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ABSTRACT

Incomplete multi-view multi-label learning is fundamentally an information in-
tegration problem under simultaneous view and label incompleteness. We in-
troduce Permutation-Consistent Variational Encoding framework (PCVE) with
an information bottleneck strategy, which learns variational representations ca-
pable of aggregating shared semantics across views while remaining robust to
incompleteness. PCVE formulates a principled objective that maximizes a varia-
tional evidence lower bound to retain task-relevant information, and introduces
a permutation-consistent regularization to encourage distributional consistency
among representations that encode the same target semantics from different views.
This regularization acts as an information alignment mechanism that suppresses
view-private redundancy and mitigates over-alignment, thereby improving both
sufficiency and consistency of the learned representations. To address incom-
pleteness, PCVE further incorporates a masked multi-label learning objective that
leverages available supervision. Extensive experiments across diverse benchmarks
and missing ratios demonstrate consistent gains over state-of-the-art methods in
multi-label classification, while enabling reliable inference of missing views with-
out explicit imputation. Analyses corroborate that the proposed information-
theoretic formulation improves cross-view semantic cohesion and preserves dis-
criminative capacity, underscoring the effectiveness and generality of PCVE for
incomplete multi-view multi-label learning.

1 INTRODUCTION

Multi-view multi-label learning has become a central paradigm for modeling complex entities that
are naturally described by heterogeneous sources (e.g., image—text pairs, multi-sensor signals, or
multimodal clinical records) and annotated with multiple, potentially correlated labels. By jointly
exploiting complementary and redundant information across views, multi-view learning methods
can efficiently enhance semantic coverage, reduce ambiguity, and capture high-level discrimina-
tive feature for downstream tasks. However, real-world deployments rarely enjoy complete data:
views and labels are frequently missing due to acquisition failures, privacy constraints, or cost.
Under such inevitable view and label incompleteness, extracting and aggregating shared informa-
tion across views becomes markedly challenging due to unreliable cross-view alignment, dominated
view-private noise, and sparsely informative supervision, degrading representation sufficiency and
predictive performance. In this paper, we define this multi-view learning task with double missing
issue as incomplete multi-view missing multi-label classification (iM3C).

Despite recent advances, multi-view learning still struggles with the core goal of representation suf-
ficiency, i.e., joint embeddings should retain as much task-relevant information as is shared across
views while discarding view-private nuisance. Non-probabilistic deep methods, typically based
on contrastive learning or InfoMax objectives, often depend on model architecture and the chosen
estimators for good results; they help in practice but do not provide clear guarantees about suffi-
ciency. Probabilistic and information-theoretic methods are able to explicit model two key goals,
i.e., retaining shared information and removing nuisance information, However, many existing in-
formation theory-based approaches implement only single-variable consistency in the shared latent
space, i.e., maximizing pairwise dependence or aligning multi-view data and cross-view represen-
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tation. Such scalar constraints are coarse, providing neither sufficiency guarantees nor protection
against contamination from not fully trained or low-quality views. That may lead to the information
aggregation process in joint representation learning being affected by insufficiently learned views
(i.e., information redundancy or learning collapse).

In this work, we enforce cross-view alignment early in the encoding stage within an information
bottleneck (IB) formulation, encouraging compact yet sufficient shared representations. Concretely,
we employ cross-view encoders where each view’s observations condition a shared latent distribu-
tion cluster, enabling decoupled per-view inference while supporting distribution alignment across
views. To strengthen semantic consistency, we introduce a permutation-consistency objective that
exchanges distributions of latent variables corresponding to different views, to regularize cross-view
matching with scalable complexity. In parallel, we incorporate view-specific reconstruction terms
that preserve view-valid information and prevent over-compression of task-relevant content. These
components are unified under a principled IB-style objective with a variational derivation, for which
we provide a complete variational derivation.

Our contributions are summarized as follows:

* We propose a universal variational encoding framework for incomplete multi-view multi-
label classification that accommodates arbitrary patterns of view and label incompleteness,
while learning deep semantic consistency from constrained observations.

* We develop a permutation-consistency empowered IB model that exploits permutation in-
variance of cross-view representations to impose view-wise consistency constraints, which
maximizes task-relevant information extraction while retaining view-specific content as
much as possible.

* We present extensive empirical evidence demonstrating that the proposed framework con-
sistently outperforms strong baselines and achieves state-of-the-art results in both missing
and fully observed regimes.

