
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MORTAR: EVOLVING MECHANICS FOR
AUTOMATIC GAME DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

We present MORTAR, a system for autonomously evolving game mechanics for
automatic game design. Game mechanics define the rules and interactions that
govern gameplay, and designing them manually is a time-consuming and expert-
driven process. MORTAR combines a quality-diversity algorithm with a large
language model to explore a diverse set of mechanics, which are evaluated by
synthesising complete games that incorporate both evolved mechanics and those
drawn from an archive. The mechanics are evaluated by composing complete
games through a tree search procedure, where the resulting games are evaluated
by their ability to preserve a skill-based ordering over players—that is, whether
stronger players consistently outperform weaker ones. We assess the mechanics
based on their contribution towards the skill-based ordering score in the game.
We demonstrate that MORTAR produces games that appear diverse and playable,
and mechanics that contribute more towards the skill-based ordering score in the
game. We perform ablation studies to assess the role of each system component
and a user study to evaluate the games based on human feedback.

1 INTRODUCTION

Procedural content generation (PCG) is a well-studied approach in game design, concerned with the
automatic creation of game content such as levels, maps, items and narratives (Shaker et al., 2016;
Liu et al., 2021). PCG serves multiple purposes: enabling runtime content generation in games
such as roguelikes, providing ideation tools for designers, automating the production of repetitive
content, and facilitating research into creativity and design processes. Traditionally, PCG research
has focused on structural aspects of games—particularly level or layout generation (Risi & Togelius,
2020)—where the goal is to produce environments that are coherent, solvable, and varied.

By contrast, comparatively little attention has been paid to the procedural generation of game me-
chanics—the underlying rules for interactions that govern gameplay. Yet mechanics play a central
role in shaping the player experience, determining not just how players act, but what kinds of strate-
gies and emergent behaviours are possible. Designing mechanics is inherently challenging: unlike
levels, which can be evaluated by solvability or novelty, the utility of a mechanic depends on the
dynamics it induces within the context of a game. This makes both generation and evaluation sig-
nificantly harder.

A central premise of this work is that evaluating game mechanics is fundamentally more difficult
than evaluating assets or level layouts. Unlike these forms of content, a mechanic cannot be judged
in isolation—it only gains meaning through the gameplay it enables. A mechanic that appears novel
or complex may still be uninteresting if it does not support skill-based interaction. This insight
motivates our approach: effective automation of mechanic design requires not only a generative
model, but also a principled way to assess a mechanic’s utility in the context of play.

We address this challenge by introducing a mechanic-centric framework for automatic game design.
The central idea is to evolve mechanics not in isolation, but through their contribution to the quality
of full games. Specifically, we evaluate mechanics by constructing complete games around them,
and measuring whether the resulting games induce a skill-based ordering over players of different
capabilities. This allows us to define a concrete notion of usefulness for a mechanic: its contribution
to the overall expressivity and skill gradient of the games in which it appears.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Basic
game

mechanics

Evolved
mechanic

+ mechanic 1
+ mechanic 2

 + mechanic 3

Evaluation
MCTS

__init__()

step()

reset()

render()

make_game()
Decide which sprites to use.

Generate game

Evolve and
test the
mechanic

Evolved mechanic

Evolved mechanic
+ mechanic 1

Evolved mechanic
+ mechanic 1
+ mechanic 2

Game
mechanics
archive

Select a
mechanic

Calculate
CITS

fitness
score

Evolved
mechanic

Mechanic
1

Mechanic
2

is_terminal()

Generate
and modify
game class

string_map()

important_tiles()

env_dictionary()

Generate 2D string map of the game.

Decide which ones are walkable etc.

Will have all the post processing
functions and will initialise the

game

Initialise the game

Skill-based evaluation of the game.

Mechanics in the node

Rank
correlation

score
becomes the
node value.

Internal workings of one Evaluation MCTS node

Figure 1: A flow diagram of MORTAR

We introduce MORTAR, a system that evolves game mechanics using a quality-diversity algorithm
guided by a large language model (LLM). MORTAR maintains a diverse archive of mechanics, rep-
resented as code snippets, which are mutated and recombined through LLM-driven evolutionary
operators. Each evolved mechanic is evaluated by embedding it into full games constructed via
Monte Carlo Tree Search, which incrementally builds games by composing mechanics from the
archive. These games are evaluated based on their ability to induce a consistent skill-based ranking
over a fixed set of agents. We define a novel fitness measure, which quantifies the contribution of a
mechanic to the final game’s skill-based ordering, inspired by Shapley values (Shapley, 2016).

We demonstrate that MORTAR can evolve a diverse set of game mechanics that contribute to the
quality and playability of the generated games.1 The resulting games exhibit coherent structure,
varied interaction patterns, and meaningful skill gradients. Through ablations, we show that both
the tree-search-based composition and the LLM-driven mutations are critical for generating high-
quality mechanics. Our results highlight the potential for using LLMs not only as generators, but as
evaluators and collaborators in the game design loop.

The system described here is a research prototype for the purposes of understanding how to best
generate complementary game mechanics. However, it could also serve as an ideation tool for game
designers, suggesting new mechanics and mechanic combinations, perhaps in response to designer
input. It is not meant to generate complete games, and aims to empower rather than replace game
designers.

2 METHOD

MORTAR is an evolutionary algorithm for generating game mechanics, where a large language
model (LLM) is used to implement code-level variation operators. A core principle of the method
is that a mechanic’s value lies in the gameplay it enables; mechanics are evaluated not in isolation,
but by the contribution they make to full games. We formalise this through a notion of importance,
which guides the search process.

2.1 EVOLUTION SETUP

MORTAR employs a Quality-Diversity (QD) algorithm, using a fixed 2D archive (as in MAP-
Elites (Mouret & Clune, 2015)) to store and explore diverse game mechanics. We refer to this
structure as the Mechanics Archive. Each mechanic is represented as a Python function belonging
to a game class, and placed in the archive based on two behavioural descriptors:

1Play the generated games at: https://mortar-x3p7.onrender.com/

2

https://mortar-x3p7.onrender.com/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1. Mechanic Type: A categorical descriptor indicating the gameplay behaviour the mechanic
enables. We define 8 mechanic types (detailed in Section 3), each associated with 10 de-
scriptive category words. To classify an evolved mechanic, we compute similarity scores
between the mechanic’s name and all category words, creating a normalised similarity vec-
tor. The mechanic type is determined by identifying the highest similarity score’s index
and multiplying this index by the score to produce a positional similarity value that serves
as the behavioural descriptor.

2. Code Complexity: Computed using weighted Abstract Syntax Tree (AST) analysis. We
parse the mechanic’s code into an AST representation and calculate complexity as a
weighted sum of function calls, assignments, and return statements. Function calls receive
the highest weight, as mechanisms requiring more function calls exhibit greater complexity.
Assignments are weighted to reflect that additional variables may enable more interesting
behaviours. Return statements contribute to complexity scoring because multiple exit paths
can produce diverse behavioural outcomes.

Mechanics are selected from the archive and modified using several LLM-implemented evolutionary
operators: Mutation adds new functionality to a single mechanic; diversity mutation samples three
mechanics and prompts the LLM to generate a behaviorally distinct variant; crossover merges two
mechanics (selected based on AST similarity) into a functional combination that integrates elements
from both; and compatibility mutation generates mechanics that complement existing ones in a
game, primarily used during game evaluation (see subsequent sections).

2.2 EVALUATING GAME MECHANICS

Each evolved mechanic is represented as a function within a Python class. To prepare it for evalua-
tion, we prompt the LLM to construct the rest of the class around it in a step-by-step fashion, starting
with the init () method to define any required variables and scaffolding, step method to add
actions, reset and render method as needed.

The mechanic is then tested for syntax and runtime errors. If no errors occur, we simulate it in a
static test environment with simple objects and characters for the mechanic to interact with them,
if necessary. A Monte Carlo Tree Search (MCTS) agent is used to interact with the environment,
verifying that the mechanic is functional and non-trivial. Only mechanics that pass both tests proceed
to the usefulness evaluation stage. Failed mechanics are discarded to reduce unnecessary LLM calls.

2.3 AUTOMATED GAME CONSTRUCTION

To evaluate a mechanic’s usefulness, we embed it within a full game. Games are constructed through
MCTS, where the root node is the evolved mechanic, and each expansion adds a new mechanic that
is either sampled from the archive or generated via compatibility mutation. Each path through the
tree represents a particular combination of mechanics; that is, a complete game.

Games are also implemented as Python classes, following a common template with core methods,
such as step, reset, render, move mechanics and preset variables. The LLM is prompted to
modify or add functionality to these methods as needed, in an iterative manner. It is also asked to
define any helper methods or variables required by the mechanics. At the end of this process, the
LLM is prompted to define a win condition and generates a corresponding termination function. It
also selects appropriate tiles from a predefined set, maps them to characters, and generates a 2D
string-based level layout using these mappings. A final function defines which tiles are walkable,
interactive, or character-specific.

The complete game script includes the game class, the tile and map generation functions, and a
preset function that instantiates the full game. Simple postprocessing ensures the map is rectangular,
contains exactly one player, and is free of formatting issues (e.g. whitespace padding).

2.4 EVALUATION OF THE GAME

A central idea in our work is that a game’s quality is revealed through the emergence of a consistent
skill gradient or game depth: a well-designed game should allow players of differing abilities to be
meaningfully distinguished. We implement this by evaluating how well the game ranks a fixed set

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

of players by skill. This approach allows us to evaluate not just whether a game is playable, but
whether it rewards skill—a more robust signal of design quality.

