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Abstract

Hybrid Reinforcement Learning (RL), leveraging both online and offline data, has
garnered recent interest, yet research on its provable benefits remains sparse. Ad-
ditionally, many existing hybrid RL algorithms (Song et al., 2023; Nakamoto et al.,
2023; Amortila et al., 2024) impose a stringent coverage assumption called single-
policy concentrability on the offline dataset, requiring that the behavior policy visits
every state-action pair that the optimal policy does. With such an assumption, no
exploration of unseen state-action pairs is needed during online learning. We show
that this is unnecessary, and instead study online algorithms designed to “fill in the
gaps” in the offline dataset, exploring states and actions that the behavior policy
did not explore. To do so, previous approaches focus on estimating the offline data
distribution to guide online exploration (Li et al., 2023b). We show that a natural
extension to standard optimistic online algorithms — warm-starting them by includ-
ing the offline dataset in the experience replay buffer — achieves similar provable
gains from hybrid data even when the offline dataset does not have single-policy
concentrability. We accomplish this by partitioning the state-action space into two,
bounding the regret on each partition through an offline and an online complexity
measure, and showing that the regret of this hybrid RL algorithm can be character-
ized by the best partition — despite the algorithm not knowing the partition itself.
As an example, we propose DISC-GOLF, a modification of an existing optimistic
online algorithm with general function approximation called GOLF used in Jin et al.
(2021); Xie et al. (2022a), and show that it demonstrates provable gains over both
online-only and offline-only reinforcement learning, with competitive bounds when
specialized to the tabular, linear and block MDP cases. Numerical simulations
further validate our theory that hybrid data facilitates more efficient exploration,
supporting the potential of hybrid RL in various scenarios.

1 Introduction

Reinforcement Learning (RL) encompasses two main approaches: online and offline. Online RL
involves agents learning to maximize rewards through real-time interactions with their environment,
essentially learning by doing. Conversely, offline RL involves agents learning optimal actions by
analyzing data collected by others, akin to learning by observation. However, learning by both
watching and doing, or learning from both offline pre-collected data and online exploration, often
called hybrid RL, remains under-explored.

Recent developments on hybrid RL theory have primarily focused on two aspects. The first line
of work (Song et al., 2023; Nakamoto et al., 2023; Amortila et al., 2024) shows that hybrid RL,
even without explicit exploration strategies like optimism during the online learning phase, can

*Equal contribution.



RLJ | RLC 2024

achieve the typical regret bounds of sample-efficient online algorithms that incorporate carefully
designed exploration strategies. This is contingent upon the full single-policy concentrability of
the offline dataset, highlighting hybrid RL’s potential to simplify the design of the online learning
component by eliminating the need for intricate exploration design. Our paper, however, follows
another line of work (Wagenmaker & Pacchiano, 2023; Li et al., 2023b) that considers the case where
the offline dataset may not have full single-policy concentrability'. Under partial coverage,
the online algorithm could explore unseen states and actions not visited by the behavior policy,
thereby demonstrating improvements over both pure offline and pure online learning approaches.

To analyze this case, Li et al. (2023b) suggest dividing the state and action space X’ within a tabular
MDP into a disjoint partition X,g & Xy, = X. The intuition is as follows. If the offline dataset
has sufficient coverage of the state and action pairs in Xog, a good algorithm should direct its
online exploration to sufficiently explore X,,. Previous approaches (Li et al., 2023b; Wagenmaker &
Pacchiano, 2023) solve difficult optimization problems with the Frank-Wolfe algorithm to perform
reward-free online exploration of the under-covered portion of the state and action space. These
approaches are not generally applicable to existing state-of-the-art online algorithms for deep RL,
and so we take a different approach.

Many online algorithms explore by maintaining an experience replay buffer, minimizing the empirical
risk over it to sequentially update estimates about the unknown environment (Auer et al., 2008). One
may trivially include the offline dataset in the experience buffer to obtain a hybrid RL algorithm,
as others have previously noted (Song et al., 2023; Nakamoto et al., 2023; Amortila et al., 2024),
under coverage assumptions on the offline dataset.?

Though being extensively applied in empirical studies, it is not clear whether (1) simply appending
the offline dataset to the experience replay buffer can lead to a provable improvement when the
offline dataset is of poor quality, or (2) whether it ensures sufficient exploration for the portion of
the state-action space without good coverage. We seek to address this gap in our paper, tackling the
more difficult setting where the offline data may be of arbitrarily poor quality without single-policy
concentrability, in the context of regret-minimizing online RL with general function approximation.

