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ABSTRACT

We present MORTAR, a system for autonomously evolving game mechanics for
automatic game design. Game mechanics define the rules and interactions that
govern gameplay, and designing them manually is a time-consuming and expert-
driven process. MORTAR combines a quality-diversity algorithm with a large
language model to explore a diverse set of mechanics, which are evaluated by
synthesising complete games that incorporate both evolved mechanics and those
drawn from an archive. The mechanics are evaluated by composing complete
games through a tree search procedure, where the resulting games are evaluated
by their ability to preserve a skill-based ordering over players—that is, whether
stronger players consistently outperform weaker ones. We assess the mechanics
based on their contribution towards the skill-based ordering score in the game.
We demonstrate that MORTAR produces games that appear diverse and playable,
and mechanics that contribute more towards the skill-based ordering score in the
game. We perform ablation studies to assess the role of each system component
and a user study to evaluate the games based on human feedback.

1 INTRODUCTION

Procedural content generation (PCG) is a well-studied approach in game design, concerned with the
automatic creation of game content such as levels, maps, items and narratives (Shaker et al., 2016;
Liu et al., 2021). PCG serves multiple purposes: enabling runtime content generation in games
such as roguelikes, providing ideation tools for designers, automating the production of repetitive
content, and facilitating research into creativity and design processes. Traditionally, PCG research
has focused on structural aspects of games—particularly level or layout generation (Risi & Togelius,
2020)—where the goal is to produce environments that are coherent, solvable, and varied.

By contrast, comparatively little attention has been paid to the procedural generation of game me-
chanics—the underlying rules for interactions that govern gameplay. Yet mechanics play a central
role in shaping the player experience, determining not just how players act, but what kinds of strate-
gies and emergent behaviours are possible. Designing mechanics is inherently challenging: unlike
levels, which can be evaluated by solvability or novelty, the utility of a mechanic depends on the
dynamics it induces within the context of a game. This makes both generation and evaluation sig-
nificantly harder.

A central premise of this work is that evaluating game mechanics is fundamentally more difficult
than evaluating assets or level layouts. Unlike these forms of content, a mechanic cannot be judged
in isolation—it only gains meaning through the gameplay it enables. A mechanic that appears novel
or complex may still be uninteresting if it does not support skill-based interaction. This insight
motivates our approach: effective automation of mechanic design requires not only a generative
model, but also a principled way to assess a mechanic’s utility in the context of play.

We address this challenge by introducing a mechanic-centric framework for automatic game design.
The central idea is to evolve mechanics not in isolation, but through their contribution to the quality
of full games. Specifically, we evaluate mechanics by constructing complete games around them,
and measuring whether the resulting games induce a skill-based ordering over players of different
capabilities. This allows us to define a concrete notion of usefulness for a mechanic: its contribution
to the overall expressivity and skill gradient of the games in which it appears.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Basic 
game

mechanics

Evolved
mechanic 

+ mechanic 1 
+ mechanic 2

 + mechanic 3 

Evaluation
MCTS

__init__()

step()

reset()

render()

make_game()
Decide which sprites to use.

Generate game

Evolve and
test the
mechanic

Evolved mechanic

Evolved mechanic 
+ mechanic 1

Evolved mechanic 
+ mechanic 1 
+ mechanic 2

Game
mechanics
archive

Select a
mechanic

Calculate
CITS

fitness
score

Evolved
mechanic

Mechanic
1

Mechanic
2

is_terminal()

Generate
and modify
game class

string_map()

important_tiles()

env_dictionary()

Generate 2D string map of the game.

Decide which ones are walkable etc.

Will have all the post processing
functions and will initialise the

game

Initialise the game

Skill-based evaluation of the game.

Mechanics in the node

Rank
correlation

score
becomes the
node value.

Internal workings of one Evaluation MCTS node

Figure 1: A flow diagram of MORTAR

We introduce MORTAR, a system that evolves game mechanics using a quality-diversity algorithm
guided by a large language model (LLM). MORTAR maintains a diverse archive of mechanics, rep-
resented as code snippets, which are mutated and recombined through LLM-driven evolutionary
operators. Each evolved mechanic is evaluated by embedding it into full games constructed via
Monte Carlo Tree Search, which incrementally builds games by composing mechanics from the
archive. These games are evaluated based on their ability to induce a consistent skill-based ranking
over a fixed set of agents. We define a novel fitness measure, which quantifies the contribution of a
mechanic to the final game’s skill-based ordering, inspired by Shapley values (Shapley, 2016).

We demonstrate that MORTAR can evolve a diverse set of game mechanics that contribute to the
quality and playability of the generated games.1 The resulting games exhibit coherent structure,
varied interaction patterns, and meaningful skill gradients. Through ablations, we show that both
the tree-search-based composition and the LLM-driven mutations are critical for generating high-
quality mechanics. Our results highlight the potential for using LLMs not only as generators, but as
evaluators and collaborators in the game design loop.

The system described here is a research prototype for the purposes of understanding how to best
generate complementary game mechanics. However, it could also serve as an ideation tool for game
designers, suggesting new mechanics and mechanic combinations, perhaps in response to designer
input. It is not meant to generate complete games, and aims to empower rather than replace game
designers.

2 METHOD

MORTAR is an evolutionary algorithm for generating game mechanics, where a large language
model (LLM) is used to implement code-level variation operators. A core principle of the method
is that a mechanic’s value lies in the gameplay it enables; mechanics are evaluated not in isolation,
but by the contribution they make to full games. We formalise this through a notion of importance,
which guides the search process.

2.1 EVOLUTION SETUP

MORTAR employs a Quality-Diversity (QD) algorithm, using a fixed 2D archive (as in MAP-
Elites (Mouret & Clune, 2015)) to store and explore diverse game mechanics. We refer to this
structure as the Mechanics Archive. Each mechanic is represented as a Python function belonging
to a game class, and placed in the archive based on two behavioural descriptors:

1Play the generated games at: https://mortar-x3p7.onrender.com/

2
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1. Mechanic Type: A categorical descriptor indicating the gameplay behaviour the mechanic
enables. We define 8 mechanic types (detailed in Section 3), each associated with 10 de-
scriptive category words. To classify an evolved mechanic, we compute similarity scores
between the mechanic’s name and all category words, creating a normalised similarity vec-
tor. The mechanic type is determined by identifying the highest similarity score’s index
and multiplying this index by the score to produce a positional similarity value that serves
as the behavioural descriptor.

2. Code Complexity: Computed using weighted Abstract Syntax Tree (AST) analysis. We
parse the mechanic’s code into an AST representation and calculate complexity as a
weighted sum of function calls, assignments, and return statements. Function calls receive
the highest weight, as mechanisms requiring more function calls exhibit greater complexity.
Assignments are weighted to reflect that additional variables may enable more interesting
behaviours. Return statements contribute to complexity scoring because multiple exit paths
can produce diverse behavioural outcomes.

Mechanics are selected from the archive and modified using several LLM-implemented evolutionary
operators: Mutation adds new functionality to a single mechanic; diversity mutation samples three
mechanics and prompts the LLM to generate a behaviorally distinct variant; crossover merges two
mechanics (selected based on AST similarity) into a functional combination that integrates elements
from both; and compatibility mutation generates mechanics that complement existing ones in a
game, primarily used during game evaluation (see subsequent sections).

2.2 EVALUATING GAME MECHANICS

Each evolved mechanic is represented as a function within a Python class. To prepare it for evalua-
tion, we prompt the LLM to construct the rest of the class around it in a step-by-step fashion, starting
with the init () method to define any required variables and scaffolding, step method to add
actions, reset and render method as needed.

The mechanic is then tested for syntax and runtime errors. If no errors occur, we simulate it in a
static test environment with simple objects and characters for the mechanic to interact with them,
if necessary. A Monte Carlo Tree Search (MCTS) agent is used to interact with the environment,
verifying that the mechanic is functional and non-trivial. Only mechanics that pass both tests proceed
to the usefulness evaluation stage. Failed mechanics are discarded to reduce unnecessary LLM calls.

2.3 AUTOMATED GAME CONSTRUCTION

To evaluate a mechanic’s usefulness, we embed it within a full game. Games are constructed through
MCTS, where the root node is the evolved mechanic, and each expansion adds a new mechanic that
is either sampled from the archive or generated via compatibility mutation. Each path through the
tree represents a particular combination of mechanics; that is, a complete game.

Games are also implemented as Python classes, following a common template with core methods,
such as step, reset, render, move mechanics and preset variables. The LLM is prompted to
modify or add functionality to these methods as needed, in an iterative manner. It is also asked to
define any helper methods or variables required by the mechanics. At the end of this process, the
LLM is prompted to define a win condition and generates a corresponding termination function. It
also selects appropriate tiles from a predefined set, maps them to characters, and generates a 2D
string-based level layout using these mappings. A final function defines which tiles are walkable,
interactive, or character-specific.

The complete game script includes the game class, the tile and map generation functions, and a
preset function that instantiates the full game. Simple postprocessing ensures the map is rectangular,
contains exactly one player, and is free of formatting issues (e.g. whitespace padding).

