
Under review as a conference paper at ICLR 2024

KERNELWAREHOUSE: RETHINKING THE DESIGN OF
DYNAMIC CONVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Dynamic convolution learns a linear mixture of n static kernels weighted with their
sample-dependent attentions, demonstrating superior performance than normal
convolution. However, it increases the number of convolutional parameters by n
times. This and the optimization difficulty lead to no research progress that can
allow researchers to use a significant large value of n (e.g., n > 100 instead of
typical setting n < 10) to push forward the performance boundary of dynamic
convolution while enjoying parameter efficiency. To fill this gap, in this paper,
we rethink the basic concepts of “kernels”, “assembling kernels” and “attention
function” in dynamic convolution through the lens of exploiting convolutional
parameter dependencies within the same layer and across successive layers, and
propose KernelWarehouse. As a more general form of dynamic convolution, Ker-
nelWarehouse provides a high degree of freedom to fit a desired parameter budget
under large kernel numbers (e.g., n = 108 or n = 188). We compare our method
and existing dynamic convolution methods on ImageNet and MS-COCO datasets
using various ConvNet architectures, and show that it attains state-of-the-art results.
For instance, the ResNet18|ResNet50|MobileNetV2|ConvNeXt-Tiny model trained
with KernelWarehouse on ImageNet reaches 76.05%|81.05%|75.92%|82.55% top-
1 accuracy. Thanks to its flexible design, KernelWarehouse can even reduce the
model size of a ConvNet while improving the accuracy, e.g., our ResNet18 model
with 36.45%|65.10% parameter reduction to the baseline shows 2.89%|2.29%
absolute improvement to top-1 accuracy. Code is provided for results reproduction.

1 INTRODUCTION

Convolution is the key operation in convolutional neural networks (ConvNets) (Krizhevsky et al.,
2012; Szegedy et al., 2015; He et al., 2016; Howard et al., 2017; Tan & Le, 2019a; Liu et al., 2022).
In a convolutional layer, normal convolution y = W ∗ x computes the output y by applying the
same convolutional kernel W defined as a set of convolutional filters to every input sample x. For
brevity, we refer to “convolutional kernel” as “kernel” and omit the bias term throughout this paper.
Although the efficacy of normal convolution is extensively validated with various types of ConvNets
on many computer vision tasks, recent progress in the efficient ConvNet architecture design shows that
dynamic convolution, also known as CondConv (Yang et al., 2019a) and DY-Conv (Chen et al., 2020),
achieves large performance gains. The basic idea of dynamic convolution is to replace the static kernel
in normal convolution by a linear mixture of n same dimensioned kernels W = α1W1+ ...+αnWn,
where α1, ..., αn are scalar attentions generated by an input-dependent attention module. Benefiting
from the additive property of n kernels W1, ...,Wn and compact attention module designs, dynamic
convolution improves the feature learning ability with little extra multiply-add cost. However, it
increases the number of convolutional parameters by n times, which leads to a huge rise in model
size because the convolutional layers of a modern ConvNet occupy the vast majority of parameters.

DCD (Li et al., 2021b) learns a base kernel and a sparse residual to approximate dynamic convolution
via matrix decomposition. This coarse approximation abandons the basic mixture learning paradigm,
and cannot well retain the representation power of dynamic convolution when n becomes large.
ODConv (Li et al., 2022) presents a more powerful attention module to dynamically weight static
kernels along different dimensions instead of one single dimension, which can get competitive
performance with a reduced number of kernels. However, under the same setting of n, ODConv has
more parameters than vanilla dynamic convolution. He et al. (2023) directly uses popular weight

1

Under review as a conference paper at ICLR 2024

pruning strategy to compress DY-Conv via multiple pruning-and-retraining phases. In brief, existing
dynamic convolution methods based on the mixture learning paradigm are not parameter-efficient.
Restricted by this, they typically set n = 8 (Yang et al., 2019a) or n = 4 (Chen et al., 2020; Li et al.,
2022). More importantly, a plain fact is that the improved capacity of a ConvNet constructed with
dynamic convolution comes from increasing the number of kernels per convolutional layer facilitated
by the attention mechanism. This causes an intrinsic conflict between the desired model size and
capacity, which prevents researchers to explore the performance boundary of dynamic convolution
with a significantly large kernel number (e.g., n > 100) while enjoying parameter efficiency. In this
paper, we attempt to break down this barrier by rethinking the design of dynamic convolution.

Specifically, we present KernelWarehouse (see Figure 1 for a schematic overview), a more general
form of dynamic convolution, which can strike a favorable trade-off between parameter efficiency
and representation power. The formulation of KernelWarehouse is inspired by two observations. On
the one hand, we note that existing dynamic convolution methods treat all parameters in a regular
convolutional layer as a kernel and increase the kernel number from 1 to n, then use their attention
modules to assemble n kernels into a linearly mixed kernel. Though straightforward and effective,
they pay no attention to parameter dependencies within the static kernel at a convolutional layer.
On the other hand, we notice that existing dynamic convolution methods allocate a different set of
n kernels for every individual convolutional layer of a ConvNet, ignoring parameter dependencies
across successive layers. We hypothesize that the barrier can be removed by way of flexibly exploiting
these two types of convolutional parameter dependencies for redefining dynamic convolution.

Driven by the above analysis, we introduce two simple strategies to formulate KernelWarehouse,
namely kernel partition and warehouse sharing. With kernel partition, the static kernel for a regular
convolutional layer is sequentially divided into m disjoint kernel cells of the same dimensions along
spatial and channel dimensions, and then the linear mixture can be defined in terms of much smaller
local kernel cells instead of holistic kernels. Specifically, each of m kernel cells is represented as a
linear mixture based on a predefined “warehouse” consisting of n kernel cells (e.g., n = 108), and the
static kernel will be replaced by assembling its corresponding m mixtures in order. With warehouse
sharing, multiple neighboring convolutional layers of a ConvNet can share the same warehouse
as long as the same kernel cell size is used in the kernel partition process, further enhancing its
parameter efficiency and representation power to use a larger value of n given a desired parameter
budget. Nevertheless, with a significantly large value of n, the optimization of KernelWarehouse
becomes fundamentally more challenging compared to existing dynamic convolution methods,
making popular attention functions used in dynamic convolution research lose effectiveness under this
circumstance. We solve this problem by defining a contrasting-driven attention function (CAF). By
these components, we redefine the basic concepts of “kernels”, “assembling kernels” and “attention
function” in dynamic convolution from the perspective of reducing kernel dimension and increasing
kernel number significantly, taking advantage of the aforementioned parameter dependencies as easy
as possible. These simple concept shifts provide a high degree of flexibility for KernelWarehouse to
balance parameter efficiency and representation power under different parameter budgets.

As a drop-in replacement of normal convolution, KernelWarehouse can be easily used to different
ConvNet architectures. Extensive experiments on ImageNet and MS-COCO datasets show that our
method achieves better results than its dynamic convolution counterparts.

2 RELATED WORK

ConvNet Architectures. In the past decade, a lot of top-performing ConvNet architectures such as
AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy
et al., 2015), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), ResNeXt (Xie et al., 2017) and
RegNet (Radosavovic et al., 2020) have been presented. Around the same time, some lightweight
architectures like MobileNet (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019),
ShuffleNet (Zhang et al., 2018b) and EfficientNet (Tan & Le, 2019a) have been designed for resource-
constrained applications. Recently, Liu et al. (2022) presented ConvNeXt whose performance
can match newly emerging vision transformers (Dosovitskiy et al., 2021; Liu et al., 2021). As a
plug-and-play design, our method could be used to improve their performance.

Feature Recalibration. An effective way to enhance the capacity of a ConvNet is feature recalibration.
It relies on attention mechanisms to adaptively refine the feature maps learnt by a convolutional

2

Under review as a conference paper at ICLR 2024

*𝒙 𝒚

FC

ReLU

FC …

GAP
𝒘𝑚

𝒆1 𝒆𝑖 𝒆𝑛

…

σ𝑖=1
𝑛 𝛼𝑚𝑖𝒆𝑖

𝑾

A
ssem

b
le

𝒘1σ𝑖=1
𝑛 𝛼1𝑖𝒆𝑖

…

Layer

Layer

Layer

Layer

Layer

Layer

Layer

Layer

Layer

(t +1)thStage

t
th Stage

(t ─ 1)thStage

…

…

…

(t +1)th Warehouse

t
th Warehouse

(t ─ 1)th Warehouse

t
th Warehouse

…
…

C
A

F
C

A
F

Figure 1: A schematic illustration of KernelWarehouse. Please see the Method section for details.

block. Popular feature recalibration modules such as RAN (Wang et al., 2017), SE (Hu et al., 2018b),
BAM (Park et al., 2018), CBAM (Woo et al., 2018), GE (Hu et al., 2018a), SRM (Lee et al., 2019)
and ECA (Wang et al., 2020) focus on different design aspects: using channel attention, or spatial
attention, or hybrid attention to emphasize important features and suppress unnecessary ones. Unlike
these methods which retain the static kernel, dynamic convolution replaces the static kernel of a
convolutional layer by a linear mixture of n kernels weighted with the attention mechanism.

Dynamic Weight Networks. Many research efforts have been made on developing effective methods
to generate the weights for a neural network. Jaderberg et al. (2015) proposes a Spatial Transformer
module which uses a localisation network that predicts the feature transformation parameters condi-
tioned on the learnt feature itself. Dynamic Filter Network (Jia et al., 2016) and Kernel Prediction
Networks (Bako et al., 2017; Mildenhall et al., 2018) introduce two filter generation frameworks which
share the same idea: using a deep neural network to generate sample-adaptive filters conditioned on
the input. Based on this idea, DynamoNet (Diba et al., 2019) uses dynamically generated motion
filters to boost human action recognition in videos. CARAFE (Wang et al., 2019) and Involution (Li
et al., 2021a) further extend this idea by designing efficient generation modules to predict the weights
for extracting informative features. By connecting this idea with SE, WeightNet (Ma et al., 2020),
CGC (Lin et al., 2020) and WE (Quader et al., 2020) design different attention modules to adjust the
weights in convolutional layers of a ConvNet. Hypernetwork (Ha et al., 2017) uses a small network
to generate the weights for a larger recurrent network instead of a ConvNet. MetaNet (Munkhdalai &
Yu, 2017) introduces a meta learning model consisting of a base learner and a meta learner, allowing
the learnt network for rapid generalization across different tasks. This paper focuses on advancing
dynamic convolution research, which differs from these works in formulation.