Our Contributions. We address this gap by modifying an optimistic algorithm for general func-
tion approximation algorithm called GOLF (introduced in Jin et al. (2021) and used in Xie et al.
(2022b)). We show that a hybrid version of GOLF (which we call DISC-GOLF) that simply includes
an offline dataset in the parameter estimation achieves a provable improvement in the regret bound
over pure online and offline learning, even when the offline dataset has poor coverage.

This is done through considering arbitrary (not necessarily disjoint) partitions of the state-action
space Xog U Xon = X. We bound the regret by the coverage of the behavior policy on the offline
partition Xog and a complexity measure for online learning on the online partition X,,. We then
show that the overall regret of a hybrid algorithm can be characterized by the regret bound on the
best possible partition — despite the algorithm not knowing the partition itself.? This analysis yields
a general recipe for initializing generic online RL algorithms with offline data of arbitrarily poor
quality, that we hope may be of use to other researchers seeking to derive similar algorithms.

We specialize this bound to the tabular, linear, and block MDP cases, achieving competitive sam-
ple complexities in each. Numerical simulations demonstrate that hybrid RL indeed encourages
exploration of the region of the state-action space that is not well-covered by the offline dataset.

1 An offline complexity measure that measures the coverage of the offline dataset (Zhan et al., 2022) with respect
to the state-and-action pairs covered by a single reference policy.

2Unlike these, we are able to include the entire offline dataset — we do not need to discard any offline samples.

3This is similar in spirit to the adaptivity that Li et al. (2023b) showed for the tabular PAC RL case, but with a
far more complicated algorithm that requires data splitting, behavior cloning, and reward-free exploration.
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2 Problem Setup

We consider the situation where we are given access to a function class F, and aim to model the
optimal Q-function using it. Below, we introduce some notation that we use throughout the paper.

Notation. Let Nx(p) be the p-covering number of function class F w.r.t the supremum norm.
Let Nog and Nop (where N = Nog + Nopn) be the number of episodes in the offline dataset and the
number of online episodes respectively. We will use the notation T" = N, interchangeably. For any
set X C S x Ax[H] let X ={(s,a) €S x A:(s,a,h) € X}, and A(X) all distributions over X.

Episodic MDPs. We consider episodic MDPs denoted by {S, A, H, P, R}, where S is the state
space, A the action space, H the horizon, P = {P} };¢[m) the collection of transition probabilities
with each Py : & x A = A(S), and R = {Rp,}ne[n) the collection of reward functions with each
Ry : S x A+ [0,1]. An agent interacts with the environment for H steps within each episode.
On the each step h € [H], the agent observes the current state s, € S and chooses an action
ap € A, and the environment generates the next state sp+1 ~ Py(- | sp,ap) and the current reward
rn, = Rp(Sh,an). A policy 7 is a mapping from S to A(A), the set of distributions over the action
space. The function class F induces a policy class IT := {nf : f € F} through the greedy policy
with regard to each function 7/. Throughout the paper, we denote X = S x A x [H].

Definition 1 (Occupancy Measure). The occupancy measure d™ = {dF}fL | is the collection of
state-action distributions induced by running policy w. We write D for the set of all possible d™.

Hybrid RL. We study the natural setting of online fine-tuning given access to an offline dataset,
where an agent interacts with the environment for Ny, steps given access to an offline dataset Dyg
consisting of Nyg episodes. We assume that the offline dataset is collected through some fixed policy

Toff = {Toft,h }ne[m]- Let pu be the occupancy measure induced by 7o, and denote by sg), ag) and

r}(Lt) the state, action and reward on step h € [H] within episode t € [Nyy,]. The goal of an online RL
algorithm is to maximize the cumulative reward Zi\gl Zthl T,(f).

We follow the standard definition of value functions for episodic MDPs. The value function of a
policy 7 is V[T (s) = Eﬂ[zg:h rh | s = 8], where E, denotes the expectation over trajectories
induced by taking policy m. Let Q}(s,a) = Ex [Zﬁzh Th + Vil 1 (Swy1) | sw = s,an = al, where
we set V7, (s) = 0. Write V* and Q* for the optimal value and Q-functions. The cumulative regret
of an online algorithm £ is Reg(Non, L) = E. [Zi\i’l (Vl*(sgt)) - Zthl r;lt))} , where £:H — Il is
any learning algorithm that maps all the previous observations, i.e. the history H, to a policy, and

E, denotes the expectation over all the trajectories generated by the interaction between algorithm
L and the underlying MDP.

