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Abstract

Alignment training is crucial for enabling large001
language models (LLMs) to cater to human002
intentions and preferences. It is typically per-003
formed based on two stages with different ob-004
jectives: instruction-following alignment and005
human-preference alignment. However, align-006
ing LLMs with these objectives in sequence007
suffers from an inherent problem: the objec-008
tives may conflict, and the LLMs cannot guar-009
antee to simultaneously align with the instruc-010
tions and human preferences well. To response011
to these, in this work, we propose a Hybrid012
Alignment Training (HBAT) approach, based013
on alternating alignment and modified elastic014
weight consolidation methods. The basic idea015
is to alternate between different objectives dur-016
ing alignment training, so that better collabora-017
tion can be achieved between the two alignment018
tasks. We experiment with HBAT on summa-019
rization and dialogue tasks. Experimental re-020
sults show that the proposed HBAT can signifi-021
cantly outperform all baselines. Notably, HBAT022
yields consistent performance gains over the023
traditional two-stage alignment training when024
using both proximal policy optimization and025
direct preference optimization.026

1 Introduction027

Alignment training is a key technique to ensure that028

the behaviors of large language models (LLMs) are029

consistent with human intentions and preferences030

(Ouyang et al., 2022; Wang et al., 2023e). It typi-031

cally involves two stages: 1) using human-labeled032

data to train pre-trained LLMs via a supervised033

training method, which enables LLMs to under-034

stand human intentions and follow the instructions035

(call it instruction-following alignment), and 2) em-036

ploying approaches like proximal policy optimiza-037

tion (PPO) (Schulman et al., 2017) and direct pref-038

erence optimization (DPO) (Rafailov et al., 2023)039

to learn preferences from human feedbacks (call it040

human-preference alignment). This paradigm has041

achieved promising results on several downstream 042

tasks, such as dialogue (OpenAI, 2022; Dubois 043

et al., 2023; Wang et al., 2023b), summarization 044

(Stiennon et al., 2020; Lee et al., 2023), and ma- 045

chine translation (Ramos et al., 2023). 046

However, this two-stage alignment training has 047

its inherited limitation: the optimization objec- 048

tives are different for each stage, which can make 049

an optimization conflict (French, 1999; Liu et al., 050

2021). This limitation would give rise to an inferior 051

aligned LLM in real-world scenarios. Our analy- 052

sis (see Section 5.7) shows that human-preference 053

alignment cannot consistently improve an LLM 054

trained by instruction-following alignment and 055

sometimes reduces its performance. A similar phe- 056

nomenon is also described in Ouyang et al. (2022)’s 057

work, which is referred to as alignment tax. 058

To mitigate this limitation, in this work, we pro- 059

pose a Hybrid Alignment Training (HBAT) ap- 060

proach, which offers a refinement of the collab- 061

oration among instruction-following alignment and 062

human-preference alignment by using the follow- 063

ing two methods. For one, inspired by interactive 064

methods in multi-objective optimization (Mietti- 065

nen et al., 2008; Xin et al., 2018), we propose an 066

alternating alignment method, where the human- 067

preference alignment acts as a decision maker 068

and continuously interacts with the instruction- 069

following alignment to achieve a preferred align- 070

ment. Specifically, we divide the instruction- 071

following and human-preference training set into 072

equal portions of mutually exclusive subsets, re- 073

spectively. Then, we rearrange these subsets in 074

alternating orders during alignment training. Fur- 075

thermore, we introduce a modified Elastic Weight 076

Consolidation (EWC) (Kirkpatrick et al., 2017) to 077

alternating alignment. EWC is a method to dynam- 078

ically imposing an appropriate constraint on each 079

parameter when training a model with a new opti- 080

mization objective, thereby easing an optimization 081

conflict with the previous objective. 082
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We experiment with the proposed HBAT on sum-083