2 PRELIMINARY

2.1 INCOMPLETE MULTI-VIEW MISSING MULTI-LABEL CLASSIFICATION

Multi-view learning leverages both redundancy and complementarity across views to improve ro-
bustness and downstream performance. Early approaches emphasize consistency and complemen-
tarity regularization (e.g., co-training and kernel alignment), and later evolved toward deep represen-
tation learning and semi-supervised regimes to cope with missing observations and noise in practice
(Andrew et al.l |2013; Liu et al., 2022} 2020). For incomplete multi-view settings (missing views),
dominant strategies include: matrix/tensor completion with low-rank priors to recover cross-view
structure (Wen et al., 2019); cross-view alignment and shared—private factorization to disentangle
common semantics from view-specific factors (Liu et al., |2023a; [Lin et al.| |2024); and deep con-
trastive or consistency-based methods that maintain discriminative representations despite missing
views (Luo et al.}[2024; Bian et al.}[2024). Under missing multi-label supervision (partially observed
labels), existing methods typically combine label-dependency modeling with self-training, extrap-
olating unobserved labels via graph regularization, conditional dependencies, or deep pseudo-label
estimation (Xie et al.|[2024;|Chen et al.,|2019; L1 et al., 2024])). Overall, strategies for handling either
incomplete multi-view learning or missing multi-label classification are diverse, however, research
that simultaneously addresses both forms of incompleteness has only recently emerged. Represen-
tative work includes: DICNet, which first introduces multi-view contrastive learning into the iM3C
task and achieves significant performance gains (Liu et al., |2023b); AIMNet, which generates im-
puted views via graph-based neighbor retrieval (Liu et al., [2024a)), and NAIM3L, which cleverly
employs dual-index information to mitigate the adverse effects of missing views and labels (Li &
Chen, [2023).

2.2 INFORMATION THEORY-BASED MULTI-VIEW LEARNING

Variational autoencoder (VAE) (Pu et al.| | 2016) provides a probabilistic framework for information
theory-based multi-view representation learning, which is commonly used to unify cross-modal gen-
eration, missing-data completion, and uncertainty quantification under shared latent variables (Wan
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et al., [2021). Early multi-view VAEs posit a joint latent space to explain multiple sources, thereby
enabling coherent generation and inference across views (Vedantam et al., 2018; [Wu & Goodman,
2018). Representative lines of work include jointly inference-based multimodal VAEs that fuse
multiple sources with a shared latent space|Vedantam et al.|(2018); Wu & Goodman|(2018); [Khattar
et al.[ (2019), posterior aggregation via product of experts (PoE) or mixture of experts (MoE), en-
abling robust inference when arbitrary modality subsets are observed (Q1u et al.| |2025; (Chakrabarty
& Pall, [2024; Tan et al.| |2024), and alignment or mutual-information regularization to strengthen
semantic sharing and identifiability (Liu et al.| [2024b). For incomplete inputs, a key focus is con-
ditional posteriors and marginal generation to support inference and reconstruction from any subset
of views (Liao et al.| 2022; |Chen et al.| [2025)).

2.3 PROBLEM FORMULATION

Consider an incomplete multi-view multi-label dataset D = {(x,y)} with N samples. Each instance
is described by m views, denoted x = {x(”)},’;’;1 with x(*) € R% . Due to view incompleteness,
we set V with |V| < m to denote the set of observed views for any instance. The label assignment
is given by y € {0, 1}, where C is the number of categories and y© = 1 indicates the membership
in class ¢. Similarly, we define G with |G| < C as the available label set for any instance. Our
goal is to encoding the joint multi-view representation z given the incomplete data D with prior
missing information V and G, and classify the instance into corresponding categories. Note that in
the context of information theory, we use random variables to describe data and problem definitions.

2.4 SUFFICIENCY OF MULTI-VIEW REPRESENTATIONS

When is a multi-view representation “good enough” for multi-label prediction? Our answer builds
on a simple intuition and turns it into a practical, trainable target. Different views of the same sample
describe the same subject: they may look different in low-level details, but the task-relevant meaning
should be consistent. With this in mind, we adopt a semantic consistency assumption:

Assumption 2.1 For the prediction of y, there exists semantic information that is shared among
multiple views xV),x2) ... x("™)_ Then, for mutual information between views and target, we
have:

IxW:y) =I1xP:y) = ... = 1(x™),y)

This assumption intuitively demonstrates that each available view x(*) carries essentially the same
information about the target y. Unlike a single-view setting, the multi-view setting provides more
chances to filter out content irrelevant to the task. Therefore, following previous work (Liu et al.,
2024b), we introduce joint multi-view representation z to associate multiple views in the embedding
space and state a direct proposition:

Proposition 2.2 If multi-view joint representation z contains all the information shared by all views,
z is sufficient for predicting y.

An appropriately constructed cross-view representation z can, in principle, contain the information
required for downstream prediction. However, raw multi-view observations usually contain substan-
tial view-specific variability that is not aligned with the target. Thus naive fusion often carries these
irrelevant factors into z, introducing redundancy that obscures the shared task-relevant signal and
weakens the predictive efficacy of z for y (Federici et al., [2020; |Liu et al.l [2024b). These consid-
erations motivate learning strategies that emphasize shared semantics while suppressing non-shared
information, thereby maintaining the sufficiency of z under realistic conditions.

3 METHODOLOGY

In this section, we detail the proposed permutation-consistent variational encoding (PCVE) frame-
work. The overall pipeline is illustrated in Fig. [T} the top panel depicts multi-view shared informa-
tion learning and reconstruction, while the bottom panel shows cross-view fusion and multi-label
classification.
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Figure 1: Our main framework of PCVE. The multi-view shared information learning and recon-
struction is shown at the top; the cross-view fusion and multi-label classification process is in the
bottom.