2.4 EVALUATION OF THE GAME

A central idea in our work is that a game’s quality is revealed through the emergence of a consistent
skill gradient or game depth: a well-designed game should allow players of differing abilities to be
meaningfully distinguished. We implement this by evaluating how well the game ranks a fixed set

3
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of players by skill. This approach allows us to evaluate not just whether a game is playable, but
whether it rewards skill—a more robust signal of design quality.

To assess whether a game rewards skill, we fix a pool of five agents with varying ability levels,
inspired by Nielsen et al. (2015). These include three MCTS agents with increasing numbers of
rollouts, a random agent, and an agent that takes no actions.2 This defines a clear expected skill
ordering: the strongest agent should be the MCTS variant with the most rollouts, followed by the
medium and low rollout agents, then the random agent, and finally the no-op agent. The outcome
rank is induced by playing the game and recording empirical win rates. To quantify alignment
between the expected and outcome rankings, we compute Kendall’s Tau (τ ), a standard measure of
rank correlation: τ = C−D

p(p−1)
2

. Here, C and D are the number of concordant and discordant pairs,

respectively, and p is the number of players (five in this case). Concordance occurs when the relative
ranking between two players agrees between the expected and observed orders; discordance occurs
when they disagree. A value of 1 indicates perfect alignment with the expected ranking, 0 indicates
no correlation, and −1 reflects a completely reversed order. We consider a game unplayable if
τ = −1.

While τ provides a global measure of game quality, it reveals nothing about the source of that
quality. To address this, we introduce Constrained Importance Through Search (CITS), a scoring
method to measure each mechanic’s marginal contribution to the emergence of a skill gradient.
Inspired by Shapley values Shapley (2016), CITS estimates how much each mechanic contributed
to the final game’s τ score. However, computing full Shapley values would require evaluating every
subset of mechanics–exponential in the number of mechanics. Instead, CITS is defined over the
exploration tree constructed during generation, making it computationally tractable and grounded in
actual gameplay evaluations. Formally, the CITS score for mechanic i is:

CITSi =
1

|Ni|
∑
n∈Ni

ϕ
(n)
i ,

where Ni = {n ∈ T : i ∈ Mn, n ̸= nroot} is the set of non-root nodes in the tree T that contain
mechanic i, and Mn is the mechanic set at node n. The contribution ϕ

(n)
i is computed using the

standard Shapley formula over the restricted set of explored subsets:

ϕ
(n)
i =

∑
S⊆Mn\{i}

|S|! · (|Mn| − |S| − 1)!

|Mn|!
·∆(n)

i (S),

where the marginal value term is defined as the difference in value when adding mechanic i to the
subset S:

∆
(n)
i (S) = vT (S ∪ {i})− vT (S).

Finally, the value function vT (S) returns the τm score for the node m with exactly mechanics S, if
such a node exists in the tree; otherwise, it is defined to be 0:

vT (S) =

{
τm if ∃m ∈ T s.t. Mm = S

0 otherwise

This search-constrained Shapley approach allows us to assess a mechanic’s value in context, measur-
ing its contribution within actual, discovered game designs rather than hypothetical combinations.
As such, the CITS score provides a principled, interpretable, and efficient mechanism for attributing
gameplay quality to individual mechanics.

2Any agents with a clear capability ordering would suffice, such as heuristic agents with different search
depths, or reinforcement learning agents with varying training budgets.
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Generation 1 Generation 20

Generation 30 Generation 40 Generation 50

Generation 10

Figure 2: Coverage of game mechanic archive over a run.

3 EXPERIMENT SETUP

MORTAR employs a 2D Quality-Diversity (QD) archive with dimensions for mechanic type (0–1.0)
and code complexity (4–40), forming a 13 × 13 grid. The first dimension categorises mechanics into
nine types: movement, interaction, combat, progression, environment, puzzle, resource management,
exploration, time manipulation. To categorise a mechanic, we use DistilBERT (Sanh et al., 2019)
embeddings to compute the similarity between mechanic function names and associated category
words (detailed in the Appendix C). The complexity dimension and archive ranges were determined
through experimentation to maximise archive coverage.

The system operates with a batch size of 10, selecting individuals from the archive and applying evo-
lutionary operators in parallel. Operator selection probabilities are 50% for diversity mutation, 30%
for mutation, and 20% for crossover. Diversity mutation samples three mechanics, while crossover
selects pairs based on AST similarity. The static environment used to evaluate the evolved mechanic
in isolation can be found in the Appendix A.

For game construction, we use MCTS with 20 iterations, where each expansion adds one mechanic
per node (maximum 3 children per node). Unlike traditional MCTS, we do not simulate; instead,
we evaluate the complete game formed by all mechanics on the path from root to the newly ex-
panded node, then backpropagate before proceeding to the next expansion. Compatibility mutation
generates new mechanics within nodes, with a 50% probability of creating novel mechanics versus
selecting from the existing archive. All LLM operations use GPT-4o-mini for both evolution and
game creation. Skill assessment employs five agents with a clear capability ordering: MCTS vari-
ants with 100,000, 10,000, and 1,000 iterations, plus random and no-action agents for Kendall’s Tau
rank correlation computation.

We conduct extensive ablation studies, replacing the MCTS procedure with three alternatives: ran-
dom mechanic selection, LLM-prompted selection, and greedy fitness-based selection. Each method
generates games with 1-4 mechanics to compute CITS scores. We then conduct another ablation
with a Sokoban (Murase et al., 1996) level as the initial game. All experiments are averaged over
five runs due to computational constraints (approximately $30–50 per run with GPT-4o-mini).

Our evaluation metrics assess MORTAR’s progression through multiple measures. The Quality-
Diversity (QD) Score sums all fitness values to indicate improving mechanic quality. Accumulated
Rank Correlation totals Kendall’s τ scores across all tree nodes. We track both maximum and mean
fitness scores via CITS evaluation, monitor the number of elites filling the archive, and calculate
game creation success rate as the proportion of functional games among all generated games.

5
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Furthermore, a user study is conducted to get feedback to known if the games are actually interesting
or not. We provide 6 generated games, and pair them together according to their distribution. We
then ask the user to play the games and mark which one of the two is more interesting, novel, fun to
play, and easy to understand. We also give them an option of Neither, which is very important to us
as it will let us know if the games are actually meaningful.

4 RESULTS

In this section, we analyse results from the complete MORTAR pipeline, ablation and user studies.
The QD score, which sums fitnesses of all archive individuals, demonstrates MORTAR’s ability
to evolve increasingly better mechanics over time (Figure 3a). Figure 3b reveals complementary
patterns: mean fitness (CITS score) increases gradually across generations while maximum fitness
shows stepwise improvements, indicating MORTAR’s capacity for continued mechanic discovery.
Figure 3c provides additional evidence of progression through the accumulative Kendall’s τ rank
correlation score per Evaluation MCTS tree, showing that MORTAR increasingly identifies engaging
games that exhibit meaningful skill-based player rankings across generations.

(a) QD score
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(b) Mean and maximum CITS score, representing fit-
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Figure 3: Performance metrics over evolutionary generations.

Table 1 compares MORTAR with alternative approaches to the MCTS evaluation component, our
core methodological contribution. MORTAR demonstrates superior evolvability through the highest
archive coverage and consistently achieves the best QD score, maximum CITS score, and mean
CITS score, indicating its ability to discover higher-quality mechanics. While Greedy Search
achieves a marginally better game creation success rate—likely because it always selects the most
fit mechanics—this suggests that highly fit mechanics have greater potential for generating playable
games. However, MORTAR’s comprehensive performance across multiple metrics demonstrates the
effectiveness of its tree search-based composition approach for mechanic evolution. Furthermore,
Sokoban Initialisation suggests that the MORTAR is sensitive to the initial mechanics and game
layout, which impacts evolvability, as evidenced by the very low number of elites in this case.
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Table 1: Comparison of MORTAR with alternative mechanic selection strategies: LLM-based selec-
tion, random selection, and greedy fitness-based selection across quality-diversity metrics.

Method No. of elites ↑ QD score ↑ Max CITS ↑ Mean CITS ↑ Games success rate ↑
Evaluation MCTS (ours) 155 ± 4.51 31.18 ± 8.10 0.59 ± 0.11 0.20 ± 0.05 16.97 ± 4.64
LLM Selection 141 ± 5.83 17.64 ± 4.91 0.27 ± 0.09 0.13 ± 0.06 11.69 ± 5.14
Random Selection 144 ± 9.10 9.86 ± 6.71 0.14 ± 0.08 0.06 ± 0.04 11.77 ± 4.19
Greedy Selection 139 ± 5.15 25.37 ± 2.81 0.51 ± 0.06 0.18 ± 0.13 18.24 ± 1.19
Sokoban Initialisation 110 ± 10.52 15.19 ± 3.12 0.45 ± 0.12 0.19 ± 0.07 15.11 ± 2.83

Figures 4 and 5 showcase two games generated by MORTAR, demonstrating diversity in level lay-
outs, win conditions, and mechanics. AllyCraft (Figure 4) presents a challenging strategic experience
where players control both their character and summoned allies, with escalating difficulty requiring
versatile tactics. Effective strategies involve summoning allies strategically and eliminating enemies
in optimal sequences. This game achieves a Kendall’s τ of 0.8, maintaining clear agent rankings
despite low overall rewards, with only minor rank switching between the do-nothing and random
agents due to negative scoring.