marization and dialogue tasks based on LLaMA2-084

7B and LLaMA2-13B models (Touvron et al.,085

2023). Experimental results show that HBAT can086

significantly surpass all baselines. Notably, based087

on the LLaMA2-13B model, HBAT can yield a088

+2.26 ROUGE-L points improvement for the sum-089

marization task, compared to the traditional RLHF.090

Additionally, our ESRL significantly outperforms091

the SFT over 21.01 GPT-4 win rate points on the di-092

alogue task based on the LLaMA2-13B model. Fur-093

thermore, HBAT is orthogonal to other optimized094

alignment approaches. For instance, when armed095

with ESRL (Wang et al., 2023b), our HBAT gains096

an additional improvement of 2.59 GPT-4 win rate097

points on the summarization task.098

2 Related Work099

Alignment Training for LLMs. Recently, many100

efforts have been made to improve the LLM align-101

ment for different tasks (Stiennon et al., 2020;102

Nakano et al., 2021; Wang et al., 2023c; Hu et al.,103

2023). These works mainly focused on optimiz-104

ing each stage of alignment training, including105

instruction-following alignment (also referred to106

as SFT) and human-preference alignment (also107

referred to as RLHF). For example, Zhou et al.108

(2023) designed data selection schemes to provide109

high-quality instruction-following data. Moreover,110

Wang et al. (2022) proposed an efficient approach111

for producing instruction-following data. Likewise,112

some works aimed to efficiently produce human-113

preference data (Lee et al., 2023; Dubois et al.,114

2023; Wang et al., 2023a). Apart from the train-115

ing data improvements, another line of improving116

the alignment training is to explore better reward117

models and optimization objectives, such as the118

use of fine-grained reward models (Coste et al.,119

2023; Wu et al., 2023) and the design of direct120

preference optimization objective (Rafailov et al.,121

2023). Although previous works improve the per-122

formance of instruction-following alignment and123

human-preference alignment, they rarely consider124

the optimization conflict limitation between them.125

Researchers have been aware of this (Ouyang et al.,126

2022), but it is still rare to see studies on this issue.127

Multi-objective Optimization. Multi-objective128

optimization problem involves optimizing multi-129

ple optimization objectives simultaneously (Hwang130

and Masud, 2012). However, there does not typ-131

ically exist a feasible solution that minimizes all132

objective functions. Therefore, researchers always 133

explored a Pareto optimal solution that cannot be 134

improved in any of the objectives without impair- 135

ing at least one of the other objectives. Recent 136

works on this exploration could be classified into 137

three groups. The first group focused on Pareto 138

dominance-based method. This method maintains 139

the individual elements of the solution vectors as in- 140

dependent during optimization (Cheng et al., 2015; 141

Wu and Pan, 2019). The second group tended to 142

design an quality indicator, such as hypervolume 143

(Bader and Zitzler, 2011) and R2 (Wagner et al., 144

2013), to act as a proxy objective instead of op- 145

timization objectives. The third group that has 146

attracted attention commonly aimed to solve multi- 147

objective optimization problems through an interac- 148

tive method. A typical interactive method requires 149

a decision maker to offer preference information, 150

which allows to search for the most preferred Pareto 151

optimal solution after each optimization (Xin et al., 152

2018; Misitano et al., 2021; Pereira et al., 2022). 153

Although the alignment training is not a stan- 154

dard multi-objective optimization problem, its goal 155

remains consistent, i.e., seeking an aligned LLM 156

that simultaneously aligns instructions and human 157

preferences well. 158

3 Background 159

Despite the extensive knowledge endowed from 160

pre-training, LLMs are difficult to produce con- 161

tent that humans want. This is because that pre- 162

trained LLMs lack understanding of input instruc- 163

tions and human preferences. To address this, we 164

often perform alignment training on them, first 165

for instruction-following alignment and then for 166

human-preference alignment. 167

3.1 Instruction-Following Alignment 168

Instruction-following alignment enables the pre- 169

trained language model to acquire the capability to 170

understand and follow instructions in the prompt 171

by mimicking the human-labeled response. Specif- 172

ically, given a human prompt x and the labeled 173

response of N tokens y = {y1, . . . , yN}, where 174

each token yt is drawn from a vocabulary. In the 175

training process, the LLM learns the probability: 176

pθ(y|x) =
N∏
t=1

pθ(yt|y<t, x) (1) 177

where y<t is the prefix {y1, y2, . . . , yt−1}, and θ 178

is a trained parameter set. The standard training 179
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Figure 1: Architecture of HBAT. We introduce the alternating alignment and the modified EWC methods to design
HBAT, which enables it to address optimization conflict problem in the process of LLM alignment training. Here,
black solid arrows ( ) denote learning from the subsets Dn

IFA and Dn
HPA via Eq. 8 and Eq. 5, respectively. Black

dashed arrows ( ) denote computing the amount of parameter changes before and after training and blue dashed
arrows ( ) denote accumulating the parameter changes resulting from learning all previous subsets (see Section
4.1). IFA: instruction-following alignment; HPA: human-preference alignment.

objective is to maximize the likelihood over all180

the tokens of the labeled response, i.e., maximum181

likelihood estimation (MLE) (Myung, 2003). The182

corresponding loss function can be defined by:183

LMLE = −
∑
t

log pθ(yt|y<t, x) (2)184

3.2 Human-Preference Alignment185

This process of human-preference alignment con-186

sists of two main steps: 1) learning a preference187

model from comparison response pairs to act as188

a reward model, and 2) maximizing the reward,189

written as argmaxθ Epθ(ŷ|x)[r(ŷ)], where ŷ is a190

generated response and r(·) denotes the computa-191

tion of the reward for ŷ using a reward model. We192

usually employ an RL algorithm to achieve step 2.193

Taking PPO as an instance, the corresponding loss194

for this training sample is given by:195

LPPO =−
∑

ŷ∈Ω(x)

log pθ(ŷ|x)r(ŷ)

− α log(
pθ(ŷ|x)
pθold(ŷ|x)

)

(3)196

where Ω(x) is the output space which comprises197

all possible responses for prompt x, θold is the198

parameter set of the LLM trained via instruction-199

following alignment, and α is a KL reward coeffi-200

cient which controls the strength of the KL penalty201

log( pθ(ŷ|x)
pθold(ŷ|x)

). Here, Ω(x) is approximated using202

the Monte Carlo method (Williams, 1992).203

To bypass the complex RL procedure, Rafailov204

et al. (2023) proposed DPO method, which em-205

ploys a reward model training objective to maxi-206

mize rewards. It gives a new loss function:207

LDPO =− log σ[β log(
pθ(yw|x)
pθold(yw|x)

)

− β log(
pθ(yl|x)
pθold(yl|x)

