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Abstract

One of the most effective ways of retaining
the meaning of important concepts in learn-
ing materials is to review them in spaced in-
tervals. Millions of students around the world
are trying to do exactly that with the help of
flash cards. In this short paper, we present
a new, transformer-based application for edu-
cation that automates the process of creating
flash cards by automatically generating ques-
tions and answers for textbooks. As a proof-
of-concept, we report two studies: a) gener-
ating questions for textbook summaries writ-
ten by humans and b) testing a fully-automated
pipeline. Several aspects of the quality of the
resulting question-answer pairs are evaluated
by three annotators. Finally, we describe and
make available for review the deployed proto-
type for the flash card application.

1 Introduction

There is ample evidence from research in neuro-
science and pedagogy that one of the most effec-
tive ways of learning hard concepts and making
learning stick is the strategy of retrieving key ideas
at spaced intervals (Oakley et al. (2018), Antony
et al. (2017), Brown et al. (2014)). Flash cards
are commonly used by students as an aid for this
kind of intensive but effective learning strategy. A
recent survey showed that 55% of college students
already use flash cards as a study strategy (Miyatsu
et al. (2018)). Research in this area has repeatedly
shown that spaced repetition improves student per-
formance significantly by helping them strengthen
their comprehension of the materials and monitor
their own learning. (Golding et al. (2012); Esco-
bar Ibarra and Wong Martillo (2017); Wissman
et al. (2012))

In this work, we build an intelligent tool that
can identify concepts to be learned and generate

Figure 1: Questions automatically generated from learn-
ing material can be used as flashcards

question-answer pairs in the form of digital flash
cards. Such a tool will have a substantial impact
on improving learning outcomes and will reduce
the effort required to generate flash cards manu-
ally. While continuing our research in addressing
challenges in automating the generation of fluent
questions and correct answers, we have deployed a
fully functional prototype of such a tool which will
be made available to the public for testing.

In Section (1), we report a proof-of-concept study
on generating question-answer pairs on human and
automated summaries and show that we can gen-
erate high quality flash cards as evaluated by three
computer science teaching assistants. In section
(4), we summarize our insights from analyzing er-
rors and inter-annotator agreement. In Section (5),
we present a short description of the deployed pro-
totype of a flash card generation tool that will be
made public after the anonymity period.

Our work makes the following contributions in the
space of QG in education:

• Our pedagogical focus is on using QG to help
learners retain the content that they consume
by facilitating spaced learning activities such
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as creating and reviewing flash cards on im-
portant concepts in their readings.

• We experiment with fine-tuning a pre-trained
transformer model (Vaswani et al., 2017) to
generate questions on summaries that we gen-
erate for textbook chapters.

• We conduct a human evaluation of several as-
pects of the quality of the generated question-
answer pairs.

• We build a web-based prototype for automat-
ically generating flash cards for educational
content.

2 Prior Work

Automatic Question Generation (QG) is a popular
research area that led to several applications in the
educational domain. As (Kurdi et al., 2019) notes,
the majority of the applications have focused pri-
marily in the language learning domain and more
recently expanded to other domains such as his-
tory and biology. Pedagogically, the primary fo-
cus of prior work was on using QG as an auto-
mated assessment tool, primarily for testing read-
ing comprehension or vocabulary learning. Ear-
lier work automated the generation of open cloze
questions by omitting a word or phrase from a
sentence (Pino and Eskenazi, 2009), generating dis-
tractors for cloze questions (Agarwal and Mannem,
2011; Narendra et al., 2013; Correia et al., 2012),
and generating subjective questions using prede-
fined templates or question patterns (Majumder
and Saha, 2014; Bhatia et al., 2013). Methodologi-
cally, a range of question datasets were used (e.g.,
SQuAD, TriviaQA, NewsQA, RACE, LearningQ
(Chen et al., 2018)) to train and evaluate QG mod-
els often with features extracted from preprocess-
ing steps (e.g., shallow parsing and semantic dis-
tance). More recent work, also, focused on QG for
assessment, including quizzes and formative ques-
tions and new tools were introduced to generate
questions for online textbooks1, history textbooks
Pannu et al. (2018) and online class settings Zavala
and Mendoza (2018).