By contrast, TreasureHunt (Figure 5) exhibits a Kendall’s τ of 0.4, showing significant rank dis-
tortion except for the top-performing agent. This lower correlation suggests reduced strategic
depth—once players discover the optimal path, the game loses replay value. AllyCraft’s higher
τ score correlates with sustained engagement through multiple viable strategies, while Treasure-
Hunt’s deterministic solution path limits long-term interest. Both games incorporate sophisticated
mechanics, including ally summoning, multi-unit control, and pathfinding algorithms. The complete
evolved code for these mechanics is provided in Appendix B.

Figure 4: AllyCraft gameplay sequence: (Top left) Initial state showing black-marked enemies to
defeat and items to collect for rewards. (Top centre) Player spawns and controls allies as additional
units. (Top right) Allies collect items while enemies advance each turn. (Bottom left) One ally is
defeated by an enemy while simultaneously eliminating an opposing unit. (Bottom centre) Player
and remaining ally attempt coordinated attack but are overwhelmed by enemies, resulting in a loss.

Figure 5: TreasureHunt gameplay sequence: (Left) Initial game state showing treasure objective in
a capture-the-flag style layout. (Centre) Player spawns at the top-left corner (blue marker) while
enemies begins pursuit. (Right) Final state showing close competition between player and red-
marked enemy, with victory determined by action processing order. The game features an evolved
A* pathfinding algorithm for enemy movement (code in Appendix B).

7
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4.1 USER STUDY

To determine whether the quantitative metrics correlate with human preferences, we conducted a
small comparative user study with 10 participants who evaluated 6 games generated by MORTAR
across five dimensions: interestingness, novelty, frustration level, fun factor, and ease of under-
standing. Table 2 presents the results alongside each game’s Kendall’s τ score for comparison with
MORTAR’s automated evaluation.

The study compared three pairs of games: TreasureHunt versus HuntBreakout (capture-the-flag vari-
ants where HuntBreakout adds wall-breaking mechanics), AllyCraft versus CrystalCavernsCom-
mander (RPG-style games differing in ally control mechanisms), and MagneticProwess versus
HeroHunt (Sokoban-based games with magnetic pulling and enemy combat mechanics, respec-
tively). See Appendix D for games in the user study.

We observe a general correlation between the total human preference score and MORTAR’s calcu-
lated Kendall’s τ values. In the first comparison, the τ difference has a smaller magnitude than the
total score difference, yet both favour the same game. The second comparison shows alignment
in both magnitude and direction between total score and τ . However, the third comparison reveals
opposing trends where the total score contradicts τ , though this discrepancy may reflect the inher-
ent difficulty of aligning automated skill-based metrics with subjective human preferences across
diverse game genres.

Treating the total score as a meaningfulness metric—comprising interestingness, novelty, fun fac-
tor, ease of understanding, minus frustration—the “Neither” votes provide additional insight. These
scores (1, 7, and 2 across the three comparisons, respectively) indicate that games in the second com-
parison are perceived as less meaningful, likely due to excessive complexity. This finding aligns
with intuitive game design principles: mini-games benefit from appropriate rather than maximal
complexity. While complexity can enhance engagement in full games through progressive difficulty
scaling, these mini-game experiences demonstrate reduced effectiveness when sophisticated me-
chanics overwhelm fundamental gameplay elements. Finally, qualitative participant feedback con-
sistently highlighted visual limitations, particularly the absence of animations and restricted sprite
sets—a known limitation of MORTAR’s current implementation.

Table 2: User study results comparing games. Values indicate the number of participants (out of 10)
selecting each option. Total score represents the sum of positive metrics minus “Frustrating”.

Games Interesting ↑ Novel ↑ Frustrating ↓ Fun to play ↑ Easy to understand ↑ Total ↑ τ ↑
TreasureHunt 0 1 3 1 4 3 0.4
HuntBreakout 8 8 5 7 4 22 0.5
Both 1 0 0 1 2 2 —
Neither 1 1 2 1 0 1 —

AllyCraft 7 6 5 6 3 17 0.8
CrystalCavernsCommander 2 2 3 3 2 6 0.3
Both 0 1 2 0 1 0 —
Neither 1 1 0 1 4 7 —

MagneticProwess 4 4 5 4 3 10 0.6
HeroHunt 5 5 2 5 3 16 0.3
Both 0 0 1 0 3 2 —
Neither 1 1 2 1 1 2 —

5 RELATED WORK

The core focus of MORTAR is evolving game mechanics to serve as an ideation and prototyping tool
for game designers and generate novel games for testing learning algorithms. This research falls un-
der Automatic Game Design (AGD), pioneered by (Nelson & Mateas, 2007), who formalized game
mechanics through WordNet to generate micro games. Browne (2008) and Togelius & Schmidhu-
ber (2008) independently proposed evolutionary approaches to AGD across different domains. The
latter introduced learnability as a quality criterion, inspiring various approximations of skill differen-
tiation over the years (Nielsen et al., 2015; Khalifa et al., 2017) that influence our current approach.
Related concepts include game depth (Lantz et al., 2017) and formalisms for measuring a game’s
ability to distinguish among agents (Stephenson et al., 2020).
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Non-evolutionary AGD approaches include constraint solvers for mechanics generation (Zook &
Riedl, 2014) and autoencoders for learning and generating mechanics (Rieder, 2018). Recent work
incorporates LLMs into AGD pipelines: ScriptDoctor generates PuzzleScript games (Earle et al.,
2025), while Gavel evolves Ludii games using LLMs and Quality-Diversity algorithms (Todd et al.,
2024). Similar approaches have generated 2-player games using XML-based languages (Jorge &
Antonio J, 2023). MORTAR distinguishes itself by leveraging the full expressiveness of Python code
generation, creating a search space that scales with advancing LLM capabilities.

MORTAR also relates to LLM-driven Procedural Content Generation (Togelius et al., 2011; Shaker
et al., 2016; Liu et al., 2021). Early work included Sokoban level generation using GPT-2/3 (Todd
et al., 2023), MarioGPT for Super Mario Bros levels with Novelty Search (Sudhakaran et al.,
2023), and human-in-the-loop GPT-3 fine-tuning (Nasir & Togelius, 2023). Word2World and
Word2Minecraft generate 2D and 3D games with fixed mechanics (Nasir et al., 2024a; Huang,
2025). MORTAR extends this paradigm by generating multiple game aspects, including mechan-
ics and levels.

Finally, MORTAR contributes to research on LLMs as evolutionary operators in Quality-Diversity
algorithms like MAP-Elites (Mouret & Clune, 2015). This approach has been applied to robot mor-
phology evolution (Lehman et al., 2023), neural architecture search using CVT-MAP-Elites (Nasir
et al., 2024b), and Ludii game generation (Todd et al., 2024).

6 LIMITATIONS

While MORTAR successfully generates novel game mechanics and coherent games with semanti-
cally meaningful CITS scores, several limitations warrant future investigation. The system currently
modifies game rendering functions without incorporating animations, limiting visual richness. Our
experiments used a relatively modest LLM (GPT-4o-mini); stronger models could potentially yield
more sophisticated mechanics and improved code quality. The current 2D top-down perspective
constrains the search space—extending to 3D environments would significantly expand creative
possibilities.

Archive initialisation presents another challenge, as improved seeding strategies could enhance con-
vergence and final quality. Similarly, increasing MCTS iterations during evaluation might produce
higher-quality games at the cost of computational resources. Perhaps most significantly, MORTAR’s
autonomous evolution lacks designer control mechanisms. A controllable variant that accepts de-
sign constraints or preferences could better serve as an ideation tool, allowing game developers to
guide the search toward specific gameplay goals while maintaining the system’s creative discovery
capabilities.

7 CONCLUSION AND FUTURE DIRECTIONS

We present MORTAR, a novel system for generating games through mechanic evolution. MOR-
TAR combines MAP-Elites, a Quality-Diversity algorithm, with LLM-driven code-level mechanic
evolution. The system evaluates mechanics through MCTS, which constructs complete games in
each tree node and assesses them using skill-based ranking. We introduce the Constrained Impor-
tance Through Search (CITS) score, derived from Shapley values, which quantifies a mechanic’s
contribution within the actually searched combination space rather than hypothetical alternatives.

Our quantitative results demonstrate MORTAR’s high evolvability and progressive improvement
across generations through comprehensive ablation studies. Qualitative analysis reveals that games
with higher scores exhibit greater strategic depth and complexity, while MORTAR consistently pro-
duces diverse gaming experiences with sophisticated mechanic interactions.

MORTAR offers several promising research directions. As an ideation tool, it could support game de-
signers by suggesting novel mechanic combinations responsive to design constraints. The system’s
scalability suggests that initialisation with extensive mechanic libraries and extended evolution pe-
riods could explore previously undiscovered regions of game design space. The generated games
provide rich environments for testing generalisation in reinforcement learning agents (Sutton et al.,
1999), offering diverse challenges with measurable skill gradients.
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Ruiz-Quiñones Jorge and Fernández-Leiva Antonio J. Automated videogame mechanics generation
with xvgdl. ICGA Journal, 44(4):124–152, 2023.

Ahmed Khalifa, Michael Cerny Green, Diego Perez-Liebana, and Julian Togelius. General video
game rule generation. In 2017 IEEE Conference on Computational Intelligence and Games (CIG),
pp. 170–177. IEEE, 2017.