Function Approximation. We approximate the optimal Q-function with a function class
F = {Fn}tneim, where each F, C [0, H]S*A. The Bellman operator for each h € [H — 1] is
Thfni1(s,a) = Ru(s,a) + Eyup,(|s,a) (MaXarea far1(s’;a’)]. We further define the Bellman error
wrt f € F by Enf = Thfas1 — frn and the squared Bellman error by E2 f = (T fn1 — fn)?. For
a distribution d € A(S x A), we write || fn — Tnfni1ll5.4 = E(span)~al€i fl. Below, we make the
following routine assumption on the richness of the function class (Liu et al., 2020; Rajaraman et al.,
2020; Rashidinejad et al., 2023; Uehara & Sun, 2023). This may be relaxed to the weaker related
notion of realizability as in Zanette (2023) at the cost of an amplifying factor dependent on the
metric entropy of the function class, dataset coverage, and the discrepancy between F and its image
under the Bellman operator, but this is outside the scope of our analysis.

Assumption 1 (Bellman Completeness). We assume that for all fy+1 € Frt1, Thfrt1 € Fr. Note
that this implies realizability: Q} € Fp.

3 Measures of Complexity

In this section, we extend existing complexity measures for offline and online learning with general
function approximation in order to use them to understand the complexity of hybrid RL. We will
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use each on an arbitrary partition of the state-action space, with the intuition being that the offline
complexity measure should characterize the difficulty of learning only on the portion that is well-
covered by the behavior policy, and the online complexity measure for the difficulty of learning on
the portion that has not been explored yet. We later show that a subsequent regret bound can be
determined by the complexity measures over any partition, and so the regret is characterized by the
infimum over the partitions of the complexity measures on them.

Offline Complexity Measures. In offline RL, the sample complexity is bounded by the notion
of concentrability (Xie et al., 2021). For a function class on Bellman error G and a reference policy
7, the (Ls Bellman-error) all-policy and single-policy concentrability coeflicients (Zhan et al., 2022)
are defined as:

1fn = Trfnall3 gr
ot (F, T) 1= max sup 2.4,

, and co(F) = sup con(F, 7).
rer Ifn = Tnfnsall3 &

We note that other variants exist, such as the L., density-ratio single-policy concentrability which
we define as C* = sup, , , d¥" (s,a)/un(s,a). We clarify which variant of single-policy and all-policy
concentrability we refer to whenever possible, but note that the Lo Bellman-error concentrability
is upper bounded by the L., density-ratio concentrability Zhu et al. (2023). There is an algorithm
(Xie et al., 2021) that finds an e-optimal policy in O(cog(F,n*)/€?) episodes.

Online Complexity Measures. To characterize the online complexity measure, we extend a
recently proposed measure, the SEC (Sequential Extrapolation Coefficient) from Xie et al. (2022a):

T Edm) [f 771fh+1]
Con(F,T) := max sup sup Z P
he[H]{f(1)7_“7f<T)}gf(Tr(l)7,..,7r(T>) — H? \/Z Ed"m [( Tfh+1) ]

We note that in their paper, the SEC has a 1 in the denominator instead of H? because they
assume @Qp, € [0,1]. Xie et al. (2022a) provide an online algorithm with a regret bound of the form
O(H\/Con(F,T) - T). Similar extensions can be proposed for other online complexity measures.

Reduced Complexity Through State-Action Space Partition. As previously mentioned, a
hybrid algorithm can reduce its online learning complexity by exploring what has not been seen in the
offline dataset. This motivates us to consider a partition on the state-action space X = S x A x [H].
We denote the offline and online partition by Xyg and X,,, respectively. We define the offline and
online partial complexity measure on each partition by

1(fn = Thfrr1) L nyexon 13, ax
Coft (F, Xoff) = max sup
rer I(fn — 771fh+1)]1<~,h)exog||2,ﬂh

L Ed"“) [(ff(z 771fh+1) )GXDH]Q
Con(F, Xon, T) = max sup sup "
PEHT {00 Y F (@O a5 H2V 2 B [ = Tafi )L men.a)

Viewing ¢, and cog as complexity measures on the function class Fj, — Tp Fr41 induced by F and
Bellman operator T, our partial complexity measures can be seen as restricting this function class
such that any function in this class is non-zero only when the input is in Xog or X,,. This leads to
smaller complexity measures for both online and online learning. This is not unique to our choices
of complexity measures. Other measures in the literature, such as the Rademacher complexity and
covering number, also indicate a reduced complexity for Fj, — TpFpi1.