3 METHOD

In this section, we describe the formulation of KernelWarehouse and clarify its key components.

3.1 FORMULATION OF KERNELWAREHOUSE

For a convolutional layer, let x ∈ Rh×w×c and y ∈ Rh×w×f be the input having c feature channels
with the resolution h× w and the output having f feature channels with the same resolution to the
input, respectively. Normal convolution y = W ∗ x uses a single static kernel W ∈ Rk×k×c×f

consisting of f convolutional filters with the spatial size k × k, while dynamic convolution replaces
the static kernel by W = α1W1 + ... + αnWn, a linear mixture of n same dimensioned static
kernels weighted with their input-dependent scalar attentions α1, ..., αn. In sharp contrast to existing
methods (Yang et al., 2019a; Chen et al., 2020; Li et al., 2022), our KernelWarehouse redefines the
basic concepts of “kernels”, “assembling kernels” and “attention function” by applying the attentive
mixture learning paradigm to a dense local kernel scale instead of a holistic kernel scale via three
coupled components: kernel partition, warehouse sharing and contrasting-driven attention function.

Kernel Partition. The basic idea of kernel partition is to reduce kernel dimension and increase kernel
number via explicitly exploiting parameter dependencies within the same convolutional layer. Firstly,
we sequentially divide the static kernel W at a regular convolutional layer along spatial and channel
dimensions into m disjoint parts w1,...,wm called “kernel cells” that have the same dimensions. For
brevity, here we omit to define kernel cell dimensions. Kernel partition can be defined as

W = w1 ∪ ... ∪wm, and ∀ i, j ∈ {1, ...,m}, i ̸= j, wi ∩wj = ∅. (1)

3

Under review as a conference paper at ICLR 2024

Layer 1

2𝑐

𝑓
𝑘2

Layer 2

𝑓

𝑐
3𝑘2

Layer 3

𝑓

𝑐
𝑘2

Layer 1

2𝑐

𝑓
𝑘2

Layer 2

𝑓

𝑐
3𝑘2

Layer 3

𝑓

𝑐
𝑘2

𝑓

𝑐
𝑘2𝑓

𝑐
3𝑘2

2𝑐

𝑓
𝑘2

𝑓

𝑐
𝑘2

𝑐𝑑𝑑 =

𝒆

2𝑐

𝑓
𝑘2 𝑓

𝑐
3𝑘2

𝑓

𝑐
𝑘2

𝑓

𝑐
3𝑘2

2𝑐

𝑓
𝑘2

𝑓

𝑐
𝑘2

𝑓

𝑐
𝑘2

𝒆
kernel partition

using

𝑚𝑡 = 6

linear mixtures

…

𝑛 = 𝑏𝑚𝑡

kernel cellsWarehouse

𝒆𝑛𝒆2 𝒆3𝒆1
…

(a) Determine the dimensions of the kernel cells

(b) Kernel partition using the kernel cell dimensions

(c) Construct the shared warehouse for the stage

Figure 2: An illustration of kernel partition, warehouse construction and sharing for KernelWarehouse
in the same-stage convolutional layers of a ConvNet. cdd denotes common kernel dimension divisors.

After kernel partition, we treat kernel cells w1,...,wm as “local kernels”, and define a “warehouse”
containing n kernel cells E = {e1, ..., en}, where e1, ..., en have the same dimensions as w1,...,wm.
Then, by sharing the warehouse E = {e1, ..., en} in the same convolutional layer, we can now
represent each of m kernel cells w1,...,wm as

wi = αi1e1 + ...+ αinen, and i ∈ {1, ...,m}, (2)

where αi1, ..., αin are the scalar attentions generated by an attention module ϕ(x) conditioned on
the input x. Finally, the static kernel W in a regular convolutional layer is replaced by assembling
its corresponding m linear mixtures in order. Note that the dimensions of a kernel cell can be much
smaller than the dimensions of the static kernel W (e.g., when m = 16, the number of parameters in
a kernel cell is 1/16 to that of the static kernel W). Under the same parameter budget, this allows
a warehouse can have a large setting of n (e.g., n > 100), in sharp contrast to existing dynamic
convolution methods which define the linear mixture in terms of n “holistic kernels” and typically
use a much smaller setting of n (e.g., n < 10) restricted by their parameter-inefficient shortcoming.

Warehouse Sharing. The main goal of warehouse sharing is to further improve parameter efficiency
and representation power of KernelWarehouse through explicitly exploiting parameter dependencies
across successive convolutional layers. Specifically, we share a warehouse E = {e1, ..., en} to
represent every kernel cell at l neighboring convolutional layers in the same-stage building blocks
of a ConvNet, allowing it can use a much larger setting of n against kernel partition under the
same parameter budget. This is mostly easy, as modern ConvNets such as ResNet (He et al., 2016),
MobileNet (Howard et al., 2017) and ConvNeXt (Liu et al., 2022) typically adopt a modular design
scheme in which static kernels in the same-stage convolutional layers usually have the same or
regular dimensions. In implementation, given a desired convolutional parameter budget (which will
be defined later), we simply use common dimension divisors for l static kernels as the uniform kernel
cell dimensions for kernel partition, which naturally determine the values of m and n. Besides,
parameter dependencies across neighboring convolutional layers are also critical in strengthening the
capacity of a ConvNet (see Table 6). Figure 2 illustrates how kernel partition, warehouse construction
and sharing in the same-stage convolutional layers of a ConvNet are done.

Parameter Efficiency and Representation Power. Let n be the number of kernel cells in a warehouse
shared to l convolutional layers of a ConvNet, and let mt be the total number of kernel cells in these
l convolutional layers (mt = m, when l = 1). Then, we define b = n/mt as a scaling factor to
indicate the convolutional parameter budget of KernelWarehouse relative to normal convolution. Here,
we do not consider the number of parameters in the attention module ϕ(x) which generates nmt

scalar attentions, as it is much smaller than the total number of parameters for normal convolution at
l convolutional layers. In implementation, we use the same value of b to all convolutional layers of
every ConvNet. Under this condition, we can see that KernelWarehouse can easily scale up or scale
down the model size of a ConvNet by changing b. Compared to normal convolution: (1) when b < 1,
KernelWarehouse tends to get the reduced model size; (2) when b = 1, KernelWarehouse tends to get
the similar model size; (3) when b > 1, KernelWarehouse tends to get the increased model size.

4

Under review as a conference paper at ICLR 2024

Algorithm 1: Implementation of KernelWarehouse
Part-A: Kernel Partition and Warehouse Construction

Require :network M consisting of S convolutional stages, parameter budget b
1 for s← 1 to S do
2 {Wi ∈ Rki×ki×ci×fi}li=1= static kernels in the s-th stage of M
3 ke, ce, fe ←cdd({ki}li=1),cdd({ci}li=1),cdd({fi}li=1)
4 mt ← 0
5 for i← 1 to l do
6 {wj ∈ Rke×ke×ce×fe}mj=1 ←kernel partition(Wi, ke, ce, fe)

7 Wi ← w1 ∪ · · · ∪wm, and ∀i, j ∈ {1, . . . ,m}, i ̸= j, wi ∩ wj = ∅
8 m← kikicifi/kekecefe
9 mt ← m+mt

10 end
11 n← bmt

12 Es ← {ei ∈ Rke×ke×ce×fe}ni=1

13 end
14 E← {E1, . . . ,ES}

Return :network M with partitioned kernels, set E consisting of S warehouses

Part-B: Kernel Assembling for Single Same-Stage Convolutional Layer
Require : input x, attention module ϕ, warehouse E = {ei}ni=1, linear mixtures {wi}mi=1

1 α← ϕ(x)
2 for i← 1 to m do
3 wi ← αi1e1 + · · ·+ αinen
4 end
5 W← w1 ∪ · · · ∪wm, and ∀i, j ∈ {1, . . . ,m}, i ̸= j, wi ∩ wj = ∅

Return :assembled kernel W

Intriguingly, given a desired value of b, a proper and large value of n can be obtained by simply
changing mt, providing a representation power guarantee for KernelWarehouse. Therefore, Kernel-
Warehouse can strike a favorable trade-off between parameter efficiency and representation power,
under different convolutional parameter budgets of b, as illustrated by trained model exemplifica-
tions KW (1/2×, 3/4×, 1×, 4×) in Table 1 and Table 2. Algorithm 1 shows the implementation of
KernelWarehouse, given a ConvNet backbone and the expired convolutional parameter budget b.

Discussion. It should be noted that the split-and-merge mechanism with multi-branch group convolu-
tion has been widely used in many existing works (Szegedy et al., 2015; Xie et al., 2017; Sandler
et al., 2018; Li et al., 2019; Tan & Le, 2019b; Yang et al., 2019b; Tan & Le, 2019b; Li et al., 2020;
Liu et al., 2022) to enhance the capacity of ConvNets. Although KernelWarehouse also uses the
parameter splitting idea in the kernel partition component, its focus and motivation we have clarified
above are clearly different from them. Besides, KernelWarehouse could be naturally used to improve
their performance as they are based on normal convolution. We have validated this on MobileNetV2
and ConvNeXt (see Table 1 and Table 2).

According to the formulation of KernelWarehouse, it will degenerate into vanilla dynamic convolu-
tion (Yang et al., 2019a; Chen et al., 2020) when uniformly setting m = 1 in kernel partition (i.e., all
kernel cells in each warehouse have the same dimensions as the static kernel W in normal convo-
lution) and l = 1 in warehouse sharing (i.e., each warehouse is limited to its specific convolutional
layer). Therefore, KernelWarehouse is a more general form of dynamic convolution.

