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Abstract

Diffusion models have become the foundation for most text-to-audio generation
methods. These approaches rely on a large text encoder to process the textual
description, serving as a semantic condition to guide the audio generation process.
Meanwhile, autoregressive language model-based methods for audio generation
have also emerged. These autoregressive models offer flexibility by predicting
discrete audio tokens, but they often fail to achieve high fidelity. In this work, we
propose an advanced system that integrates the autoregressive language model with
the diffusion model, achieving flexible and refined audio generation. The autore-
gressive language model is used to predict the discrete audio tokens conditioned on
text prompts. Then, audio tokens are fed into the diffusion model to further purify
the details of the generated audio. Consequently, compared to baseline systems,
our proposed approach can deliver better results on most objective and subjective
metrics on the AudioCaps test set. Audio demos generated by our proposed best
system are available at https://dcldmdemo.github.io.

1 Introduction

Following the revolution of the text-to-image (TTI) generation [1, 2, 3], text-to-audio (TTA) models
have made significant strides [4, 5, 6]. TTA tasks aim to produce audio content from a text description.
Such models hold promising potential for applications such as media production and audio novels. In
previous research, the methods of TTA can be broadly categorized into two separate categories: (i)
auto-regressive (AR) or non-auto-regressive (NAR) transformer-based models, typically manifested as
language models, often working with discrete audio representations. With a multi-scale transformer
model, UniAudio [7] utilizes large language model techniques to generate various audio types,
including speech, sounds, music, and singing. MAGNet [6] fuses AR and NAR models designed
for efficient operation. The representative AR generative model (AUDIOGEN [8]) utilizes learned
discrete audio representations with a transformer decoder to generate audio conditioned on textual
embeddings. (ii) diffusion-based models, typically functioning with continuous latent representations
of the audio signal. Models such as AudioLDM [5], AudioLDM2 [9], Tango [10], Make-an-audio [11],
and Make-an-audio2 [12], leverage latent variable generation coupled with pre-trained Variational
Auto-encoder (VAE) [13] and HiFi-GAN [14] for audio reconstruction, achieving notable successes.

We integrate the diffusion model with an AR model by leveraging the strengths of both models: the
fidelity and noise resilience of the diffusion model and the flexibility of the AR model. Recently,
the combination of an AR transformer and diffusion model has achieved better performance on the
text-to-speech task [15, 16]. In TTA, the AR model can flexibly predict the discrete audio tokens
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Figure 1: Dual-conditioned latent diffusion model architecture. CA-DOWN denotes cross-attention
downsampling blocks, CA-UP denotes cross-attention upsampling blocks, and CA-MID denotes
middle cross-attention blocks (the intermediate feature shape is maintained). Parameters in U-Net are
updated during training, while other components’ parameters are fixed.

conditioned on text prompts. The diffusion model is followed to generate high-fidelity audio with the
input of the predicted discrete tokens from the AR model. Different from AudioLDM2 [9], where the
AR model is used to obtain semantic tokens, our system gets acoustic tokens from the AR model.

Specifically, we propose a dual-conditioned latent diffusion model (DC-LDM) conditioned both on
the text embedding from a large language model (FLAN-T5) and the acoustic representations from
an autoregressive audio language model [8]. Our main contributions are listed as follows: (1) We
proposed an advanced method to generate high-fidelity audio by bridging the AR audio language
model and the latent diffusion model. (2) We further explored another conditional embedding option
of the acoustic latent features, which is compressed via a pre-trained VAE. (3) We employed an
additional cross-attention block between intermediate features with acoustic encoding to formulate
a dual-conditioned diffusion model. (4) We evaluated our text-to-audio generation approach on
the public AudioCaps test set, allowing for parallel comparison with existing systems. We present
objective and subjective metrics demonstrating that our method gains improvement over the evaluated
baselines. Additionally, we include an ablation study to elucidate the contributions.

2 Methodology

The proposed DC-LDM is depicted in Fig. 1. Initially, the textual-prompt encoder processes input
descriptions to generate textual embedding. Additionally, we use a text-to-audio pre-trained model to
generate acoustic latent features as an auxiliary representation. These two representations are added
with a skip-connection and then utilized to create a latent audio representation or audio prior from
standard Gaussian noise through reverse diffusion. The VAE decoder produces a mel-spectrogram
from the latent representation. This mel-spectrogram is fed into a vocoder to synthesize audio outputs.