Partial All-Policy Concentrability Is Less Stringent Than Single-Policy Concentrability.
While Li et al. (2023b) successfully employ a notion of (L. density ratio) partial single-policy
concentrability in the tabular setting, our regret bound depends on the (Ly Bellman error) partial
all-policy concentrability. This falls short of the notion of partial single-policy concentrability that
Li et al. (2023b) successfully employ in the tabular setting. We attribute this to our desire to work
with the simple procedure of appending the offline dataset to the experience replay buffer in the
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context of general function approximation — our algorithm is much simpler and their techniques,
being specialized to the tabular case, cannot be extended to general function approximation.

However, as our regret bound utilizes the best partition of the state-action space, our result already
obtains an improvement over the common requirement of single-policy concentrability over the entire
state-action space in hybrid RL with general function approximation (Song et al., 2023; Nakamoto
et al., 2023; Amortila et al., 2024). While the two are not directly comparable, the best partial all-
policy concentrability coefficient, which our algorithm uses adaptively, is always finite (we can always
take X, to be a singleton) even when the single-policy concentrability coefficient is unbounded.

Main Result. Our main novel theoretical result is in showing that the overall regret of a hybrid
algorithm (we first show this for DISC-GOLF, then for a general class of online algorithms) can be
characterized by cog(F, Xogr) and con(F, Xon, Non) for any (not necessarily disjoint) partition Xy,
and X,g — despite the algorithm not knowing the partition itself. As this holds for every partition,
the guarantee we provide therefore incorporates the best possible split without the algorithm having
to know or estimate it.

4 Online Finetuning From Offline Data

Here is an example. In this section, we derive an efficient regret bound for an optimistic online
algorithm with general function approximation that is warm-started with offline data of arbitrarily
poor quality. This regret bound demonstrates provable gains over both online-only and offline-only
reinforcement learning through splitting the state-action space.*

An Optimistic Hybrid RL Algorithm Warm-Started With Offline Data. We modify the
GOLF algorithm from Xie et al. (2022a) to incorporate a dataset Dog collected by a behavior policy
7, with occupancy measure . We name the resulting algorithm DISC-GOLF.® The modification
is simple and intuitive — we simply warm-start the online exploration by appending the offline
data to the experience replay buffer at the beginning, and explore from there. Remarkably, this
simple modification enables us to deal with an offline dataset that only has partial coverage. To
our knowledge, this has only previously been accomplished in the tabular setting with a far more
complicated algorithm (Li et al., 2023b).

Algorithm 1 DISC-GOLF

1: Input: Offline dataset Dog, samples sizes Non, Nog, function class F and confidence width
8>0

2. Initialize: F© « F, D\ « ,Vh € [H]

3: for episode t =1,2,..., N,, do

4: Select policy 7" ¢y, where f® .= argmax pc ze—1 f1 (21,751 (21))-

5: Execute 7® for one episode and obtain trajectory (35“, agt), rgt)),.

6: Update dataset D;Lt) — Dét_l) U {(sﬁf), ag),r,(f)7 sg_l)},Vh € [H].

7.

Compute confidence set:

t t t
(50, alt) iy,

FO {f €F L) (fu frwr) = min L7 (fi, frsr) S5 Vhe [H]} ,
Jh h 9
where L7 (f, f) = Z f(s,a) =1 — H/lgﬁf/ (s’,a’)) NfeFn, [ € Frya

(s,a,r,s’)E’D}(f) UDost,n
8: end for

Main Result. The following result shows that the regret can be decomposed into two terms that
depend on the offline and online complexity measures over the best possible partition of X.

4The algorithm is never aware of the partition. The partition is only a convenient, but useful, theoretical construct.
5Data Informed Sequential Confidence-sets — Global Optimism based on Local Fitting.
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Theorem 1 (Regret Bound for DISC-GOLF). Let Xog, Xon be an arbitrary partition over X =
S x A x [H]. Algorithm 1 satisfies the following regret bound with probability at least 1 —§:

Xon 7Xoff le)

Reg(Noy) = O < inf <\/ BH*N,, (g) coft (F, Xot) + v/ BH*NonCon (F, Xon, Non)>> ,
53

where 3 = c1log (NHN%(1/N)/8) for some constant ¢; with N = Noy, + Nog .0

We defer the proof to Appendix A. This shows that an optimistic online RL algorithm can be adapted
to the hybrid setting in a very natural way — initializing it with an offline dataset. Although the
algorithm is completely unaware of the partition, the regret bound provides the best regret guarantee
over all partitions of the state-action space.