3.2 ATTENTION FUNCTION OF KERNELWAREHOUSE

Designing a proper attention function is essential to the optimization of KernelWarehouse. The new
formulation of KernelWarehouse brings three unique optimization properties: (1) the attentive mixture
learning is applied to a dense local kernel cell scale instead of a holistic kernel scale; (2) the number
of kernel cells in a warehouse is significantly large (e.g., n > 100 vs. n < 10); (3) a warehouse is
not only shared to represent each of m kernel cells for a specific convolutional layer of a ConvNet,
but also is shared to represent every kernel cell for the other l − 1 same-stage convolutional layers.
Under this learning context, we empirically find that popular attention functions such as Sigmoid
and Softmax lose effectiveness for KernelWarehouse. Even with the temperature annealing (Li et al.,
2022), they get worse results than vanilla dynamic convolution (see Table 8).

Contrasting-driven Attention Function. We present a contrasting-driven attention function (CAF)
which can well fit the optimization properties of KernelWarehouse. For ith kernel cell in the static

5

Under review as a conference paper at ICLR 2024

kernel W, let zi1, ..., zin be the feature logits generated by the second fully-connected layer of a
compact SE-typed structure ϕ(x) (see Appendix for its detailed structure), then CAF is defined as

αij = (1− τ)
zij∑n

p=1 |zip|
+ τβij , and j ∈ {1, ..., n}, (3)

where τ is a temperature linearly reducing from 1 to 0 in the early training stage; zij∑n
p=1 |zip| is a linear

normalization function; βij is a binary value (0 or 1) which is used for initializing the attentions.

In principle, (1) the second term of CAF ensures that the initial valid kernel cells (βij = 1) in a
shared warehouse are uniformly allocated to represent different linear mixtures at the same-stage
convolutional layers at the beginning of the model training; (2) the first term enables the existence of
both negative and positive attentions (in contrast to popular attention functions that do not generate
negative attentions) and encourages the optimization process to learn contrasting and diverse attention
relationships among all linear mixtures sharing the same warehouse, making the mixed kernel cells at
l convolutional layers can learn informative and discriminative features hieratically. The setting of
βij at l convolutional layers should assure the shared warehouse can assign: (1) at least one specified
kernel cell (βij = 1) to every linear mixture, given a desired convolutional parameter budget b ≥ 1;
(2) at most one specific kernel cell (βij = 1) to every linear mixture, given b < 1. In implementation,
we adopt a simple strategy to assign one of the total n kernel cells in a shared warehouse to each of
mt linear mixtures at l convolutional layers without repetition. When n is less than mt, we let the
remaining linear mixtures always have βij = 0 once n kernel cells are used up. In the Appendix, we
provide visualization examples to illustrate this strategy, and a set of ablative experiments to compare
it with other alternatives. In the Experiments section, we also validate its effectiveness with basic
ablative experiments (see Figure 3 and Table 8).

4 EXPERIMENTS

In this section, we conduct comprehensive experiments on image classification, object detection
and instance segmentation to evaluate the effectiveness of our KernelWarehouse (“KW” for short),
compare it with other attention based methods, and provide lots of ablations to study its design.

4.1 IMAGE CLASSIFICATION ON IMAGENET

Our main experiments are conducted on ImageNet dataset (Russakovsky et al., 2015), which consists
of over 1.2 million training images and 50,000 validation images with 1,000 object categories.

ConvNet Backbones. We select backbones from MobileNetV2 (Sandler et al., 2018), ResNet (He
et al., 2016) and ConvNeXt (Liu et al., 2022) families for experiments, including both lightweight
networks and larger ones. Specifically, we use MobileNetV2 (1.0×), MobileNetV2 (0.5×), ResNet18,
ResNet50 and ConvNeXt-Tiny.

Experimental Setup. In the experiments, we select DY-Conv (Chen et al., 2020) and ODConv (Li
et al., 2022) as our key reference methods, since they are existing top-performing dynamic convolution
methods which are also most closely related to KernelWarehouse. We compare our method with
them on all the ConvNet backbones except ConvNeXt-Tiny (since there is no publicly available
implementation of them on ConvNeXt). To make fair comparisons, all the methods are implemented
using the public codes with the same settings for training and testing. In the experiments, we use
b× to denote the convolutional parameter budget of each dynamic convolution method relative to
normal convolution, the values of n and m in KernelWarehouse and the experimental details for each
network are provided in the Appendix.
Table 1: Results comparison on ImageNet with the ResNet18, ResNet50 and ConvNeXt-Tiny
backbones. Best results are bolded.

Models Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 11.69M 70.44 89.72
+ DY-Conv (4×) 45.47M 73.82 (↑3.38) 91.48 (↑1.76)
+ ODConv (4×) 44.90M 74.45 (↑4.01) 91.67 (↑1.95)
+ KW (1/4×) 4.08M 72.73 (↑2.29) 90.83 (↑1.11)
+ KW (1/2×) 7.43M 73.33 (↑2.89) 91.42 (↑1.70)
+ KW (1×) 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
+ KW (2×) 23.24M 75.19 (↑4.75) 92.18 (↑2.46)
+ KW (4×) 45.86M 76.05 (↑5.61) 92.68 (↑2.96)

Models Params Top-1 Acc (%) Top-5 Acc (%)
ResNet50 25.56M 78.44 94.24
+ DY-Conv (4×) 100.88M 79.00 (↑0.56) 94.27 (↑0.03)
+ ODConv (4×) 90.67M 80.62 (↑2.18) 95.16 (↑0.92)
+ KW (1/2×) 17.64M 79.30 (↑0.86) 94.71 (↑0.47)
+ KW (1×) 28.05M 80.38 (↑1.94) 95.19 (↑0.95)
+ KW (4×) 102.02M 81.05 (↑2.61) 95.21 (↑0.97)
ConvNeXt-Tiny 28.59M 82.07 95.86
+ KW (1×) 32.99M 82.55 (↑0.48) 96.08 (↑0.22)
+ KW (3/4×) 24.53M 82.23 (↑0.16) 95.88 (↑0.02)

6

Under review as a conference paper at ICLR 2024

Table 2: Results comparison on ImageNet with the MobileNetV2 (1.0×, 0.5×) backbones trained for
150 epochs. Best results are bolded.

Models Params Top-1 Acc (%) Top-5 Acc (%))
MobileNetV2 (1.0×) 3.50M 72.02 90.43
+ DY-Conv (4×) 12.40M 74.94 (↑2.92) 91.83 (↑1.40)
+ ODConv (4×) 11.52M 75.42 (↑3.40) 92.18 (↑1.75)
+ KW (1/2×) 2.65M 72.59 (↑0.57) 90.71 (↑0.28)
+ KW (1×) 5.17M 74.68 (↑2.66) 91.90 (↑1.47)
+ KW (4×) 11.38M 75.92 (↑3.90) 92.22 (↑1.79)

Models Params Top-1 Acc (%) Top-5 Acc (%)
MobileNetV2 (0.5×) 1.97M 64.30 85.21
+ DY-Conv (4×) 4.57M 69.05 (↑4.75) 88.37 (↑3.16)
+ ODConv (4×) 4.44M 70.01 (↑5.71) 89.01 (↑3.80)
+ KW (1/2×) 1.47M 65.19 (↑0.89) 85.98 (↑0.77)
+ KW (1×) 2.85M 68.29 (↑3.99) 87.93 (↑2.72)
+ KW (4×) 4.65M 70.26 (↑5.96) 89.19 (↑3.98)

Table 3: Results comparison on the MS-COCO 2017 validation set. Best results are bolded.

Detectors Backbone Models Object Detection Instance Segmentation
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Mask R-CNN

ResNet50 39.6 61.6 43.3 24.4 43.7 50.0 36.4 58.7 38.6 20.4 40.4 48.4
+ DY-Conv (4×) 39.6 62.1 43.1 24.7 43.3 50.5 36.6 59.1 38.6 20.9 40.2 49.1
+ ODConv (4×) 42.1 65.1 46.1 27.2 46.1 53.9 38.6 61.6 41.4 23.1 42.3 52.0
+ KW (1×) 41.8 64.5 45.9 26.6 45.5 53.0 38.4 61.4 41.2 22.2 42.0 51.6
+ KW (4×) 42.4 65.4 46.3 27.2 46.2 54.6 38.9 62.0 41.5 22.7 42.6 53.1
MobileNetV2 (1.0×) 33.8 55.2 35.8 19.7 36.5 44.4 31.7 52.4 33.3 16.4 34.4 43.7
+ DY-Conv (4×) 37.0 58.6 40.3 21.9 40.1 47.9 34.1 55.7 36.1 18.6 37.1 46.3
+ ODConv (4×) 37.2 59.4 39.9 22.6 40.0 48.0 34.5 56.4 36.3 19.3 37.3 46.8
+ KW (1×) 36.4 58.3 39.2 22.0 39.6 47.0 33.7 55.1 35.7 18.9 36.7 45.6
+ KW (4×) 38.0 60.0 40.8 23.1 40.7 50.0 34.9 56.6 37.0 19.4 37.9 47.8
ConvNeXt-Tiny 43.4 65.8 47.7 27.6 46.8 55.9 39.7 62.6 42.4 23.1 43.1 53.7
+ KW (1×) 44.8 67.7 48.9 29.8 48.3 57.3 40.6 64.4 43.4 24.7 44.1 54.8
+ KW (3/4×) 44.1 66.8 48.4 29.7 47.4 56.7 40.2 63.6 43.0 24.8 43.6 54.3

Results Comparison on ResNets and ConvNeXt-Tiny. In the experiments, we adopt the advanced
training strategy recently proposed in ConvNeXt (Liu et al., 2022), with a training schedule of 300
epochs and aggressive augmentations for comparisons on the ResNet18, ResNet50 and ConvNeXt-
Tiny. From the results shown in Table 1, we can observe: (1) KW (4×) gets the best results for
comparison on the ResNet18, bringing an absolute top-1 gain of 5.61%. Even with 36.45%|65.10% pa-
rameter reduction, KW (1/2×)|KW(1/4×) brings 2.89%|2.29% top-1 accuracy gain to the ResNet18
baseline; (2) on the larger ResNet50 backbone, while the vanilla dynamic convolution method DY-
Conv (4×) shows much lower performance gain, KW (1/2×, 1×, 4×) still bring great performance
gains to the baseline model. With 30.99% parameter reduction, KW (1/2×) attains a top-1 gain
of 0.86% against the baseline model. KW (4×) consistently outperforms both DY-Conv (4×) and
ODConv (4×) by 2.05%|0.43% top-1 gain. Beside ResNets, we also apply KernelWarehouse to the
ConvNeXt-Tiny backbone to investigate its performance on the state-of-the-art ConvNet architecture.
Results show that our method generalizes well on ConvNeXt-Tiny, bringing 0.48%|0.16% top-1 gain
to the baseline model with KW (1×)|KW(3/4×).