)]

(4)208

where (yw, yl) is two of the different responses and 209

yw aligns better with human preferences than yl. β 210

is a scaling factor and σ is a Sigmoid function. 211

4 Method 212

In this work, our aim is to solve an optimization 213

conflict limitation during alignment training. We 214

propose the HBAT to achieve this. The overview 215

of HBAT is depicted in Figure 1. As shown in the 216

figure, we propose the alternating alignment and 217

modified EWC in HBAT to achieve our goal. In the 218

following subsections, we will describe them. 219

4.1 Alternating Alignment 220

We first introduce the optimization conflict problem 221

in the alignment training. Suppose that we have 222

training datasets DIFA and DHPA for instruction- 223

following alignment and human-preference align- 224

ment, respectively. We expect that the LLM will 225

simultaneously aligns instructions and human pref- 226

erences well by learning from both datasets. How- 227

ever, during the traditional two-stage alignment 228

training, while the LLM learns from new training 229

samples in DHPA, it may have conflicts with previ- 230

ous knowledge learned from DIFA. 231

Inspired by the success of interactive meth- 232

ods in multi-objective optimization, we propose 233

an alternating alignment method. In the alter- 234

nating alignment, we redesign the relationship 235

between the instruction-following alignment and 236

human-preference alignment to offer a refinement 237

of the collaboration among them. Specifically, 238

we divide the datasets DIFA and DHPA into N 239

mutually exclusive splits {D1
IFA,D2

IFA, · · · ,DN
IFA} 240

and {D1
HPA,D2

HPA, · · · ,DN
HPA}, respectively. The 241

LLM performs an alternating alignment by sequen- 242

tially learning from {D1
IFA,D1

HPA, · · · ,DN
HPA}. 243

In each round of alternate training, the human- 244

preference alignment acts as a “decision maker” 245
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to offer preference information. This preference246

information enables an LLM to align human pref-247

erences following instruction alignment.248

4.2 Elastic Weight Consolidation249

To further solve the optimization conflict, we in-250

troduce a modified EWC to alternating alignment.251

Firstly, we add EWC to the process of human-252

preference alignment to mitigate optimization con-253

flicts with instruction-following alignment. The254

loss of human-preference alignment with EWC is:255

LHPA = LPPO +
∑
i

λ

2
F IFA
i (θi − θIFAi )2 (5)256

where i is the index corresponding to each parame-257

ter within the LLM, θIFA is the parameter set of the258

LLM trained by instruction-following alignment, λ259

is a balance factor, and F is the diagonal of the em-260

pirical Fisher matrix (Pascanu and Bengio, 2014).261

Here, F IFA
i denotes how important the i-th param-262

eter θIFAi is to the instruction-following alignment.263

Note that we can replace LPPO with other loss264

functions, such as LDPO, which can align LLMs265

with human preferences.266

Modified EWC for LLMs. However, the orig-267

inal EWC introduces a large computational over-268

head on the alignment training. This is because es-269

timating F IFA
i requires the LLM to be additionally270

trained multiple times on the whole training set (see271

Appendix B). To mitigate this problem, we redesign272

this estimation approach, and use the amount of pa-273

rameter changes before and after model training274

to compute the F . Furthermore, considering that275

LLMs typically have a large number of parame-276

ters and the size of the F will be enormous, we277

attempt to implement EWC at the granularity of278

parameter units. Specifically, we redefine F as a279

numerical value, with F IFA
i representing how im-280

portance of the parameter unit θIFAi as a whole to281

the instruction-following alignment. This redefined282

F can be given by:283

F IFA
i = Fmax ×

eC
IFA
i∑

i e
CIFA

i

(6)284

where Fmax is the maximum value of F . CIFA
i285

denotes the amount of parameter θi changes before286

and after instruction-following alignment training287

for the LLM, written as:288

CIFA
i =

1

|θi|

|θi|∑
j=1

(θbeforei,j − θIFAi,j )2 (7)289

Algorithm 1 Hybrid Alignment Training
Input: the pre-trained LLM M; the instruction-following

alignment training dataset DIFA; the human-preference
alignment training dataset DHPA

Output: the aligned LLM M;
1: divide DIFA and DHPA into N subsets respectively;
2: for n = 1 to N do
3: if n==1 then
4: train M on first subset of DIFA via Eq. 2;
5: else
6: compute the FHPA via Eq. 9;
7: train M on n-th subset of DIFA via Eq. 8;
8: end if
9: compute the F IFA via Eq. 6;