Frank Lantz, Aaron Isaksen, Alexander Jaffe, Andy Nealen, and Julian Togelius. Depth in strategic
games. In AAAI Workshops, 2017.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of evolutionary machine learning, pp. 331–366.
Springer, 2023.

Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yannakakis, and Julian
Togelius. Deep learning for procedural content generation. Neural Computing and Applications,
33(1):19–37, 2021.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Yoshio Murase, Hitoshi Matsubara, and Yuzuru Hiraga. Automatic making of sokoban problems.
In Pacific Rim International Conference on Artificial Intelligence, pp. 592–600. Springer, 1996.

Muhammad U Nasir and Julian Togelius. Practical pcg through large language models. In 2023
IEEE Conference on Games (CoG), pp. 1–4. IEEE, 2023.

Muhammad U Nasir, Steven James, and Julian Togelius. Word2world: Generating stories and
worlds through large language models. arXiv preprint arXiv:2405.06686, 2024a.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110–1118, 2024b.

Mark J Nelson and Michael Mateas. Towards automated game design. In Congress of the Italian
Association for Artificial Intelligence, pp. 626–637. Springer, 2007.

Thorbjørn S Nielsen, Gabriella AB Barros, Julian Togelius, and Mark J Nelson. General video
game evaluation using relative algorithm performance profiles. In European Conference on the
Applications of Evolutionary Computation, pp. 369–380. Springer, 2015.

Bernhard Rieder. Using procedural content generation via machine learning as a game mechanic.
Austrian Marshall Plan Foundation, 2018.

Sebastian Risi and Julian Togelius. Increasing generality in machine learning through procedural
content generation. Nature Machine Intelligence, 2(8):428–436, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Noor Shaker, Julian Togelius, and Mark Nelson. Procedural Content Generation in Games.
Springer, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lloyd Shapley. 17. a value for n-person games. In Contributions to the Theory of Games, Volume
II, pp. 307–318. Princeton University Press, 2016.

Matthew Stephenson, Damien Anderson, Ahmed Khalifa, John Levine, Jochen Renz, Julian To-
gelius, and Christoph Salge. A continuous information gain measure to find the most discrim-
inatory problems for ai benchmarking. In 2020 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–8. IEEE, 2020.
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A PROMPTS

A.1 GAME MECHANIC GENERATION PROMPTS

Prompts provided to MORTAR are accompanied by predefined Python code, which is then modified
as required. The following methods of a class are defined separately so they can be invoked in
individual prompts:

1

2 init_method = r"""def __init__(self, walkable_tiles,tiles_without_char,
tiles, str_map_without_chars, str_map, interactive_object_tiles,
enemy_tiles, render_mode="human"):

3 super(GameMechEnv, self).__init__()
4 self.map_str_without_chars = str_map_without_chars.strip().split(’\n

’)
5 self.map_str = str_map.strip().split(’\n’)
6 self.map = [list(row) for row in self.map_str]
7 self.map_without_chars = [list(row) for row in self.

map_str_without_chars]
8 self.tiles = tiles
9 self.tiles_without_char = tiles_without_char

10 self.action_space = spaces.Discrete(self.get_action_space())
11 self.char_set = {’A’: 0, ’B’: 1, ’C’: 2, ’D’: 3, ’O’: 4, ’@’: 5, ’#’:

6, ’&’: 7}
12 self.char_to_int = lambda c: self.char_set.get(c, 0)
13 self.mechanic_to_action = self.get_mechanics_to_action()
14 self.done = False
15 self.tile_size = 16
16 self.char_tile_size = 16

11
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17 self.frames = []
18 max_width = max(len(row) for row in self.map_str)
19 self.observation_space = spaces.Box(
20 low=0,
21 high=1,
22 shape=(len(self.char_set), len(self.map_str), max_width), # Use

len(self.char_set) for channels
23 dtype=np.int32
24 )
25

26 self.default_walkable_tile = ’A’
27 self.render_mode = "rgb_array"
28 self.walkable_tiles = walkable_tiles
29 self.interactive_object_tiles = interactive_object_tiles
30 self.enemy_tiles = enemy_tiles
31 self.picked_objects = []
32 self.npc_tiles = ["&"]
33 self.enemy_tiles = ["#"]
34 self.player_health = 100
35 self.enemy_health = 100
36 self.current_score = 0
37 self.map = [list(row) for row in self.map_str]
38 self.grid_width = max(len(row) for row in self.map)
39 self.grid_height = len(self.map)
40 for i, row in enumerate(self.map):
41 for j, tile in enumerate(row):
42 if tile == ’@’:
43 self.player_position = (i, j)
44

45 self.reset()"""
46

47 reset_method = """def reset(self, seed=None):
48 self.map = [list(row) for row in self.map_str]
49 self.map_without_chars = [list(row) for row in self.

map_str_without_chars]
50 self.grid_width = max(len(row) for row in self.map)
51 self.grid_height = len(self.map)
52 for i, row in enumerate(self.map):
53 for j, tile in enumerate(row):
54 if tile == ’@’:
55 self.player_position = (i, j)
56 self.current_tile = self.map_without_chars[self.player_position[0]][

self.player_position[1]] # Set current tile to the player’s starting
position

57 return self.get_state()["map"]"""
58

59 render_method = """def render(self, mode=’human’):
60

61 env_img = Image.new(’RGBA’, (len(self.map[0]) * self.tile_size, len(
self.map) * self.tile_size))

62

63 # 1st layer: Default walkable tile
64 for i in range(len(self.map)):
65 for j in range(len(self.map[0])):
66 tile_img = self.tiles[self.default_walkable_tile].resize((

self.tile_size, self.tile_size))
67 env_img.paste(tile_img, (j * self.tile_size, i * self.

tile_size), tile_img)
68

69 # 2nd layer: Map without characters
70 for i, row in enumerate(self.map_without_chars):
71 for j, tile in enumerate(row):
72 if tile in self.tiles and tile != self.default_walkable_tile:
73 tile_img = self.tiles[tile].resize((self.tile_size, self.

tile_size))

12
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74 env_img.paste(tile_img, (j * self.tile_size, i * self.
tile_size), tile_img)

75

76 # 3rd layer: Characters and objects
77 for i, row in enumerate(self.map):
78 for j, tile in enumerate(row):
79 if tile in self.tiles and tile not in self.walkable_tiles:
80 if tile.isalpha():
81 tile_img = self.tiles[tile].resize((self.tile_size,

self.tile_size))
82 else:
83 tile_img = self.tiles[tile].resize((self.

char_tile_size, self.char_tile_size))
84 # Center the character in the tile
85 x_offset = (self.tile_size - self.char_tile_size) //

2
86 y_offset = (self.tile_size - self.char_tile_size) //

2
87 env_img.paste(tile_img, (j * self.tile_size +

x_offset, i * self.tile_size + y_offset), tile_img)
88

89 frame = np.array(env_img.convert(’RGB’))
90 self.frames.append(frame)
91 return frame"""
92

93 get_action_space_method = """def get_action_space(self):
94 return 3"""
95

96 get_mechanics_to_action_method = """def get_mechanics_to_action(self)
:

97 return {
98 "move_player": 0, # 0-3 for movement
99 }"""

100

101 move_player = """def move_player(self, action):
102 moves = {0: (-1, 0), 1: (1, 0), 2: (0, -1), 3: (0, 1)} # Up, Down,

Left, Right
103 dx, dy = moves[action]
104 new_row = self.player_position[0] + dx
105 new_col = self.player_position[1] + dy
106 reward = 0
107 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map[0]):
108 new_tile = self.map[new_row][new_col]
109 if new_tile in self.walkable_tiles:
110 self.update_player_position(new_row, new_col, new_tile)
111 return reward"""
112

113 other_methods = r"""def update_player_position(self, new_row, new_col
, new_tile):

114 # Validate both current and new positions are within bounds
115 if not (0 <= new_row < self.grid_height and 0 <= new_col < self.

grid_width):
116 return
117

118 if not (0 <= self.player_position[0] < self.grid_height and 0 <= self
.player_position[1] < self.grid_width):

119 # If current position is invalid, just set the new position
120 self.player_position = (new_row, new_col)
121 self.current_tile = new_tile
122 self.map[new_row][new_col] = ’@’
123 return
124

125 if new_tile not in self.walkable_tiles:
126 return
127

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

128 # Reset the player’s previous position to the original tile
129 self.map[self.player_position[0]][self.player_position[1]] = self.

current_tile
130 self.map_without_chars[self.player_position[0]][self.player_position

[1]] = self.current_tile
131

132 # Update the player’s position
133 self.player_position = (new_row, new_col)
134 self.current_tile = new_tile
135 self.map[new_row][new_col] = ’@’
136

137 def find_player_position(self):
138 for i, row in enumerate(self.map):
139 for j, tile in enumerate(row):
140 if tile == ’@’:
141 return (i, j)
142 return None
143

144 def clone(self):
145

146 new_env = GameMechEnv(
147 walkable_tiles=self.walkable_tiles,
148 tiles_without_char=self.tiles_without_char,
149 tiles=self.tiles,
150 str_map_without_chars=’\n’.join(self.map_str_without_chars),
151 str_map=’\n’.join(self.map_str),
152 interactive_object_tiles=self.interactive_object_tiles,
153 enemy_tiles=self.enemy_tiles
154 )
155 new_env.map = [row[:] for row in self.map]
156 new_env.map_without_chars = [row[:] for row in self.map_without_chars

]
157 new_env.player_position = self.player_position
158 new_env.current_tile = self.current_tile
159 new_env.char_to_int = self.char_to_int
160 new_env.char_set = self.char_set
161 return new_env
162

163 def is_terminal(self):
164 return self.done"""
165

166 get_state_method = """def get_state(self):
167 return {"map": self.map}"""
168

169 step_method = """def step(self, action):
170 reward = 0
171 self.done = False
172 if action < 4: # Movement actions
173 self.move_player(action)
174 self.done = reward > 0
175 info = {}
176 return self.get_state()["map"], reward, self.done, False, info
177 """

The following are the prompts used to edit the methods:

1. The state, render, and step method prompts are identical, except that the input function is
replaced by the function currently in focus:

1 "Given the following get_state method of the class:\n" +
get_state_method + "\n And the following game mechanic:\n" +
mechanics + "\n Edit get_state method, if required, for the
given game mechanic to work. Do not repeat the game mechanic as
a method. Only output whole of the edited get_state method and
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if not edited, just output ’False’. Do not output anything
else."

