwise
test responses {(z0, 70, r0),--- (2T, rI rD)},
where T is the number of the test set, PandalLM
can give the preference of each pairwise response,
including P,, P, and Tie. Here, P, denotes re-
sponse 7, is better than response 73, P}, denotes
response 73 is worse than response 73, while T'ze
denotes a tie between response 7, and response
Tp. We can compute the PandalLM score for the re-
sponse 7, model and the response 7, model through

the given preferences:

Count(P,)

2 = 11
SPandaLM T — Count(Tie) (11)
Count (P,

S}gandaLM = ( b) (12)

T — Count(Te)

where Count(-) denotes the count of the specified
preference.

GPT-4 Prompts for Win Rates. As shown in
Figure 5, The prompts of GPT-4 evaluation are the
same as in Rafailov et al. (2023).

A.3 Dataset Statistics

The statistical information on the utilized datasets
is summarized in Table 5.

Task Training . in Valid  Test
Stage
IFA 123,169 645 655
Summarization Reward 92,858 1,000 2,000
HPA 123,169 645 655
IFA 10,000 200 605
Dialogue Reward 9,591 100 200
HPA 20,000 200 605

Table 5: Statistical information on summarization and
dialogue datasets. IFA: instruction-following align-
ment; Reward: training a reward model; HPA: human-
preference alignment.

B More Analysis

Fisher Information Matrix This original EWC
employs the Fisher information matrix, denoted as
Fj, to measure information contained in model pa-
rameters 6 after learning a task (Kirkpatrick et al.,



Which of the following summaries does a better job

of summarizing the most important points in the

given forum post, without including unimportant or
irrelevant details? A good summary is both precise and
concise.

Post:
<post>

Summary A:
<Summary A>

Summary B:
<Summary B>

FIRST provide a one-sentence comparison of the two
summaries,explaining which you prefer and why. SECOND,
on a new line. state only "A" or "B" to indicate your
choice. Your response should use the format:

Comparison: <one-sentence comparison and explanation>

Preferred: < "A" or "B">

(a) Summarization GPT-4 win rate prompt

For the following query to a chatbot, which response is
more helpful?

Query: <the user query>

Response A:
<either the test method or baseline>

Response B:
<the other response>

FIRST provide a one-sentence comparison of the two
responses and explain which you feel is more helpful.
SECOND, on a new line, state only "A" or "B" to indicate
which response is more helpful. Your response should
usethe format:

Comparison: <one-sentence comparison and explanation>

More helpful: < "A" or "B">

(b) Dialogue GPT-4 win rate prompt

Figure 5: Prompt templates of computing GPT-4 win rates for summarization and dialogue tasks.

Mtehod Training Memory Win
DPO 1.00% 52.77G  54.23
HBAT 1.26% 61.13G  58.10
HBAT w/ original EWC  1.64x 73.55G  58.32

Table 6: The comparison of efficiency and performance
between the modified EWC and the original EWC. We
test the training efficiency and memory consumption
on eight A800 GPUs. Time: training time; Memory:
maximum memory consumption.

2017). The Fisher information represents the ex-
pected information that an observation can provide
about an unknown parameter (Pascanu and Bengio,
2014). It can be estimated via first-order derivatives
of the generative probability py(y|z), as described

in Eq. 1:
dll

iy

(z,y)€D

dlog po(ylz)\>
50 ) 0 (13)
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00
where D is the training dataset. When employing
this method in the context of LLM training, esti-
mating the Fisher information requires computing
the gradients for each sample within the training
dataset through a forward propagation and a back
propagation. Then the gradients of each model pa-
rameter are summed and divided by the number
of samples. This process poses two challenges to
LLM training. The first is that the frequent compu-
tation of large-scale parameter gradients leads to
significant computational costs. The second is that

Fy
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the size of the information matrix will be huge (the
same size as the parameters of the aligned LLM)),
leading to significant GPU memory consumption.
To address these challenges, we propose a modified
EWC method (see Section 4.2).

We also conduct experiments to compare our
modified EWC and original EWC on the dia-
logue task. The results are presented in Table
6. In terms of training time and memory con-
sumption, our modified EWC consistently outper-
forms the original EWC. Notably, it can reduce
about 23% of training time and 17% of memory
consumption. It demonstrates that our modified
EWC can be efficiently implemented in alignment
training. Furthermore, it shows that our HBAT
is capable of handling larger mini-batches, large-
scale datasets, larger-sized models, and longer tar-
get generation sequence with identical settings on
resource-constrained devices. In terms of response
quality, our modified EWC achieves a matched
GPT-4 win rate compared to the original EWC.