10: train M on n-th subset of DHPA via Eq. 5;
11: end for
12: return M

where j is the index corresponding to each neu- 290

ron within a parameter, |θi| is the number of neu- 291

rons contained in the parameter θi, and θbefore is 292

the parameter set of the LLM before instruction- 293

following alignment training. 294

4.3 EWC for Alternating Alignment 295

We apply EWC on a global scale during alternate 296

alignment training. Specifically, we add the mod- 297

ified EWC not only when learning each divided 298

subset from DHPA as described in Section 4.2, but 299

also when learning each divided subset from DIFA. 300

The motivation is that the instruction-following 301

alignment can likewise lead to an optimization con- 302

flict with human-preference alignment. LIFA can 303

be induced by: 304

LIFA = LMLE +
∑
i

λ

2
FHPA
i (θi − θHPA

i )2 (8) 305

where θHPA is the parameters of the LLM trained 306

by human-preference alignment. Here, similar to 307

F IFA
i , FHPA

i can be computed by: 308

FHPA
i = Fmax ×

eC
HPA
i∑

i e
CHPA

i

(9) 309

where CHPA
i denotes the amount of parameter θi 310

changes before and after human-preference align- 311

ment training for the LLM. It can be computed via 312

Eq. 7. Note that when learning the first subset 313

D1
IFA, since the LLM has not yet been trained with 314

human preferences, we only employ the LMLE. 315

In the process of alternating alignment training, 316

learning a new subset from one alignment training 317

dataset can produce optimization conflicts. These 318

conflicts arise not only with the closest subset from 319

another alignment training dataset but also with 320
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all the previous subsets within this dataset. Thus,321

when estimating F , we consider the parameter322

changes resulting from all previous subsets in an-323

other alignment training dataset. To this end, we324

replace the CIFA
i and CHPA

i in Eqs. 8 and 5 with ac-325

cumulated parameter changes ACIFA
i and ACHPA

i326

from all previous subsets in DIFA and DHPA, re-327

spectively. Here, when learning from n-th subset,328

we compute ACIFA
i,n and ACHPA

i,n by:329

ACIFA
i,n =

n∑
k=1

CIFA
i,k , ACHPA

i,n =
n∑

k=1

CHPA
i,k (10)330

where CIFA
i,k and CHPA

i,k are the amount of parameter331

changes produced at learning k-th subset in DIFA332

and DHPA, respectively. The process of our HBAT333

is also described in Algorithm 1.334

5 Experimental Setup335

We evaluated HBAT on summarization and dia-336

logue tasks based on the commonly used LLaMA2-337

7B and LLaMA2-13B models.338

5.1 Datasets339

The datasets used for each task are as follows:340

Summarization. We used the same dataset as341

Stiennon et al. (2020), which is a filtered version1342

of the TL;DR dataset (Völske et al., 2017). The343

filtered training set consists of 120k Reddit posts344

with accompanying summaries. For instruction-345

following training and human-preference align-346

ment training, we used all posts in a filtered training347

set, respectively. The filtered test set and validation348

set contain 6,553 posts and 6,447 posts respectively,349

which would result in a huge computational cost350

when used on a large scale. Thus, we randomly351

selected 10% of posts from them as a test set and352

a validation set in our experiments, respectively.353

For training reward models, we employed the open-354

source 92.9k summary comparisons2.355

Dialogue. We conducted experiments on the Al-356

paca data (Taori et al., 2023a) which contains357

52k training samples. Here, we employed the358

sliced data splits3 released by AlpacaFarm (Dubois359

1https://github.com/openai/
summarize-from-feedback

2https://huggingface.co/datasets/
openai/summarize_from_feedback

3https://huggingface.co/datasets/
tatsu-lab/alpaca_farm

et al., 2023) to conduct instruction-following align- 360

ment training, reward model training, and human- 361

preference alignment training. Note that we used 362

the human preferences rather than the simulated 363

preferences to train our reward models. In the eval- 364

uation, we employed the AlpacaFarm evaluation set 365

which consists of 805 instructions. We randomly 366

select 200 instructions from them as our validation 367

set and the rest as our test set. 368

5.2 Settings 369

We trained reward models with the ranking loss 370

for all tasks, following Stiennon et al. (2020). For 371

instruction-following alignment training, we em- 372

ployed the cross-entropy loss on batches of prompts 373

concatenated with responses, computing the loss 374

only on the response tokens. For human-preference 375

alignment training, we used PPO and DPO as our 376

base algorithms. We followed an existing PPO im- 377

plementation in trlX4 for training the LLM. For 378

HBAT, we set the number of dataset splits to 2 and 379

10 for summarization and dialogue tasks, respec- 380

tively. Additionally, we employed a top-p sampling 381

strategy for generation, where the temperature and 382

p were set to 0.75 and 0.95, respectively, values 383

that are commonly used in real-world applications. 384

More training details are shown in Appendix A. 385

5.3 Evaluation Metrics 386

For the summarization task, we measured the sum- 387

mary quality by computing ROUGE (Lin, 2004) 388

and BARTScore (Yuan et al., 2021), respectively. 389

For the dialogue task, we measured the response 390

quality with PandaLM (Wang et al., 2023d) which 391

can distinguish the superior model from some 392

LLMs. To further evaluate the performance of the 393

model, we employed GPT-4 as a proxy for human 394

evaluation of summary and response quality in the 395

dialogue and summarization tasks, where the used 396

evaluation prompts were the same as in Rafailov 397

et al. (2023). We used reference summaries and re- 398

sponses in the test set as the baseline. Additionally, 399

following Stiennon et al. (2020)’s work, we evalu- 400

ated the model by computing the reward scores of 401

test sets via our reward models. 402

5.4 Baselines 403

Our baselines are the standard two-stage align- 404

ment training (referred to as RLHF/DPO) and the 405

commonly used instruction-following alignment 406

4https://github.com/CarperAI/trlx

5
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Method #Param PPO DPO Summarization Dialogue