2. Adding helper methods:

1 "Given the following methods: init method of the class:\n" +
init_method + "\n All functions already present in the class:\n
"+ other_methods + "\n The following game mechanic you just
created:\n" + mechanics + "\n Add any new helper methods needed
for the " + extract_function_name(mechanics) +" to work, if

required. Do not create or update __init__, reset, step,
get_state, render, get_action_space, or get_mechanics_to_action
methods. Do not repeat the game mechanic as a method or the

present methods. Do not add any new variables. Only output the
additional new method or methods required, and if not added,
just output ’False’. Do not output anything else."

3. The prompt to add new variables. game\_mech\_class one string with the whole initial
class present in it.

1 "Given the following class:\n" + game_mech_class + "\n And the
following game mechanic:\n" + mechanics + "\n Add any new

variables required in the GameMechEnv for the given game
mechanic to work. Always add to the existing code. Only output
the new variables if they are added in a Python dictionary
format and if not added, just output ’False’. The Python
dictionary can look like {’var_name_1’: init_value, ’var_name_2
’: init_value}. The keys should be the string of the variable
name and the values should be the initial values. The values
can never be a new argument to the init method. Do not output
anything else."

4. To generate the action space

1 "Given the following class:\n" + game_mech_class + "\n Also,
the following game mechanic:\n" + mechanics + "\n And the
following get_action_space method:\n" + action_space + "\n .
Edit the get_action_space method to add more actions, if
required, for the given game mechanic to work. Do not repeat
the game mechanic as a method. Only output the edited
get_action_space method and if not edited, just output ’False’.
Do not output anything else."

5. To get a mapping of mechanics to actions.

1 "Given the following class:\n" + game_mech_class + "\n Also,
the following game mechanic:\n" + mechanics + "\n And the
following get_mechanics_to_action method:\n" + mech_to_action +
"\n . Edit the get_mechanics_to_action method to add more

actions, if required, for the given game mechanic to work. The
edition should be "+ extract_function_name(mechanics) +":
action_number. Do not repeat the game mechanic as a method.
Only output the edited get_mechanics_to_action method and if
not edited, just output ’False’. Do not output anything else."

6. Game mechanics are then tested on a static environment:

1 str_world = """BBBBBBBBBBB
2 BAAAAAAAAAB
3 BAAAOAAAAAB
4 BA#@OAAAAAB
5 BA#AAAAAAAB
6 BBBBBBBBBBB"""
7

8 str_map_wo_chars = """BBBBBBBBBBB
9 BAAAAAAAAAB
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10 BAAOOAAAAAB
11 BAAAOAAAAAB
12 BAAAAAAAAAB
13 BBBBBBBBBBB"""
14

15 walkables = [’A’, ’B’]
16 interactive_object_tiles = [’O’]
17 enemy_tiles = ["#"]
18 npc_tiles = ["&"]
19 env_image = dict()
20

21

22 env_image["A"] = Image.open(r"world_tileset_data/
td_world_floor_grass_c.png").convert("RGBA")

23 env_image["B"] = Image.open(r" world_tileset_data/
td_world_wall_stone_h_a.png").convert("RGBA")

24 env_image["C"] = Image.open(r"world_tileset_data/
td_world_floor_grass_c.png").convert("RGBA")

25 env_image["O"] = Image.open(r"world_tileset_data/td_world_chest.
png").convert("RGBA")

26 env_image["@"] = Image.open(r"character_sprite_data/
td_monsters_archer_d1.png").convert("RGBA")

27 env_image["#"] = Image.open(r"character_sprite_data/
td_monsters_witch_d1.png").convert("RGBA")

28 env_image["&"] = Image.open(r"character_sprite_data/
td_monsters_goblin_captain_d1.png").convert("RGBA")

29

30 env = GameMechEnv(walkable_tiles=walkables,
31 tiles_without_char=str_map_wo_chars,
32 tiles=env_image,
33 str_map_without_chars=str_map_wo_chars,
34 str_map=str_world,
35 interactive_object_tiles=interactive_object_tiles,
36 enemy_tiles=enemy_tiles)

A.2 GAME GENERATION PROMPTS

All of the above prompts are also used in the game-generation pipeline. The difference is that we
keep track of the previously edited method so that, when the evaluation MCTS tree expands to the
next node, the prompt includes methods inherited from earlier nodes. This is necessary because each
newly expanded node introduces a new mechanic in addition to all prior mechanics.

After these generations, we generate a make\_game function. We start with generating a env\
_dict\_func, a function that returns a dictionary mapping tiles to their corresponding path func-
tions. We provide the following paths:

1 paths_to_tiles = r’’’world_tileset_data/td_items_amulet_gold.png,
2 world_tileset_data/td_items_gem_ruby.png,
3 world_tileset_data/td_world_crate.png,
4 world_tileset_data/tg_world_barrel.png,
5 world_tileset_data/tg_world_floor_carpet_d.png,
6 world_tileset_data/tg_world_floor_moss_e.png,
7 world_tileset_data/tg_world_floor_sand_f.png,
8 world_tileset_data/tg_world_floor_panel_steel_c.png,
9 character_sprite_data/td_monsters_angel_d2.png,

10 character_sprite_data/td_monsters_archer_u2.png,
11 character_sprite_data/td_monsters_berserker_d1.png,
12 character_sprite_data/td_monsters_demon_l1.png’’’

And the whole initial env\_dict\_func:

1 env_dict_func = ’’’def env_dict():
2 env_image = dict()
3 image_paths = dict() # New dictionary to store paths

16
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4

5 # Define a function to load image and store path
6 def load_image(char, path):
7 env_image[char] = Image.open(path).convert("RGBA")
8 image_paths[char] = path # Store the path
9

10 # Load all images
11 base_path = r"/mnt/lustre/users/mnasir/gmd"
12 load_image("A", f"{base_path}/world_tileset_data/

td_world_floor_grass_c.png")
13 load_image("B", f"{base_path}/world_tileset_data/

td_world_wall_stone_h_a.png")
14 load_image("X", f"{base_path}/world_tileset_data/

td_world_floor_grass_c.png")
15 load_image("O", f"{base_path}/world_tileset_data/td_world_chest.png")
16 load_image("I", f"{base_path}/world_tileset_data/td_world_chest.png")
17 load_image("C", f"{base_path}/world_tileset_data/td_world_chest.png")
18 load_image("@", f"{base_path}/character_sprite_data/

td_monsters_archer_d1.png")
19 load_image("#", f"{base_path}/character_sprite_data/

td_monsters_witch_d1.png")
20 load_image("&", f"{base_path}/character_sprite_data/

td_monsters_goblin_captain_d1.png")
21

22 # Here you add any other tiles that are needed for the game in the
same format

23

24 return env_image, image_paths ’’’

Therefore, the prompt for the env\_dict\_func generation:

1 "Given the game mechanics:\n" + mechanics[0] + "\nChange the
following env_dict function to cater for the mechanics, if required
.:\n" + env_dict_func + " Use the same paths for the same type of
tiles that are being added in env_image, or use the following paths:\
n"+ paths_to_tiles + "\n You don’t have to use the paths provided if
not needed. Strictly use the same paths. Do not use any other paths.
Only add in env_image if needed. Return the full env_dict function."