Recent work in QG has clearly shown that large
language models, when fine-tuned on QA datasets
such as SQuAD (Rajpurkar et al., 2018), achieve
very good performance on publicly available bench-
marks (Lan et al., 2020), (Zhang et al., 2020),

1https://get.vitalsource.com/what-we-offer/smart-course-
generator

Figure 2: Diagram of the QA-QG model’s three differ-
ent fine-tuning tasks: Answer extraction, question gener-
ation, and question answering

(Yang et al., 2020). While there are alternatives
to this basic structure, such as using reinforcement
learning (Chen et al., 2019), taking advantage of
external knowledge graphs (Wang et al., 2020), cre-
ating synthetic data (Alberti et al., 2019), or devel-
oping novel pre-training tasks for few-shot learning
(Ram et al., 2021), we decided to follow the major-
ity and not experiment with such optimizations.

3 Proof of Concept Experiments

As reviewed in the previous section, prior work on
QG in the education domain focused on automating
the process of generating cloze questions by select-
ing words for removal which the students were then
asked to provide. Transferring close test models to
the generation of questions given a text, generating
flash cards for a textbook is not a trivial task. To
evaluate the feasibility of generating flash cards for
textbooks, we asked three teaching assistants of a
Natural Language Processing course to write sum-
maries for three chapters of the assigned textbook:
Jurafsky and Martin (2009)’s textbook2. This step
allows us to evaluate the performance of the QG
model given a text that is clean of extraction er-
rors and contains the most important concepts of
the chapter. We then repeated the same experiment,
this time replacing the human summaries with auto-
mated summaries. In both cases, we asked human
annotators to evaluate the quality of the questions
and the answers in the two conditions.

3.1 Method and Data

We follow the standard approach by using a fine-
tuned language model, specifically a fine-tuned
T5-base (60M parameters) model (Raffel et al.,
2020), that is publicly available on the Huggingface
ModelHub (Wolf et al., 2020).3 This model was
fine-tuned on SQuAD (Rajpurkar et al., 2018) to do

2https://web.stanford.edu/ jurafsky/slp3/
3https://huggingface.co/valhalla/t5-base-qa-qg-hl
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three tasks: answer extraction, question generation,
and question answering as shown in Figure 2. We
use this model to extract answer-like spans of text
(one per sentence) from a paragraph and then apply
it again with a new task prefix to generate questions
that would be likely to have those answers.4

For the first study, three human annotators (teach-
ing assistants) wrote summaries for a total 123 sec-
tions of the Jurafsky and Martin (2009) textbook,
chapters 2-4. We generated a total of 592 questions
from these human-written summaries.

For the second study, we added a pre-processing
step to fully automate the process. In order to
capture the most important concepts of the content,
we added an automatic summary generation step by
once again using a large language model, this time
a fine-tuned BART model Lewis et al. (2019)5.

The results of both studies were evaluated by three
annotators and we report them in the next section.

3.2 Evaluation

Out of the 592 generated question-answer pairs,
we randomly selected 100 pairs for evaluation. We
recruited three annotators, all computer science stu-
dents, to evaluate the quality of the question-answer
pairs. To gain insight into the possible aspects of
error, we asked the annotators to answering the fol-
lowing questions: a) Is the question well-formed,
b) is it relevant, c) is the answer correct and d) is the
answer partially correct? The first two questions
helps us distinguish errors due to failures in the
linguistic expression of the question from errors
due to errors due to the model’s failure to ask a
conceptually relevant questions.

In Table 1, we report the results of the evalua-
tion by the three annotators. The results for the
quality of questions generated for the human sum-
maries are satisfactory, providing evidence that QG
is a viable method for generating flash cards our
of coherent summaries of textbook chapters. Not
surprisingly, the performance for well-formedness
on automated summaries. Not surprisingly, the
worst performance for all metrics was for the ques-
tions generated in raw text. We take these results
as evidence that indeed summaries include impor-

4The code we used to run the model (a fork
of the original model author’s repo with some mi-
nor bug fixes and additions) can be found here
https://github.com/liamdugan/question generation

5https://huggingface.co/facebook/bart-large-cnn

HumanSum AutoSum RawText
Well Formed? 87.0 78.0 60.0

Relevant? 84.0 90.0 60.0
Correct? 87.0 62.0 48.0

Partial Correct? 98.0 91.0 95.0

Table 1: Comparison across input method of auto-
generated questions (n=100 per method). Numbers rep-
resent the %age of the 100 generated questions that
the annotators decided had the given attribute. “Hu-
manSum” refers to questions generated from Human-
written Summaries, “AutoSum” is from auto-generated
summaries, and “RawText” is from the textbook.