Results Comparison on MobileNets. We further apply KernelWarehouse to MobileNetV2 (1.0×,
0.5×) to validate its effectiveness on lightweight ConvNet architectures. Since the lightweight
MobileNetV2 models have lower capacity compared to ResNet and ConvNeXt models, we don’t use
aggressive augmentations for MobileNetV2. The results are shown in Table 2. We can see that Ker-
nelWarehouse can strike a favorable trade-off between parameter efficiency and representation power
for lightweight ConvNets as well as larger ones. Even on the lightweight MobileNetV2 (1.0×, 0.5×)
with 3.50M|1.97M parameters, KW (1/2×) can reduce the model size by 24.29%|25.38% while
bringing top-1 gain of 0.57%|0.89%. Similar to the results on the ResNet18 and ResNet50 backbones,
KW (4×) also obtains the best results on both MobileNetV2 (1.0×) and MobileNetV2 (0.5×).

4.2 OBJECT DETECTION ON MS-COCO

To evaluate the generalization ability of the classification backbone models pre-trained by our method
to downstream object detection and instance segmentation tasks, we further conduct comparative
experiments on MS-COCO 2017 dataset (Lin et al., 2014), which contains 118,000 training images
and 5,000 validation images with 80 object categories.

Experimental Setup. We adopt Mask R-CNN (He et al., 2017) as the detection framework, ResNet50
and MobileNetV2 (1.0×) built with different dynamic convolution methods as the backbones which
are pre-trained on ImageNet dataset. All the models are trained with standard 1× schedule on
MS-COCO dataset. For a fair comparison, we adopt the same settings including data processing
pipeline and hyperparameters for all the models. Experimental details are described in the Appendix.

Results Comparison. The comparison results on Mask R-CNN with different backbones are shown
in Table 3. For Mask R-CNN with ResNet50 backbone models, we observe a similar trend to the

7

Under review as a conference paper at ICLR 2024

Table 4: Ablation of KernelWarehouse with or
without kernel partition.

Models Kernel Partition Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×) ✓ 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
- 11.78M 70.49 (↑0.05) 89.84 (↑0.12)

Table 7: Ablation of KernelWarehouse with or
without warehouse sharing between kernels hav-
ing different dimensions in convolutional blocks.

Models Sharing Strategies Params Top-1 Acc (%) Top-5 Acc (%)
ResNet50 - 25.56M 78.44 94.24

+ KW (1×) With different dimensions 28.05M 80.38 (↑1.94) 95.27 (↑1.03)
Only with the same dimensions 26.95M 79.80 (↑1.36) 95.01 (↑0.77)

Table 6: Ablation of KernelWarehouse with ware-
house sharing between kernel cells within each
stage|within each layer, and without sharing.

Models Sharing Strategies Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×)
Within each stage 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
Within each layer 11.81M 74.34 (↑3.90) 91.82 (↑2.10)
Without sharing 11.78M 72.49 (↑2.05) 90.81 (↑1.09)

Table 8: Ablation of KernelWarehouse with dif-
ferent attention functions.

Models Attention Functions Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×)

zij/
∑n

p=1 |zip| (ours) 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
Softmax 11.93M 72.67 (↑2.23) 90.82 (↑1.10)
Sigmoid 11.93M 72.09 (↑1.65) 90.70 (↑0.98)

max(zij , 0)/
∑n

p=1 |zip| 11.93M 72.74 (↑2.30) 90.86 (↑1.14)

Table 9: Ablation of KernelWarehouse with or without our attentions initialization strategy.
Models Attentions Initialization Strategy Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×) ✓ 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
- 11.93M 73.39 (↑2.95) 91.24 (↑1.52)

main experiments on ImageNet dataset: KW (4×) outperforms DY-Conv (4×) and ODConv (4×) on
both object detection and instance segmentation tasks. Our KW (1×) brings an AP improvement of
2.2%|2.0% on object detection and instance segmentation tasks, which is on par with ODConv (4×).
With the MobileNetV2 (1.0×) backbone, our method yields consistent high accuracy improvements
to the baseline, and KW (4×) achieves the best results. With the ConvNeXt-Tiny backbone, the
performance gains of KW (1×) and KW (3/4×) to the baseline model become more pronounced
on MS-COCO dataset, compared to those on ImageNet dataset, showing higher capacity and good
generalization ability of our method to the downstream tasks.

4.3 ABLATION STUDIES

For a deeper understanding of KernelWarehouse, we further provide a lot of ablative experiments on
ImageNet dataset to study the three key components of KernelWarehouse, namely kernel partition,
warehouse sharing and proposed contrasting-driven attention function from different aspects. All the
models are trained with the training strategy proposed in ConvNeXt (Liu et al., 2022).

Effect of Kernel Partition. Thanks to the kernel partition component, KernelWarehouse can apply
denser kernel assembling with a large number of kernel cells. In Table 4, we provide the ablative
experiments on the ResNet18 backbone to study the efficacy of kernel partition. We can see that by
removing kernel partition, the top-1 gain for KernelWarehouse to the baseline sharply decreases from
4.33% to 0.05%, demonstrating its great importance to our method.

Warehouse Sharing with Different Ranges. To validate the effectiveness of the warehouse sharing
component, we first perform ablative experiments on the ResNet18 backbone with different ranges
of warehouse sharing. From the results shown in Table 6, we can see that when sharing warehouse
in wider range, KernelWarehouse brings larger performance improvement to the baseline model. It
indicates that explicitly enhancing parameter dependencies within the same convolutional layer and
across successive layers both can strengthen the network capacity.

Warehouse Sharing between Kernels with Different Dimensions. In the mainstream ConvNet
designs, a convolutional block mostly contains several kernels having different dimensions (k × k ×
c × f). We next perform ablative experiments on the ResNet50 backbone to explore the effect of
warehouse sharing between kernels having different dimensions in convolutional blocks. Results are
summarized in Table 7, showing that warehouse sharing between kernels having different dimensions
performs better compared to warehouse sharing only between kernels having the same dimensions.
Combining the results in Table 6 and Table 7, we can conclude that enhancing the warehouse sharing
between more kernel cells in KernelWarehouse mostly leads to better performance.

Attention Function. Recall that KernelWarehouse relies on our proposed contrasting-driven attention
function. To explore its role, we also conduct ablative experiments to compare the performance
of KernelWarehouse with different attention functions on the ResNet18 backbone. According
to the results shown in Table 8, the top-1 accuracy gap between our design zij/

∑n
p=1 |zip| and

popular Softmax|Sigmoid reaches 2.10%|2.68%, and our design also outperforms another counterpart

8

Under review as a conference paper at ICLR 2024

Figure 3: Visualization of statistical mean values of learnt attention αij in each warehouse. The
results are obtained from the pre-trained ResNet18 backbone with KW (1×) for all of the 50,000
images on the ImageNet validation set. Best viewed with zoom-in.

Table 10: Comparison of runtime model speed (frames per second) for different dynamic convolution
methods. All the models are tested on an NVIDIA TITAN X GPU (with batch size 100) and a single
core of Intel E5-2683 v3 CPU (with batch size 1), separately. The input image size is 224×224.

Models Params Top-1 Acc (%) Speed on GPU Speed on CPU
ResNet50 25.56M 78.44 647.0 6.4
+ DY-Conv (4×) 100.88M 79.00 (↑0.56) 322.7 4.1
+ ODConv (4×) 90.67M 80.62 (↑2.18) 142.3 2.5
+ KW (1/2×) 17.64M 79.30 (↑0.86) 227.8 1.5
+ KW (1×) 28.05M 80.38 (↑1.94) 265.4 1.6
+ KW (4×) 102.02M 81.05 (↑2.61) 191.1 0.6

Models Params Top-1 Acc (%) Speed on GPU Speed on CPU
MobileNetV2 (1.0×) 3.50M 72.02 1410.8 17.0
+ DY-Conv (4×) 12.40M 74.94 (↑2.92) 862.4 11.8
+ ODConv (4×) 11.52M 75.42 (↑3.40) 536.5 11.0
+ KW (1/2×) 2.65M 72.59 (↑0.57) 926.0 11.6
+ KW (1×) 5.17M 74.68 (↑2.66) 798.7 10.8
+ KW (4×) 11.38M 75.92 (↑3.90) 786.9 8.5

max(zij , 0)/
∑n

p=1 |zip| by 2.03%, validating the importance of introducing negative attention
values in KernelWarehouse to encourage the network to learn adversarial attention relationships.

Attentions Initialization Strategy. To help the optimization of KernelWarehouse in the early training
stage, βij with temperature γ is used for initializing the scalar attentions. In the experiments, we
use ResNet18 as the backbone to study the effect of our attentions initialization strategy. As shown
in Table 9, a proper initialization strategy for scalar attentions is beneficial for a network to learn
relationships between linear mixtures and kernel cells, which leads to 1.38% top-1 improvement to
the ResNet18 backbone based on KW (1×).

Visualization. To have a better understanding of the warehouse sharing mechanism of KernelWare-
house, we further analyze the statistical mean values of αij to study its learnt attention values. The
results are obtained from the pre-trained ResNet18 backbone with KW (1×). The visualization
results are shown in Figure 3, from which we can observe: (1) each linear mixture can learn its
own distribution of scalar attentions for different kernel cells; (2) in each warehouse, the maximum
value of αij in each row mostly appears in the diagonal line throughout the whole warehouse. It
indicates that our attentions initialization strategy can help KernelWarehouse to build one-to-one
relationship between linear mixtures and kernel cells according to our setting of βij ; (3) compared to
linear mixtures in different layers, the attentions αij with higher absolute values for linear mixtures in
the same layer have more overlaps. It indicates that parameter dependencies within the same kernel
are stronger than those across successive layers, which can be learned by KernelWarehouse.