3.1 CONSISTENCY INFORMATION BOTTLENECK FRAMEWORK

Building on Proposition 2.2} a shared representation z that captures cross-view commonality is
semantically sufficient for prediction. Further constraining the model to remove all non-shared
redundancy, ensuring that z retains only shared information, will be more beneficial for downstream
tasks. Concretely, for given views x(*) and x("), consider the mutual information between x(*) and
joint variables z and x(”), we have:

Ix™;x™ z) = 1(x™:2 | x™) + 1(x®:;x™) = 1(x™);x™ | 2) + I(z;x®)
=I1(x";z [ x) = I(z;x™) — I(x;x™) + 1(x);x™ | z). )]

Minimum sufficiency Sufficiency

This decomposition subject to two assumptions. First, if z contains the shared information across
views, then the mutual information between any views is equal to O, i.e., I (x(”); x () | z) = 0.
Second, if z contains only the shared information, then the mutual information between z and any
view is equivalent to the shared part between views, i.e., I(z;x(") — I(x("):x(®")) = 0. Under
these two conditions, we can get I(x(");z | x(*)) = 0, which formalizes the notion of minimal
sufficiency with respect to the cross-view common semantics.

Corollary 3.1 For any pair of views u # v, let z be a joint multi-view representation that contains
and only contains the shared information across views, then the conditional mutual information
I(x™:z | x") = 0.

To attain minimal sufficiency of z while maximizing shared information, it suffices to minimize the
conditional dependence between views given z, i.e., to drive I(x("); x(*) | z) toward zero. Previous
work typically represents the multi-view joint coding with a single variable z and models its distribu-
tion from raw multi-view data using PoE or MoE, while imposing a posterior-consistency constraint
during fusion. This strategy implicitly assumes a one-to-one mapping between each view and its
view-specific latent component, e.g., the component of z attributed to view v solely originates from
x(¥)_ Although intuitive, such fusion can suffer from view imbalance and training insufficiency:
some dominant views may steer the POE/MoE aggregation and overshadow weaker views. We
therefore propose to impose the cross-view consistency constraint earlier, specifically at the stage of
view-specific distribution modeling, to suppress non-shared information. Concretely, we introduce
explicit view-specific components {z(“) }vey as a decomposition of the joint representation z, and
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replace the learning objective with a sum of conditional terms \V\ > pey (x5 2 |x). Intu-
itively, minimizing I(x(*);2()|x(*)) helps to compress z(") to remove redundant view-specific
information. However, minimizing this term alone risks information collapse in {z(*)}, yield-
ing degenerate non-informative representations. Therefore, we complement that objective with an
informativeness regularizer that preserves the valid information within raw data, by maximizing

I(z™);x(*)) while simultaneously minimizing the conditional mutual information:

uFv
Z O x(“ ) Z x(“ 2V |x(")) = 0. (2)
‘V| veV |V| u,veY
Introducing a Lagrange multiplier 8 > 0 yields the unconstrained objective:
uFv
max N Z - 8- Z I(x(“); Z(v)|X(v))_ (3)
| | veV | ‘ w,veY

3.1.1 VIEW-SPECIFIC INFORMATION EXTRACTION AND CROSS-VIEW CONSISTENCY
MODELING

In Egq. , the first term maximizes (z("); x(*)) to preserve the view-specific information, and the
second term minimizes Y, I(x(*);x(") | z(*)) to enforce cross-view consistency. We adopt the
trade-off coefficient 3 to balance information compactness and effectiveness.

x(0); 7)) / / x(), 7)) (X(v |ZU))dx(v)dz(v)

> / p(x®) / p(z<v>\x<v>)1ogp(x<v>\z<v>)dx<v>dz<v>.

For the lower bound of Eq. , direct solution is intractable due to the unknown conditional dis-
tribution. Therefore we introduce a variational coding network ¢*(z(*) | x(*)) to approximate
p(z) | x(*)). Then Eq. (4) can be rewritten as follows:

I(x®): 20) > / p(x®) / (2 x)) log p(x(® [2))dx®) gz ®)

ZEwap(x(u))[/P(Z(U)|X(v))10g QU(X(U”Z(U))dZ(U)] ©)

B0 1o (x| 2],

Obviously, we can maximize the lower bound in Eq. (3) to achieve our optimal goal of
max I(x(*);z(")). For the second term in Eq. ( . we have the following formulation:

I(x™; 7(®) |X(v))

(u) x(v) Z(v) (v)
_ @) x®) 50y 1gg PO X2 D) L) gy (@) g0
//p(x ,x\ 2\ log P X )p () X(v))dx dx'\"dz ©)

() |x () x(®)
/ / (x() x(0) 50 10g PEXDXT) ) o) g 0).
p(z[x()

Existing approaches typically employ a simple Multilayer Perceptron (MLP) to model the dis-
tribution of p(z(")|x(*)). However, under our cross-view consistency encoding framework,
where all m views are expected to be encoded with shared semantic features, we decouple
the process of approximating distribution p(z(*)|x(")).  Specifically, we model distributions
{rl(zM[x™), ... rm(z20™)|x(*))} separately, which {r”}7_, means the stochastic encoders from
source view v to target view n, and then employ PoE fusion to obtain distribution 7% (z(*)|x(*)) to
approximate p(z(*)|x(*)):

m

p(zW)x) ~ ¥ (2 |xV)) = r(z H i (z]x™), (7
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where we set 7(z(")) as a standard Gaussian distribution r(z(*)) := A/(0, I) for a vanilla implemen-
tation. Then we can get the following variational upper bound:

[(X(u); 7 |x(v))
) [£x(®) @1} (5(0) |5 ()
_ (u) () ,(v) p(Z |{X » X })’I" (Z |X ) (u) 3 (V) 7., (V)
_//p(x ,x'z') log (a0 )7 (200 ) dx\"dx'\" dz
(0) |x(w) x(v)
(w) «(v) (v) p(z™x"™), x))
S/p(x ’X 7p(z )log T(Z(U)‘X(u))

=) () o) [Drc (p(2 [ [ (2 )],

where D, is the Kullback-Leibler divergence. Aggregating over Egs. (3)) and (), and introducing
the penalty coefficient 3, we obtain the training objective for Eq. (3), i.e., minimizing the loss
function L;p:

(3
dx®W dx (V) qz(®)

1
Liv = Lo + ﬂﬁpc = M Z [7 Ez(u)Np(z(u)lx(,,)) log q” (x(v)|z(v))]
veV
O Y D Dralrb ) )

u,veY n=1

3.2 PRIOR ALIGNMENT VIA RANDOM PERMUTATION

To regularize view-specific posteriors in £, while avoiding cubic complexity, we introduce a
permutation-consistent alignment principle that serves a role analogous to cross-view prior sharing.
From loss function £,., it encourages the latent posterior of view v to be close to that constructed
from another view w. A naive implementation evaluates all ordered pairs (u,v) with u # v, incur-
ring O(|V|?) complexity per batch. Instead, we attempt to randomize the association between views
so that each view v is matched with a single view u # v per iteration, reducing the cost to O(|V|?)
while preserving the intended regularization.

Definition 3.2 For a given view v, the latent distribution cluster drawn on it is defined as:

cv = {z(v%n) ~ T;L(z(n) | X(v))}m

n=1’

where z(Y=™) denotes the latent sub-variable from source view v to target view n.

Proposition 3.3 (Permutation consistency) By randomly swapping the corresponding elements of
the latent distribution clusters C¥ and other available views, the distributions of the corresponding
latent sub-variables within each cluster remain consistent before and after the swap, i.e., let 1 =
{mi}™,,m €V be a random view index sequence of length m, and C* = {z(™=™) ~ T;Ln(z(") |
X(”")) };n:l be the cluster after random permutation, then we have:

DKL(Z(“_”’) Hz(”"_’”)) = 0, Vne{l...,m}

The permutation consistency defined in the proposition is based on the assumption of semantic en-
coding consistency in the latent space, i.e., the ideal cross-view representations should contain only
shared semantic information. This design enforces the network to encode semantic information
from all available views, ensuring cross-view semantic alignment while effectively improving com-
putational parallelism. Note that, given the diversity of source views within each cluster, we further
constrain the selection of 7 such that [{m;}7,| = |V|; that is, we randomly select view indices
from the available view set )V without replacement. For example, if V = {1,2,4,6}, a possible
permutation of the indices 7 could be {4, 1, 6,2}.

3.3 MULTI-LABEL CLASSIFICATION AND OVERALL OBJECTIVE

After obtaining the components of latent shared representation on each view, we fuse available
views via a PoE to form the joint posterior: ¢(z | {x(")},ey) o r(2) [Toev r(z® | x()). To
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enable a differentiable prediction path, we sample latent variable from ¢(z | {x(*)},c) using the

reparameterization trick. Let ¢(z | {x" },ev) = N (fpoe, Spoe) With mean ppoe and covariance

Tpoes @ D times sample is: z = & 25:1 Ppoe + 2;({3 © @, €D ~ N(0,I). Then Z is mapped

to multi-label prediction probabilities p € [0,1] via a small MLP followed by a Sigmoid layer:
p = o(fc(2)). In the missing-label setting, supervision is accumulated only over the available label
set G C {1,...,C}. The multi-label cross-entropy loss is:

Lee = —LZ [inngi"_(l_yi)IOg(l_pi)]a (10)
91 i
where y; € {0, 1} is the observed label for class ¢ and p; is the predicted probability and unknown
labels (i ¢ G) are excluded. Aggregating the regularization and task terms, our overall objective
comprises permutation consistency loss Ly, reconstruction loss and missing multi-label classifica-
tion loss Lee:
L=Lce+ Ly (11)
where o > 0 balance the proportion of IB strategy. Note that the L;;, is composed of £, and L,
with coefficient 3 to balance the information compression and retention across views.

4 EXPERIMENTS

We introduce the experimental setup, main experimental results and analysis in this section. For
other experimental results and ablation study, please refer to the appendix.

4.1 EXPERIMENTAL SETTINGS

Datasets. Following common practice (Liu et al., [2023a; |Li & Chenl 2023), we evaluate on five
standard multi-view multi-label benchmarks: Corel5k Duygulu et al.| (2002), Pascal07 |[Everingham
et al.| (2009), ESPGame |Von Ahn & Dabbish| (2004), IAPRTC12 Henning et al.[ (2006}, and MIR-
FLICKR [Huiskes & Lew| (2008). Each sample provides six views (GIST, HSV, DenseHue, Dens-
eSift, RGB, LAB). We adopt the same data statistics and feature settings as prior work to ensure fair
comparison.