A1 A2 A3 Pairwise Cohen κ
Well Formed? 85.0 83.0 79.0 (0.26, 0.35, 0.46)

Relevant? 86.0 72.0 81.0 (0.30, 0.31, 0.24)
Correct? 92.0 80.0 78.0 (0.35, 0.44, 0.35)

Partial Correct 98.0 88.0 91.0 (0.69, 0.76, 0.73)

Table 2: Comparison across our three annotators (A1,
A2, A3) of the evaluation of 100 questions generated
from Human-written Summaries. Numbers represent
the %age of the 100 generated questions that the given
annotator decided had the given attribute. Pairwise
Inter-Annotator Agreement is reported in the order (A1-
A2, A2-A3, A3-A1).

tant concepts that need to be learned and retained.
Overall, while these results are on low sample size
(n=100) and the inter-annotator agreement is low,
as we will see shortly, they indicate that generating
questions on chapter summaries (whether human or
automated) increases the likelihood that a question
is relevant and that the majority of questions are
good for use with minimal expert supervision.

In Table 2, we report the evaluation results for
each annotator and the pairwise Kappa score for
inter-annotator agreement. Surprisingly, the inter-
annotator agreement is low for the ”well-formed”
metric which seemed to be the simplest metric. It
turns out that the evaluation task is not straightfor-
ward. In the next section, we will look at some
disagreement examples which are, also, indicative
of the errors of the model. It is, however, clear
that in future work we should seek to refine the
metrics and guidelines we use when asking human
annotators to evaluate QG-QA pairs.

4 Disagreements and errors

We will present two types of well-formedness dis-
agreements that were quite common. Q(1) and (2)
are two examples of what we called he “wh- in
situ” disagreement. The wh-word has not moved
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Figure 3: Blank interface for inputting text and gen-
erating questions

to the front to form a proper sentence. One of the
two annotators marked this type of questions as
non well-formed. Q(3) and Q(3) display a second
common source of disagreement. These questions
are grammatically correct but pragmatically they
can stand on their own because they can only be in-
terpreted with access to the previous context. In our
guide for well-formedness we had not anticipated
these nuances.

1. Models that assign probability to sequences
of a word are called what?

2. What should be tested with many languages,
not just one?

3. What lets us match the word if it has the char-
acter before the question mark? 4. What indi-
cates the editing operations needed to equalize
two strings?

Looking at examples of agreement on the model’s
failures, we highlight the following two types. Q(1)
is representative of a poorly formed question due to
poor extraction of special characters. Q(2) is a bad
question because of poor understanding of the fact
that x (the answer) is not a special type of random
variable and Q(3) is not a relevant question because
it’s not quering an important concept.

1. What type of model is naive Bayes?
2. What random variable is created over all test

sets to find if we can rule out H 0?
3. How many main methods of smoothing are

studied?

5 System Description

To preserve anonymity, we have removed screen-
shots that display the name of the tool and we have
not shared the live URL. The prototype of our tool
is designed to to allow a student or an instructor to
enter text (in the large text box) by simply copying
and pasting. They can click on the ”generate cards”

button to initiate the model on the back end which
will analyze the text and automatically generate
flashcards. Instructors have the option of creating a
class and assigning different courses for each class.
Each course will contain its own set of flashcards
which the instructor can make available to the stu-
dents or even assign them. The output questions
are displayed and the corresponding flashcards are
created and they can be flipped to see the answer.
The user can interact with the questions to edit
them or reject them, as seen Fig. (4). Instructors

Figure 4: Questions generated from a sample text-
book passage

can manage their database of previously generated
questions through the following interface. Lastly,
here is a sample question that was generated by the
model as seen by the students when reviewing that
question.

6 Conclusions and Future Work

We presented a tool for generating flash cards au-
tomatically to support learning and retention. The
evaluation of the models in human and automati-
cally generated studies and the analysis of errors,
as revealed in the human evaluations, point to the
following next steps: 1) Improve the relevance of
questions by fine-tuning the QA model in the educa-
tion domain. There is a mismatch between SQuAD
and the target domain. 2) Improve the quality of
questions by generate more high level questions
that deepen the understanding of the content. We
plan to do with education data ((Ko et al., 2020). 3)
Evaluate the quality of the generated questions with
questions that have been generated by humans.

Eleni Miltsakaki

Eleni Miltsakaki
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