Inference Speed and Others. Table 10 provides experiments for inference speed analysis, from
which we can observe: (1) For relatively large backbones like ResNet50, the runtime model speed
of KernelWarehouse is faster than ODConv and is slower than DY-Conv on GPU, but is slower
than both ODConv and DY-Conv on CPU (this limitation is mainly due to the dense computation of
linear mixtures in KernelWarehouse); (2) For lightweight backbones like MobileNetV2, the runtime
model speed of KernelWarehouse, ODConv and DY-Conv is at a similar level both on GPU and CPU.
Besides, we believe KernelWarehouse could be applied to more deep and large ConvNets, yet we are
unable to explore this constrained by our computational resources.

5 CONCLUSION

In this paper, we rethink the design of dynamic convolution and present KernelWarehouse. As a more
general form of dynamic convolution, KernelWarehouse can improve the performance of modern
ConvNets while enjoying parameter efficiency. Experiments on ImageNet and MS-COCO datasets
show its great potential. We hope our work would inspire future research in dynamic convolution.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan NovDollák, Alex Harvill, Pradeep
Sen, Tony DeRose, and Fabrice Rousselle. Kernel-predicting convolutional networks for denoising
monte carlo renderings. In Siggraph, 2017.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In CVPR, 2020.

Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Le Quoc V. Randaugment: Practical automated
data augmentation with a reduced search space. In CVPR Workshops, 2020.

Ali Diba, Vivek Sharma, Luc Van Gool, and Rainer Stiefelhagen. Dynamonet: Dynamic action and
motion network. In ICCV, 2019.

Alexey Dosovitskiy, Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR, 2021.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In ICLR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

Shwai He, Chenbo Jiang, Daize Dong, and Liang Ding. Sd-conv: Towards the parameter-effciency
of dynamic convolution. In WACV, 2023.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching
for mobilenetv3. In ICCV, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Andrea Vedaldi. Gather-excite: Exploiting feature
context in convolutional neural networks. In NeurIPS, 2018a.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, 2018b.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer
networks. In NIPS, 2015.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. In NIPS,
2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS, 2012.

HyunJae Lee, Hyo-Eun Kim, and Hyeonseob Nam. Srm: A style-based recalibration module for
convolutional neural networks. In ICCV, 2019.

Chao Li, Aojun Zhou, and Anbang Yao. Omni-dimensional dynamic convolution. In ICLR, 2022.

Duo Li, Anbang Yao, and Qifeng Chen. Psconv: Squeezing feature pyramid into one compact
poly-scale convolutional layer. In ECCV, 2020.

Duo Li, Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei Zhu, Tong Zhang, and Qifeng Chen.
Involution: Inverting the inherence of convolution for visual recognition. In CVPR, 2021a.

10

Under review as a conference paper at ICLR 2024

Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In CVPR, 2019.

Yunsheng Li, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Ye Yu, Yuan Lu, Zicheng
Liu, Mei Chen, and Nuno Vasconcelos. Revisiting dynamic convolution via matrix decomposition.
In ICLR, 2021b.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Xudong Lin, Lin Ma, Wei Liu, and Shih-Fu Chang. Context-gated convolution. In ECCV, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, 2022.

Ningning Ma, Xiangyu Zhang, Jiawei Huang, and Jian Sun. Weightnet: Revisiting the design space
of weight networks. In ECCV, 2020.

Ben Mildenhall, Jonathan T. Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, and Robert Carroll. Burst
denoising with kernel prediction networks. In CVPR, 2018.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In ICML, 2017.

Jongchan Park, Sanghyun Woo, Joon-Young Lee, and In So Kweon. Bam: Bottleneck attention
module. In BMVC, 2018.

Niamul Quader, Md Mafijul Islam Bhuiyan, Juwei Lu, Peng Dai, and Wei Li. Weight excitation:
Built-in attention mechanisms in convolutional neural networks. In ECCV, 2020.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In CVPR, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Fei-Fei Li. Imagenet
large scale visual recognition challenge. IJCV, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR,
2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In ICML, 2019a.

Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise convolutional kernels. In BMVC, 2019b.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In ICML, 2021.

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang,
and Xiaoou Tang. Residual attention network for image classification. In CVPR, 2017.

Jiaqi Wang, Kai Chen, Rui Xu, Ziwei Liu, Change Loy Chen, and Dahua Lin. Carafe: Content-aware
reassembly of features. In ICCV, 2019.

11

Under review as a conference paper at ICLR 2024

Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-net:
Efficient channel attention for deep convolutional neural networks. In CVPR, 2020.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In ECCV, 2018.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In CVPR, 2017.

Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parameter-
ized convolutions for efficient inference. In NeurIPS, 2019a.

Zhaohui Yang, Wang Yunhe, Hanting Chen, Chuanjian Liu, Boxin Shi, Chao Xu, Chunjing Xu, and
Chang Xu. Legonet: Efficient convolutional neural networks with lego filters. In ICML, 2019b.

Sangdoo Yun, , Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR, 2018a.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In CVPR, 2018b.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. In AAAI, 2020.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 TRAINING RESNET18 WITH TRADITIONAL TRAINING STRATEGY.

Experimental Setup. Recall that in the experiments section of the main paper, we compare our
KernelWarehouse with DY-Conv and ODConv on ResNet and MobileNetV2 models. We adopt the
advanced training settings proposed in ConvNeXt (Liu et al., 2022), where all models are trained for
300 epochs. In the experiments, we conduct comparative experiments to explore the performance
of KernelWarehouse under traditional training strategy which is adopted by both DY-Conv and
ODConv. We make comparisons of KernelWarehouse with various state-of-the-art attention based
methods to demonstrate its effectiveness, including: (1) SE (Hu et al., 2018b), CBAM (Woo et al.,
2018) and ECA (Wang et al., 2020), which focus on recalibration of feature maps; (2) CGC (Lin
et al., 2020) and WeightNet (Ma et al., 2020), which focus on adjusting convolutional weights; (3)
DY-Conv (Chen et al., 2020), DCD (Li et al., 2021b) and ODConv (Li et al., 2022), which focus on
dynamic convolution.

Table 11: Results comparison on ImageNet with the ResNet18 backbone using the traditional training
strategy. Best results are bolded.

Models Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 11.69M 70.25 89.38
+ SE (Hu et al., 2018b) 11.78M 70.98 (↑0.73) 90.03 (↑0.65)
+ CBAM (Woo et al., 2018) 11.78M 71.01 (↑0.76) 89.85 (↑0.47)
+ ECA (Wang et al., 2020) 11.69M 70.60 (↑0.35) 89.68 (↑0.30)
+ CGC (Lin et al., 2020) 11.69M 71.60 (↑1.35) 90.35 (↑0.97)
+ WeightNet (Ma et al., 2020) 11.93M 71.56 (↑1.31) 90.38 (↑1.00)
+ DCD (Li et al., 2021b) 14.70M 72.33 (↑2.08) 90.65 (↑1.27)
+ CondConv (8×) (Yang et al., 2019a) 81.35M 71.99 (↑1.74) 90.27 (↑0.89)
+ DY-Conv (4×) (Chen et al., 2020) 45.47M 72.76 (↑2.51) 90.79 (↑1.41)
+ ODConv (4×) (Li et al., 2022) 44.90M 73.97 (↑3.72) 91.35 (↑1.97)
+ KW (1/2×) 7.43M 72.81 (↑2.56) 90.66 (↑1.28)
+ KW (1×) 11.93M 73.67 (↑3.42) 91.17 (↑1.79)
+ KW (2×) 23.24M 74.03 (↑3.78) 91.37 (↑1.99)
+ KW (4×) 45.86M 73.54 (↑3.29) 90.94 (↑1.56)

Results Comparison on ResNets18 with the Traditional Training Strategy. We adopt the tradi-
tional training strategy adopted by lots of previous studies where models are trained for 100 epochs.
The results are shown in Table 11. It can be observed that dynamic convolution methods (CondConv,
DY-Conv and ODConv), which introduce obviously more extra parameters, tend to have better
performance compared with other methods (SE, CBAM, ECA, CGC, WeightNet and DCD). Note
that our KW (1/2×), which has 36.45% parameters less than the baseline, can even outperform all
the above attention based methods (except ODConv (4×)) including CondConv (8×) and DY-Conv
(4×) which increase the model size to about 6.96|3.89 times. Our KW (2×) achieves the best results,
which further surpasses ODConv (4×) by 0.06% top-1 gain with roughly only half of its parameters.
However, when we increase KW from 2× to 4×, it shows a decline in top-1 gain from 3.78% to
3.29%. Figure 4 illustrates the training and validation accuracy curves of the ResNet18 models
trained with ODConv (4×) and our KW (1×, 2×, 4×). We can see that KW (2×) already gets higher

Figure 4: Curves of top-1 training accuracy and validation accuracy of ResNet18 models trained for
100 epochs on ImageNet with DY-Conv (4×), ODConv (4×) and KW (1×, 2×, 4×).

13

Under review as a conference paper at ICLR 2024

training accuracy than ODConv (4×). While compared to KW (2×), KW (4×) further brings 2.79%
improvement on training set but 0.49% drop on validation set. We consider the reason for validation
accuracy decline is that KW (4×) largely enhances the capacity of ResNet18 backbone, but also
suffers from potential overfitting, when using the traditional training strategy. This overfitting issue
can be well resolved by the advanced training strategy adopted in ConvNeXt (Liu et al., 2022) which
trains each model with a longer training schedule (300 epochs) and more aggressive augmentations,
as can be clearly seen from the results shown in Table 1.

