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Abstract

Synthetic tabular data generation is a challenging problem due to the high complexity of
the underlying distributions that characterise this type of data. Despite recent advances in
deep generative models (DGMs), existing methods often fail to produce realistic datapoints
that are well-aligned with available background knowledge. In this paper, we address this
limitation by introducing Disjunctive Refinement Layer (DRL), a novel layer designed to
enforce the alignment of generated data with the background knowledge specified in user-
defined constraints. DRL is the first method able to automatically make deep learning
models inherently compliant with constraints as expressive as quantifier-free linear formu-
las, which can define non-convex and even disconnected spaces. Our experimental analysis
shows that DRL not only guarantees constraint satisfaction but also improves efficacy in
downstream tasks. Indeed, it improves performance metrics by up to 21.4% in F1-score
and 20.9% in Area Under the ROC Curve.

1. Main Contributions

In this paper, we propose a novel layer—called Disjunctive Refinement Layer (DRL)—

Figure 1: Example of spaces defined
by (green) a set of linear inequalities
and (blue) a set of QFLRA formulas.

able to constrain any DGM output space according to
background knowledge expressed as Quantifier-Free
Linear Real Arithmetic (QFLRA) formulas. QFLRA
formulas can capture any relationship over the fea-
tures that can be represented as a combination of
conjunctions, disjunctions and negations of linear in-
equalities. Thanks to their expressivity, QFLRA for-
mulas can define spaces that are not only non-convex
but can also be disconnected. On the contrary, linear
inequalities can only capture convex output spaces.
See Figure 1 for an example of spaces defined by linear inequalities and QFLRA formulas.
While linear inequalities establish a single lower and upper bound (if existent) for each
feature, QFLRA formulas define multiple intervals where the background knowledge holds,
each with its own boundaries, thus significantly increasing the complexity of the problem.

Example 1 The knowledge: “The value of x5 should be always at least x1, and if greater
than x2 then it should also be at least equal to x3. Also, x5 should never be greater than x4”,
that cannot be expressed by a set of linear inequalities, corresponds to the QFLRA formula:

(x5 ≥ x1) ∧ ((x5 > x2) → (x5 ≥ x3)) ∧ (x5 ≤ x4). (1)

Moreover, this formula entails other hidden relations such as, e.g., ¬(x1 > x4).

© 2025 M.C. Stoian & E. Giunchiglia.



Stoian Giunchiglia

Table 1: DGMs vs. DGMs+DRL on classification datasets.

F1 wF1 AUC

URL CCS LCLD Heloc URL CCS LCLD Heloc URL CCS LCLD Heloc

WGAN 0.794 0.303 0.139 0.665 0.796 0.330 0.296 0.648 0.870 0.814 0.605 0.717
+ DRL 0.800 0.313 0.197 0.721 0.801 0.340 0.339 0.652 0.875 0.885 0.623 0.717

TableGAN 0.562 0.196 0.259 0.593 0.659 0.228 0.393 0.615 0.843 0.802 0.655 0.707
+ DRL 0.619 0.163 0.269 0.628 0.693 0.196 0.401 0.628 0.865 0.742 0.657 0.709

CTGAN 0.822 0.145 0.247 0.736 0.799 0.159 0.379 0.675 0.859 0.914 0.651 0.744
+ DRL 0.836 0.288 0.288 0.744 0.815 0.308 0.409 0.680 0.883 0.955 0.643 0.745

TVAE 0.810 0.325 0.185 0.717 0.802 0.351 0.330 0.686 0.863 0.858 0.631 0.750
+ DRL 0.835 0.467 0.189 0.731 0.832 0.487 0.330 0.694 0.893 0.926 0.635 0.752

GOGGLE 0.622 0.039 0.248 0.596 0.648 0.076 0.296 0.566 0.742 0.549 0.551 0.600
+ DRL 0.720 0.253 0.298 0.698 0.673 0.281 0.310 0.636 0.747 0.758 0.563 0.691

To derive such additional hidden relations, we developed a novel variable elimination method
which generalises the analogous procedure for systems of linear inequalities based on the
Fourier-Motzkin result (see, e.g., (Dechter, 1999)). Once compiled, by definition, DRL (i)
guarantees the satisfaction of the constraints, (ii) can be seamlessly added to the topology
of any neural model, (iii) allows the backpropagation of the gradients at training time,
(iv) performs all the computations in a single forward pass (i.e., no cycles), and (v) given a
sample generated by a DGM, it returns a new one that is optimal with respect to the original
(intuitively, which minimally differs from the original sample while taking into account the
user preferences on which features should be changed first).

2. Experimental Analysis Results

Table 2: CVR for each model and dataset. Cases with
CVR≥50% are underlined. Best results are in bold.

URL CCS LCLD Heloc House

WGAN 22.8±4.9 44.7±7.1 47.5±14.5 80.6±9.3 100.0±0.0

TableGAN 8.5±2.2 61.2±13.3 32.0±4.7 59.9±16.7 100.0±0.0

CTGAN 9.7±2.0 78.5±5.7 7.1±1.3 56.6±9.8 100.0±0.0

TVAE 10.3±1.1 16.9±1.6 10.3±0.6 44.9±1.0 100.0±0.0

GOGGLE 7.3±8.1 60.3±6.8 70.4±16.1 52.7±6.3 100.0±0.0

All + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

We tested our method on the
challenging tabular data gener-
ation task. We considered five
datasets: URL, CCS, LCLD,
and Helocare used for classifica-
tion tasks, while Houseis used
for regression. In Table 2 we
report the constraint violation
rate (CVR) on these datasets us-
ing five state-of-the-art genera-
tive models: WGAN (Arjovsky et al., 2017), TableGAN (Park et al., 2018), CTGAN (Xu
et al., 2019), TVAE (Xu et al., 2019), and GOGGLE (Liu et al., 2022). The last line reports
the CVR obtained by adding DRL to each of the models. In Table 1 we report the efficacy
of the standard DGMs, and the DGMs trained with DRL. The Table clearly shows that
adding DRL during training and inference not only makes the synthetic data compliant
by-design with the constraints, but also it improves the efficacy of the models.
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