The offline term depends on N, ( ]]\\f";), and so depends on the ratio of the number of online and

offline episodes. However, due to the infimum over partitions, the overall regret bound will always be
no worse than O(1/ Nop ), as when N, > Nog we can simply take X,,, = X to find that cog(F, 0) = 0.
Conversely, in the few-shot learning setting where Nyg > Ny, the regret bound is approximately

O (\/5H4Noncon(.7:, Xon, Non))7 improving on the GOLF regret of O (\/ﬂH‘lj\foncon(}'7 X, Non)).

This bound roughly matches that of Song et al. (2023); Nakamoto et al. (2023); Amortila et al.
(2024) in terms of the dependence on horizon and log-covering number. However, unlike these, we
do not require single-policy concentrability. The infimum over partitions gives us a finite partial all-
policy concentrability coefficient cof(F, Xo), even when the single-policy concentrability coefficient
over the entire space C* is unbounded. Additionally, these previous approaches discard any offline
data beyond the size of the online dataset (i.e. offline datapoints Ny, + 1, ..., Nog), and so obtain a
guarantee that does not depend on Nyg. We do not need to discard any offline samples, enabling us
to use the offline data in our regret bound.

5 Case Studies

Theorem 1 established a regret bound for the general function approximation setting. Throughout
this section, we examine case studies to demonstrate the exact improvement of hybrid RL algorithm
over pure online and pure offline algorithms and characterize the set of good partitions. We defer
all proofs in this section to Appendix C.

5.1 Tabular MDPs.

The most commonly considered MDP family is that of the Tabular MDPs, with a finite number of
states and actions. As each @ function at the step h can be represented as a |S| X |.A| dimensional
vector, we consider the function class Fj, = [0, H]ISIMI. For a constant p > 0, an intuitive choice
of partition that corresponds closely to the choice of Li et al. (2023b) is Xog(p) = {(s,a,h) :
sup, d7(s,a)/pn(s,a) < p}. As such, the partial offline concentrability coefficient reduces to the
supremum of density ratios over the offline partition, allowing us to bound the partial SEC by the
cardinality of the online partition.

Proposition 1. We can bound com(F, Xoff) < SUD, SUD(5 4 n)e X0 % = sup,
a,h)€Xog T (s,

Con(F, Xon) S maxye(p) |Xon,n|10g(Non). As such, with probability at least 1 — 6,

- N,
_ . 5 on
Reg(Non) = O (XO}P)f(OH <\/H SAN,, <NOH> sgp‘

6The online-only bound in Xie et al. (2022a) is of the form \/5H2Noncon(]-', X, Non), as they assume Q-functions
are bounded by [0, 1], accounting for the remaining H? dependence.

and
By

oo

T
dh ]lXoH
T

+ [H5%SA max XonN0n>> .
he[H]

Hp 0o
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Therefore, if the offline dataset has good coverage on a subset X,g, the complexity of online learn-
ing complexity can be reduced to the cardinality of its complement &,,. We then obtain a regret
bound that is at most a factor of H2SA off from the minimax-optimal results in the offline-only
and online-only cases (Rashidinejad et al., 2023; Shi et al., 2022; Azar et al., 2017; Xie et al.,
2022b), even though (1) DISC-GOLF is a very general model-free function-approximation algo-
rithm, and (2) we did not perform a specialized analysis of this case beyond simply bounding the
partial SEC in this setting. We anticipate that analyzing specialized versions of DISC-GOLF can
achieve tighter sample complexities in the same sense that Li et al. (2023a) accomplish for Q-
learning. Note that in a few shot learning setting, where Nyg > N, the regret is approximately

O (\/H5SA maxy, |Xon,h| Non log(Non)), where X, is the set of state, action and step tuples where
the offline occupancy measure p is unsupported.

5.2 Linear MDPs.

The family of Linear MDPs is a common MDP family that generalizes the tabular case, defined in
Definition 2. It can be shown that the linear function class for action-value function approximation:
Fn = {(6(-),wn) : wy, € RE, |Jwy|| < 2HVd} is Bellman complete (Jin et al., 2020).

Definition 2 (Linear MDP). An episodic MDP is a linear MDP with a feature map ¢ : Sx
A — Re if for any h € [H|, there exist d unknown (signed) measures vy, = (V,(ll),...,yl(ld))
over S and an unknown vector 8, € R% such that for any (s,a) € S x A, we have
P(- | s,a) = {¢d(s,a),vp(?)) and rp(s,a) = (&(s,a),0p), where ||p(s,a)lla < 1 for all s,a and
max{[|[y(S)[|, |8x(S)I| < Vd} for all h € [H].