A.2 DATASETS AND IMPLEMENTATION DETAILS

A.2.1 IMAGE CLASSIFICATION ON IMAGENET

Recall that we use ResNet (He et al., 2016), MobileNetV2 (Sandler et al., 2018) and ConvNeXt (Liu
et al., 2022) families for the main experiments on ImageNet dataset (Russakovsky et al., 2015),
which consists of over 1.2 million training images and 50,000 validation images with 1,000 object
categories. We use an input image resolution of 224×224 for both training and evaluation. All the
input images are standardized with mean and standard deviation per channel. For evaluation, we
report top-1 and top-5 recognition rates of a single 224×224 center crop on the ImageNet validation
set. All the experiments are performed on the servers having 8 GPUs. Specifically, the models of
ResNet18, MobileNetV2 (1.0×), MobileNetV2 (0.5×) are trained on the servers with 8 NVIDIA
Titan X GPUs. The models of ResNet50, ConvNeXt-Tiny are trained on the servers with 8 NVIDIA
Tesla V100-SXM3 or A100 GPUs. The training setups for different models are as follows.

Training setup for ResNet models with the traditional training strategy. All the models are
trained by the stochastic gradient descent (SGD) optimizer for 100 epochs, with a batch size of 256, a
momentum of 0.9 and a weight decay of 0.0001. The initial learning rate is set to 0.1 and decayed by
a factor of 10 for every 30 epoch. Horizontal flipping and random resized cropping are used for data
augmentation. For KernelWarehouse, the temperature τ linearly reduces from 1 to 0 in the first 10
epochs.

Training setup for ResNet and ConvNeXt models with the advanced training strategy. Following
the settings of ConvNeXt (Liu et al., 2022), all the models are trained by the AdamW optimizer
with β1 = 0.9, β2 = 0.999 for 300 epochs, with a batch size of 4096, a momentum of 0.9 and a
weight decay of 0.05. The initial learning rate is set to 0.004 and annealed down to zero following a
cosine schedule. Randaugment (Cubuk et al., 2020), mixup (Zhang et al., 2018a), cutmix (Yun et al.,
2019), random erasing (Zhong et al., 2020) and label smoothing (Szegedy et al., 2016) are used for
augmentation. For KernelWarehouse, the temperature τ linearly reduces from 1 to 0 in the first 20
epochs.

Training setup for MobileNetV2 models. All the models are trained by the SGD optimizer for 150
epochs, with a batch size of 256, a momentum of 0.9 and a weight decay of 0.00004. The initial
learning rate is set to 0.1 and annealed down to zero following a cosine schedule. Horizontal flipping
and random resized cropping are used for data augmentation. For KernelWarehouse, the temperature
τ linearly reduces from 1 to 0 in the first 10 epochs.

A.2.2 OBJECT DETECTION AND INSTANCE SEGMENTATION ON MS-COCO

Recall that we conduct comparative experiments for object detection and instance segmentation on
the MS-COCO 2017 dataset (Lin et al., 2014), which contains 118,000 training images and 5,000
validation images with 80 object categories. We adopt Mask R-CNN as the detection framework,
ResNet50 and MobileNetV2 (1.0×) built with different dynamic convolution methods as the back-
bones which are pre-trained on ImageNet dataset. All the models are trained with a batch size of 16
and standard 1× schedule on the MS-COCO dataset using multi-scale training. The learning rate is
decreased by a factor of 10 at the 8th and the 11th epoch of total 12 epochs. For a fair comparison,
we adopt the same settings including data processing pipeline and hyperparameters for all the models.
All the experiments are performed on the servers with 8 NVIDIA Tesla V100 GPUs. The attentions
initialization strategy is not used for KernelWarehouse during fine-tuning to avoid disrupting the
learnt relationships of the pre-trained models between kernel cells and linear mixtures. For evaluation,
we report both bounding box Average Precision (AP) and mask AP on the MS-COCO 2017 validation

14

Under review as a conference paper at ICLR 2024

set, including AP50, AP75 (AP at different IoU thresholds) and APS , APM , APL (AP at different
scales).

A.3 VISUALIZATION EXAMPLES OF ATTENTIONS INITIALIZATION STRATEGY

Warehouse

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

𝒘1

𝒘2

𝒘3

𝒘2

𝒘1

Layer 1

Layer 2

𝒘1 0 0 0 0 0 1 0

𝒆6𝒆2 𝒆3 𝒆4 𝒆5𝒆1 𝒆𝑧

Layer 3

𝒆6𝒆2 𝒆3 𝒆4 𝒆5𝒆1 𝒆𝑧

Layer 1

2𝑐

𝑓
𝑘2

Layer 2

𝑓

𝑐

3𝑘2

Layer 3

𝑓

𝑐
𝑘2

𝛽𝑖𝑗

Figure 5: A visualization example of attentions initialization strategy for KW (1×), where both n and
mt equal to 6. It helps the ConvNet to build one-to-one relationships between kernel cells and linear
mixtures in the early training stage according to our setting of βij . ez is a kernel cell that doesn’t
really exist and it keeps as a zero matrix constantly. In the beginning of the training process when
temperature τ is 1, a ConvNet built with KW (1×) can be roughly seen as a ConvNet with standard
convolutions.

Layer

Warehouse

1 0 0 0 0

0 1 0 0 0𝒘2

𝒘1𝒆2 𝒆3 𝒆4 𝒆𝑧𝒆1

𝒆2 𝒆3 𝒆4 𝒆𝑧𝒆1

𝑓

𝑐

2𝑘2

𝛽𝑖𝑗

1 0 1 0 0

0 1 0 1 0𝒘2

𝒘1

𝒆2 𝒆3 𝒆4 𝒆𝑧𝒆1
𝛽𝑖𝑗

(a)

(b)

Figure 6: Visualization examples of attentions
initialization strategies for KW (2×), where n =
4 and mt = 2. (a) our proposed strategy builds
one-to-one relationships between kernel cells and
linear mixtures; (b) an alternative strategy which
builds two-to-one relationships between kernel
cells and linear mixtures.

Layer

Warehouse

1 0 0

0 0 1

0 0 1

0 1 0

𝒘2

𝒘1

𝒆1 𝒆2 𝒆𝑧

(a)

𝑓

𝑐 𝑘2

𝒘3

𝒘4

1 0 0

1 0 0

0 1 0

0 1 0

𝒘2

𝒘1

𝒘3

𝒘4

(b)

𝒆2 𝒆𝑧𝒆1
𝛽𝑖𝑗

𝒆1
𝛽𝑖𝑗

𝒆2 𝒆𝑧

Figure 7: Visualization examples of attentions
initialization strategies for KW (1/2×), where
n = 2 and mt = 4. (a) our proposed strat-
egy builds one-to-one relationships between ker-
nel cells and linear mixtures; (b) an alternative
strategy which builds one-to-two relationships be-
tween kernel cells and linear mixtures.

Recall that we adopt an attentions initialization strategy for KernelWarehouse using τ and βij . It forces
the scalar attentions to be one-hot in the early training stage for building one-to-one relationships
between kernel cells and linear mixtures. To give a better understanding of this strategy, we provide
visualization examples for KW (1×), KW (2×) and KW (1/2×), respectively. We also provide a set
of ablative experiments to compare our proposed strategy with other alternatives.

Attentions Initialization for KW (1×). A visualization example of attentions initialization strategy
for KW (1×) is shown in Figure 5. In this example, a warehouse E = {e1, . . . , e6, ez} is shared
to 3 neighboring convolutional layers with kernel dimensions of k × k × 2c × f , k × 3k × c × f
and k × k × c × f , respectively. The kernel dimensions are selected for simple illustration. The
kernel cells have the same dimensions of k × k × c× f . Note that the kernel cell ez doesn’t really
exist and it keeps as a zero matrix constantly. It is only used for attentions normalization but not
assembling kernels. This kernel is mainly designed for attentions initialization when b < 1 and not
counted in the number of kernel cells n. In the early training stage, we adopt a strategy to explicitly
force every linear mixture to build relationship with one specified kernel cell according to our setting

15

Under review as a conference paper at ICLR 2024

of βij . As shown in Figure 5, we assign one of e1, . . . , e6 in the warehouse to each of the 6 linear
mixtures at the 3 convolutional layers without repetition. So that in the beginning of the training
process when temperature τ is 1, a ConvNet built with KW (1×) can be roughly seen as a ConvNet
with standard convolutions. The results of Table 9 in the main manuscript validate the effectiveness
of our proposed attentions initialization strategy. Here, we compare it with another alternative. In
this alternative strategy, we force every linear mixture to build relationships with all the kernel cells
equally by setting all the βij to be 1. The results are shown in Table 12. The all-to-one strategy
demonstrates similar performance with KernelWarehouse without using any attentions initialization
strategy, while our proposed strategy outperforms it by 1.41% top-1 gain.

Table 12: Ablation of KernelWarehouse with different attentions initialization strategies.

Models Attentions Initialization Strategies Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×)
1 kernel cell to 1 linear mixture 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
all the kernel cells to 1 linear mixture 11.93M 73.36 (↑2.92) 91.41 (↑1.69)
without attentions initialization 11.93M 73.39 (↑2.95) 91.24 (↑1.52)

+ KW (4×) 1 kernel cell to 1 linear mixture 45.86M 76.05 (↑5.61) 92.68 (↑2.96)
4 kernel cells to 1 linear mixture 45.86M 76.03 (↑5.59) 92.53 (↑2.81)

+ KW (1/2×) 1 kernel cell to 1 linear mixture 7.43M 73.33 (↑2.89) 91.42 (↑1.70)
1 kernel cell to 2 linear mixtures 7.43M 72.89 (↑2.45) 91.34 (↑1.62)

Attentions Initialization for KW (2×). For KernelWarehouse with b > 1, we adopt the same
strategy for initializing attentions used in KW (1×). Figure 6(a) provides a visualization example of
attentions initialization strategy for KW (2×). For building one-to-one relationships, we assign e1 to
w1 and e2 to w2, respectively. When b > 1, another reasonable strategy is to assign multiple kernel
cells to every linear mixture without repetition, which is shown in Figure 6(b). We use the ResNet18
backbone based on KW (4×) to compare the two strategies. From the results in Table 12, we can see
that our one-to-one strategy performs better.