2.1 Textual-prompt Encoder

We leverage the pre-trained large language model (LLM) FLAN-T5-Large (780M) [17] as the text
encoder to facilitate TTA generation. The resulting text embedding is termed as Etext ∈ RLt×dt ,
where Lt and dt are the number of tokens and corresponding embedding size, respectively.

2.2 Acoustic Latent Feature Encoder

AUDIOGEN [8] uses a two-stage process involving a neural audio compression model [18] to
encode raw audio into discrete tokens, and an AR transformer-decoder to generate target discrete
tokens, conditioned on text inputs. Target discrete tokens can be decoded into continuous latent
encoding Et2a ∈ RLa×da (La and da are the sequence length and the corresponding embedding
size, respectively). Alternatively, tokens can be decoded into a reconstructed representation/audio
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signal x̂a ∈ [−1, 1]Ca×Ta (Ca denotes the number of audio channels, Ta = d× fsr is the number
of audio samples at a given sample rate fsr). This audio can be further processed into the mel-
spectrogram Xs ∈ RTs×Fs . Subsequently, the mel-spectrogram can be compressed by the audio
VAE [13] into audio prior zs ∈ RC×Fs

r ×Ts
r (see Sec. 2.4), then reshaped as E′

t2a ∈ RLs×ds , where
Ls = Ts

r , ds = C × Fs

r . Either Et2a or E′
t2a can be considered as an acoustic encoding to guide

audio generation (see Sec. 2.3).

2.3 Dual-conditioned Latent Diffusion Model

The latent diffusion model (LDM) [2] is capable of generating an audio sample x̂ from given condi-
tions (i.e., text description Etext, acoustic information Et2a). Using probabilistic generative models
like LDMs, we approximate true conditional data distributions q(z0|Etext,Et2a) with parameterized
pθ(z0|Etext,Et2a), where z0 represents the prior of an audio sample within a compressed space of
the mel-spectrogram X (see Sec. 2.4). Etext is text embedding produced by the pre-trained text
encoder (see Sec. 2.1), Et2a is the acoustic encoding generated by the acoustic latent feature encoder
(see Sec. 2.2). The LDM in this work is adapted from [19]. The forward transition is a T -step Markov
chain process without any trainable parameters. Given the prior zt−1 at diffusion step t− 1, the data
distribution of zt at step t can be written as,

q(zt|zt−1) =
√
1− βtzt−1 +

√
βtϵ, (1)

where the noise schedule hyper-parameter 0 < β1 < β2 < · · · < βT < 1 determines noisier versions
of z0 at each step t. By recursive substitution of q(zt|zt−1) in Eq. 1, which allows direct sampling of
zt from z0 via a non-Markovian process,

q(zt|z0) =
√
αtz0 +

√
1− αtϵ, (2)

where αt = Πt
t−11 − βt, ϵ ∼ N (0, I). The distribution of zt will be close to a standard Gaussian

distribution N (0, I) at the forward process final step t = T . The backward transition reconstructs z0
starting from the Gaussian noise distribution p(zt) ∼ N (0, I) via a dual-conditioned noise estimation
(ϵ̂θ), the loss function for parameter optimization is formulated as,

L =

T∑
t=1

γtEϵt∼N (0,I),z0
||ϵt − ϵ̂θ(zt, t,Etext,Et2a)||22, (3)

where γt is the weight of reverse step t [20]. The audio prior z0 is iteratively generated from zt
conditioned on text embedding Etext and acoustic encoding Et2a:

pθ(z0:T |Etext,Et2a) = p(zT )Π
T
t−1pθ(zt−1|zt,Etext,Et2a), (4)

pθ(zt−1|zt,Etext,Et2a) = N (zt−1;µθ(zt, t,Etext,Et2a), σ
2
t I). (5)

The mean and variance are calculated as [19],

µθ(zt, t,Etext,Et2a) =
1

√
αt

(zt −
βt√
1− ᾱt

ϵ̂θ(zt, t,Etext,Et2a)), (6)

σ2
t =

1− ᾱt−1

1− ᾱt
βt, (7)

where σ2
1 = β1, and the noise estimation ϵ̂θ(zt, t,Etext,Et2a) is predicted with U-Net [21], which

leverages textual guidance Etext and acoustic guidance Et2a via cross-attention.

2.4 Audio VAE and Vocoder

The audio VAE [13] compresses the mel-spectrogram of an audio sample X ∈ RT×F into an audio
prior z0 ∈ RC×F

r ×T
r . Here, r indicates the compression level, C denotes the channel of compressed

representations, F and T are frequency and time dimensions in the mel-spectrogram X.