We can define a partition of the state-action space X as follows. For any subset X’ C S x A, consider
the image of the feature map ¢(X’) = {¢(s,a) : (s,a) € X’}. We can choose ®,g¢ C R? and ®,,, C R?
to be the subspaces spanned by (¢(Xon,n))ne(r] and (¢(Xofr,n))ne[r], With dimensions dog and don
respectively. That is, any partition of the state-action space X induces two subspaces of R? through
the feature map ¢. Let Pyg and P,, be the orthogonal projection operators onto ®og and ®,,. We
can then upper bound the complexity measures over each partition, as we show in Proposition 2.

Proposition 2. Let ¢og = Pogd. We have co(F,Xog) < maxy 1/Agz(Ep, [dordlg]) and
Con(Gon) = O(don log(H Noy) log(Noy)), where Ay, is the n-th largest eigenvalue. Then, with proba-
bility at least 1 — &, the regret Reg(Noy) s bounded by

N N, 1
Reg(Non) = O inf dH5Nyn °% ) max 4+ VdondH> N,y )
g( ) (XOI"XOH (\/ <N0ff ) h Adoff (Euh [QSOHQSIH]) > >

We can compare this result to the v/d?H3N,, minimax lower bound from Zhou et al. (2021), and
the best known upper bound from Zanette et al. (2020) of v/d? H*N,,,, for online RL in linear MDPs.
It is exciting to note that by incorporating offline data into an online algorithm, we can improve
the dependence on dimension of the regret incurred on the online partition from d? to dond. We
accomplish this by bounding the SEC in the linear MDP case by dyy, up to logarithmic factors. This
therefore demonstrates another example of provable gains from hybrid RL.

5.3 Block MDPs.

A block MDP (BMDP) refers to an environment with a finite but unobservable latent state space U,
a finite action space A, and a possibly infinite but observable state space S (Dann et al., 2019; Misra
et al., 2019; Du et al., 2021). At each step, the environment generates a current state s, ~ ¢(- | up)
given the underlying latent state uj, € U. This is described by the block structure outlined below.

Definition 3 (Block Structure). A block MDP is an MDP where each context x € X uniquely
determines its generating state uw € U, i.e. there is a decoding function f* : S — U such that q(- | u)
is supported on (f*)~1(u).



RLJ | RLC 2024

Any partition Xog, X, induces a partition on the latent state-action space Xog = {(f*(s),a,h) :
(s,a,h) € Xog} and Xon = {(f*(5),a,h) : (s,a,h) € Xon}, and the offline behavior policy and a
given policy 7 induce measures ji; and JZ on U x A. Then, Proposition 3 shows that the offline
and online learning complexities are determined by the cardinalities of the induced partitions of the

latent state space. This bound is also dependent on 3, but we omit it in the main text for brevity.

d(wa) g Con(Fy Xon, T) =

B Xowr fif (u,a)
O(maxp, | Xon n|log(Non)) if F is Bellman-complete. Then, with probability at least 1 — 0,

Proposition 3. In a block MDP, cog(F, Xogr) < sup, SUD (4, q,h)e

. N, dr (u, —
Reg(Non) =0 inf H*Noy (NO > sup sup M + \/H4Non m}{;lX |Xon,h|

Koy Xott off ) T (wah)eXon Hh(U,Q)

6 A Recipe for General Algorithms

The analysis and techniques used above are by no means applicable only to DISC-GOLF. In Proposi-
tion 4 below, we provide a general recipe that can be used to analyze how a general online algorithm
L can benefit from being initialized with access to an offline dataset.

We define dg) to be the measure over § x A induced by running algorithm L for ¢ iterations at
horizon h. This bound depends on a set of error terms d}, which for example is (1) the Bellman
error ff — Tnfh,, in the case of general function approximation with DISC-GOLF, (2) the sum
of upper confidence bonus terms, estimation errors, and two martingale terms with UCBVI (Azar
et al., 2017) for the tabular setting, and (3) the gap multiplied by the probability each arm is pulled
in the bandit case with UCB (Auer, 2003). We then have the following result below that provides
a guarantee for the procedure of “hybridifying” general online algorithms by initializing them with
offline datasets. We defer the proof of Proposition 4 to Appendix D.