Attentions Initialization for KW (1/2×). For KernelWarehouse with b < 1, the number of kernel
cells is less than that of linear mixtures, meaning that we cannot adopt the same strategy used for
b ≥ 1. Therefore, we only assign one of the total n kernel cells in the warehouse to n linear mixtures
respectively without repetition. And we assign ez to all of the remaining linear mixtures. The
visualization example for KW (1/2×) is shown in Figure 7(a). When temperature τ is 1, a ConvNet
built with KW (1/2×) can be roughly seen as a ConvNet with group convolutions (groups=2). We
also provide comparison results between our proposed strategy and another alternative strategy which
assigns one of the n kernel cells to every 2 linear mixtures without repetition. As shown in Table 12,
our one-to-one strategy achieves better result again, showing that introducing an extra kernel ez for
b < 1 can help the ConvNet learn more appropriate relationships between kernel cells and linear
mixtures. When assigning one kernel cell to multiple linear mixtures, a ConvNet could not balance
the relationships between them well.

A.4 DESIGN DETAILS OF KERNELWAREHOUSE

In this section, we describe the design details of our KernelWarehouse. The corresponding values of
m and n for each of our trained models are provided in the Table 13. Note that the values of m and n
are naturally determined according to our setting of the dimensions of the kernel cells, the layers to
share warehouses and b.

Design details of Attention Module of KernelWarehouse. Following existing dynamic convolution
methods, KernelWarehouse also adopts a compact SE-typed structure as the attention module ϕ(x)
(illustrated in Figure 1) to generate attentions for weighting kernel cells in a warehouse. For any
convolutional layer with a static kernel W, it starts with a channel-wise global average pooling (GAP)
operation that maps the input x into a feature vector, followed by a fully connected (FC) layer, a
rectified linear unit (ReLU), another FC layer, and a contrasting-driven attention function (CAF). The
first FC layer reduces the length of the feature vector by 16, and the second FC layer generates m
sets of n feature logits in parallel which are finally normalized by our CAF set by set.

Design details of KernelWarehouse on ResNet18. Recall that in KernelWarehouse, a warehouse is
shared to all same-stage convolutional layers. While the layers are originally divided into different

16

Under review as a conference paper at ICLR 2024

Table 13: The values of m and n for the ResNet18, ResNet50, ConvNeXt-Tiny, MobileNetV2 (1.0×)
and MobileNetV2 (0.5×) backbones based on KernelWarehouse.

Backbones b m n

ResNet18

1/4 224, 188, 188, 108 56, 47, 47, 27
1/2 224, 188, 188, 108 112, 94, 94, 54
1 56, 47, 47, 27 56, 47, 47, 27
2 56, 47, 47, 27 112, 94, 94, 54
4 56, 47, 47, 27 224, 188, 188, 108

ResNet50
1/2 348, 416, 552, 188 174, 208, 276, 94
1 87, 104, 138, 47 87, 104, 138, 47
4 87, 104, 138, 47 348, 416, 552, 188

ConvNeXt-Tiny 1 16,4,4,4,147,24,147,24,147,24,147,24,147,24,147,24 16,4,4,4,147,24,147,24,147,24,147,24,147,24,147,24
3/4 16,4,4,4,147,24,147,24,147,24,147,24,147,96,147,96 16,4,4,4,147,24,147,24,147,24,147,24,147,48,147,48

MobileNetV2 (1.0×)
MobileNetV2 (0.5×)

1/2 9, 36, 18, 27, 36, 27, 12, 27, 80, 40 9, 36, 18, 27, 36, 27, 6, 27, 40, 20
1 9, 36, 34, 78, 18, 42, 27, 102, 36, 120, 27, 58, 27 9, 36, 34, 78, 18, 42, 27, 102, 36, 120, 27, 58, 27
4 9, 36, 11, 1, 2, 18, 7, 3, 27, 4, 4, 36, 9, 3, 27, 11, 3, 27, 20 36, 144, 44, 4, 8, 72, 28, 12, 108, 16, 16, 144, 36, 12, 108, 44, 12, 108, 80

stages according to the resolutions of their input feature maps, the layers are divided into different
stages according to their kernel dimensions in our KernelWarehouse. In our implementation, we
usually reassign the first layer (or the first two layers) in each stage to the previous stage. An example
for the ResNet18 backbone based on KW (1×) is given in Table 14. By reassigning the layers,
we can avoid the condition that all the other layers have to be partitioned according to a single
layer because of the greatest common dimension divisors. For the ResNet18 backbone, we apply
KernelWarehouse to all the convolutional layers except the first one. In each stage, the corresponding
warehouse is shared to all of its convolutional layers. For KW (1×), KW (2×) and KW (4×), we use
the greatest common dimension divisors for static kernels as the uniform kernel cell dimensions for
kernel partition. For KW (1/2×) and KW (1/4×), we use half of the greatest common dimension
divisors.

Table 14: The example of warehouse sharing for the ResNet18 backbone based on KW (1×) according
to the original stages and reassigned stages.

Dimensions of Kernel Cells Original Stages Layers Reassigned Stages Dimensions of Kernel Cells

1×1×64×64 1

3×3×64×64

1 1×1×64×64
3×3×64×64
3×3×64×64
3×3×64×64

1×1×64×128 2

3×3×64×128
3×3×128×128

2 1×1×128×1283×3×128×128
3×3×128×128

1×1×128×256 3

3×3×128×256
3×3×256×256

3 1×1×256×2563×3×256×256
3×3×256×256

1×1×256×512 4

3×3×256×512
3×3×512×512

4 1×1×512×5123×3×512×512
3×3×512×512

Design details of KernelWarehouse on ResNet50. For the ResNet50 backbone, we apply Kernel-
Warehouse to all the convolutional layers except the first two layers. In each stage, the corresponding
warehouse is shared to all of its convolutional layers. For KW (1×) and KW (4×), we use the
greatest common dimension divisors for static kernels as the uniform kernel cell dimensions for
kernel partition. For KW (1/2×), we use half of the greatest common dimension divisors.

Design details of KernelWarehouse on ConvNeXt-Tiny. For the ConvNeXt backbone, we apply
KernelWarehouse to all the convolutional layers. We partition the 9 blocks in the third stage of the
ConvNeXt-Tiny backbone into three stages with the equal number of blocks. In each stage, the
corresponding three warehouses are shared to the point-wise convolutional layers, the depth-wise
convolutional layers and the downsampling layer, respectively. For KW (1×), we use the greatest
common dimension divisors for static kernels as the uniform kernel cell dimensions for kernel
partition. For KW (3/4×), we apply KW (1/2×) to the point-wise convolutional layers in the last
two stages of ConvNeXt backbone using half of the greatest common dimension divisors. And we
apply KW (1×) to the other layers using the greatest common dimension divisors.

17

Under review as a conference paper at ICLR 2024

Design details of KernelWarehouse on MobileNetV2. For the MobileNetV2 (1.0×) and Mo-
bileNetV2 (0.5×) backbones based on KW (1×) and KW (4×), we apply KernelWarehouse to all
the convolutional layers. For MobileNetV2 (1.0×, 0.5×) based on KW (1×), the corresponding two
warehouses are shared to the point-wise convolutional layers and the depth-wise convolutional layers
in each stage, respectively. For MobileNetV2 (1.0×, 0.5×) based on KW (4×), the corresponding
three warehouses are shared to the depth-wise convolutional layers, the point-wise convolutional
layers for channel expansion and the point-wise convolutional layers for channel reduction in each
stage, respectively. We use the greatest common dimension divisors for static kernels as the uniform
kernel cell dimensions for kernel partition. For the MobileNetV2 (1.0×) and MobileNetV2 (0.5×)
backbones based on KW (1/2×), we take the parameters in the attention modules and classifier layer
into consideration in order to reduce the total number of parameters. We apply KernelWarehouse
to all the depth-wise convolutional layers, the point-wise convolutional layers in the last two stages
and the classifier layer. We set b = 1 for the point-wise convolutional layers and b = 1/2 for the
other layers. For the depth-wise convolutional layers, we use the greatest common dimension divisors
for static kernels as the uniform kernel cell dimensions for kernel partition. For the point-wise
convolutional layers, we use half of the greatest common dimension divisors. For the classifier layer,
we use the kernel cell dimensions of 1000×32.

A.5 MORE EXPERIMENTS FOR STUDYING OTHER POTENTIALS OF KERNELWAREHOUSE

In this section, we provide a lot of extra experiments conducted for studying other potentials of
KernelWarehouse.

Table 15: Comparison of memory requirements of DY-Conv, ODConv and KernelWarehouse for train-
ing and inference. For ResNet50, we set batch size to 128|100 for each gpu during training|inference;
for MobileNetV2(1.0×), we set batch size to 32|100 for each gpu during training|inference.

Models Params Training Memory Inference Memory
(batch size=128) (batch size=100)

ResNet50 25.56M 11,084 MB 1,249 MB
+ DY-Conv (4×) 100.88M 24,552 MB 2,062 MB
+ ODConv (4×) 90.67M 31,892 MB 5,405 MB
+ KW (1/2×) 17.64M 23,323 MB 2,121 MB
+ KW (1×) 28.05M 23,231 MB 2,200 MB
+ KW (4×) 102.02M 24,905 MB 2,762 MB

Models Params Training Memory Inference Memory
(batch size=32) (batch size=100)

MobileNetV2 (1.0×) 3.50M 2,486 MB 1,083 MB
+ DY-Conv (4×) 12.40M 2,924 MB 1,151 MB
+ ODConv (4×) 11.52M 4,212 MB 1,323 MB
+ KW (1/2×) 2.65M 3,002 MB 1,076 MB
+ KW (1×) 5.17M 2,823 MB 1,096 MB
+ KW (4×) 11.38M 2,916 MB 1,144 MB

Comparison of Memory Requirements. From the table 15, we can observe that, for both training
and inference, the memory requirements of our method are very similar to those of DY-Conv, and
are much smaller than those for ODConv (that generates attention weights along all four dimensions
including the input channel number, the output channel number, the spatial kernel size and the
kernel number, rather than one single dimension as DY-Conv and KernelWarehouse), showing that
our method does not have a potential limitation on memory requirements compared to existing
top-performing dynamic convolution methods. The reason is: although KernelWarehouse introduces
dense attentive mixturing and assembling operations at the same-stage convolutional layers having a
shared warehouse, the memory requirement for these operations is significantly smaller than that for
convolutional feature maps and the memory requirement for attention weights are also significantly
smaller than that for convolutional weights, under the same convolutional parameter budget b.