2.5 Classifier Free Guidance

Classifier-free guidance [22] is used during inference, a guidance scale w determines the contribution
of text Etext and acoustic Et2a guidance to noise estimation ϵ̂θ, while the empty text is passed to
obtain both encodings during unguided estimation:

ϵ̂θ(zt, t,Etext,Et2a) = wϵθ(zt, t,Etext,Et2a) + (1− w)ϵθ(zt, t). (8)
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Table 1: Experimental results on the AudioCaps evaluation set. The top section shows results for
LDM conditioned only on FLAN-T5-Large encoder output Etext (T5) (see Sec. 2.1)/ acoustic
encoding Et2a converted from AUDIOGEN (AG) generated audio tokens (see Sec. 2.2)/ acoustic
encoding E′

t2a converted by VAE (see Sec. 2.4) from AUDIOGEN generated audio (see Sec. 2.2)
(AG_VAE). Given T5 embedding Etext as the primary condition, DC-LDM generation performance
with either Et2a or E′

t2a as the auxiliary condition is present in the middle and bottom sections,
respectively. CA-DOWN-#1 represents the first cross-attention down-sampling block, CA-UP-#1
denotes the last cross-attention up-sampling block, and CA-MID is the middle cross-attention block
in the U-Net (see Fig. 1). #Params. denotes trainable parameters.

Model #Params. KLσ KL FAD FD
LDM w/ T5 (reproduced from TANGO [10]) 866M 4.01 1.43 2.22 26.86

LDM w/ AG 866M 5.33 1.95 4.80 33.90
LDM w/ AG+VAE 866M 5.85 2.17 4.91 36.21

DC-LDM w/ T5 & AG (CA-DOWN-#1) 873M 3.37 1.28 2.60 24.64
DC-LDM w/ T5 & AG (CA-MID) 899M 3.74 1.38 2.63 22.82

DC-LDM w/ T5 & AG (CA-UP-#1) 875M 3.64 1.34 2.37 22.08
DC-LDM w/ T5 & AG (CA-DOWN#1 & CA-UP#1) 877M 3.30 1.22 2.24 21.86

DC-LDM w/ T5 & AG_VAE (CA-DOWN#1) 873M 3.89 1.38 2.55 23.60
DC-LDM w/ T5 & AG_VAE (CA-MID) 899M 3.79 1.42 2.74 24.05
DC-LDM w/ T5 & AG_VAE (CA-UP#1) 875M 3.75 1.39 2.55 22.71

DC-LDM w/ T5 & AG_VAE (CA-DOWN#1& CA-UP-#1) 877M 3.24 1.23 2.61 22.98

3 Experiment

We employ the AudioCaps dataset [23], which comprises 45222 audio clips in train set. The dataset
also includes a validation set and evaluation set with 2,240 instances and 957 instances, respectively.

We adopt both objective and subjective evaluation: 1) we calculate the Fréchet Audio Distance (FAD)
[24]. Similar to FAD, Frechet Distance (FD) [5] utilizes a different classifier, replacing VGGish [25]
with PANNs [26]. Additionally, we measure the KL-Divergence (two metrics involved, KL: softmax
over logits, KLσ: sigmoid over logits); 2) the generated samples are also rated by human based on
overall generation quality (OGL), relevance to the input text (REL), and audio quality (AQ) on a
scale from 1 to 100. OGL analyzes the semantic consistency between audio and text, the quality
of audio, etc. REL measures completeness and sequential consistency. AQ is used to evaluate the
quality of generated audio, such as audio clarity and intelligibility. Eight professional annotators are
employed, and 100 test audio samples are randomly selected from the AudioCaps test set [23].

This DC-LDM is based on the Stable Diffusion U-Net architecture [21], applying 8 channels and
cross-attention dimensions of 1024 and 128 for text embedding and acoustic encoding, respectively.
The acoustic encoding is generated by the AUDIOGEN model [8] with a duration of 10s per audio
clip. We employ the AdamW optimizer with a learning rate of 3e-5 for optimization, using a linear
learning rate scheduler throughout the training process.