Then we create a 2D character map through the prompt:

1 "Given the game mechanics:\n" + mechanics[0] + "\n The env_dict
function, which has the paths for the tiles:\n" +
env_dict_func_changed[’choices’][0][’message’][’content’] + "\nChange
the following str_world in the str_map function to cater for the

mechanics, if required.:\n" + str_map_func + "\n ’str_world’ is the
string that represents the 2D game map. Change it if only needed. It
must always have 1 and only 1 ‘@‘ character, which represents the
player. Return the full str_map function."

where the str\_map\_func is:

1 str_map_func = ’’’def str_map():
2

3 str_world = """AAAAAAAAAAAAAAAAAA
4 AAAAAAAAAAAAAAAAAA
5 AAA@OAXAAAAAAAAAAA
6 AAAAAAICAAAAAAAAAA
7 AAA#AAAAAAAAAAAAAA
8 AAAAAAAAAAAAAAAAAA"""
9

10 return str_world’’’

Lastly, in the make\_game function we generate the important\_tiles\_func through the
prompt:
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1 "Given the game mechanics:\n" + mechanics[0] + "\n And the env_dict
function, which has the paths for the tiles:\n" +
env_dict_func_changed[’choices’][0][’message’][’content’] + "\n And
the str_map function, which has the string representation of the game
map:\n" + str_map_func_changed[’choices’][0][’message’][’content’] +
"\n Change the following important_tiles function to cater for the

mechanics, if required.:\n" + important_tiles_func + " Return the
full important_tiles function. Return all the tile types mentioned in
the return statement of the function. Return empty list if the tile

type is not needed."

where the initial important\_tiles\_func is:

1 important_tiles_func = ’’’def important_tiles():
2 walkables = [’A’] # Walkable tiles
3 non_walkables = [’B’] # Non-walkable tiles
4 interactive_object_tiles = [’O’, ’I’, ’C’] # Interactive objects

(e.g., chests)
5 collectible_tiles = [] # Can add collectible tiles if needed
6 npc_tiles = [] # Assume there are no NPCs represented in the

current setup
7 player_tile = [’@’] # Player tile
8 enemy_tiles = [’#’, ’&’] # Enemy tiles
9 extra_tiles = [] # any other type of tiles for the game goes here

10 return walkables, non_walkables, interactive_object_tiles,
collectible_tiles, npc_tiles, player_tile, enemy_tiles, extra_tiles’’
’

For game-mechanic generation, the terminal method is fixed, since we test each mechanic in iso-
lation to verify that the MCTS agent can reach the end. In the subsequent game-generation stage,
however, the terminal method may vary, as the win condition can change substantially.

1 "Given the game mechanics:\n" + get_games_scores.latest_methods[’
mechanic’] + "\n" + mechanics[0] + "\n and the init function:\n" +
get_games_scores.latest_methods[’init’] + "\n We want to train an
agent to play a game that uses these mechanics. The layout of the
game is the str_world in the following function:\n"+ get_games_scores
.latest_methods[’str_world’] +"\n and the following function
describes what the tiles mean:\n"+get_games_scores.latest_methods[’
tiles’]+"\nThe following line describes the situation of the win
condition of the game:\n"+ "’"+line_response[’choices’][0][’message’
][’content’]+"’" +"\nWrite one method of the class which which wraps
win condition in it and tells the agent when the game will end. It
must focus on the mechanics in the game provided to you. All the
mechanics should be used to fulfill the win condition. The name of
the method should be is_terminal. Method should only return one
boolean variable. Only return the method and nothing else."

Here a line\_response is a win condition generated through the following prompt:

1 "Given the game mechanics:\n" + get_games_scores.latest_methods[’
mechanic’] + "\n" + mechanics[0] + "\n write one line that describes
the win condition for the game that will use these mechanics. "

The name of the game is generated through:

1 "Given the game mechanics:\n" + get_games_scores.latest_methods[’
mechanic’] + "\n" + mechanics[0] + "\nThe win condition for the game
in is_terminal method:\n " + is_terminal_response[’choices’][0][’
message’][’content’] + "\n And the line that explains the win
condition:\n " + line_response[’choices’][0][’message’][’content’] +
"\n Give the game a short name that describes the game well. Only
strictly output the name and nothing else. Should not have any
special characters in the name. Do not highlight the name."

18
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B GENERATED GAME MECHANICS

B.1 MECHANICS IN FIGURE 6

Following is the mechanic and helper functions for the game in Figure 6:

1 def spawn_unit(self):
2 """Spawn a unit at an adjacent empty position"""
3 reward = 0
4

5 if len(self.units) >= self.max_units:
6 return 0 # No penalty, just no reward
7

8 player_row, player_col = self.player_position
9 adjacency_offsets = [(0, -1), (0, 1), (-1, 0), (1, 0)] #Left, Right,

Up, Down
10

11 # Try to find an empty adjacent position
12 for dx, dy in adjacency_offsets:
13 new_row = player_row + dx
14 new_col = player_col + dy
15 if (0 <= new_row < len(self.map) and 0 <= new_col <len(self.map

[0])):
16 # Check the base tile type (without characters)
17 base_tile = self.map_without_chars[new_row][new_col]
18 current_tile = self.map[new_row][new_col]
19

20 # Check if position is suitable for unit spawning
21 if (base_tile in self.walkable_tiles and
22 (new_row, new_col) not in self.units and
23 (new_row, new_col) != self.player_position and
24 current_tile not in self.enemy_tiles and
25 current_tile in self.walkable_tiles): # Current tile

should also be walkable
26

27 # Spawn unit here
28 unit_pos = (new_row, new_col)
29 self.units.append(unit_pos)
30 self.unit_health[unit_pos] = 100 # Initialize unit

health
31 self.map[new_row][new_col] = self.unit_symbol
32 reward = 1 # Reward for successful spawning
33 break
34

35 return reward
36

37 #-------------------------
38

39 def heal_unit(self):
40 """Heal the selected unit"""
41 reward = 0
42

43 if not self.units or self.selected_unit >= len(self.units):
44 return -1 # Penalty for invalid unit selection
45

46 unit_pos = self.units[self.selected_unit]
47

48 if unit_pos in self.unit_health:
49 old_health = self.unit_health[unit_pos]
50 self.unit_health[unit_pos] = min(100, self.unit_health[

unit_pos] + 30) # Heal 30 HP, max 100
51

52 if old_health < self.unit_health[unit_pos]:
53 heal_amount = self.unit_health[unit_pos] - old_health
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54 print(f"Unit at {unit_pos} healed for {heal_amount} HP!
Health: {self.unit_health[unit_pos]}")

55 reward = 1 # Small reward for healing
56 else:
57 print(f"Unit at {unit_pos} is already at full health!")
58 reward = -1 # Penalty for unnecessary healing
59

60 return reward
61

62 #-------------------------
63

64 def player_attack(self):
65 """Execute primary attack on adjacent targets"""
66 reward = 0
67 player_row, player_col = self.player_position
68 adjacency_offsets = [(0, -1), (0, 1), (-1, 0), (1, 0)]
69

70 enemies_attacked = 0
71 for dx, dy in adjacency_offsets:
72 attack_row = player_row + dx
73 attack_col = player_col + dy
74 attack_pos = (attack_row, attack_col)
75

76 # Find enemy at this position
77 for enemy in self.enemies:
78 if enemy[’pos’] == attack_pos:
79 damage = 25 # Player damage
80 enemy[’health’] -= damage
81 enemies_attacked += 1
82 print(f"Player attacks {enemy[’type’]} for {damage}

damage! Enemy health: {enemy[’health’]}")
83

84 if enemy[’health’] <= 0:
85 print(f"{enemy[’type’]} defeated!")
86 reward += 10 # Reward for defeating enemy
87 else:
88 reward += 2 # Small reward for successful attack
89

90 # Small penalty if no enemies to attack
91 if enemies_attacked == 0:
92 reward = -1
93

94 return reward
95

96 #-------------------------
97

98 def move_enemy_toward_target(self, enemy, target_pos):
99 """Move enemy one step toward target"""

100 reward = 0
101 enemy_pos = enemy[’pos’]
102 enemy_row, enemy_col = enemy_pos
103 target_row, target_col = target_pos
104

105 # Calculate direction to move
106 row_diff = target_row - enemy_row
107 col_diff = target_col - enemy_col
108

109 # Choose move direction (simple pathfinding)
110 move_row, move_col = 0, 0
111 if abs(row_diff) > abs(col_diff):
112 move_row = 1 if row_diff > 0 else -1
113 else:
114 move_col = 1 if col_diff > 0 else -1
115

116 new_row = enemy_row + move_row
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117 new_col = enemy_col + move_col
118

119 # Check if move is valid
120 if self._is_valid_enemy_move(enemy_pos, (new_row, new_col)):
121 self._execute_enemy_move(enemy, (new_row, new_col))
122

123 return reward
124

125 #-------------------------
126

127 def confuse_and_teleport_enemies(self):
128 """Apply area effect that disrupts enemy positioning"""
129 reward = 0
130 # Identify all enemy positions and create a list of positions
131 enemy_positions = []
132 for row in range(len(self.map)):
133 for col in range(len(self.map[0])):
134 if self.map[row][col] in self.enemy_tiles: # Useactual enemy

tiles from the map
135 enemy_positions.append((row, col))
136 # If there are enemies on the map, confuse and possibly teleport them
137 if enemy_positions:
138 enemies_confused = 0
139 for enemy_row, enemy_col in enemy_positions:
140 # Randomly choose a direction to confuse the enemy
141 direction = random.choice([’up’, ’down’, ’left’, ’right’])
142 teleport_possible = False
143 # Determine the new position for confusion
144 new_enemy_row, new_enemy_col = enemy_row, enemy_col
145 if direction == ’up’ and enemy_row > 0:
146 new_enemy_row -= 1
147 elif direction == ’down’ and enemy_row < len(self.map) - 1:
148 new_enemy_row += 1
149 elif direction == ’left’ and enemy_col > 0:
150 new_enemy_col -= 1
151 elif direction == ’right’ and enemy_col < len(self.map[0]) -

1:
152 new_enemy_col += 1
153 # Instead of actually moving enemies, just count confusion

attempts
154 distance_to_player = abs(enemy_row -self.player_position[0])

+ abs(enemy_col -self.player_position[1])
155 if distance_to_player <= 2: # If enemy is within close range
156 enemies_confused += 1
157

158 # Only give reward if multiple enemies were confused
159 if enemies_confused >= 2:
160 reward = 1
161 return reward
162

163 #-------------------------
164

165 def activate_and_combine_resources(self):
166 """Activates resource gathering and environmental interactionability.