Table 16: Results comparison on ImageNet with the DeiT-Tiny and DeiT-Small backbones trained
for 300 epochs. Best results are bolded.

Models Params Top-1 Acc (%) Top-5 Acc (%)
DeiT-Tiny 5.72M 72.13 91.32
+ KW (1×) 6.43M 73.30 (↑1.17) 91.46 (↑0.14)
+ KW (4×) 21.55M 76.51 (↑4.38) 93.05 (↑1.73)
DeiT-Small 22.06M 79.78 94.99
+ KW (3/4×) 19.23M 79.94 (↑0.16) 95.05 (↑0.06)
+ KW (1×) 24.36M 80.63 (↑0.85) 95.24 (↑0.25)
+ KW (4×) 78.93M 82.07 (↑2.29) 95.70 (↑0.71)

Results Comparison on DeiT. To validate the effectiveness of KW on vision transformer models,
we further perform experiments on DeiT (Touvron et al., 2021) with our KW. In the experiments,
we adopt the same settings including data processing pipeline and hyperparameters following DeiT.

18

Under review as a conference paper at ICLR 2024

For applying KernelWarehouse to a DeiT model, each of split cells of weight matrices for “value
and MLP” layers is represented as a linear mixture of kernel warehouse shared across multiple
multi-head self-attention blocks and MLP blocks, except the “query” and “key” matrix which are
used to compute self-attention. From the results shown in Table 16, it can be seen that: (1) with a
small convolutional parameter budget, e.g., b = 3/4, KW can get improved model accuracy while
reducing model size of DeiT-Small; (2) with a larger convolutional parameter budget, e.g., b = 4, KW
can significantly improve model accuracy, bringing 4.38%|2.29% absolute top-1 accuracy gain to
DeiT-Tiny/DeiT-Small; (3) these performance trends are similar to those reported on ConvNets (see
Table 1 and Table 2), demonstrating the appealing generalization ability of our method to different
neural network architectures.

Table 17: Ablation of attention functions for different dynamic convolution methods.

Models Params Attention Function Top-1 Acc (%) Top-5 Acc (%)
ResNet18 11.69M - 70.44 89.72

+ DY-Conv (4×) 45.47M Softmax 73.82 91.48
Ours 73.74 91.45

+ ODConv (4×) 44.90M Softmax 74.45 91.67
Ours 74.27 91.62

+ KW (1×) 11.93M Softmax 72.67 90.82
Ours 74.77 92.13

+ KW (4×) 45.86M Softmax 74.31 91.75
Ours 76.05 92.68

Attention functions for different dynamic convolution methods. In the table 17, we add experimen-
tal results for using the proposed attention function to existing top-performing dynamic convolution
methods DY-Conv and ODConv, showing slight drop in model accuracy compared to the original
Softmax function. This is because that the proposed method is specialized to fit three unique design
properties of KernelWarehouse: (1) the attentive mixture learning is applied to a dense local scale
(kernel cells) instead of a holistic kernel scale via kernel partition and warehouse sharing; (2) the
number of kernel cells in a warehouse is significantly large (e.g., n > 100 instead of n < 10); (3) a
warehouse is shared to represent every kernel cell in multiple convolutional layers of a ConvNet.

Table 18: Ablation of combining KernelWarehouse with ODConv.

Models Params Top-1 Acc (%) Top-5 Acc (%)
MobileNetV2 (1.0×) 3.50M 72.02 90.43
+ ODConv (4×) 11.52M 75.42 (↑3.40) 92.18 (↑1.75)
+ KW (4×) 11.38M 75.92 (↑3.90) 92.22 (↑1.79)
+ KW & ODConv(4×) 12.51M 76.54 (↑4.52) 92.35 (↑1.92)

Combining KernelWarehouse with ODConv. The improvement of KernelWarehouse to ODConv
could be further boosted by a simple combination of KernelWarehouse and ODConv to compute
attention weights for KernelWarehouse along the aforementioned four dimensions instead of one
single dimension. We add experiments to explore this potential, and the results are summarized in
the Table 18. We can see that, on the ImageNet dataset with MobileNetV2 (1.0×) backbone, KW &
ODConv (4×) brings 1.12% absolute top-1 improvement to ODConv(4×) while retaining the similar
model size.

A.6 MORE VISUALIZATION RESULTS FOR LEARNT ATTENTIONS OF KERNELWAREHOUSE

In the main manuscript, we provide visualization results of learnt attention values αij for the ResNet18
backbone based on KW (1×) (see Figure 3 in the main manuscript). For a better understanding of
KernelWarehouse, we provide more visualization results in this section, covering different alternative
attention functions, alternative initialization strategies and values of b. For all the results, the statistical
mean values of learnt attention αij are obtained using all of the 50,000 images on the ImageNet
validation dataset.

Visualization Results for KernelWarehouse with Different Attention Functions. The visualization
results for KernelWarehouse with different attention functions are shown in Figure 8, which are
corresponding to the comparison results of Table 8 in the main manuscript. From which we can
observe that: (1) for all of the attention functions, the maximum value of αij in each row mostly

19

Under review as a conference paper at ICLR 2024

appears in the diagonal line throughout the whole warehouse. It indicates that our proposed attentions
initialization strategy also works for the other three attention functions, which helps our KernelWare-
house to build one-to-one relationships between kernel cells and linear mixtures; (2) with different
attention functions, the scalar attentions learnt by KernelWarehouse are obviously different, showing
that the attention function plays an important role in our design; (3) compared to the other three
functions, the maximum value of αij in each row tends to be relatively lower for our design (shown
in Figure 8(a)). It indicates that the introduction of negative values for scalar attentions can help the
ConvNet to enhance warehouse sharing, where each linear mixture not only focuses on the kernel
cell assigned to it.

Visualization Results for KernelWarehouse with Attentions Initialization Strategies. The visual-
ization results for KernelWarehouse with different attentions initialization strategies are shown in
Figure 9, Figure 10 and Figure 11, which are corresponding to the comparison results of Table 12.
From which we can observe that: (1) with all-to-one strategy or without initialization strategy, the dis-
tribution of scalar attentions learnt by KernelWarehouse seems to be disordered, while our proposed
strategy can help the ConvNet learn more appropriate relationships between kernel cells and linear
mixtures; (2) for KW (4×) and KW (1/2×), it’s hard to directly determine which strategy is better
only according to the visualization results. While the results demonstrate that the learnt attentions
of KernelWarehouse are highly related to our setting of αij ; (3) for KW (1×), KW (4×) and KW
(1/2×) with our proposed initialization strategy, some similar patterns of the value distributions can
be found. For example, the maximum value of αij in each row mostly appears in the diagonal line
throughout the whole warehouse. It indicates that our proposed strategy can help the ConvNet learn
stable relationships between kernel cells and linear mixtures.

20

Under review as a conference paper at ICLR 2024

(a)

(b)

(c)

(d)

Figure 8: Visualization of statistical mean values of learnt attention αij in each warehouse for
KernelWarehouse with different attention functions. The results are obtained from the pre-trained
ResNet18 backbone with KW (1×) for all of the 50,000 images on the ImageNet validation set. Best
viewed with zoom-in. The attention functions for the groups of visualization results are as follows:
(a) zij/

∑n
p=1 |zip| (our design); (b) softmax; (c) sigmoid; (d) max(zij , 0)/

∑n
p=1 |zip|.

21

Under review as a conference paper at ICLR 2024

(a)

(b)

(c)

Figure 9: Visualization of statistical mean values of learnt attention αij in each warehouse for
KernelWarehouse with different attentions initialization strategies. The results are obtained from
the pre-trained ResNet18 backbone with KW (1×) for all of the 50,000 images on the ImageNet
validation set. Best viewed with zoom-in. The attentions initialization strategies for the groups of
visualization results are as follows: (a) building one-to-one relationships between kernel cells and
linear mixtures; (b) building all-to-one relationships between kernel cells and linear mixtures; (c)
without initialization.

22

Under review as a conference paper at ICLR 2024

(a)

(b)

Figure 10: Visualization of statistical mean values of learnt attention αij in each warehouse for
KernelWarehouse with different attentions initialization strategies. The results are obtained from
the pre-trained ResNet18 backbone with KW (4×) for all of the 50,000 images on the ImageNet
validation set. Best viewed with zoom-in. The attentions initialization strategies for the groups of
visualization results are as follows: (a) building one-to-one relationships between kernel cells and
linear mixtures; (b) building four-to-one relationships between kernel cells and linear mixtures.

23

Under review as a conference paper at ICLR 2024

(a)

(b)

Figure 11: Visualization of statistical mean values of learnt attention αij in each warehouse for
KernelWarehouse with different attentions initialization strategies. The results are obtained from
the pre-trained ResNet18 backbone with KW (1/2×) for all of the 50,000 images on the ImageNet
validation set. Best viewed with zoom-in. The attentions initialization strategies for the groups of
visualization results are as follows: (a) building one-to-one relationships between kernel cells and
linear mixtures; (b) building one-to-two relationships between kernel cells and linear mixtures.

24

	Introduction
	Related Work
	Method
	Formulation of KernelWarehouse
	Attention Function of KernelWarehouse

	Experiments
	Image Classification on ImageNet
	Object Detection on MS-COCO
	Ablation Studies

	Conclusion
	Appendix
	Training ResNet18 with Traditional Training Strategy.
	Datasets and Implementation Details
	Image Classification on ImageNet
	Object Detection and Instance Segmentation on MS-COCO

	Visualization Examples of Attentions Initialization Strategy
	Design Details of KernelWarehouse
	More Experiments for Studying Other Potentials of KernelWarehouse
	More Visualization Results for Learnt Attentions of KernelWarehouse