Incomplete data construction and splits. To simulate the doubly-incomplete setting, we ran-
domly mask views and labels: for each sample, we drop the view with a fixed probability while
ensuring at least one view remains; for labels, we randomly mask both positive and negative entries
with the same probability. Unless otherwise specified, the missing-view rate and missing-label rate
are both set to 50%. Then, we split all data into [70%/15%/15%] for training, validation, and test.

Baselines. We compare our PCVE against nine strong methods: complete multi-view multi-label
learning method like CDMM (Zhao et al., 2021)) and LVSL (Zhao et al.,[2022); single-view missing
multi-label methods DM2L (Ma & Chen, 2021)); and methods tailored for iM3C, like iMVWL Tan
et al.| (2018)), NAIM3L (Li & Chenl [2023)), DICNet (Liu et al.,2023b), DIMC (Wen et al. [2023),
MSLPP (Long et al., 2024)) and SIP (Liu et al., [2024b)). For methods not natively supporting iM3C
task, we follow standard adaptations in previous work (Zhao et al., [2022): mean imputation over
available views for methods unsuitable for missing views, and reporting the best single-view for
single-view method; for methods not supporting missing labels, unknown entries are excluded from
the supervision term. We use authors’ code and recommended hyperparameters when available.

Metrics. We report six widely-used metrics: Ranking Loss (RL), Average Precision (AP), Ham-
ming Loss (HL), Area Under ROC Curve (AUC), One-Error (OE), and Coverage (Cov). To unify
the direction, we present 1—RL, 1—HL, 1—-OE, 1—Cov along with AP and AUC, so higher is better
for all. Each experiment is repeated multiple times with reported mean and standard deviation.

Implementation details. For our method PCVE, the latent dimension is 512, batch size 128, opti-
mizer SGD with initial learning rate 0.001. Per mini-batch we draw 10 samples for latent variables
and use their average as a robust estimate. Training is conducted on Ubuntu with a single NVIDIA
RTX 5090 GPU under PyTorch 2.x. The key hyperparameters are selected via grid search on the
validation set and fixed for test reporting.
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Table 1: Results under 50% missing views and 50% missing labels. The decimal in the lower right
corner is the standard deviation. The best result is marked in bold.

Data Metric CDMM DM2L LVSL iMVWL NAIM3L  DICNet DIMC MSLPP SIP PCVE

AP 1 0.3540004  0.262000s  0.3420004 0.283000s  0.3090004+  0.381000s  0.3530006 0.4130008 0.4180000  0.4230.000
I-HL T 0.9870000 0.9870000 0.9870000 0.9780000 0.9870000 0.9880000 0.9870000 0.9880.000 0.9880000 0.9880.000

é I-RL T 0.8840003 0.8430002 0.88loooz  0.865000s 0.8780002  0.8820004 0.8670001  0.90Looos  0.9110003  0.9140.003
g AUCT  0.8880003 0.8450002 0.8840003 0.868000s 0.88loco2  0.884000+ 0.8700001  0.9030.004 0.9130003  0.9160.003
O I-OET  0.4100007 0.2950014 0.3910000  0.311o01s  0.3500000  0.4680007 0.4220015  0.4850010  0.48%.016  0.4940015
1-Cov T 0.7230007  0.647000s 0.7180006  0.7020008  0.725000s  0.727001  0.6840011  0.7660009  0.7870.000  0.7920.009
AP 1 0.508000s  0.471000s  0.504000s 0.4370018  0.4880003  0.5050012  0.5320002  0.5440010  0.5550010  0.5620.009
- I-HL 1+ 0.931o001  0.9280001  0.9300000 0.8820004  0.9280001  0.929.001  0.931o001  0.9320000  0.9310001  0.9340.001
% 1I-RL 1 0.8120004 0.761000s 0.8060003 0.7360015  0.7830000  0.783000s  0.8130000 0.8190.006  0.830000+  0.8350.004
Q AUC?T  0.8380003 0.77%.004+  0.8320002 0.767001s  0.8110001  0.8090.006 0.8330002 0.84100os 0.850000s 0.8570.004
£ 1-OE1T  0.419008 0.4200011 0.4190008 0.3620023 0.421000s 0.4270015  0.4560011  0.4660014 0.464001s  0.4710013
1-Cov 1T 0.75%u00 0.6920004 0.75l000s  0.677001s  0.7270002  0.731000s  0.7690007  0.7710.003  0.7830006  0.7900.006
AP 1 0.28%003  0.2120002  0.2850003 0.244000s  0.2460002  0.2970002  0.2870002  0.3100004  0.3110004  0.3140.004
5 I-HL T 0.9830000 0.9820000 0.9830000 0.9720000 0.9830000 0.9830000 0.9830000 0.9830000 0.9830000 0.9830.000
§ I-RL1T  0.8320000  0.781o001  0.8290001  0.8080002  0.8180.002  0.8320001  0.8210000  0.8430.002  0.84%0.002  0.8520.002
E AUCT  0.8360001  0.7850001  0.8330002  0.8130002  0.8240002  0.8360001  0.8260000 0.8470.002  0.8530.002  0.8560.002
4 I-OE1T  0.396000s  0.2940006  0.38%.004  0.3430013  0.33%0.003  0.439.007 0.4350000 0.4570012  0.4550007  0.4600.008
1-Cov T 0.5740004 0.4880003 0.567000s 0.5480004 0.5710003  0.5930003 0.5620004 0.6220005 0.6280.005  0.6340.005
AP T 0.3050004  0.2340003  0.3040004  0.2370003  0.2610001  0.3230001  0.3080001  0.340000s  0.331000s  0.3360.005
a I-HL 1+ 0.9810000  0.9800000 0.9810000 0.969.000  0.9800000 0.9810000  0.9800000 0.9810000  0.9800.000  0.9810.000
8 1I-RL 1 0.8620002 0.8230002 0.8610002  0.8330002  0.8480001  0.8730001  0.8640000 0.8820002  0.8850003  0.8880.003
I AUC 1 0.8640002  0.8250001 0.8630001  0.8350001  0.8500001 0.8740000 0.8640000 0.8830002 0.8860.002  0.8890.002
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Figure 2: Experimental results of ten methods on the three full databases without any missing views
or labels. The center of the radar map shows the worst results and the vertexes mean the best results
on the six metrics.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