ROUGE-L BS Reward Win PandaLM Reward Win

Based on LLaMA2-7B Model

SFT 7B 22.60 -5.46 3.72 53.20 54.76 -6.79 43.49

RLHF 7B ✓ 25.85 -4.27 4.43 63.80 69.79 -5.81 55.63
RLHF+pt 7B ✓ 22.25 -5.64 3.74 56.26 53.52 -7.09 54.18
SFT+ppo 7B ✓ 13.75 -5.78 2.40 18.91 45.32 -8.60 42.25
HBAT-Freeze 7B ✓ 25.33 -4.28 5.26 64.79 69.91 -5.91 56.19
HBAT (Ours) 7B ✓ 26.18 -3.82 5.74 72.52 70.88 -5.37 57.12

DPO 7B ✓ 22.96 -5.13 4.27 61.37 70.74 -5.72 54.23
HBAT-Freeze 7B ✓ 23.01 -5.05 4.45 64.18 68.78 -5.41 56.95
HBAT (Ours) 7B ✓ 23.14 -4.18 4.95 70.58 74.78 -5.22 58.10

Based on LLaMA2-13B Model

SFT 13B 23.27 -5.12 4.01 57.91 62.16 -6.32 46.11

RLHF 13B ✓ 24.51 -3.96 5.55 71.67 72.21 -5.65 61.16
RLHF+pt 13B ✓ 22.92 -5.49 3.97 64.42 63.67 -6.97 54.45
SFT+ppo 13B ✓ 13.84 -5.97 2.53 28.97 54.00 -7.93 43.12
HBAT-Freeze 13B ✓ 25.80 -3.63 6.18 77.22 71.31 -5.49 56.37
HBAT (Ours) 13B ✓ 26.77 -3.51 6.41 78.81 72.83 -5.11 62.32

DPO 13B ✓ 23.02 -5.39 4.55 69.40 75.00 -5.07 64.31
HBAT-Freeze 13B ✓ 23.10 -5.08 4.85 71.44 76.87 -5.01 65.62
HBAT (Ours) 13B ✓ 24.12 -4.05 5.40 74.92 77.79 -4.78 67.45

Table 1: Results on summarization and dialogue tasks. The best results for each group are in bold. The “BS” and
“Win” columns report the BARTScore and the win rate as assessed by GPT-4, respectively. The “PPO” and “DPO”
columns denote that we employ PPO and DPO during human-preference alignment training, respectively.

training (referred to as SFT). Furthermore, we407

compare the proposed HBAT with commonly used408

multi-objective optimization methods, including409

adding a pre-training loss in the human-preference410

alignment training (RLHF+pt) (Ouyang et al.,411

2022) and adding a human-preference alignment412

loss in the instruction-following alignment training413

(SFT+ppo) (Wang et al., 2023a). To evaluate the414

effectiveness of EWC, we also chose the HBAT-415

Freeze method as a baseline, where we directly416

froze important parameters instead of EWC.417

5.5 Experimental Results418

Table 1 displays the experimental results on sum-419

marization and dialogue tasks.420

Results of Summarization. First, compared421

with the traditional two-stage alignment training422

and instruction-following alignment training, the423

proposed HBAT can achieve optimal results on both424

of LLaMA2-7B and LLaMA2-13B. Notably, HBAT425

outperforms RLHF by 7.14 points on the GPT-4426

win rate when using PPO on the LLaMA2-13B427

model. Second, compared with multi-task learning-428

based methods, including RLHF+pt and SFT+ppo,429

we can see that HBAT has significant improvements 430

on all evaluation metrics. For instance, compared 431

to RLHF+pt, HBAT yields a +3.93 ROUGE-L im- 432

provement on the LLaMA2-7B model. Also, we 433

see that the multi-objective optimization method 434

can hurt alignment, e.g., RLHF+pt loses 0.69 Re- 435

ward points on the LLaMA2-7B model. The 436

phenomenon aligns with observation reported in 437

Ouyang et al. (2022)’s work. One potential ex- 438

planation can be that while these multi-objective 439

optimization methods achieve optimization of these 440

objectives simultaneously, they still suffer from se- 441

rious optimization conflict (Zhang and Yang, 2021). 442

Third, when using DPO during human-preference 443

alignment training, our HBAT is consistently better 444

than all baselines. For a LLaMA2-13B model, it 445

obtains a GPT-4 win rate of 74.92. Additionally, 446

as the comparison of the “ROUGE-L”, “BS”, and 447

“Reward” columns in Table 1, we observe that the 448

same phenomenon with “Win” that HBAT can also 449

outperform all baselines by a large margin. 450

Results of Dialogue. We also evaluated the pro- 451

posed HBAT on the dialogue task. Similarly, when 452

using PPO during human-preference alignment 453
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Method PandaLM Reward Win

SFT 43.64 -6.80 43.08
DPO 69.97 -5.68 53.80

HBAT 75.76 -5.11 60.10
w/o EWC 67.53 -5.76 54.75
w/o Alternating Alignment 70.50 -5.26 56.92

Table 2: Ablation studies on the components of HBAT.
We report the scores for the dialogue validation set.