To assess whether a game rewards skill, we fix a pool of five agents with varying ability levels,
inspired by Nielsen et al. (2015). These include three MCTS agents with increasing numbers of
rollouts, a random agent, and an agent that takes no actions.2 This defines a clear expected skill
ordering: the strongest agent should be the MCTS variant with the most rollouts, followed by the
medium and low rollout agents, then the random agent, and finally the no-op agent. The outcome
rank is induced by playing the game and recording empirical win rates. To quantify alignment
between the expected and outcome rankings, we compute Kendall’s Tau (τ), a standard measure of
rank correlation: τ = C−D

p(p−1)
2

. Here, C and D are the number of concordant and discordant pairs,

respectively, and p is the number of players (five in this case). Concordance occurs when the relative
ranking between two players agrees between the expected and observed orders; discordance occurs
when they disagree. A value of 1 indicates perfect alignment with the expected ranking, 0 indicates
no correlation, and −1 reflects a completely reversed order. We consider a game unplayable if
τ = −1.

While τ provides a global measure of game quality, it reveals nothing about the source of that
quality. To address this, we introduce Constrained Importance Through Search (CITS), a scoring
method to measure each mechanic’s marginal contribution to the emergence of a skill gradient.
Inspired by Shapley values Shapley (2016), CITS estimates how much each mechanic contributed
to the final game’s τ score. However, computing full Shapley values would require evaluating every
subset of mechanics–exponential in the number of mechanics. Instead, CITS is defined over the
exploration tree constructed during generation, making it computationally tractable and grounded in
actual gameplay evaluations. Formally, the CITS score for mechanic i is:

CITSi =
1

|Ni|
∑
n∈Ni

ϕ
(n)
i ,

where Ni = {n ∈ T : i ∈ Mn, n ̸= nroot} is the set of non-root nodes in the tree T that contain
mechanic i, and Mn is the mechanic set at node n. The contribution ϕ

(n)
i is computed using the

standard Shapley formula over the restricted set of explored subsets:

ϕ
(n)
i =

∑
S⊆Mn\{i}

|S|! · (|Mn| − |S| − 1)!

|Mn|!
·∆(n)

i (S),

where the marginal value term is defined as the difference in value when adding mechanic i to the
subset S:

∆
(n)
i (S) = vT (S ∪ {i})− vT (S).

Finally, the value function vT (S) returns the τm score for the node m with exactly mechanics S, if
such a node exists in the tree; otherwise, it is defined to be 0:

vT (S) =

{
τm if ∃m ∈ T s.t. Mm = S

0 otherwise

This search-constrained Shapley approach allows us to assess a mechanic’s value in context, measur-
ing its contribution within actual, discovered game designs rather than hypothetical combinations.
As such, the CITS score provides a principled, interpretable, and efficient mechanism for attributing
gameplay quality to individual mechanics.

2Any agents with a clear capability ordering would suffice, such as heuristic agents with different search
depths, or reinforcement learning agents with varying training budgets.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Generation 1 Generation 20

Generation 30 Generation 40 Generation 50

Generation 10

Figure 2: Coverage of game mechanic archive over a run.

3 EXPERIMENT SETUP

MORTAR employs a 2D Quality-Diversity (QD) archive with dimensions for mechanic type (0–1.0)
and code complexity (4–40), forming a 13 × 13 grid. The first dimension categorises mechanics into
nine types: movement, interaction, combat, progression, environment, puzzle, resource management,
exploration, time manipulation. To categorise a mechanic, we use DistilBERT (Sanh et al., 2019)
embeddings to compute the similarity between mechanic function names and associated category
words (detailed in the Appendix C). The complexity dimension and archive ranges were determined
through experimentation to maximise archive coverage.

The system operates with a batch size of 10, selecting individuals from the archive and applying evo-
lutionary operators in parallel. Operator selection probabilities are 50% for diversity mutation, 30%
for mutation, and 20% for crossover. Diversity mutation samples three mechanics, while crossover
selects pairs based on AST similarity. The static environment used to evaluate the evolved mechanic
in isolation can be found in the Appendix A.

For game construction, we use MCTS with 20 iterations, where each expansion adds one mechanic
per node (maximum 3 children per node). Unlike traditional MCTS, we do not simulate; instead,
we evaluate the complete game formed by all mechanics on the path from root to the newly ex-
panded node, then backpropagate before proceeding to the next expansion. Compatibility mutation
generates new mechanics within nodes, with a 50% probability of creating novel mechanics versus
selecting from the existing archive. All LLM operations use GPT-4o-mini for both evolution and
game creation. Skill assessment employs five agents with a clear capability ordering: MCTS vari-
ants with 100,000, 10,000, and 1,000 iterations, plus random and no-action agents for Kendall’s Tau
rank correlation computation.

We conduct extensive ablation studies, replacing the MCTS procedure with three alternatives: ran-
dom mechanic selection, LLM-prompted selection, and greedy fitness-based selection. Each method
generates games with 1-4 mechanics to compute CITS scores. We then conduct another ablation
with a Sokoban (Murase et al., 1996) level as the initial game. All experiments are averaged over
five runs due to computational constraints (approximately $30–50 per run with GPT-4o-mini).

Our evaluation metrics assess MORTAR’s progression through multiple measures. The Quality-
Diversity (QD) Score sums all fitness values to indicate improving mechanic quality. Accumulated
Rank Correlation totals Kendall’s τ scores across all tree nodes. We track both maximum and mean
fitness scores via CITS evaluation, monitor the number of elites filling the archive, and calculate
game creation success rate as the proportion of functional games among all generated games.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Furthermore, a user study is conducted to get feedback to known if the games are actually interesting
or not. We provide 6 generated games, and pair them together according to their distribution. We
then ask the user to play the games and mark which one of the two is more interesting, novel, fun to
play, and easy to understand. We also give them an option of Neither, which is very important to us
as it will let us know if the games are actually meaningful.

4 RESULTS

In this section, we analyse results from the complete MORTAR pipeline, ablation and user studies.
The QD score, which sums fitnesses of all archive individuals, demonstrates MORTAR’s ability
to evolve increasingly better mechanics over time (Figure 3a). Figure 3b reveals complementary
patterns: mean fitness (CITS score) increases gradually across generations while maximum fitness
shows stepwise improvements, indicating MORTAR’s capacity for continued mechanic discovery.
Figure 3c provides additional evidence of progression through the accumulative Kendall’s τ rank
correlation score per Evaluation MCTS tree, showing that MORTAR increasingly identifies engaging
games that exhibit meaningful skill-based player rankings across generations.

(a) QD score

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
IT

S

CITS

Max Fitness
Mean Fitness

(b) Mean and maximum CITS score, representing fit-
ness of a game mechanic in the archive.

0 10 20 30 40 50
Iteration

40

20

0

20

40

60

Ac
cu

m
ul

at
iv

e
R

an
k

C
or

re
la

tio
n

Sc
or

e

Accumulative Rank Correlation Score

Mean
Std

(c) Accumulative Kendall’s τ rank correlation score.

Figure 3: Performance metrics over evolutionary generations.

Table 1 compares MORTAR with alternative approaches to the MCTS evaluation component, our
core methodological contribution. MORTAR demonstrates superior evolvability through the highest
archive coverage and consistently achieves the best QD score, maximum CITS score, and mean
CITS score, indicating its ability to discover higher-quality mechanics. While Greedy Search
achieves a marginally better game creation success rate—likely because it always selects the most
fit mechanics—this suggests that highly fit mechanics have greater potential for generating playable
games. However, MORTAR’s comprehensive performance across multiple metrics demonstrates the
effectiveness of its tree search-based composition approach for mechanic evolution. Furthermore,
Sokoban Initialisation suggests that the MORTAR is sensitive to the initial mechanics and game
layout, which impacts evolvability, as evidenced by the very low number of elites in this case.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of MORTAR with alternative mechanic selection strategies: LLM-based selec-
tion, random selection, and greedy fitness-based selection across quality-diversity metrics.

Method No. of elites ↑ QD score ↑ Max CITS ↑ Mean CITS ↑ Games success rate ↑
Evaluation MCTS (ours) 155 ± 4.51 31.18 ± 8.10 0.59 ± 0.11 0.20 ± 0.05 16.97 ± 4.64
LLM Selection 141 ± 5.83 17.64 ± 4.91 0.27 ± 0.09 0.13 ± 0.06 11.69 ± 5.14
Random Selection 144 ± 9.10 9.86 ± 6.71 0.14 ± 0.08 0.06 ± 0.04 11.77 ± 4.19
Greedy Selection 139 ± 5.15 25.37 ± 2.81 0.51 ± 0.06 0.18 ± 0.13 18.24 ± 1.19
Sokoban Initialisation 110 ± 10.52 15.19 ± 3.12 0.45 ± 0.12 0.19 ± 0.07 15.11 ± 2.83

Figures 4 and 5 showcase two games generated by MORTAR, demonstrating diversity in level lay-
outs, win conditions, and mechanics. AllyCraft (Figure 4) presents a challenging strategic experience
where players control both their character and summoned allies, with escalating difficulty requiring
versatile tactics. Effective strategies involve summoning allies strategically and eliminating enemies
in optimal sequences. This game achieves a Kendall’s τ of 0.8, maintaining clear agent rankings
despite low overall rewards, with only minor rank switching between the do-nothing and random
agents due to negative scoring.

By contrast, TreasureHunt (Figure 5) exhibits a Kendall’s τ of 0.4, showing significant rank dis-
tortion except for the top-performing agent. This lower correlation suggests reduced strategic
depth—once players discover the optimal path, the game loses replay value. AllyCraft’s higher
τ score correlates with sustained engagement through multiple viable strategies, while Treasure-
Hunt’s deterministic solution path limits long-term interest. Both games incorporate sophisticated
mechanics, including ally summoning, multi-unit control, and pathfinding algorithms. The complete
evolved code for these mechanics is provided in Appendix B.