We compare PCVE with the nine baselines on all five datasets under 50% missing views and 50%
missing labels. From Table [T} we can observe that our PCVE matches or outperforms the top
baseline across all six metrics on all datasets. Compared with the best prior baselines, PCVE exhibits
statistically consistent improvements. For example: On the Corel5k and Pascal07, PCVE improves
AP and AUC by about 0.3-3.5 points over the second best method SIP; On the larger-scale datasets
with around 20k samples like ESPGame, IAPRTC12, and MIRFLICKR, the improvement trends
are modest yet steady across all six metrics, indicating improved robustness under severe double-
incompleteness. In addition, a holistic view of Table [T shows that methods explicitly designed for
the iM3C setting (e.g., DICNet, SIP, and our PCVE) systematically outperform those not natively
addressing dual incompleteness (e.g., CDMM and LVSL). For example, on Pascal07, iM3C-oriented
methods (SIP with AP 0.555; PCVE with AP 0.562) surpass non-iM3C counterparts (e.g., CDMM
with AP 0.508 and LVSL with AP 0.504). Similar trends recur on other datasets, which underscores
the necessity of introducing prior missing information, rather than relying on coarse imputations.
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Figure 3: Impact of different information-balance parameter 3 on loss L., L, (3al3b), and AP
(Bc). The blue area shows the standard deviation.

We further evaluate all methods under the complete data setting by setting both the view-missing
and label-missing rates to 0. The radar plots in Fig. [2] visualize results on three representative
datasets, where curves closer to the center indicate worse performance. Two observations stand
out: Incompleteness imposes a substantial negative impact on all methods; Even with full views
and labels, PCVE maintains a consistent edge over strong baselines, confirming its compatibility
beyond the doubly-incomplete regime. In particular, on the Corel5k dateset, PCVE achieves notable
advantages on 1-HL and 1-Cov compared to the second-best approach.

4.3 ANALYSIS OF THE BALANCE IN THE IB.

We further examine how PCVE balances representation sufficiency and compactness through its
IB loss by tuning the trade-off between the reconstruction term L,.. and the cross-view permutation
consistency term L, in Eq. (9), where L, aims to preserve view-specific information necessary for
reconstruction, while £,,. for enforcing semantic invariance across views by aligning their posteriors
toward a compact task-relevant shared space. To be specific, we sweep § on Corel5k and Pascal07
under the doubly-incomplete setting and track the dynamics of L;e, Lpc, and AP values across
training (see Fig. . Three consistent phenomena emerge: (i) When S is too small, £,. dominates
and the model over-retains view-specific information, leading to weaker cross-view generalization
and degraded performance despite low reconstruction error. (ii) When S is too large, excessive
compression harms sufficiency as well: £, remains low but £,. rises rapidly, accompanied by
noticeable declines in AP, indicating information underflow. (iii) A moderate balance yields the best
outcomes: performance peaks when the pull between L, and £, reaches a balance (typically 3
in the mid-range), suggesting that PCVE benefits from jointly promoting semantic alignment and
preserving reconstructive fidelity.

5 CONCLUSION

In this paper, we present PCVE, a permutation-consistent variational encoding framework for in-
complete multi-view multi-label classification. We adopt an information bottleneck framework that
couples view-specific information preservation with a permutation-based cross-view consistency ob-
jective to achieve efficient semantic alignment across views. Our key contribution is an early-stage
consistency regularization based on distribution-cluster swapping, which effectively suppresses view
redundancy and promotes the learning of sufficient shared representations. Extensive experiments
on five benchmarks under both doubly-incomplete and fully observed settings show consistent gains
across all metrics. Analyses further verify that a balanced trade-off between information preser-
vation and compression is critical to avoid information collapse and redundancy. PCVE offers a
general and effective solution for iM3C task, with potential to extend to broader multi-view learning
scenarios.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language model solely as a writing assistant to improve the clarity, grammar, and
style of the manuscript. The model was not involved in research ideation, experimental design, im-
plementation, analysis, or result interpretation. We sincerely appreciate the contribution of the large
language model in enhancing the readability and linguistic quality of this work. Its assistance was
instrumental in refining the presentation of our research. All technical content, including methods,
experiments, and conclusions, was fully developed and verified by the authors. The authors take full
responsibility for the content of this paper.