Category SFT DPO HBAT

Generic 8.28 8.22 (+0.06) 9.00 (+0.72)
Knowledge 8.00 9.20 (+1.20) 9.21 (+1.21)
Roleplay 8.17 7.71 (−0.46) 8.21 (+0.04)
Common-sense 8.29 8.68 (+0.39) 8.78 (+0.49)
Fermi 3.13 2.78 (−0.35) 5.12 (+1.99)
Counterfactual 5.57 5.23 (−0.34) 6.14 (+0.57)
Coding 3.00 4.00 (+1.00) 5.12 (+2.21)
Math 2.50 1.33 (−1.17) 2.67 (+0.17)
Writing 6.67 8.33 (+1.66) 8.50 (+1.83)

Table 3: Vicuna’s scores evaluated by GPT-4. We report
the difference with SFT’s scores in parentheses.

training, we can observe that HBAT outperforms454

RLHF by a large margin (e.g., 2.21 PandaLM and455

0.54 Reward benefits on the LLaMA2-13B model).456

However, different from the summarization task,457

we find that DPO can achieve better performance458

than PPO on the dialogue task. For instance, when459

using LLaMA2-13B, HBAT with DPO can outper-460

form PPO by a margin of 5.13 points on the GPT-4461

win rate. We assume that this is attributed to the re-462

ward model quality. To verify this assumption, we463

conduct tests on the employed reward models and464

find a significant difference in accuracy between465

the two tasks: the accuracy of the reward model for466

the summarization task significantly exceeds that467

of the dialogue task, achieving 0.75 compared to468

0.65, respectively.469

Furthermore, compared with HBAT-Freeze, we470

see that HBAT achieves better performance on all471

tasks. It demonstrates that freezing specific param-472

eters is inferior to constraining specific parameters.473

We attribute this to the fact that the freezing oper-474

ation reduces the amount of learnable parameters,475

which imposes a hurdle to learn new knowledge.476

5.6 Ablation Studies477

In this section, we present detailed ablation stud-478

ies to explore the effects of EWC and alternating479

alignment with DPO on the LLaMA2-7B model.480

The experiments are conducted on the dialogue481

dataset, and the impacts of removing each method482
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Figure 2: Performance of HBAT with different number
of dataset splits (i.e., N ) and the maximum values of F
(i.e., Fmax) on the dialogue validation set.

are thoroughly examined. The results are summa- 483

rized in Table 2. From the results, we see that the 484

modified EWC can significantly improve response 485

quality. Notably, HBAT obtains a +5.35 points im- 486

provement on GPT-4 win rate with the modified 487

EWC. Additionally, the results indicate a signifi- 488

cant dependency of our HBAT on the alternating 489

alignment. The absence of this method results in 490

HBAT fails a well-performed dialogue model. 491

5.7 Analysis 492

Limitations of Two-stage Alignment Training. 493

To test the effect of human-preference alignment on 494

instruction-following alignment, we report 9 cate- 495

gories of prompt scores in Vicuna benchmark (Chi- 496

ang et al., 2023) respectively, where the scores are 497

evaluated by GPT-4 following Zheng et al. (2023)’s 498

work. The results are presented in Table 3. From 499

the results, we can observe that human-preference 500

alignment sometimes hurts the performance of an 501

LLM trained by instruction-following alignment. 502

Based on this observation, we have the following 503

suggestion: the LLMs could achieve superior align- 504

ment if it retains all knowledge learned from one 505

alignment while learning from another. We also 506

see that HBAT can achieve this by preventing opti- 507

mization objective conflicts. 508

Effect of the Number of Dataset Splits. Based 509

on the LLaMA2-7B model, we investigate the im- 510

pact of dividing the dataset into different numbers 511

of splits. As shown in Figure 2 (top), we swept over 512

different numbers: {1, 2, 3, 4, 5}. From the results, 513

we find that excessive dataset splits can hurt the per- 514
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Figure 3: GPT-4 win rates for different sampling tem-
peratures on the LLaMA2-7B model. For each dialogue
model, we conduct the generation three times and report
the mean score of these generated responses.

formance of the aligned LLM. We conjecture the515

underlying reason is that when datasets are heav-516

ily divided, each subset does not have sufficient517

samples for training.518

Effect of Fmax on Performance. The maximum519

value of F , Fmax, is a key factor that controls the520

strength of parameter constraints. We conduct ex-521

periments to study the impact of setting different522

values of Fmax: {1, 50, 100, 150, 200}. The corre-523

sponding Reward and PandaLM scores are listed524

in Figure 2 (bottom). From the results, we see that525

the use of different values of Fmax can result in dif-526

ferent performance gains. We find that the optimal527

Fmax is 50, and this setting allows for appropriate528

control over parameter constraints. We conduct529

similar experiments to determine the optimal val-530

ues for N and Fmax for the summarization task,531

which are found to be 10 and 50 respectively.532

Performance on Different Temperature Settings.533

In real-world applications, various temperature set-534

tings are employed in the process of LLM gener-535

ation according to specific scenarios. To this end,536

we compute the PandaLM scores under different537

temperature settings on the dialogue task to provide538

a comprehensive evaluation. The results are shown539

in Figure 3. From the results, we can observe that540

HBAT exceeds DPO’s best-case performance on the541

dialogue task while being more robust to changes542

in the temperature setting.543

Comparison of Training Process on Different544

Methods. We analyze the training process of our545

HBAT on the dialogue task. Figure 4 shows the Pan-546

daLM on the validation set of the LLMs aligned by547

HBAT and the traditional two-stage alignment meth-548

ods. We observe that alignment training with HBAT549

50 250 450 650 850

40.0

60.0

80.0

Training Step

Pa
nd

aL
M

SFT
PPO
DPO

HBAT-PPO
HBAT-DPO

Figure 4: PandaLM score over training steps for the
HBAT and traditional two-stage alignment training.