Figure 4: AllyCraft gameplay sequence: (Top left) Initial state showing black-marked enemies to
defeat and items to collect for rewards. (Top centre) Player spawns and controls allies as additional
units. (Top right) Allies collect items while enemies advance each turn. (Bottom left) One ally is
defeated by an enemy while simultaneously eliminating an opposing unit. (Bottom centre) Player
and remaining ally attempt coordinated attack but are overwhelmed by enemies, resulting in a loss.

Figure 5: TreasureHunt gameplay sequence: (Left) Initial game state showing treasure objective in
a capture-the-flag style layout. (Centre) Player spawns at the top-left corner (blue marker) while
enemies begins pursuit. (Right) Final state showing close competition between player and red-
marked enemy, with victory determined by action processing order. The game features an evolved
A* pathfinding algorithm for enemy movement (code in Appendix B).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.1 USER STUDY

To determine whether the quantitative metrics correlate with human preferences, we conducted a
small comparative user study with 10 participants who evaluated 6 games generated by MORTAR
across five dimensions: interestingness, novelty, frustration level, fun factor, and ease of under-
standing. Table 2 presents the results alongside each game’s Kendall’s τ score for comparison with
MORTAR’s automated evaluation.

The study compared three pairs of games: TreasureHunt versus HuntBreakout (capture-the-flag vari-
ants where HuntBreakout adds wall-breaking mechanics), AllyCraft versus CrystalCavernsCom-
mander (RPG-style games differing in ally control mechanisms), and MagneticProwess versus
HeroHunt (Sokoban-based games with magnetic pulling and enemy combat mechanics, respec-
tively). See Appendix D for games in the user study.

We observe a general correlation between the total human preference score and MORTAR’s calcu-
lated Kendall’s τ values. In the first comparison, the τ difference has a smaller magnitude than the
total score difference, yet both favour the same game. The second comparison shows alignment
in both magnitude and direction between total score and τ . However, the third comparison reveals
opposing trends where the total score contradicts τ , though this discrepancy may reflect the inher-
ent difficulty of aligning automated skill-based metrics with subjective human preferences across
diverse game genres.

Treating the total score as a meaningfulness metric—comprising interestingness, novelty, fun fac-
tor, ease of understanding, minus frustration—the “Neither” votes provide additional insight. These
scores (1, 7, and 2 across the three comparisons, respectively) indicate that games in the second com-
parison are perceived as less meaningful, likely due to excessive complexity. This finding aligns
with intuitive game design principles: mini-games benefit from appropriate rather than maximal
complexity. While complexity can enhance engagement in full games through progressive difficulty
scaling, these mini-game experiences demonstrate reduced effectiveness when sophisticated me-
chanics overwhelm fundamental gameplay elements. Finally, qualitative participant feedback con-
sistently highlighted visual limitations, particularly the absence of animations and restricted sprite
sets—a known limitation of MORTAR’s current implementation.

Table 2: User study results comparing games. Values indicate the number of participants (out of 10)
selecting each option. Total score represents the sum of positive metrics minus “Frustrating”.

Games Interesting ↑ Novel ↑ Frustrating ↓ Fun to play ↑ Easy to understand ↑ Total ↑ τ ↑
TreasureHunt 0 1 3 1 4 3 0.4
HuntBreakout 8 8 5 7 4 22 0.5
Both 1 0 0 1 2 2 —
Neither 1 1 2 1 0 1 —

AllyCraft 7 6 5 6 3 17 0.8
CrystalCavernsCommander 2 2 3 3 2 6 0.3
Both 0 1 2 0 1 0 —
Neither 1 1 0 1 4 7 —

MagneticProwess 4 4 5 4 3 10 0.6
HeroHunt 5 5 2 5 3 16 0.3
Both 0 0 1 0 3 2 —
Neither 1 1 2 1 1 2 —

5 RELATED WORK

The core focus of MORTAR is evolving game mechanics to serve as an ideation and prototyping tool
for game designers and generate novel games for testing learning algorithms. This research falls un-
der Automatic Game Design (AGD), pioneered by (Nelson & Mateas, 2007), who formalized game
mechanics through WordNet to generate micro games. Browne (2008) and Togelius & Schmidhu-
ber (2008) independently proposed evolutionary approaches to AGD across different domains. The
latter introduced learnability as a quality criterion, inspiring various approximations of skill differen-
tiation over the years (Nielsen et al., 2015; Khalifa et al., 2017) that influence our current approach.
Related concepts include game depth (Lantz et al., 2017) and formalisms for measuring a game’s
ability to distinguish among agents (Stephenson et al., 2020).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Non-evolutionary AGD approaches include constraint solvers for mechanics generation (Zook &
Riedl, 2014) and autoencoders for learning and generating mechanics (Rieder, 2018). Recent work
incorporates LLMs into AGD pipelines: ScriptDoctor generates PuzzleScript games (Earle et al.,
2025), while Gavel evolves Ludii games using LLMs and Quality-Diversity algorithms (Todd et al.,
2024). Similar approaches have generated 2-player games using XML-based languages (Jorge &
Antonio J, 2023). MORTAR distinguishes itself by leveraging the full expressiveness of Python code
generation, creating a search space that scales with advancing LLM capabilities.

MORTAR also relates to LLM-driven Procedural Content Generation (Togelius et al., 2011; Shaker
et al., 2016; Liu et al., 2021). Early work included Sokoban level generation using GPT-2/3 (Todd
et al., 2023), MarioGPT for Super Mario Bros levels with Novelty Search (Sudhakaran et al.,
2023), and human-in-the-loop GPT-3 fine-tuning (Nasir & Togelius, 2023). Word2World and
Word2Minecraft generate 2D and 3D games with fixed mechanics (Nasir et al., 2024a; Huang,
2025). MORTAR extends this paradigm by generating multiple game aspects, including mechan-
ics and levels.

Finally, MORTAR contributes to research on LLMs as evolutionary operators in Quality-Diversity
algorithms like MAP-Elites (Mouret & Clune, 2015). This approach has been applied to robot mor-
phology evolution (Lehman et al., 2023), neural architecture search using CVT-MAP-Elites (Nasir
et al., 2024b), and Ludii game generation (Todd et al., 2024).

6 LIMITATIONS

While MORTAR successfully generates novel game mechanics and coherent games with semanti-
cally meaningful CITS scores, several limitations warrant future investigation. The system currently
modifies game rendering functions without incorporating animations, limiting visual richness. Our
experiments used a relatively modest LLM (GPT-4o-mini); stronger models could potentially yield
more sophisticated mechanics and improved code quality. The current 2D top-down perspective
constrains the search space—extending to 3D environments would significantly expand creative
possibilities.

Archive initialisation presents another challenge, as improved seeding strategies could enhance con-
vergence and final quality. Similarly, increasing MCTS iterations during evaluation might produce
higher-quality games at the cost of computational resources. Perhaps most significantly, MORTAR’s
autonomous evolution lacks designer control mechanisms. A controllable variant that accepts de-
sign constraints or preferences could better serve as an ideation tool, allowing game developers to
guide the search toward specific gameplay goals while maintaining the system’s creative discovery
capabilities.

7 CONCLUSION AND FUTURE DIRECTIONS

We present MORTAR, a novel system for generating games through mechanic evolution. MOR-
TAR combines MAP-Elites, a Quality-Diversity algorithm, with LLM-driven code-level mechanic
evolution. The system evaluates mechanics through MCTS, which constructs complete games in
each tree node and assesses them using skill-based ranking. We introduce the Constrained Impor-
tance Through Search (CITS) score, derived from Shapley values, which quantifies a mechanic’s
contribution within the actually searched combination space rather than hypothetical alternatives.

Our quantitative results demonstrate MORTAR’s high evolvability and progressive improvement
across generations through comprehensive ablation studies. Qualitative analysis reveals that games
with higher scores exhibit greater strategic depth and complexity, while MORTAR consistently pro-
duces diverse gaming experiences with sophisticated mechanic interactions.

MORTAR offers several promising research directions. As an ideation tool, it could support game de-
signers by suggesting novel mechanic combinations responsive to design constraints. The system’s
scalability suggests that initialisation with extensive mechanic libraries and extended evolution pe-
riods could explore previously undiscovered regions of game design space. The generated games
provide rich environments for testing generalisation in reinforcement learning agents (Sutton et al.,
1999), offering diverse challenges with measurable skill gradients.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Cameron Bolitho Browne. Automatic generation and evaluation of recombination games. PhD
thesis, Queensland University of Technology, 2008.

Sam Earle, Ahmed Khalifa, Muhammad Umair Nasir, Zehua Jiang, Graham Todd, Andrzej
Banburski-Fahey, and Julian Togelius. Scriptdoctor: Automatic generation of puzzlescript games
via large language models and tree search. arXiv preprint arXiv:2506.06524, 2025.

Shuo Huang. Word2minecraft: Generating 3d game levels through large language models. Master’s
thesis, New York University Tandon School of Engineering, 2025.

Ruiz-Quiñones Jorge and Fernández-Leiva Antonio J. Automated videogame mechanics generation
with xvgdl. ICGA Journal, 44(4):124–152, 2023.

Ahmed Khalifa, Michael Cerny Green, Diego Perez-Liebana, and Julian Togelius. General video
game rule generation. In 2017 IEEE Conference on Computational Intelligence and Games (CIG),
pp. 170–177. IEEE, 2017.

Frank Lantz, Aaron Isaksen, Alexander Jaffe, Andy Nealen, and Julian Togelius. Depth in strategic
games. In AAAI Workshops, 2017.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of evolutionary machine learning, pp. 331–366.
Springer, 2023.

Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yannakakis, and Julian
Togelius. Deep learning for procedural content generation. Neural Computing and Applications,
33(1):19–37, 2021.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Yoshio Murase, Hitoshi Matsubara, and Yuzuru Hiraga. Automatic making of sokoban problems.
In Pacific Rim International Conference on Artificial Intelligence, pp. 592–600. Springer, 1996.

Muhammad U Nasir and Julian Togelius. Practical pcg through large language models. In 2023
IEEE Conference on Games (CoG), pp. 1–4. IEEE, 2023.

Muhammad U Nasir, Steven James, and Julian Togelius. Word2world: Generating stories and
worlds through large language models. arXiv preprint arXiv:2405.06686, 2024a.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110–1118, 2024b.

Mark J Nelson and Michael Mateas. Towards automated game design. In Congress of the Italian
Association for Artificial Intelligence, pp. 626–637. Springer, 2007.

Thorbjørn S Nielsen, Gabriella AB Barros, Julian Togelius, and Mark J Nelson. General video
game evaluation using relative algorithm performance profiles. In European Conference on the
Applications of Evolutionary Computation, pp. 369–380. Springer, 2015.

Bernhard Rieder. Using procedural content generation via machine learning as a game mechanic.
Austrian Marshall Plan Foundation, 2018.

Sebastian Risi and Julian Togelius. Increasing generality in machine learning through procedural
content generation. Nature Machine Intelligence, 2(8):428–436, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Noor Shaker, Julian Togelius, and Mark Nelson. Procedural Content Generation in Games.
Springer, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lloyd Shapley. 17. a value for n-person games. In Contributions to the Theory of Games, Volume
II, pp. 307–318. Princeton University Press, 2016.

Matthew Stephenson, Damien Anderson, Ahmed Khalifa, John Levine, Jochen Renz, Julian To-
gelius, and Christoph Salge. A continuous information gain measure to find the most discrim-
inatory problems for ai benchmarking. In 2020 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–8. IEEE, 2020.

Shyam Sudhakaran, Miguel González-Duque, Matthias Freiberger, Claire Glanois, Elias Najarro,
and Sebastian Risi. Mariogpt: Open-ended text2level generation through large language models.
Advances in Neural Information Processing Systems, 36:54213–54227, 2023.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning. Journal of Cognitive Neuro-
science, 11(1):126–134, 1999.

Graham Todd, Sam Earle, Muhammad Umair Nasir, Michael Cerny Green, and Julian Togelius.
Level generation through large language models. In Proceedings of the 18th International Con-
ference on the Foundations of Digital Games, pp. 1–8, 2023.

Graham Todd, Alexander G Padula, Matthew Stephenson, Éric Piette, Dennis J Soemers, and Julian
Togelius. Gavel: Generating games via evolution and language models. Advances in Neural
Information Processing Systems, 37:110723–110745, 2024.

Julian Togelius and Jurgen Schmidhuber. An experiment in automatic game design. In 2008 IEEE
Symposium On Computational Intelligence and Games, pp. 111–118. IEEE, 2008.

Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne. Search-based
procedural content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):172–186, 2011.

Alexander Zook and Mark Riedl. Automatic game design via mechanic generation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 28, 2014.

A PROMPTS

A.1 GAME MECHANIC GENERATION PROMPTS

Prompts provided to MORTAR are accompanied by predefined Python code, which is then modified
as required. The following methods of a class are defined separately so they can be invoked in
individual prompts:

1

2 init_method = r"""def __init__(self, walkable_tiles,tiles_without_char,
tiles, str_map_without_chars, str_map, interactive_object_tiles,
enemy_tiles, render_mode="human"):

3 super(GameMechEnv, self).__init__()
4 self.map_str_without_chars = str_map_without_chars.strip().split(’\n

’)
5 self.map_str = str_map.strip().split(’\n’)
6 self.map = [list(row) for row in self.map_str]
7 self.map_without_chars = [list(row) for row in self.

map_str_without_chars]
8 self.tiles = tiles
9 self.tiles_without_char = tiles_without_char

10 self.action_space = spaces.Discrete(self.get_action_space())
11 self.char_set = {’A’: 0, ’B’: 1, ’C’: 2, ’D’: 3, ’O’: 4, ’@’: 5, ’#’:

6, ’&’: 7}
12 self.char_to_int = lambda c: self.char_set.get(c, 0)
13 self.mechanic_to_action = self.get_mechanics_to_action()
14 self.done = False
15 self.tile_size = 16
16 self.char_tile_size = 16

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

17 self.frames = []
18 max_width = max(len(row) for row in self.map_str)
19 self.observation_space = spaces.Box(
20 low=0,
21 high=1,
22 shape=(len(self.char_set), len(self.map_str), max_width), # Use

len(self.char_set) for channels
23 dtype=np.int32
24)
25

26 self.default_walkable_tile = ’A’
27 self.render_mode = "rgb_array"
28 self.walkable_tiles = walkable_tiles
29 self.interactive_object_tiles = interactive_object_tiles
30 self.enemy_tiles = enemy_tiles
31 self.picked_objects = []
32 self.npc_tiles = ["&"]
33 self.enemy_tiles = ["#"]
34 self.player_health = 100
35 self.enemy_health = 100
36 self.current_score = 0
37 self.map = [list(row) for row in self.map_str]
38 self.grid_width = max(len(row) for row in self.map)
39 self.grid_height = len(self.map)
40 for i, row in enumerate(self.map):
41 for j, tile in enumerate(row):
42 if tile == ’@’:
43 self.player_position = (i, j)
44

45 self.reset()"""
46

47 reset_method = """def reset(self, seed=None):
48 self.map = [list(row) for row in self.map_str]
49 self.map_without_chars = [list(row) for row in self.

map_str_without_chars]
50 self.grid_width = max(len(row) for row in self.map)
51 self.grid_height = len(self.map)
52 for i, row in enumerate(self.map):
53 for j, tile in enumerate(row):
54 if tile == ’@’:
55 self.player_position = (i, j)
56 self.current_tile = self.map_without_chars[self.player_position[0]][

self.player_position[1]] # Set current tile to the player’s starting
position

57 return self.get_state()["map"]"""
58

59 render_method = """def render(self, mode=’human’):
60

61 env_img = Image.new(’RGBA’, (len(self.map[0]) * self.tile_size, len(
self.map) * self.tile_size))

62

63 # 1st layer: Default walkable tile
64 for i in range(len(self.map)):
65 for j in range(len(self.map[0])):
66 tile_img = self.tiles[self.default_walkable_tile].resize((

self.tile_size, self.tile_size))
67 env_img.paste(tile_img, (j * self.tile_size, i * self.

tile_size), tile_img)
68

69 # 2nd layer: Map without characters
70 for i, row in enumerate(self.map_without_chars):
71 for j, tile in enumerate(row):
72 if tile in self.tiles and tile != self.default_walkable_tile:
73 tile_img = self.tiles[tile].resize((self.tile_size, self.

tile_size))

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

74 env_img.paste(tile_img, (j * self.tile_size, i * self.
tile_size), tile_img)

75

76 # 3rd layer: Characters and objects
77 for i, row in enumerate(self.map):
78 for j, tile in enumerate(row):
79 if tile in self.tiles and tile not in self.walkable_tiles:
80 if tile.isalpha():
81 tile_img = self.tiles[tile].resize((self.tile_size,

self.tile_size))
82 else:
83 tile_img = self.tiles[tile].resize((self.

char_tile_size, self.char_tile_size))
84 # Center the character in the tile
85 x_offset = (self.tile_size - self.char_tile_size) //

2
86 y_offset = (self.tile_size - self.char_tile_size) //

2
87 env_img.paste(tile_img, (j * self.tile_size +

x_offset, i * self.tile_size + y_offset), tile_img)
88

89 frame = np.array(env_img.convert(’RGB’))
90 self.frames.append(frame)
91 return frame"""
92

93 get_action_space_method = """def get_action_space(self):
94 return 3"""
95

96 get_mechanics_to_action_method = """def get_mechanics_to_action(self)
:

97 return {
98 "move_player": 0, # 0-3 for movement
99 }"""

100

101 move_player = """def move_player(self, action):
102 moves = {0: (-1, 0), 1: (1, 0), 2: (0, -1), 3: (0, 1)} # Up, Down,

Left, Right
103 dx, dy = moves[action]
104 new_row = self.player_position[0] + dx
105 new_col = self.player_position[1] + dy
106 reward = 0
107 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map[0]):
108 new_tile = self.map[new_row][new_col]
109 if new_tile in self.walkable_tiles:
110 self.update_player_position(new_row, new_col, new_tile)
111 return reward"""
112

113 other_methods = r"""def update_player_position(self, new_row, new_col
, new_tile):

114 # Validate both current and new positions are within bounds
115 if not (0 <= new_row < self.grid_height and 0 <= new_col < self.

grid_width):
116 return
117

118 if not (0 <= self.player_position[0] < self.grid_height and 0 <= self
.player_position[1] < self.grid_width):

119 # If current position is invalid, just set the new position
120 self.player_position = (new_row, new_col)
121 self.current_tile = new_tile
122 self.map[new_row][new_col] = ’@’
123 return
124

125 if new_tile not in self.walkable_tiles:
126 return
127

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

128 # Reset the player’s previous position to the original tile
129 self.map[self.player_position[0]][self.player_position[1]] = self.

current_tile
130 self.map_without_chars[self.player_position[0]][self.player_position

[1]] = self.current_tile
131

132 # Update the player’s position
133 self.player_position = (new_row, new_col)
134 self.current_tile = new_tile
135 self.map[new_row][new_col] = ’@’
136