A.2 COMPLETE DERIVATION OF SHARED INFORMATION LEARNING MODEL

In this section, we give a detailed derivation of model (3):

UFv
1
|Z - B 3 I(x®; 20 x®), (12)
veY u,vEY

For the first term in Eq. (I2)), we have:
](X(v). Z(v))

(u) (v) )log (X(U)|Z(U))dx(v)dz(u)
p(x)

// v U) lng( (v ‘Z ”))dx(v dZ U)+ (13)
v v v 1 v v
/p(z ) x )/ (x)) log ey Xz )]

:[//p(x(v)’z(v))logp(x(v)‘z(v))dx(v)dz(v) +H(X(U))]

Due to the information entropy H (x(”)) > 0, we have:
I(x(”); z("))

Z//p(X(v),Z(”))logp(x(”)|z(”))dx(”)dz(”)
:/p(x(v))/p(z(v)|x(v))10g qv(x(”)|z(”))dx(”)dz(”)+

() |5(®) (14)
(™) [ p(x u>|z<v)1ogwdx<v)dz<v>
¢ (xO [20)

_ / p(x) / (20 1x)) Tog ° (x) [20))dx®) d ™) +

/p(Z(U))DKL (p(x(v) |Z(v))||qv (X(v) |z(”)))dx(“)dz(”)

Since Dy (p(x™]z2()) g% (x(*)|2(*))) > 0, we can get:

[(X(v); Z(v))
> [ ) [ o) o " ()l
// ®) 2" 1og ¢¥ (x |2(")dx ) dz() (15)

= [ o) [ pla ) log g (x)xa

B0 e og (x| 2],

12



Under review as a conference paper at ICLR 2026

For the latter term in Model (12), we have:

](X(u); 7(®) 1x(*)

(@) 3(®) 50 ()
_ @ @) 0100 PE X2 )PE) Ly @) @)
_//p(x ,x" 7)) log p(x(“),X(”))p(z(”),x(v))dx dx")dz (16)

/ / (x), x (v)logp(z(”)lx(“)7x('”)) dx® dx ™) gz ()
P Tx0)

By introducing approximate distribution r¥(z(*)|x(*)), we have:
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A.3 POE FUSION

Given the distribution N (1, 3,), v € V of each sub-expert for PoE fusion, the formulation of PoE
fusion is as follows:

1
" o EUEV N'uziv
poe — 1 )
ZvEV . +1 (18)
S 1
poe — —~ 1 | 1°
ZUEV T, +1

where (0. and X, are the fused mean and variance of multiple views, respectively. f, and

¥, mean the v-th view’s mean and variance, respectively. Then, we have p(z|{x(")},cy) ~
N(Upoea Epoe)-

A.4 STATISTICS FOR FIVE DATASETS

In this section, we present details of the five databases used in our experiment in Table The
introductions of five widely used datasets are as follows:

1. CorelSk Duygulu et al.|(2002)): The Corel5k dataset contains 4,999 images and 260 anno-
tations, with each image labeled by 1 to 5 tags.

13
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2. Pascal07 Everingham et al.|(2009): PASCAL VOC 2007 is a widely used image dataset for
visual object detection and recognition. In our experiments, we use 9,963 images spanning
20 object categories.

3. ESPGame |[Von Ahn & Dabbish|(2004): The ESPGame dataset comprises 20,770 images
collected from online interactive games, with 1 to 15 labels extracted per image. On aver-
age, it has 4.69 semantic labels per image and includes 268 unique labels in total.

4. TAPRTC12 [Henning et al.| (2006): IAPRTC12 is a large-scale dataset with 19,627 im-
ages across 291 categories. Each image has up to 23 labels, extracted from the slogans or
subtitles appearing in the image.

5. Mirflickr Huiskes & Lew, (2008): The Mirflickr-25k open evaluation project consists of
25,000 images downloaded from Flickr, with 38 labels used in our experiments.

Table 2: Detailed information about five multi-view multi-label datasets in our experiments.

Dataset # Sample # Label # View # Label/#Sample

Corel5k 4999 260 6 3.40
IAPRTC12 19627 291 6 5.72
ESPGame 20770 268 6 4.69

Pascal07 9963 20 6 1.47

MIRFLICKR 25000 38 6 4.72

A.5 STATISTICS FOR EIGHT COMPETITORS
In this section, we give details of the eight comparison methods in Table [3]
Table 3: Simple information of nine comparison methods. ‘Multi-view’ denotes the method is

designed for multi-view data; ‘Missing-view’ and ‘Missing-label’ represent their compatibility with
missing views and missing labels.

Method Sources Multi-view  Missing-view  Missing-label
CDMM KBS 20 v X X
DM2L PR 21 X X v
LVSL TMM 22 v X X
iMVWL IJCAI’18 v v v
NAIM3L  TPAMI 22 v v v
DICNet AAAI °23 v v v
DIMC TNNLS ’23 v v v
MSLPP  Neur Netw ’24 v v v
SIP ICML *24 v v v

A.6 EXTRA EXPERIMENTAL RESULTS ON TWO FULL DATASETS.