Method
Summarization Dialogue

BS Win PandaLM Win

PPO -4.27 63.80 69.79 55.63

HBAT -3.82 72.52 70.88 61.45
ESRL -4.01 65.90 70.33 58.54
HBAT+ESRL -3.65 75.11 72.91 62.56

Table 4: Performance on summarization and dialogue
tasks, using the LLaMA2-7B model aligned with HBAT
and ESRL. We implemented ESRL on our test bed with
the same setups as in Wang et al. (2023b).

improves performance more efficiently than that 550

with the two-stage method. Furthermore, when us- 551

ing PPO during human-preference alignment train- 552

ing, we can observe that HBAT can mitigate reward 553

model overoptimization (Gao et al., 2023). 554

Integration of Efficient Sampling Method. Our 555

HBAT is orthogonal to the other mainstream meth- 556

ods for improving LLM alignment. Here, we take 557

ESRL, an efficient sampling-based reinforcement 558

learning method (Wang et al., 2023b), as an in- 559

stance. Specifically, we incorporate ESRL into 560

the PPO algorithm inside our HBAT. In ESRL, 561

we employ the predicted reward score to estimate 562

model capability. Table 4 shows that the integrated 563

method achieves superior performance. 564

See more analysis in Appendix B. 565

6 Conclusion 566

In this paper, we focus on solving the optimiza- 567

tion conflict of alignment training in LLMs. We 568

have proposed a hybrid alignment training (HBAT) 569

via the alternating alignment and modified elastic 570

weight consolidation methods. Our extensive ex- 571

periments show that our HBAT can significantly 572

outperform all baselines. 573
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7 Limitations574

In this section, we discuss some limitations of this575

work as follows:576

• We did not verify HBAT in other NLP tasks.577

There are so many NLP tasks that we cannot578

verify our HBAT one by one. Thus, we take579

summarization and dialogue as instances in580

this paper. The summarization is a commonly581

used task for verifying the effectiveness of582

LLM alignment methods. Additionally, in the583

dialogue task, the Alpaca dataset we used con-584

sists of many NLP tasks (Taori et al., 2023b),585

including machine translation, sentiment clas-586

sification, and text simplification.587

• We did not attempt more preference-alignment588

methods. In this work, we verify the effective-589

ness of HBAT based on representative PPO,590

DPO, and ESRL, i.e., it can offer a refine-591

ment of the collaboration among instruction-592

following alignment and human-preference593

alignment. Although there are some other594

preference-alignment methods that we did not595

experiment with, such as RRHF (Yuan et al.,596

2023), RAFT (Dong et al., 2023), and RL4F597

(Akyürek et al., 2023), HBAT is a general ap-598

proach and can be easily extended to these.599
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A Experimental Details792