"""
167 reward = 0
168 adjacency_offsets = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
169 resource_tiles = [’R’, ’F’, ’W’] # R = Rock, F = Food, W = Wood
170

171 # Count adjacent resources and interactive objects
172 adjacent_resources = 0
173 adjacent_objects = 0
174

175 # Check for adjacent resources
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176 for dx, dy in adjacency_offsets:
177 new_row = self.player_position[0] + dx
178 new_col = self.player_position[1] + dy
179 if 0 <= new_row < len(self.map) and 0 <= new_col <len(self.map

[0]):
180 adjacent_tile = self.map[new_row][new_col]
181 if adjacent_tile in resource_tiles:
182 adjacent_resources += 1
183

184 # Check for interactive objects nearby
185 for dx, dy in adjacency_offsets:
186 new_row = self.player_position[0] + dx
187 new_col = self.player_position[1] + dy
188 if 0 <= new_row < len(self.map) and 0 <= new_col <len(self.map

[0]):
189 adjacent_tile = self.map[new_row][new_col]
190 if adjacent_tile in self.interactive_object_tiles:
191 adjacent_objects += 1
192

193 # Only give reward for significant resource/object combinations
194 if adjacent_resources >= 2 and adjacent_objects >= 1:
195 reward = 5 # Reward only for optimal positioning
196

197 return reward

B.2 MECHANICS IN FIGURE 7

The following is the mechanic and helper functions for the game in Figure 7:

1 def strategic_enemy_movement(self):
2 """Process all enemy actions for this turn using A*path finding"""
3 import heapq
4 reward = 0
5

6 def heuristic(pos, goal):
7 return abs(pos[0] - goal[0]) + abs(pos[1] - goal[1])
8

9 for enemy in self.enemies[:]:
10 if enemy[’finished’]:
11 continue
12

13 if self.turn_counter - enemy[’last_move_turn’] >= self.
enemy_move_cooldown:

14 enemy[’last_move_turn’] = self.turn_counter
15

16 # A* pathfinding to find next best move
17 start = enemy[’pos’]
18 goal = self.goal_position
19

20 # Priority queue: (f_score, g_score, position, path)
21 open_set = [(heuristic(start, goal), 0, start,[start])]
22 closed_set = set()
23

24 directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
25 max_iterations = 50 # Limit search to prevent lag
26 iterations = 0
27 optimal_move = None
28

29 while open_set and iterations < max_iterations:
30 iterations += 1
31 f_score, g_score, current, path =heapq.heappop(open_set)
32

33 if current in closed_set:
34 continue
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35

36 if current == goal:
37 # Return the next move in the optimal path
38 optimal_move = path[1] if len(path) > 1 elseNone
39 break
40

41 closed_set.add(current)
42

43 for dx, dy in directions:
44 neighbor = (current[0] + dx, current[1] + dy)
45

46 if (neighbor in closed_set or
47 notself._is_valid_position_for_pathfinding(

neighbor)):
48 continue
49

50 new_g_score = g_score + 1
51 new_f_score = new_g_score +heuristic(neighbor, goal)
52 new_path = path + [neighbor]
53

54 heapq.heappush(open_set, (new_f_score,new_g_score,
neighbor, new_path))

55

56 # Execute move if valid
57 if optimal_move and self._is_valid_enemy_move(enemy[’pos’],

optimal_move):
58 self._execute_enemy_move(enemy, optimal_move)
59

60 # Check if enemy reached goal
61 if enemy[’pos’] == self.goal_position:
62 if not enemy[’finished’] and notself.game_finished:
63 enemy[’finished’] = True
64 self.game_finished = True
65 self.completion_order.append(f"enemy_{enemy[’type’]}")
66 print(f"Enemy {enemy[’type’]} reached thegoal first!

ENEMY WINS!")
67 reward -= 100 # Player loses big when enemy wins
68

69 return reward
70

71 #-------------------------
72

73 def _is_valid_position_for_pathfinding(self, pos):
74 """Check if position is valid for pathfinding (allows temporary

occupation)"""
75 row, col = pos
76 if not (0 <= row < len(self.map) and 0 <= col < len(self.map[0])):
77 return False
78

79 tile = self.map[row][col]
80 # Allow movement through walkable tiles and goal
81 return tile in self.walkable_tiles or tile == ’F’
82

83 #-------------------------
84

85 def _is_valid_enemy_move(self, current_pos, new_pos):
86 """Check if enemy move is valid"""
87 new_row, new_col = new_pos
88 if not (0 <= new_row < len(self.map) and 0 <= new_col < len(self.
89 map[0])):
90 return False
91

92 current_tile = self.map[new_row][new_col]
93

94 # Can move to walkable tiles or flag
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95 if current_tile not in self.walkable_tiles and current_tile != ’F’:
96 return False
97

98 # Cannot move to position occupied by player or other enemies
99 if new_pos == self.player_position:

100 return False
101

102 for other_enemy in self.enemies:
103 if other_enemy[’pos’] == new_pos:
104 return False
105

106 return True

C QUALITY-DIVERSITY

C.1 INITIAL MECHANICS

Here we will mention the aspects of the quality-diversity (QD) algorithm that would help in repro-
ducibility, and were not mentioned in the main paper. The following are the initial mechanics used
to initialise the QD algorithm:

1 mech_1 = """\ndef move_player(self, action):
2 moves = {0: (-1, 0), 1: (1, 0), 2: (0, -1), 3: (0, 1)} # Up, Down,

Left, Right
3 dx, dy = moves[action]
4 new_row = self.player_position[0] + dx
5 new_col = self.player_position[1] + dy
6 reward = 0
7 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map[0]):
8 new_tile = self.map[new_row][new_col]
9 if new_tile in self.walkable_tiles:

10 self.update_player_position(new_row, new_col, new_tile)
11 return reward"""
12

13 #-------------------------------
14

15 mech_2 = """\ndef pick_object(self):
16 reward = 0
17 # Check adjacent tiles for interactive objects and pick them if

present
18 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
19 for dx, dy in adjacent_positions:
20 row, col = self.player_position # player_position is in (row,

col) format
21 new_row = row + dx
22 new_col = col + dy
23 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map

[0]):
24 target_tile = self.map[new_row][new_col]
25 if target_tile in self.interactive_object_tiles:
26 self.map[new_row][new_col] = self.default_walkable_tile
27 reward = 1
28 break # Exit after picking up one object
29 return reward"""
30

31 #-------------------------------
32

33

34 mech_3 = """\ndef hit_enemy(self):
35 reward = 0
36 # Check adjacent tiles for enemies and hit them if present
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37 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,
Left, Right

38 for dx, dy in adjacent_positions:
39 row, col = self.player_position # player_position is in (row,

col) format
40 new_row = row + dx
41 new_col = col + dy
42 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map

[0]): # Check grid bounds
43 target_tile = self.map[new_row][new_col]
44 if target_tile in self.enemy_tiles:
45 self.map[new_row][new_col] = self.default_walkable_tile
46 reward = 1
47 break # Exit after hitting one enemy
48 return reward"""
49

50 #-------------------------------
51

52 mech_4 = """\ndef teleport_player(self):
53 # Find all walkable tiles that are not adjacent to the player
54 non_adjacent_walkable_positions = []
55 adjacency_offsets = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
56 reward = 0
57 # Search the map for walkable and non-adjacent tiles
58 for row in range(len(self.map)):
59 for col in range(len(self.map[0])):
60 if self.map[row][col] in self.walkable_tiles:
61 is_adjacent = False
62 for dx, dy in adjacency_offsets:
63 if (row == self.player_position[0] + dx) and (col ==

self.player_position[1] + dy):
64 is_adjacent = True
65 break
66 if not is_adjacent:
67 non_adjacent_walkable_positions.append((row, col))
68 # Teleport the player to a random walkable, non-adjacent position
69 if non_adjacent_walkable_positions:
70 new_position = random.choice(non_adjacent_walkable_positions)
71 self.update_player_position(new_position[0], new_position[1],

self.map[new_position[0]][new_position[1]])
72 reward += 1
73 return reward"""
74

75 #-------------------------------
76

77 mech_5 = """\ndef swap_positions(self):
78 # Find all enemy positions on the map
79 enemy_positions = []
80 reward = 0
81 for row in range(len(self.map)):
82 for col in range(len(self.map[0])):
83 if self.map[row][col] in self.enemy_tiles:
84 enemy_positions.append((row, col))
85 # If there are enemies, randomly swap the player’s position with an

enemy’s position
86 if enemy_positions:
87 swap_with = random.choice(enemy_positions)
88 enemy_row, enemy_col = swap_with
89 player_row, player_col = self.player_position
90 # Swap positions of player and enemy on the map
91 self.map[player_row][player_col], self.map[enemy_row][enemy_col]