137 def find_player_position(self):
138 for i, row in enumerate(self.map):
139 for j, tile in enumerate(row):
140 if tile == ’@’:
141 return (i, j)
142 return None
143

144 def clone(self):
145

146 new_env = GameMechEnv(
147 walkable_tiles=self.walkable_tiles,
148 tiles_without_char=self.tiles_without_char,
149 tiles=self.tiles,
150 str_map_without_chars=’\n’.join(self.map_str_without_chars),
151 str_map=’\n’.join(self.map_str),
152 interactive_object_tiles=self.interactive_object_tiles,
153 enemy_tiles=self.enemy_tiles
154)
155 new_env.map = [row[:] for row in self.map]
156 new_env.map_without_chars = [row[:] for row in self.map_without_chars

]
157 new_env.player_position = self.player_position
158 new_env.current_tile = self.current_tile
159 new_env.char_to_int = self.char_to_int
160 new_env.char_set = self.char_set
161 return new_env
162

163 def is_terminal(self):
164 return self.done"""
165

166 get_state_method = """def get_state(self):
167 return {"map": self.map}"""
168

169 step_method = """def step(self, action):
170 reward = 0
171 self.done = False
172 if action < 4: # Movement actions
173 self.move_player(action)
174 self.done = reward > 0
175 info = {}
176 return self.get_state()["map"], reward, self.done, False, info
177 """

The following are the prompts used to edit the methods:

1. The state, render, and step method prompts are identical, except that the input function is
replaced by the function currently in focus:

1 "Given the following get_state method of the class:\n" +
get_state_method + "\n And the following game mechanic:\n" +
mechanics + "\n Edit get_state method, if required, for the
given game mechanic to work. Do not repeat the game mechanic as
a method. Only output whole of the edited get_state method and

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

if not edited, just output ’False’. Do not output anything
else."

2. Adding helper methods:

1 "Given the following methods: init method of the class:\n" +
init_method + "\n All functions already present in the class:\n
"+ other_methods + "\n The following game mechanic you just
created:\n" + mechanics + "\n Add any new helper methods needed
for the " + extract_function_name(mechanics) +" to work, if

required. Do not create or update __init__, reset, step,
get_state, render, get_action_space, or get_mechanics_to_action
methods. Do not repeat the game mechanic as a method or the

present methods. Do not add any new variables. Only output the
additional new method or methods required, and if not added,
just output ’False’. Do not output anything else."

3. The prompt to add new variables. game_mech_class one string with the whole initial
class present in it.

1 "Given the following class:\n" + game_mech_class + "\n And the
following game mechanic:\n" + mechanics + "\n Add any new

variables required in the GameMechEnv for the given game
mechanic to work. Always add to the existing code. Only output
the new variables if they are added in a Python dictionary
format and if not added, just output ’False’. The Python
dictionary can look like {’var_name_1’: init_value, ’var_name_2
’: init_value}. The keys should be the string of the variable
name and the values should be the initial values. The values
can never be a new argument to the init method. Do not output
anything else."

4. To generate the action space

1 "Given the following class:\n" + game_mech_class + "\n Also,
the following game mechanic:\n" + mechanics + "\n And the
following get_action_space method:\n" + action_space + "\n .
Edit the get_action_space method to add more actions, if
required, for the given game mechanic to work. Do not repeat
the game mechanic as a method. Only output the edited
get_action_space method and if not edited, just output ’False’.
Do not output anything else."

5. To get a mapping of mechanics to actions.

1 "Given the following class:\n" + game_mech_class + "\n Also,
the following game mechanic:\n" + mechanics + "\n And the
following get_mechanics_to_action method:\n" + mech_to_action +
"\n . Edit the get_mechanics_to_action method to add more

actions, if required, for the given game mechanic to work. The
edition should be "+ extract_function_name(mechanics) +":
action_number. Do not repeat the game mechanic as a method.
Only output the edited get_mechanics_to_action method and if
not edited, just output ’False’. Do not output anything else."

6. Game mechanics are then tested on a static environment:

1 str_world = """BBBBBBBBBBB
2 BAAAAAAAAAB
3 BAAAOAAAAAB
4 BA#@OAAAAAB
5 BA#AAAAAAAB
6 BBBBBBBBBBB"""
7

8 str_map_wo_chars = """BBBBBBBBBBB
9 BAAAAAAAAAB

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

10 BAAOOAAAAAB
11 BAAAOAAAAAB
12 BAAAAAAAAAB
13 BBBBBBBBBBB"""
14

15 walkables = [’A’, ’B’]
16 interactive_object_tiles = [’O’]
17 enemy_tiles = ["#"]
18 npc_tiles = ["&"]
19 env_image = dict()
20

21

22 env_image["A"] = Image.open(r"world_tileset_data/
td_world_floor_grass_c.png").convert("RGBA")

23 env_image["B"] = Image.open(r" world_tileset_data/
td_world_wall_stone_h_a.png").convert("RGBA")

24 env_image["C"] = Image.open(r"world_tileset_data/
td_world_floor_grass_c.png").convert("RGBA")

25 env_image["O"] = Image.open(r"world_tileset_data/td_world_chest.
png").convert("RGBA")

26 env_image["@"] = Image.open(r"character_sprite_data/
td_monsters_archer_d1.png").convert("RGBA")

27 env_image["#"] = Image.open(r"character_sprite_data/
td_monsters_witch_d1.png").convert("RGBA")

28 env_image["&"] = Image.open(r"character_sprite_data/
td_monsters_goblin_captain_d1.png").convert("RGBA")

29

30 env = GameMechEnv(walkable_tiles=walkables,
31 tiles_without_char=str_map_wo_chars,
32 tiles=env_image,
33 str_map_without_chars=str_map_wo_chars,
34 str_map=str_world,
35 interactive_object_tiles=interactive_object_tiles,
36 enemy_tiles=enemy_tiles)

A.2 GAME GENERATION PROMPTS

All of the above prompts are also used in the game-generation pipeline. The difference is that we
keep track of the previously edited method so that, when the evaluation MCTS tree expands to the
next node, the prompt includes methods inherited from earlier nodes. This is necessary because each
newly expanded node introduces a new mechanic in addition to all prior mechanics.

After these generations, we generate a make_game function. We start with generating a env\
_dict_func, a function that returns a dictionary mapping tiles to their corresponding path func-
tions. We provide the following paths:

1 paths_to_tiles = r’’’world_tileset_data/td_items_amulet_gold.png,
2 world_tileset_data/td_items_gem_ruby.png,
3 world_tileset_data/td_world_crate.png,
4 world_tileset_data/tg_world_barrel.png,
5 world_tileset_data/tg_world_floor_carpet_d.png,
6 world_tileset_data/tg_world_floor_moss_e.png,
7 world_tileset_data/tg_world_floor_sand_f.png,
8 world_tileset_data/tg_world_floor_panel_steel_c.png,
9 character_sprite_data/td_monsters_angel_d2.png,

10 character_sprite_data/td_monsters_archer_u2.png,
11 character_sprite_data/td_monsters_berserker_d1.png,
12 character_sprite_data/td_monsters_demon_l1.png’’’

And the whole initial env_dict_func:

1 env_dict_func = ’’’def env_dict():
2 env_image = dict()
3 image_paths = dict() # New dictionary to store paths

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

4

5 # Define a function to load image and store path
6 def load_image(char, path):
7 env_image[char] = Image.open(path).convert("RGBA")
8 image_paths[char] = path # Store the path
9

10 # Load all images
11 base_path = r"/mnt/lustre/users/mnasir/gmd"
12 load_image("A", f"{base_path}/world_tileset_data/

td_world_floor_grass_c.png")
13 load_image("B", f"{base_path}/world_tileset_data/

td_world_wall_stone_h_a.png")
14 load_image("X", f"{base_path}/world_tileset_data/

td_world_floor_grass_c.png")
15 load_image("O", f"{base_path}/world_tileset_data/td_world_chest.png")
16 load_image("I", f"{base_path}/world_tileset_data/td_world_chest.png")
17 load_image("C", f"{base_path}/world_tileset_data/td_world_chest.png")
18 load_image("@", f"{base_path}/character_sprite_data/

td_monsters_archer_d1.png")
19 load_image("#", f"{base_path}/character_sprite_data/

td_monsters_witch_d1.png")
20 load_image("&", f"{base_path}/character_sprite_data/

td_monsters_goblin_captain_d1.png")
21

22 # Here you add any other tiles that are needed for the game in the
same format

23

24 return env_image, image_paths ’’’

Therefore, the prompt for the env_dict_func generation:

1 "Given the game mechanics:\n" + mechanics[0] + "\nChange the
following env_dict function to cater for the mechanics, if required
.:\n" + env_dict_func + " Use the same paths for the same type of
tiles that are being added in env_image, or use the following paths:\
n"+ paths_to_tiles + "\n You don’t have to use the paths provided if
not needed. Strictly use the same paths. Do not use any other paths.
Only add in env_image if needed. Return the full env_dict function."