Proposition 4. Let L be a general online learning algorithm that satisfies the following conditions:

1. L admits the regret decomposition Reg,(T) < Zthl Zthl E s.aya® [} (s,a)] for some col-
’ h

lection of random functions” (8%)F, with each 6!, a mapping from X — R;

H —
2. E?:l Zh:l (NOHE(Saa)NMh [6;1(57 a)Q] + Z::} E(s,a)~d}'L [6;1(‘9’ a)z}) < 6(6a H) w.p. 1- 6;
3. there exists a function con : P(X) XN such that for any X' C X, it holds with a probability at
T H
least 1 =0 thaty , > 1, E(s,a)Ndjf) [6¢ (s,a)L(z,a,h) € X' = O(con (X', T)HYB(5, H)T)S,
for some £ € (0,1), v € Z>¢, and where B : (0,1) — R is some measure of complexity of the
algorithm and its dependence on the probability of failure §;

Eqr [5},(s,a)1(s,a,h€X”)

|
4. a coverage measure on any X' C X of cog(X') = SUDPpe[f] SUP, E;[ 8

3! (s,a)1(s,a,h€X”)]

Then, the algorithm L satisfies the following regret bound w.p. at least 1 —9:

N&
Noff

onLoff

Regﬁ(T) =0 inf  (con(Xon,T)B(6, H)HPYT)g + H\/ﬁ(év H) - cop(Xog) -

Informally, Proposition 4 states that given (1) a regret decomposition over the errors at each
timestep, (2) a bound on the in-sample error (or just the error under the behavior policy measure),
(3) an online-only regret bound for the original algorithm, and (4) an offline coverage measure, we
can provide a similar guarantee to what we showed for DISC-GOLF in Theorem 1. We anticipate
that one can use this or similar arguments to improve upon the minimax-optimal online-only and
offline-only regret bounds when analyzing more specialized algorithms.

7This is often the Bellman error in the case of MDPs.
8We set 0/0 as 0.
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Figure 1: Coverage of the online samples averaged over 30 trials, with 1.966 confidence intervals.
Hybrid RL explores more of the online partition and less of the offline partition than online RL
when the behavior policy is poor, and vice-versa when the behavior policy is good. Lower is better.

7 Numerical Experiments

To illustrate the notion that appending the offline dataset to the experience replay buffer can encour-
age sufficient exploration for the portion of the state-action space that does not have good coverage,
we perform two simulation studies in the tabular and linear MDP settings respectively.”

7.1 Forest, Tabular MDP.

We used a simple forest management simulator from the pymdptoolbox package of Cordwell et al.
(2015). This environment has 4 states and 2 actions, and we used a horizon of 20 years. Every year,
the agent can choose to wait and let the forest grow, earning a reward of 4 if the forest is 3 years old
and 0 otherwise, or cut the forest down, earning a reward of 1 if the forest is between 1 — 2 years
old, 2 if the forest is 3 years old, and 0 otherwise. The forest burns down with 0.1 probability each
year (making it 0 years old).

We examine how an optimistic model-based algorithm, UCBVI (Azar et al., 2017), behaves when
warm-started with an offline dataset. We considered three behavior policies — adversarial, uniform,
and optimal. The adversarial behavior policy does the opposite of the optimal policy 60% of the
time, and takes a random action 40% of the time. Each offline dataset consisted of 100 trajectories.
The offline partition was chosen to be the state-action pairs with occupancy at least 1/SA, and the
online partition was defined as its complement. In Figure 1, we plot the full and partial single-policy
concentrability coefficients from running UCBVI on each partition and for each behavior policy.
Between this and Figure 3 in Appendix F, which depicts the cumulative visits to each partition,
we see that when the behavior policy is poor or middling, hybrid RL explores more of the online
partition to fill in the gaps in the offline dataset than online RL does. However, when the behavior
policy is optimal, hybrid RL sticks to the online partition due to the warm-started model estimation.
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Figure 2: Plot of the full and partial all-policy concentrability coefficients of the online samples from
100 online episodes. The solid line represents the mean over 30 trials, and the shaded areas represent
confidence intervals generated by 1.96 times the sample standard deviation. We see that hybrid RL
takes fewer online episodes than online-only RL to achieve a lower concentrability coefficient.

7.2 Tetris, Linear MDP.

In another experiment, we consider a scaled-down version of Tetris with pieces of shape at most
2 x 2, where the game board has a width of 6. The agent can take four actions, corresponding to
the degree of rotation in 90 degree intervals, at each timestep. The reward is the negative of any
additional increase in the height of the stack beyond 2. We examine the extent to which an optimistic
RL algorithm, LSVI-UCB from Jin et al. (2020), explores the feature space more effectively when
initialized with an offline dataset of 200 trajectories of length 40 from a uniform behavior policy.