= self.map[enemy_row][enemy_col], self.map[player_row][player_col]
92 # Update the player’s position to the swapped position
93 self.player_position = (enemy_row, enemy_col)
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94 # Optional: Output the result of the swap
95 reward += 1
96 return reward"""
97

98 #-------------------------------
99

100 mech_6 = """\ndef push_object(self):
101 reward = 0
102 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
103 for dy, dx in adjacent_positions: # Swapped to dy, dx to match map

indexing
104 y, x = self.player_position # Player position is in (row, col)

format
105 new_y, new_x = y + dy, x + dx
106 if 0 <= new_y < len(self.map) and 0 <= new_x < len(self.map[0]):

# Check bounds
107 target_tile = self.map[new_y][new_x]
108 if target_tile in self.interactive_object_tiles:
109 push_y, push_x = new_y + dy, new_x + dx # Push in same

direction
110 if 0 <= push_y < len(self.map) and 0 <= push_x < len(self

.map[0]):
111 if self.map[push_y][push_x] in self.walkable_tiles:
112 self.map[push_y][push_x] = target_tile
113 self.map[new_y][new_x] = self.

default_walkable_tile
114 reward = 1
115 break
116 return reward"""
117

118 #-------------------------------
119

120 mech_7 = """\ndef jump_player(self):
121 reward = 0
122 # Define possible jump directions
123 jump_directions = [(0, -2), (0, 2), (-2, 0), (2, 0)] # Up, Down,

Left, Right (2 tiles)
124 for dx, dy in jump_directions:
125 row, col = self.player_position # player_position is in (row,

col) format
126 mid_row, mid_col = row + dx // 2, col + dy // 2 # Middle tile (

jumped over)
127 new_row, new_col = row + dx, col + dy # Landing tile
128 # Check if the jump is within bounds
129 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map

[0]):
130 target_tile = self.map[new_row][new_col]
131 # Check if the landing tile is walkable
132 if target_tile in self.walkable_tiles:
133 # Perform the jump
134 self.update_player_position(new_row, new_col, target_tile

)
135 reward = 1
136 break # Exit after a successful jump
137 return reward"""
138

139 #-------------------------------
140

141 mech_8 = """\ndef drop_object(self):
142 reward = 0
143 # Check adjacent tiles for empty walkable space
144 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
145 for dx, dy in adjacent_positions:
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146 row, col = self.player_position
147 new_row = row + dx
148 new_col = col + dy
149 # Check if position is within bounds and walkable
150 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map

[0]):
151 if self.map[new_row][new_col] in self.walkable_tiles:
152 # Place an interactive object
153 self.map[new_row][new_col] = self.

interactive_object_tiles[0] # Using first interactive object tile
154 reward = 1
155 break # Exit after dropping one object
156 return reward"""
157

158 mech_9 = """\ndef enemy_move(self):
159 reward = 0
160 # Find all enemy positions with "#" tile on the map
161 enemy_positions = []
162 for row in range(len(self.map)):
163 for col in range(len(self.map[0])):
164 if self.map[row][col] == "#":
165 enemy_positions.append((row, col))
166

167 # If there are enemies, move one randomly
168 if enemy_positions:
169 # Pick a random enemy to move
170 enemy_row, enemy_col = random.choice(enemy_positions)
171

172 # Define possible move directions (same as player)
173 moves = {0: (-1, 0), 1: (1, 0), 2: (0, -1), 3: (0, 1)} # Up,

Down, Left, Right
174

175 # Try each direction randomly until we find a valid move
176 directions = list(moves.keys())
177 random.shuffle(directions)
178

179 for action in directions:
180 dx, dy = moves[action]
181 new_row = enemy_row + dx
182 new_col = enemy_col + dy
183

184 # Check if the new position is valid
185 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.

map[0]):
186 new_tile = self.map[new_row][new_col]
187 if new_tile in self.walkable_tiles:
188 # Move the enemy
189 self.map[enemy_row][enemy_col] = self.

default_walkable_tile
190 self.map[new_row][new_col] = "#"
191 break # Exit after successful move
192

193 return reward"""
194

195 mech_10 = """\ndef enemy_hit(self):
196 reward = 0
197 # Find all enemy positions with "#" tile on the map
198 enemy_positions = []
199 for row in range(len(self.map)):
200 for col in range(len(self.map[0])):
201 if self.map[row][col] == "#":
202 enemy_positions.append((row, col))
203

204 # Check if any enemy is adjacent to the player and can hit
205 player_row, player_col = self.player_position
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206 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,
Left, Right

207

208 for enemy_row, enemy_col in enemy_positions:
209 # Check if this enemy is adjacent to the player
210 for dx, dy in adjacent_positions:
211 check_row = enemy_row + dx
212 check_col = enemy_col + dy
213 # If the adjacent position matches the player’s position
214 if check_row == player_row and check_col == player_col:
215 # Enemy hits the player
216 reward = -1 # Negative reward for player getting hit
217 break # Exit after first hit (one enemy hitting is

enough)
218 if reward != 0: # If a hit occurred, stop checking other enemies
219 break
220 return reward"""

C.2 GAME MECHANICS TYPES

We specify the types of mechanics that MORTAR uses to compute similarity scores for the Qual-
ity–Diversity archive. For each mechanic, we list its category followed by the keywords used to
determine similarity.

• Movement: move, walk, run, jump, fly, teleport, dash, swim, climb, crouch, sprint

• Interaction: pick, use, interact, open, close, talk, trade, craft, activate, push, pull

• Combat: attack, fight, hit, shoot, defend, block, dodge, cast, spell, heal, damage

• Progression: level, upgrade, unlock, improve, evolve, progress, achieve, complete, quest,
mission

• Environment: weather, day, night, season, climate, destroy, build, terraform, grow, plant

• Puzzle: solve, puzzle, riddle, match, connect, arrange, decode, decipher, logic, pattern

• Resource Management: collect, gather, manage, inventory, store, spend, earn, balance,
allocate, distribute

• Exploration: explore, discover, map, reveal, uncover, navigate, search, investigate, scout,
survey

• Time Manipulation: time, slow, fast, rewind, forward, pause, resume, loop, cycle, se-
quence

C.3 PROMPTS FOR EVOLUTIONARY OPERATORS

The following are the prompts for the evolutionaru operators:

1. Mutation:

1 "Create a new game mechanic from the given mechanic that
extends its features:\n" + solution[0] + "\n Do not make any
assumptions, if you want to add a new variable or a new
function, you should do it within the game mechanic method. The
mechanic must return a reward, which is an integer. If a tile

is being assumed then it should be defined as a single capital
alphabet character and not a word. If a player is being assumed
then it should be ’@’ tile. Remember that the game mechanic

function should only take ’self’ as parameter. Only output the
new game mechanic as Python function, nothing else."

2. Diversity Mutation:
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1 "Create a new game mechanic that is different, in terms of
behavior of mechanics, from the ones provided:\n" + solution[0]
+ "\n Do not make any assumptions, if you want to add a new

variable or a new funciton, you should do it within the game
mechanic method. The mechanic must return a reward, which is an
integer. If a tile is being assumed then it should be defined

as a single capital alphabet character and not a word. If a
player is being assumed then it should be ’@’ tile. Remember
that the game mechanic function should only take ’self’ as
parameter. Only output the new game mechanic as Python function
, nothing else."

3. Compatibility Mutation:
1 "Create a new game mechanic that will make the game better

when combined with the following game mechanics:\n" + solution
+ "\n Do not make any assumptions, if you want to add a new
variable or a new funciton, you should do it within the game
mechanic method. The mechanic must return a reward, which is an
integer. If a tile is being assumed then it should be defined

as a single capital alphabet character and not a word. If a
player is being assumed then it should be ’@’ tile. Remember
that the game mechanic function should only take ’self’ as
parameter. The name of the mechanic should be coherent with the
behaviour of it. Only output the new game mechanic as Python

function, nothing else."

4. Crossover:
1 "Create a new game mechanic that combines the features of the

given two mechanics to create a new game mechanic that combines
the behavior of the both of them:\n" + solution + "\n Do not

make any assumptions, if you want to add a new variable or a
new method, you should do it within the function. The mechanic
must return a reward, which is an integer. If a tile is being
assumed then it should be defined as a single capital alphabet
character and not a word. If a player is being assumed then it
should be ’@’ tile. Remember that the game mechanic function
should only take ’self’ as parameter. The name of the mechanic
should be coherent with the behaviour of it. Only output the
new game mechanic as Python function, nothing else."

D GAMES

Play games in the user study by following the links:

1. TreasureHunt:https://mortar-x3p7.onrender.com/games/
TreasureHunt

2. HeroBreakout:https://mortar-x3p7.onrender.com/games/
HuntBreakout

3. AllyCraft:https://mortar-x3p7.onrender.com/games/AllyCraft
4. CrystalCavernsCommander:https://mortar-x3p7.onrender.com/games/

Crystal_Caverns_Commander

5. MagneticProwess:https://mortar-x3p7.onrender.com/games/
MagneticProwess

6. HeroHunt:https://mortar-x3p7.onrender.com/games/HeroHunt
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