Then we create a 2D character map through the prompt:

1 "Given the game mechanics:\n" + mechanics[0] + "\n The env_dict
function, which has the paths for the tiles:\n" +
env_dict_func_changed[’choices’][0][’message’][’content’] + "\nChange
the following str_world in the str_map function to cater for the

mechanics, if required.:\n" + str_map_func + "\n ’str_world’ is the
string that represents the 2D game map. Change it if only needed. It
must always have 1 and only 1 ‘@‘ character, which represents the
player. Return the full str_map function."

where the str_map_func is:

1 str_map_func = ’’’def str_map():
2

3 str_world = """AAAAAAAAAAAAAAAAAA
4 AAAAAAAAAAAAAAAAAA
5 AAA@OAXAAAAAAAAAAA
6 AAAAAAICAAAAAAAAAA
7 AAA#AAAAAAAAAAAAAA
8 AAAAAAAAAAAAAAAAAA"""
9

10 return str_world’’’

Lastly, in the make_game function we generate the important_tiles_func through the
prompt:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 "Given the game mechanics:\n" + mechanics[0] + "\n And the env_dict
function, which has the paths for the tiles:\n" +
env_dict_func_changed[’choices’][0][’message’][’content’] + "\n And
the str_map function, which has the string representation of the game
map:\n" + str_map_func_changed[’choices’][0][’message’][’content’] +
"\n Change the following important_tiles function to cater for the

mechanics, if required.:\n" + important_tiles_func + " Return the
full important_tiles function. Return all the tile types mentioned in
the return statement of the function. Return empty list if the tile

type is not needed."

where the initial important_tiles_func is:

1 important_tiles_func = ’’’def important_tiles():
2 walkables = [’A’] # Walkable tiles
3 non_walkables = [’B’] # Non-walkable tiles
4 interactive_object_tiles = [’O’, ’I’, ’C’] # Interactive objects

(e.g., chests)
5 collectible_tiles = [] # Can add collectible tiles if needed
6 npc_tiles = [] # Assume there are no NPCs represented in the

current setup
7 player_tile = [’@’] # Player tile
8 enemy_tiles = [’#’, ’&’] # Enemy tiles
9 extra_tiles = [] # any other type of tiles for the game goes here

10 return walkables, non_walkables, interactive_object_tiles,
collectible_tiles, npc_tiles, player_tile, enemy_tiles, extra_tiles’’
’

For game-mechanic generation, the terminal method is fixed, since we test each mechanic in iso-
lation to verify that the MCTS agent can reach the end. In the subsequent game-generation stage,
however, the terminal method may vary, as the win condition can change substantially.

1 "Given the game mechanics:\n" + get_games_scores.latest_methods[’
mechanic’] + "\n" + mechanics[0] + "\n and the init function:\n" +
get_games_scores.latest_methods[’init’] + "\n We want to train an
agent to play a game that uses these mechanics. The layout of the
game is the str_world in the following function:\n"+ get_games_scores
.latest_methods[’str_world’] +"\n and the following function
describes what the tiles mean:\n"+get_games_scores.latest_methods[’
tiles’]+"\nThe following line describes the situation of the win
condition of the game:\n"+ "’"+line_response[’choices’][0][’message’
][’content’]+"’" +"\nWrite one method of the class which which wraps
win condition in it and tells the agent when the game will end. It
must focus on the mechanics in the game provided to you. All the
mechanics should be used to fulfill the win condition. The name of
the method should be is_terminal. Method should only return one
boolean variable. Only return the method and nothing else."

Here a line_response is a win condition generated through the following prompt:

1 "Given the game mechanics:\n" + get_games_scores.latest_methods[’
mechanic’] + "\n" + mechanics[0] + "\n write one line that describes
the win condition for the game that will use these mechanics. "

The name of the game is generated through:

1 "Given the game mechanics:\n" + get_games_scores.latest_methods[’
mechanic’] + "\n" + mechanics[0] + "\nThe win condition for the game
in is_terminal method:\n " + is_terminal_response[’choices’][0][’
message’][’content’] + "\n And the line that explains the win
condition:\n " + line_response[’choices’][0][’message’][’content’] +
"\n Give the game a short name that describes the game well. Only
strictly output the name and nothing else. Should not have any
special characters in the name. Do not highlight the name."

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B GENERATED GAME MECHANICS

B.1 MECHANICS IN FIGURE 6

Following is the mechanic and helper functions for the game in Figure 6:

1 def spawn_unit(self):
2 """Spawn a unit at an adjacent empty position"""
3 reward = 0
4

5 if len(self.units) >= self.max_units:
6 return 0 # No penalty, just no reward
7

8 player_row, player_col = self.player_position
9 adjacency_offsets = [(0, -1), (0, 1), (-1, 0), (1, 0)] #Left, Right,

Up, Down
10

11 # Try to find an empty adjacent position
12 for dx, dy in adjacency_offsets:
13 new_row = player_row + dx
14 new_col = player_col + dy
15 if (0 <= new_row < len(self.map) and 0 <= new_col <len(self.map

[0])):
16 # Check the base tile type (without characters)
17 base_tile = self.map_without_chars[new_row][new_col]
18 current_tile = self.map[new_row][new_col]
19

20 # Check if position is suitable for unit spawning
21 if (base_tile in self.walkable_tiles and
22 (new_row, new_col) not in self.units and
23 (new_row, new_col) != self.player_position and
24 current_tile not in self.enemy_tiles and
25 current_tile in self.walkable_tiles): # Current tile

should also be walkable
26

27 # Spawn unit here
28 unit_pos = (new_row, new_col)
29 self.units.append(unit_pos)
30 self.unit_health[unit_pos] = 100 # Initialize unit

health
31 self.map[new_row][new_col] = self.unit_symbol
32 reward = 1 # Reward for successful spawning
33 break
34

35 return reward
36

37 #-------------------------
38

39 def heal_unit(self):
40 """Heal the selected unit"""
41 reward = 0
42

43 if not self.units or self.selected_unit >= len(self.units):
44 return -1 # Penalty for invalid unit selection
45

46 unit_pos = self.units[self.selected_unit]
47

48 if unit_pos in self.unit_health:
49 old_health = self.unit_health[unit_pos]
50 self.unit_health[unit_pos] = min(100, self.unit_health[

unit_pos] + 30) # Heal 30 HP, max 100
51

52 if old_health < self.unit_health[unit_pos]:
53 heal_amount = self.unit_health[unit_pos] - old_health

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

54 print(f"Unit at {unit_pos} healed for {heal_amount} HP!
Health: {self.unit_health[unit_pos]}")

55 reward = 1 # Small reward for healing
56 else:
57 print(f"Unit at {unit_pos} is already at full health!")
58 reward = -1 # Penalty for unnecessary healing
59

60 return reward
61

62 #-------------------------
63

64 def player_attack(self):
65 """Execute primary attack on adjacent targets"""
66 reward = 0
67 player_row, player_col = self.player_position
68 adjacency_offsets = [(0, -1), (0, 1), (-1, 0), (1, 0)]
69

70 enemies_attacked = 0
71 for dx, dy in adjacency_offsets:
72 attack_row = player_row + dx
73 attack_col = player_col + dy
74 attack_pos = (attack_row, attack_col)
75

76 # Find enemy at this position
77 for enemy in self.enemies:
78 if enemy[’pos’] == attack_pos:
79 damage = 25 # Player damage
80 enemy[’health’] -= damage
81 enemies_attacked += 1
82 print(f"Player attacks {enemy[’type’]} for {damage}

damage! Enemy health: {enemy[’health’]}")
83

84 if enemy[’health’] <= 0:
85 print(f"{enemy[’type’]} defeated!")
86 reward += 10 # Reward for defeating enemy
87 else:
88 reward += 2 # Small reward for successful attack
89

90 # Small penalty if no enemies to attack
91 if enemies_attacked == 0:
92 reward = -1
93

94 return reward
95

96 #-------------------------
97

98 def move_enemy_toward_target(self, enemy, target_pos):
99 """Move enemy one step toward target"""

100 reward = 0
101 enemy_pos = enemy[’pos’]
102 enemy_row, enemy_col = enemy_pos
103 target_row, target_col = target_pos
104

105 # Calculate direction to move
106 row_diff = target_row - enemy_row
107 col_diff = target_col - enemy_col
108

109 # Choose move direction (simple pathfinding)
110 move_row, move_col = 0, 0
111 if abs(row_diff) > abs(col_diff):
112 move_row = 1 if row_diff > 0 else -1
113 else:
114 move_col = 1 if col_diff > 0 else -1
115

116 new_row = enemy_row + move_row

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

117 new_col = enemy_col + move_col
118

119 # Check if move is valid
120 if self._is_valid_enemy_move(enemy_pos, (new_row, new_col)):
121 self._execute_enemy_move(enemy, (new_row, new_col))
122

123 return reward
124

125 #-------------------------
126

127 def confuse_and_teleport_enemies(self):
128 """Apply area effect that disrupts enemy positioning"""
129 reward = 0
130 # Identify all enemy positions and create a list of positions
131 enemy_positions = []
132 for row in range(len(self.map)):
133 for col in range(len(self.map[0])):
134 if self.map[row][col] in self.enemy_tiles: # Useactual enemy

tiles from the map
135 enemy_positions.append((row, col))
136 # If there are enemies on the map, confuse and possibly teleport them
137 if enemy_positions:
138 enemies_confused = 0
139 for enemy_row, enemy_col in enemy_positions:
140 # Randomly choose a direction to confuse the enemy
141 direction = random.choice([’up’, ’down’, ’left’, ’right’])
142 teleport_possible = False
143 # Determine the new position for confusion
144 new_enemy_row, new_enemy_col = enemy_row, enemy_col
145 if direction == ’up’ and enemy_row > 0:
146 new_enemy_row -= 1
147 elif direction == ’down’ and enemy_row < len(self.map) - 1:
148 new_enemy_row += 1
149 elif direction == ’left’ and enemy_col > 0:
150 new_enemy_col -= 1
151 elif direction == ’right’ and enemy_col < len(self.map[0]) -

1:
152 new_enemy_col += 1
153 # Instead of actually moving enemies, just count confusion

attempts
154 distance_to_player = abs(enemy_row -self.player_position[0])

+ abs(enemy_col -self.player_position[1])
155 if distance_to_player <= 2: # If enemy is within close range
156 enemies_confused += 1
157

158 # Only give reward if multiple enemies were confused
159 if enemies_confused >= 2:
160 reward = 1
161 return reward
162

163 #-------------------------
164

165 def activate_and_combine_resources(self):
166 """Activates resource gathering and environmental interactionability.