Due to combinatorial blowup, this environment is rather difficult to explore. We therefore chose to
focus on the portion of the environment that was covered by the uniform behavior policy within
the 8000 simulated timesteps in the offline dataset. This was accomplished through projecting the
640-dimensional one-hot state-action encoding into a 60-dimensional subspace estimated through
performing SVD on the offline dataset. The offline partition was chosen to be the span of the top 5
eigenvectors, while the online partition was the span of the remaining 55. Without the projection,
the results are qualitatively similar to what we have observed, except with concentrability coefficients
that are orders of magnitudes higher.

In Figure 2, we plot the all-policy concentrability coefficients from n = 1, ..., Nyy, given by the largest,
k-th largest, and d — k-th largest eigenvalues of the data covariance matrix and its projections onto
the offline and online partitions respectively. We see that the concentrability coefficients on the entire
space, as well as the offline and online partitions, decrease much faster with the hybrid algorithm
than that of the online-only algorithm. This further confirms that an online algorithm initialized
with a precollected offline dataset can explore more effectively.

8 Conclusion and Discussion

We have answered through theoretical results and numerical simulations that simply appending
the offline dataset to the experience replay buffer can (1) lead to an improvement when the offline
dataset is of poor quality, and (2) encourage sufficient exploration for the portion of the state-action
space without good coverage. This yields a general recipe for modifying existing online algorithms to
incorporate offline data, and we propose DISC-GOLF, a modification of an existing optimistic online
algorithm, as an example, with promising theoretical guarantees demonstrating provable gains over
both offline-only and online-only learning.

Limitations and Future Work. Due to our desire to work with the simple procedure of ap-
pending the offline dataset to the experience replay buffer with general function approximation,
our regret bound depends on partial all-policy concentrability. This is not bad, as the best partial

9All code can be found at https://github.com/hetankevin/hybridcov.
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all-policy concentrability coefficient is always finite (as we can always take Xog = @) even when
the single-policy concentrability coefficient is unbounded. Still, improving this to a guarantee based
on partial single-policy concentrability would be valuable. Potential approaches include the clipped
single policy concentrability coefficient of Amortila et al. (2024) and the analysis in Theorem 3.1 of
Xie et al. (2023). In particular, it is possible that instantiating the result in Theorem F.6 of Amortila
et al. (2024) in our setting will lad to a similar tradeoff between the error on analogues of the offline
and online partitions discussed in our analysis, though we leave such an approach to future work.

As GOLF, and therefore DISC-GOLF, uses the squared Bellman error, we (1) require completeness
(Xie et al., 2022a), and (2) incur a total H* dependence before any additional penalties from the
log-covering number of the function class.! We and Xie et al. (2022a) use this instead of the average
Bellman error to facilitate change-of-measure arguments. If one could work with the average Bellman
error without a change-of-measure, one could potentially reduce the dependence to H® while only
requiring realizability, but it is not clear whether this can be accomplished.

Practical and computationally tractable adaptations of DISC-GOLF can be developed in the same
sense as (Cheng et al., 2022; Nakamoto et al., 2023), including approaches to optimism in deep RL
such as the optimistic actor-critic of Ciosek et al. (2019). One could extend the theoretical analyses
in this paper to practical algorithms in deep RL.

Hybrid RL poses a unique opportunity to bypass the pitfalls of offline reinforcement learning. We
address the issue of coverage in this work, but strategically collected online data may also help to
solve other pertinent issues in offline RL such as distribution shift (Song et al., 2023; Cheng et al.,
2022; Kumar et al., 2020), or confounding and partial observability (Wang et al., 2020; Kausik et al.,
2023; Bruns-Smith & Zhou, 2023; Lu et al., 2023).

Finally, while DISC-GOLF uses optimistic online exploration, previous work and our general recipe
in Proposition 4 shows it is possible to be pessimistic (Nakamoto et al., 2023), or neither (Song et al.,
2023). We conjecture that in the presence of single-policy concentrability, or any other situation
where the agent does not need to explore any unseen actions online beyond what was already
observed in the collected dataset, as in Song et al. (2023); Nakamoto et al. (2023); Amortila et al.
(2024), exploration during online learning, and therefore optimism, is not necessary. Otherwise,
optimism can be helpful in aiding exploration. Further analysis on the relative merits of each, or
even switching between them as Moskovitz et al. (2022) do, is welcomed.
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