A.1 Setups793

Instruction-Following Alignment. We set the794

learning rate, batch size, and training epoch to 1e-795

5, 64, and 3. We did not conduct tuning of these796

hyper-parameters specific to the task and the model,797

as our experiments with other hyper-parameters did798

not yield a significant performance improvement.799

Reward Model Training. We initialized the800

model using the LLM trained by instruction-801

following alignment training. For all tasks, we802

trained the reward model for 2 epochs with a learn-803

ing rate of 1e-5 and a batch size of 64.804

PPO Training. For all tasks, the learning rate805

was set to 1e-5 and 5e-6 for the policy model and806

the value model, respectively. We settled on a batch807

size of 64 for each PPO step, which consisted of 1808

epoch of gradient steps and 4 epochs of mini-batch809

PPO steps. To address the overoptimization issue810

as described in Gao et al. (2023)’s work, we imple-811

mented a strategy that saves checkpoints at regular812

intervals during the training process. Specifically,813

we evaluated checkpoints at intervals of 500 steps814

for the summarization task and 200 steps for the815

dialogue task against their respective validation816

sets and selected the optimal checkpoint with the817

best Reward score. Additionally, we employed a818

cold-start trick for PPO, to alleviate the damage819

caused by the inaccurate estimation of the early820

value model. Specifically, we updated only the821

value model and did not update the policy model822

during the first 50 steps of PPO training. The se-823

tups of advantage estimation and KL regularizer824

coefficient were the same as in trlX.825

DPO Training. We used a batch size of 64, a826

learning rate of 1e-6, and a training epoch of 2827

for DPO training. Apart from these parameters,828

the rest of our training setups were the same as in829

Rafailov et al. (2023).830

HBAT. Fmax was set to 50 and 100 on the sum-831

marization task and the dialogue task, respectively.832

λ and N were set 1 and 10 for all tasks. After833

training each subset, we evaluated the model’s per-834

formance with the validation set. The model that835

has the highest Reward score was selected as the836

optimal one. Concurrently, we saved the value837

model after learning from a subset of the human-838

preference dataset. This saved model was utilized839

to initialize the value model for subsequent learning840

of a new subset of the human-preference dataset. 841

Furthermore, in HBAT-Freeze, we froze the top 842

20% important parameters based on the computed 843

parameter importance scores. 844

A.2 Evaluation 845

PandaLM. In this section, we describe how we 846

compute the PandaLM score. Given the pairwise 847

test responses {(x0, r0a, r0b ), · · · , (xT , rTa , rTb )}, 848

where T is the number of the test set, PandaLM 849

can give the preference of each pairwise response, 850

including Pa, Pb, and Tie. Here, Pa denotes re- 851

sponse ra is better than response rb, Pb denotes 852

response rb is worse than response rb, while Tie 853

denotes a tie between response ra and response 854

rb. We can compute the PandaLM score for the re- 855

sponse ra model and the response rb model through 856

the given preferences: 857

Sa
PandaLM =

Count(Pa)

T − Count(Tie)
(11) 858

Sb
PandaLM =

Count(Pb)

T − Count(Tie)
(12) 859

where Count(·) denotes the count of the specified 860

preference. 861

GPT-4 Prompts for Win Rates. As shown in 862

Figure 5, The prompts of GPT-4 evaluation are the 863

same as in Rafailov et al. (2023). 864

A.3 Dataset Statistics 865

The statistical information on the utilized datasets 866

is summarized in Table 5. 867

Task
Training

Stage
Train Valid Test

Summarization
IFA 123,169 645 655

Reward 92,858 1,000 2,000
HPA 123,169 645 655

Dialogue
IFA 10,000 200 605

Reward 9,591 100 200
HPA 20,000 200 605

Table 5: Statistical information on summarization and
dialogue datasets. IFA: instruction-following align-
ment; Reward: training a reward model; HPA: human-
preference alignment.

B More Analysis 868

Fisher Information Matrix This original EWC 869

employs the Fisher information matrix, denoted as 870

Fθ, to measure information contained in model pa- 871

rameters θ after learning a task (Kirkpatrick et al., 872
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Which of the following summaries does a better job
of summarizing the most important points in the
given forum post, without including unimportant or
irrelevant details? A good summary is both precise and
concise.

Post:
<post>

Summary A:
<Summary A>

Summary B:
<Summary B>

FIRST provide a one-sentence comparison of the two
summaries,explaining which you prefer and why. SECOND,
on a new line. state only "A" or "B" to indicate your
choice. Your response should use the format:

Comparison: <one-sentence comparison and explanation>

Preferred: < "A" or "B">

(a) Summarization GPT-4 win rate prompt

For the following query to a chatbot, which response is
more helpful?

Query: <the user query>

Response A:

<either the test method or baseline>

Response B:

<the other response>

FIRST provide a one-sentence comparison of the two
responses and explain which you feel is more helpful.
SECOND, on a new line, state only "A" or "B" to indicate
which response is more helpful. Your response should
usethe format:

Comparison: <one-sentence comparison and explanation>

More helpful: < "A" or "B">

(b) Dialogue GPT-4 win rate prompt

Figure 5: Prompt templates of computing GPT-4 win rates for summarization and dialogue tasks.

Mtehod Training Memory Win

DPO 1.00× 52.77G 54.23

HBAT 1.26× 61.13G 58.10
HBAT w/ original EWC 1.64× 73.55G 58.32

Table 6: The comparison of efficiency and performance
between the modified EWC and the original EWC. We
test the training efficiency and memory consumption
on eight A800 GPUs. Time: training time; Memory:
maximum memory consumption.

2017). The Fisher information represents the ex-873

pected information that an observation can provide874

about an unknown parameter (Pascanu and Bengio,875

2014). It can be estimated via first-order derivatives876

of the generative probability pθ(y|x), as described877

in Eq. 1:878

Fθ = E

[(
∂ log pθ(y|x)

∂θ

)2 ∣∣∣∣θ
]

(13)879

=
1

|D|
∑

(x,y)∈D

(
∂ log pθ(y|x)

∂θ

)2

(14)880

where D is the training dataset. When employing881

this method in the context of LLM training, esti-882

mating the Fisher information requires computing883

the gradients for each sample within the training884

dataset through a forward propagation and a back885

propagation. Then the gradients of each model pa-886

rameter are summed and divided by the number887

of samples. This process poses two challenges to888

LLM training. The first is that the frequent compu-889

tation of large-scale parameter gradients leads to890

significant computational costs. The second is that891

the size of the information matrix will be huge (the 892

same size as the parameters of the aligned LLM), 893

leading to significant GPU memory consumption. 894

To address these challenges, we propose a modified 895

EWC method (see Section 4.2). 896

We also conduct experiments to compare our 897

modified EWC and original EWC on the dia- 898

logue task. The results are presented in Table 899

6. In terms of training time and memory con- 900

sumption, our modified EWC consistently outper- 901

forms the original EWC. Notably, it can reduce 902

about 23% of training time and 17% of memory 903

consumption. It demonstrates that our modified 904

EWC can be efficiently implemented in alignment 905

training. Furthermore, it shows that our HBAT 906

is capable of handling larger mini-batches, large- 907

scale datasets, larger-sized models, and longer tar- 908

get generation sequence with identical settings on 909

resource-constrained devices. In terms of response 910

quality, our modified EWC achieves a matched 911

GPT-4 win rate compared to the original EWC. 912
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