"""
167 reward = 0
168 adjacency_offsets = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
169 resource_tiles = [’R’, ’F’, ’W’] # R = Rock, F = Food, W = Wood
170

171 # Count adjacent resources and interactive objects
172 adjacent_resources = 0
173 adjacent_objects = 0
174

175 # Check for adjacent resources

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

176 for dx, dy in adjacency_offsets:
177 new_row = self.player_position[0] + dx
178 new_col = self.player_position[1] + dy
179 if 0 <= new_row < len(self.map) and 0 <= new_col <len(self.map

[0]):
180 adjacent_tile = self.map[new_row][new_col]
181 if adjacent_tile in resource_tiles:
182 adjacent_resources += 1
183

184 # Check for interactive objects nearby
185 for dx, dy in adjacency_offsets:
186 new_row = self.player_position[0] + dx
187 new_col = self.player_position[1] + dy
188 if 0 <= new_row < len(self.map) and 0 <= new_col <len(self.map

[0]):
189 adjacent_tile = self.map[new_row][new_col]
190 if adjacent_tile in self.interactive_object_tiles:
191 adjacent_objects += 1
192

193 # Only give reward for significant resource/object combinations
194 if adjacent_resources >= 2 and adjacent_objects >= 1:
195 reward = 5 # Reward only for optimal positioning
196

197 return reward

B.2 MECHANICS IN FIGURE 7

The following is the mechanic and helper functions for the game in Figure 7:

1 def strategic_enemy_movement(self):
2 """Process all enemy actions for this turn using A*path finding"""
3 import heapq
4 reward = 0
5

6 def heuristic(pos, goal):
7 return abs(pos[0] - goal[0]) + abs(pos[1] - goal[1])
8

9 for enemy in self.enemies[:]:
10 if enemy[’finished’]:
11 continue
12

13 if self.turn_counter - enemy[’last_move_turn’] >= self.
enemy_move_cooldown:

14 enemy[’last_move_turn’] = self.turn_counter
15

16 # A* pathfinding to find next best move
17 start = enemy[’pos’]
18 goal = self.goal_position
19

20 # Priority queue: (f_score, g_score, position, path)
21 open_set = [(heuristic(start, goal), 0, start,[start])]
22 closed_set = set()
23

24 directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
25 max_iterations = 50 # Limit search to prevent lag
26 iterations = 0
27 optimal_move = None
28

29 while open_set and iterations < max_iterations:
30 iterations += 1
31 f_score, g_score, current, path =heapq.heappop(open_set)
32

33 if current in closed_set:
34 continue

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

35

36 if current == goal:
37 # Return the next move in the optimal path
38 optimal_move = path[1] if len(path) > 1 elseNone
39 break
40

41 closed_set.add(current)
42

43 for dx, dy in directions:
44 neighbor = (current[0] + dx, current[1] + dy)
45

46 if (neighbor in closed_set or
47 notself._is_valid_position_for_pathfinding(

neighbor)):
48 continue
49

50 new_g_score = g_score + 1
51 new_f_score = new_g_score +heuristic(neighbor, goal)
52 new_path = path + [neighbor]
53

54 heapq.heappush(open_set, (new_f_score,new_g_score,
neighbor, new_path))

55

56 # Execute move if valid
57 if optimal_move and self._is_valid_enemy_move(enemy[’pos’],

optimal_move):
58 self._execute_enemy_move(enemy, optimal_move)
59

60 # Check if enemy reached goal
61 if enemy[’pos’] == self.goal_position:
62 if not enemy[’finished’] and notself.game_finished:
63 enemy[’finished’] = True
64 self.game_finished = True
65 self.completion_order.append(f"enemy_{enemy[’type’]}")
66 print(f"Enemy {enemy[’type’]} reached thegoal first!

ENEMY WINS!")
67 reward -= 100 # Player loses big when enemy wins
68

69 return reward
70

71 #-------------------------
72

73 def _is_valid_position_for_pathfinding(self, pos):
74 """Check if position is valid for pathfinding (allows temporary

occupation)"""
75 row, col = pos
76 if not (0 <= row < len(self.map) and 0 <= col < len(self.map[0])):
77 return False
78

79 tile = self.map[row][col]
80 # Allow movement through walkable tiles and goal
81 return tile in self.walkable_tiles or tile == ’F’
82

83 #-------------------------
84

85 def _is_valid_enemy_move(self, current_pos, new_pos):
86 """Check if enemy move is valid"""
87 new_row, new_col = new_pos
88 if not (0 <= new_row < len(self.map) and 0 <= new_col < len(self.
89 map[0])):
90 return False
91

92 current_tile = self.map[new_row][new_col]
93

94 # Can move to walkable tiles or flag

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

95 if current_tile not in self.walkable_tiles and current_tile != ’F’:
96 return False
97

98 # Cannot move to position occupied by player or other enemies
99 if new_pos == self.player_position:

100 return False
101

102 for other_enemy in self.enemies:
103 if other_enemy[’pos’] == new_pos:
104 return False
105

106 return True

C QUALITY-DIVERSITY

C.1 INITIAL MECHANICS

Here we will mention the aspects of the quality-diversity (QD) algorithm that would help in repro-
ducibility, and were not mentioned in the main paper. The following are the initial mechanics used
to initialise the QD algorithm:

1 mech_1 = """\ndef move_player(self, action):
2 moves = {0: (-1, 0), 1: (1, 0), 2: (0, -1), 3: (0, 1)} # Up, Down,

Left, Right
3 dx, dy = moves[action]
4 new_row = self.player_position[0] + dx
5 new_col = self.player_position[1] + dy
6 reward = 0
7 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map[0]):
8 new_tile = self.map[new_row][new_col]
9 if new_tile in self.walkable_tiles:

10 self.update_player_position(new_row, new_col, new_tile)
11 return reward"""
12

13 #-------------------------------
14

15 mech_2 = """\ndef pick_object(self):
16 reward = 0
17 # Check adjacent tiles for interactive objects and pick them if

present
18 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
19 for dx, dy in adjacent_positions:
20 row, col = self.player_position # player_position is in (row,

col) format
21 new_row = row + dx
22 new_col = col + dy
23 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map

[0]):
24 target_tile = self.map[new_row][new_col]
25 if target_tile in self.interactive_object_tiles:
26 self.map[new_row][new_col] = self.default_walkable_tile
27 reward = 1
28 break # Exit after picking up one object
29 return reward"""
30

31 #-------------------------------
32

33

34 mech_3 = """\ndef hit_enemy(self):
35 reward = 0
36 # Check adjacent tiles for enemies and hit them if present

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

37 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,
Left, Right

38 for dx, dy in adjacent_positions:
39 row, col = self.player_position # player_position is in (row,

col) format
40 new_row = row + dx
41 new_col = col + dy
42 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map

[0]): # Check grid bounds
43 target_tile = self.map[new_row][new_col]
44 if target_tile in self.enemy_tiles:
45 self.map[new_row][new_col] = self.default_walkable_tile
46 reward = 1
47 break # Exit after hitting one enemy
48 return reward"""
49

50 #-------------------------------
51

52 mech_4 = """\ndef teleport_player(self):
53 # Find all walkable tiles that are not adjacent to the player
54 non_adjacent_walkable_positions = []
55 adjacency_offsets = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
56 reward = 0
57 # Search the map for walkable and non-adjacent tiles
58 for row in range(len(self.map)):
59 for col in range(len(self.map[0])):
60 if self.map[row][col] in self.walkable_tiles:
61 is_adjacent = False
62 for dx, dy in adjacency_offsets:
63 if (row == self.player_position[0] + dx) and (col ==

self.player_position[1] + dy):
64 is_adjacent = True
65 break
66 if not is_adjacent:
67 non_adjacent_walkable_positions.append((row, col))
68 # Teleport the player to a random walkable, non-adjacent position
69 if non_adjacent_walkable_positions:
70 new_position = random.choice(non_adjacent_walkable_positions)
71 self.update_player_position(new_position[0], new_position[1],

self.map[new_position[0]][new_position[1]])
72 reward += 1
73 return reward"""
74

75 #-------------------------------
76

77 mech_5 = """\ndef swap_positions(self):
78 # Find all enemy positions on the map
79 enemy_positions = []
80 reward = 0
81 for row in range(len(self.map)):
82 for col in range(len(self.map[0])):
83 if self.map[row][col] in self.enemy_tiles:
84 enemy_positions.append((row, col))
85 # If there are enemies, randomly swap the player’s position with an

enemy’s position
86 if enemy_positions:
87 swap_with = random.choice(enemy_positions)
88 enemy_row, enemy_col = swap_with
89 player_row, player_col = self.player_position
90 # Swap positions of player and enemy on the map
91 self.map[player_row][player_col], self.map[enemy_row][enemy_col]

= self.map[enemy_row][enemy_col], self.map[player_row][player_col]
92 # Update the player’s position to the swapped position
93 self.player_position = (enemy_row, enemy_col)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

94 # Optional: Output the result of the swap
95 reward += 1
96 return reward"""
97

98 #-------------------------------
99

100 mech_6 = """\ndef push_object(self):
101 reward = 0
102 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
103 for dy, dx in adjacent_positions: # Swapped to dy, dx to match map

indexing
104 y, x = self.player_position # Player position is in (row, col)

format
105 new_y, new_x = y + dy, x + dx
106 if 0 <= new_y < len(self.map) and 0 <= new_x < len(self.map[0]):