4 Result analysis and discussion

Following the setup in [10, 19], we train the latent diffusion with FLAN-T5 embedding as the
condition. As described in Sec. 2.2, we replace the FLAN-T5 embedding Etext with the AUDIOGEN
embedding Et2a. Besides, audio tokens can be converted into a raw waveform, which can be further
processed by the VAE model, then reshaped and projected into a latent feature E′

t2a. We assume
this audio prior derived from AUDIOGEN and VAE can be another option as the diffusion auxiliary
condition. As shown in Table 1, experimental results do not meet our expectations. As a result of the
bias introduced by AUDIOGEN, generated audios might be overfitting to the data distribution derived
from AUDIOGEN predictions, which could not be well aligned with the diffusion training objective.
We further keep the FLAN-T5 embedding as the primary condition and employ acoustic encoding as
an auxiliary condition. On top of the original model setup, we insert a cross-attention layer right after
the designated cross-attention layers, refer to Fig. 1) to involve the acoustic encoding in the model
training, and we apply skip-connection for previous cross-attention output to maintain the model
performance. As depicted in Table 1, two options (i.e. Et2a/E′

t2a) for extracted acoustic encoding
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Table 2: Performance comparison on the AudioCaps evaluation set with existing systems. AS, AC,
SS, P5, and ppd denote AudioSet, AudioCaps, ShutterStock, Pond5, and proprietary data, respectively.
#Params. denotes trainable parameters.

Model Datasets #Params. Objective metrics Human subjective scores
KL FAD FD OGL REL AQ

Ground-truth - - - - - 93.72 93.64 94.45
DiffSound [4] AS+AC (5,565 hrs) 400M 2.52 7.75 47.68 - - -

AudioLDM-L [5] AC (145 hrs) 739M 1.86 2.08 27.12 90.27 89.04 91.17
AudioLDM2-full [9] AS+AC+6 others (29,510 hrs) 346M 1.58 3.39 25.75 92.1 89.84 92.27

MAGNET[6] SS+P5+ppd (20,000 hrs) 1.5B 1.64 2.36 - - - -
AUDIOGEN-Large [8] AS+AC+8 others (6,824 hrs) 1B 1.69 1.82 - 91.04 90.92 92.61

TANGO [10] AC (145 hrs) 866M 1.37 1.59 24.52 91.89 92.08 93.94
Proposed DC-LDM AC (145 hrs) 877M 1.22 2.24 21.86 92.74 92.16 93.63
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Figure 2: The effect of classifier-free guidance scale. Numbers on the x-axis denote different guidance
scales. The y-axis represents the numerical scales of each metric.

can help improve the generation performances. Table 1 shows the effect of inserting additional
cross-attention modules into different blocks, which is marginally beneficial to system performance
improvement while incorporating the additional condition into three different blocks of the U-Net.
The best-performing system integrates the additional cross-attention module for intermediate latent
embedding Etext and acoustic encoding Et2a at both CA-DOWN-#1 and CA-UP-#1. The Classifier-
free guidance scale represents a trade-off between sample diversity and conditional generation quality.
We show the effect of varied guidance scale w on TTA generation performance in Fig. 2. When
w = 4, we achieve the best results across all evaluation metrics. These numbers under difference
guidance scales are obtained from the best-performing system in Table. 1.

In Table 2, we compare our proposed approach with existing systems, including DiffSound [4],
AUDIOGEN [8], AudioLDM [5], AudioLDM2 [9], MAGNET[6], and TANGO [10]. Regarding the
automatic objective evaluation, DC-LDM achieves superior results on two metrics (i.e., KL and FD),
and the proposed system stays comparable on the FAD evaluation. Overall, the proposed DC-LDM
model is only trained on the AudioCaps dataset, and it delivers promising scores with 1.22 KL, 2.24
FAD, and 21.86 FD. We suppose the performance gap might be resulting from the less robust audio
classifier in FAD compared to FD, as discussed in Sec. 3. Consequently, enhancements in adherence
to detailed language descriptions could potentially provide misleading information to the classifier in
FAD. Although FAD is conceptually similar to FD, it employs VGGish [24] as its classifier, which
might underperform the classifier PANNs used in FD [5]. From Table 2. subjective evaluation
results show significant gains of DC-LDM with OGL of 91.74 and REL of 92.16, outperforming
existing systems in terms of OGL and REL and maintaining comparable results in AQ evaluation.
The subjective results indicate that evaluators prefer our model-generated audio against existing
systems in terms of audio naturalness and faithfulness.

5 Conclusion

We introduce a novel DC-LDM, which bridges an AR audio language model and a LDM. Given
FLAN-T5 embedding as a primary condition in diffusion models, we additionally use an acoustic
latent encoding from the AR model to exploit complementary information in the audio generation
process. We use a skip connection to combine the outputs of two cross-attention modules to
maintain the performance. Eventually, our dual-conditioned latent diffusion approach achieves better
performance on most objective and subjective metrics than baselines on the AudioCaps test set. In
the near future, we will extend this work to audio, speech, and music generation.
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