In this section, we show the results of nine methods on two datasets without any missing views and
labels in Fig. 4}

A.7 VISUALIZE THE CONSISTENCY OF EMBEDDING FEATURES

To demonstrate the constraints of our permutation strategy on multi-view consistency, we calcu-
late the KL divergence between the private embeddings corresponding to any six views and draw
heat maps in Fig. [5| We calculate the KL divergence among six views {r?(z(*)|x("))},cy of two
samples at three training epochs. It can be seen from the figure that as the training progresses con-
tinuously, the distribution consistency among views gradually increases reaches a balance. With the
improvement of the prediction performance of the model, the encoding of each view in the latent
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Figure 4: Experimental results of nine methods on the two full datasets without any missing views
or labels. The worst results are indicated at the center of radar chart, while the best results are
represented by the vertexes, considering six evaluation metrics.

(e) epoch =1 (f) epoch = 25 (g) epoch = 50 (h) epoch =75

Figure 5: Visualization of KL divergence among views for two samples in three training epochs.
(a)-(d) are for a sample and (e)-(h) are for another sample. “v1” denotes the view 1.

space is evolving towards semantic consistency. However, due to the existence of the reconstruction
regularization, the KL divergence does not decrease indefinitely.

A.8 ABLATION STUDY

To assess the contribution of each component in PCVE, we conduct ablation experiments focusing
on the two terms in our information-bottleneck objective: the view-specific reconstruction loss L,..
and the permutation consistency loss £,.. We report results on two representative datasets (Corel5k
and Pascal(07) under the doubly-incomplete setting (50% missing views and 50% missing labels),
and use the same training protocol and evaluation metrics as in the main experiments. Specifically,
we remove L, and L., respectively, and name them as “PCVE wo L,,.” and “PCVE wo L,..” in
Table[d]

From Table EI, it can be observed that removing £, consistently degrades the performance on all
metrics. Without permutation consistent alignment, the model retains more view-private informa-
tion and exhibits weaker cross-view generalization. Besides, dropping L,.. leads to unstable training
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Table 4: Ablation results on CorelSk and Pascal07 datasets with 50% missing views and 50% miss-
ing labels. ‘w/o’ means ‘without’. Loss £,.. and £, denote the reconstruction term and permutation
consistency constraint term, respectively.

Corel5k Pascal07
AP I-HL 1-RL  AUC 1-OE 1-Cov AP I-HL 1-RL AUC 1-OE 1-Cov

PCVE w/o L, & Ly | 0350 0987 0870 0.876 0424 0.727 | 0.537 0930 0.811 0.826 0.456 0.760
PCVE w/o L, 0.389 0987 0.898 0901 0454 0.761 | 0.547 0.929 0.825 0.847 0464 0.777
PCVE w/o L. 0.261 0987 0.853 0.858 0.289 0.677 | 0.511 0931 0.788 0.815 0.441 0.740

PCVE 0423 0988 0914 0916 0494 0.792 | 0.562 0.934 0.835 0857 0471 0.790

Method

and notable declines in AP and AUC. Over-aggressive compression causes information underflow:
while cross-view posteriors appear compact (lower £,.), the shared representation becomes unin-
formative for accurate prediction. The full model yields the best overall performance, indicating that
L, supplies view-valid content to prevent collapse, while L. suppresses redundancy and enforces
cross-view semantic invariance. The two terms are complementary in maintaining a compact yet
sufficient representation.

A.9 TIME COST STUDY

To assess the training and inference efficiency of PCVE, we report the training and testing time of
ten methods on the Corel5k dataset (70% training split) in Table [5] Because model training time
is highly sensitive to convergence criteria, we measure all methods under their default convergence
settings. For single-view methods, we record the total training time summed over all views, and
the inference time for a single view. For DICNet, SIP, and PCVE, we conduct 100 epochs for the
training phase.

Phase Method CDMM DM2L LVSL iMVWL NAIML DICNet DIMC MSLPP SIP PCVE

Training 16.02 71337 63.73  165.82 143.63  313.89 141.85 4889.84 336.11 412.21
Inference 1.73 0.04 0.64 0.02 0.01 0.05 0.04 0.05 0.01 0.03

Table 5: Time cost of training and inference phases on the Corel5k dataset with 70% training sam-
ples. (Unit: s)

A.10 LIMITATIONS

Although PCVE shows strong effectiveness for iM3C and sheds light on aligning cross-view se-
mantics via early permutation-consistent regularization, several limitations remain. First, our ap-
proach assumes that shared information suffices for prediction. This assumption may be strained
under highly heterogeneous modalities (e.g., vision—language—audio) where view-private cues can
be indispensable. Second, while permutation-based alignment reduces complexity, its stochastic
matching scheme may introduce variance and could underperform with severely imbalanced or low-
quality views. Third, our information bottleneck relies on variational bounds and KL-based sur-
rogates; more accurate or adaptive mutual-information estimators might further improve stability
and fidelity. Finally, we evaluate on established benchmarks with controlled missingness. Broader
validation on real-world large-scale deployments with structured missing patterns and distribution
shifts is needed to fully assess robustness and generality.
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