Check bounds
107 target_tile = self.map[new_y][new_x]
108 if target_tile in self.interactive_object_tiles:
109 push_y, push_x = new_y + dy, new_x + dx # Push in same

direction
110 if 0 <= push_y < len(self.map) and 0 <= push_x < len(self

.map[0]):
111 if self.map[push_y][push_x] in self.walkable_tiles:
112 self.map[push_y][push_x] = target_tile
113 self.map[new_y][new_x] = self.

default_walkable_tile
114 reward = 1
115 break
116 return reward"""
117

118 #-------------------------------
119

120 mech_7 = """\ndef jump_player(self):
121 reward = 0
122 # Define possible jump directions
123 jump_directions = [(0, -2), (0, 2), (-2, 0), (2, 0)] # Up, Down,

Left, Right (2 tiles)
124 for dx, dy in jump_directions:
125 row, col = self.player_position # player_position is in (row,

col) format
126 mid_row, mid_col = row + dx // 2, col + dy // 2 # Middle tile (

jumped over)
127 new_row, new_col = row + dx, col + dy # Landing tile
128 # Check if the jump is within bounds
129 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map

[0]):
130 target_tile = self.map[new_row][new_col]
131 # Check if the landing tile is walkable
132 if target_tile in self.walkable_tiles:
133 # Perform the jump
134 self.update_player_position(new_row, new_col, target_tile

)
135 reward = 1
136 break # Exit after a successful jump
137 return reward"""
138

139 #-------------------------------
140

141 mech_8 = """\ndef drop_object(self):
142 reward = 0
143 # Check adjacent tiles for empty walkable space
144 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,

Left, Right
145 for dx, dy in adjacent_positions:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

146 row, col = self.player_position
147 new_row = row + dx
148 new_col = col + dy
149 # Check if position is within bounds and walkable
150 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.map

[0]):
151 if self.map[new_row][new_col] in self.walkable_tiles:
152 # Place an interactive object
153 self.map[new_row][new_col] = self.

interactive_object_tiles[0] # Using first interactive object tile
154 reward = 1
155 break # Exit after dropping one object
156 return reward"""
157

158 mech_9 = """\ndef enemy_move(self):
159 reward = 0
160 # Find all enemy positions with "#" tile on the map
161 enemy_positions = []
162 for row in range(len(self.map)):
163 for col in range(len(self.map[0])):
164 if self.map[row][col] == "#":
165 enemy_positions.append((row, col))
166

167 # If there are enemies, move one randomly
168 if enemy_positions:
169 # Pick a random enemy to move
170 enemy_row, enemy_col = random.choice(enemy_positions)
171

172 # Define possible move directions (same as player)
173 moves = {0: (-1, 0), 1: (1, 0), 2: (0, -1), 3: (0, 1)} # Up,

Down, Left, Right
174

175 # Try each direction randomly until we find a valid move
176 directions = list(moves.keys())
177 random.shuffle(directions)
178

179 for action in directions:
180 dx, dy = moves[action]
181 new_row = enemy_row + dx
182 new_col = enemy_col + dy
183

184 # Check if the new position is valid
185 if 0 <= new_row < len(self.map) and 0 <= new_col < len(self.

map[0]):
186 new_tile = self.map[new_row][new_col]
187 if new_tile in self.walkable_tiles:
188 # Move the enemy
189 self.map[enemy_row][enemy_col] = self.

default_walkable_tile
190 self.map[new_row][new_col] = "#"
191 break # Exit after successful move
192

193 return reward"""
194

195 mech_10 = """\ndef enemy_hit(self):
196 reward = 0
197 # Find all enemy positions with "#" tile on the map
198 enemy_positions = []
199 for row in range(len(self.map)):
200 for col in range(len(self.map[0])):
201 if self.map[row][col] == "#":
202 enemy_positions.append((row, col))
203

204 # Check if any enemy is adjacent to the player and can hit
205 player_row, player_col = self.player_position

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

206 adjacent_positions = [(0, -1), (0, 1), (-1, 0), (1, 0)] # Up, Down,
Left, Right

207

208 for enemy_row, enemy_col in enemy_positions:
209 # Check if this enemy is adjacent to the player
210 for dx, dy in adjacent_positions:
211 check_row = enemy_row + dx
212 check_col = enemy_col + dy
213 # If the adjacent position matches the player’s position
214 if check_row == player_row and check_col == player_col:
215 # Enemy hits the player
216 reward = -1 # Negative reward for player getting hit
217 break # Exit after first hit (one enemy hitting is

enough)
218 if reward != 0: # If a hit occurred, stop checking other enemies
219 break
220 return reward"""

C.2 GAME MECHANICS TYPES

We specify the types of mechanics that MORTAR uses to compute similarity scores for the Qual-
ity–Diversity archive. For each mechanic, we list its category followed by the keywords used to
determine similarity.

• Movement: move, walk, run, jump, fly, teleport, dash, swim, climb, crouch, sprint

• Interaction: pick, use, interact, open, close, talk, trade, craft, activate, push, pull

• Combat: attack, fight, hit, shoot, defend, block, dodge, cast, spell, heal, damage

• Progression: level, upgrade, unlock, improve, evolve, progress, achieve, complete, quest,
mission

• Environment: weather, day, night, season, climate, destroy, build, terraform, grow, plant

• Puzzle: solve, puzzle, riddle, match, connect, arrange, decode, decipher, logic, pattern

• Resource Management: collect, gather, manage, inventory, store, spend, earn, balance,
allocate, distribute

• Exploration: explore, discover, map, reveal, uncover, navigate, search, investigate, scout,
survey

• Time Manipulation: time, slow, fast, rewind, forward, pause, resume, loop, cycle, se-
quence

C.3 PROMPTS FOR EVOLUTIONARY OPERATORS

The following are the prompts for the evolutionaru operators:

1. Mutation:

1 "Create a new game mechanic from the given mechanic that
extends its features:\n" + solution[0] + "\n Do not make any
assumptions, if you want to add a new variable or a new
function, you should do it within the game mechanic method. The
mechanic must return a reward, which is an integer. If a tile

is being assumed then it should be defined as a single capital
alphabet character and not a word. If a player is being assumed
then it should be ’@’ tile. Remember that the game mechanic

function should only take ’self’ as parameter. Only output the
new game mechanic as Python function, nothing else."

2. Diversity Mutation:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1 "Create a new game mechanic that is different, in terms of
behavior of mechanics, from the ones provided:\n" + solution[0]
+ "\n Do not make any assumptions, if you want to add a new

variable or a new funciton, you should do it within the game
mechanic method. The mechanic must return a reward, which is an
integer. If a tile is being assumed then it should be defined

as a single capital alphabet character and not a word. If a
player is being assumed then it should be ’@’ tile. Remember
that the game mechanic function should only take ’self’ as
parameter. Only output the new game mechanic as Python function
, nothing else."

3. Compatibility Mutation:
1 "Create a new game mechanic that will make the game better

when combined with the following game mechanics:\n" + solution
+ "\n Do not make any assumptions, if you want to add a new
variable or a new funciton, you should do it within the game
mechanic method. The mechanic must return a reward, which is an
integer. If a tile is being assumed then it should be defined

as a single capital alphabet character and not a word. If a
player is being assumed then it should be ’@’ tile. Remember
that the game mechanic function should only take ’self’ as
parameter. The name of the mechanic should be coherent with the
behaviour of it. Only output the new game mechanic as Python

function, nothing else."

4. Crossover:
1 "Create a new game mechanic that combines the features of the

given two mechanics to create a new game mechanic that combines
the behavior of the both of them:\n" + solution + "\n Do not

make any assumptions, if you want to add a new variable or a
new method, you should do it within the function. The mechanic
must return a reward, which is an integer. If a tile is being
assumed then it should be defined as a single capital alphabet
character and not a word. If a player is being assumed then it
should be ’@’ tile. Remember that the game mechanic function
should only take ’self’ as parameter. The name of the mechanic
should be coherent with the behaviour of it. Only output the
new game mechanic as Python function, nothing else."

D GAMES

Play games in the user study by following the links:

1. TreasureHunt:https://mortar-x3p7.onrender.com/games/
TreasureHunt

2. HeroBreakout:https://mortar-x3p7.onrender.com/games/
HuntBreakout

3. AllyCraft:https://mortar-x3p7.onrender.com/games/AllyCraft
4. CrystalCavernsCommander:https://mortar-x3p7.onrender.com/games/

Crystal_Caverns_Commander

5. MagneticProwess:https://mortar-x3p7.onrender.com/games/
MagneticProwess

6. HeroHunt:https://mortar-x3p7.onrender.com/games/HeroHunt

29

https://mortar-x3p7.onrender.com/games/TreasureHunt
https://mortar-x3p7.onrender.com/games/TreasureHunt
https://mortar-x3p7.onrender.com/games/HuntBreakout
https://mortar-x3p7.onrender.com/games/HuntBreakout
https://mortar-x3p7.onrender.com/games/AllyCraft
https://mortar-x3p7.onrender.com/games/Crystal_Caverns_Commander
https://mortar-x3p7.onrender.com/games/Crystal_Caverns_Commander
https://mortar-x3p7.onrender.com/games/MagneticProwess
https://mortar-x3p7.onrender.com/games/MagneticProwess
https://mortar-x3p7.onrender.com/games/HeroHunt

	Introduction
	Method
	Evolution Setup
	Evaluating Game Mechanics
	Automated Game Construction
	Evaluation of the Game

	Experiment Setup
	Results
	User study

	Related Work
	Limitations
	Conclusion And Future Directions
	Prompts
	Game Mechanic Generation Prompts
	Game Generation Prompts

	Generated Game Mechanics
	Mechanics In Figure 6
	Mechanics In Figure 7

	Quality-Diversity
	Initial Mechanics
	Game Mechanics Types
	Prompts For Evolutionary Operators

	Games

