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Abstract

Multi-agent reinforcement learning (MARL) plays a pivotal role in tackling real-
world challenges. However, the seamless transition of trained policies from simula-
tions to real-world requires it to be robust to various environmental uncertainties.
Existing works focus on finding Nash Equilibrium or the optimal policy under
uncertainty in a single environment variable (i.e. action, state or reward). This
is because a multi-agent system is highly complex and non-stationary. However,
in a real-world setting, uncertainty can occur in multiple environment variables
simultaneously. This work is the first to formulate the generalised problem of
robustness to multi-modal environment uncertainty in MARL. To this end, we
propose a general robust training approach for multi-modal uncertainty based on
curriculum learning techniques. We handle environmental uncertainty in more than
one variable simultaneously and present extensive results across both cooperative
and competitive MARL environments, demonstrating that our approach achieves
state-of-the-art robustness on three multi-particle environment tasks (Cooperative-
Navigation, Keep-Away, Physical Deception).

1 Introduction

MARL has excelled in tackling intricate real-world decision-making challenges, from robotics (e.g.,
path planning [1], task allocation [2; 3]) to traffic management [4] and Game Theory and Economics
[5]. In MARL [6], agents aim to maximize their long-term returns by interacting with both the
environment and other agents in a shared setting, thus making it more complex than single-agent RL.
In MARL, finding the Nash Equilibrium (NE) is a popular solution concept [7].

Real-world MARL applications often involve training agents in simulations and deploying them in
dynamic environments where accurate knowledge may be lacking. This could result from shifts in
environmental parameters, information noise (e.g., imprecise state, action, or reward data transfer), or
hardware constraints. Such situations give rise to environmental uncertainty, which has been addressed
in previous work. However, in existing literature, the effect of uncertainty on reward, transition
dynamics [8], state [9], or action [10] has been studied independently. In practical scenarios, multiple
environmental parameters may exhibit uncertainty simultaneously, necessitating the development of
robustness to multi-modal uncertainty.
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Contributions. In this work, (1) We address the challenge of handling multi-modal uncertainty
in MARL by developing robustness to two uncertain parameters simultaneously, marking the first
work in this domain. (2) We also define and theoretically formalize the general problem of finding
optimal policy in MARL with multi-modal uncertainty. (3) We tackle the complexity of finding NE
for this generalised problem and propose an efficient curriculum learning (CL) approach to address
this challenge. (4) We also show experimentally that our method is able to find optimal solution for
the given robust Markov games and generate state-of-the-art robustness for reward, state and action
uncertainty on three multi-particle environment tasks (Cooperative-Navigation, Keep-Away, Physical
Deception). (5) As a by-product, this is the also the first work to handle action uncertainty in MARL.

Related Work. Robustness in RL is crucial for countering adversarial attacks [11] and addressing un-
certainty in model/environment parameters. In single-agent RL, robustness to uncertainty is handled
by maximin optimization, casting it as a zero-sum game between the agent and the uncertainty set
[12; 13; 14; 15]. In MARL, uncertainty is defined as a robust Markov game and agents independently
maximize their returns while navigating uncertainty. While MARL research has made significant
progress, there is limited work dedicated to handling uncertainty.[16] focuses on multi-modal uncer-
tainty (reward and transition dynamics), albeit primarily in a theoretical context. Some works address
single uncertainties, such as reward, transition dynamics [8], or state [9] uncertainty. Additionally,
studies like [17; 18] enhance robustness by training agents to handle worst-case actions from adver-
sarial agents in competitive settings. Other literature in the action uncertainty space mainly focus on
cooperative environments [19; 20; 21]. In the pursuit of enhancing robustness, CL [22; 23] is widely
applied across diverse domains, such as object classification [24], automatic speech recognition
(ASR) [25] etc. [26] aligns closely with our work, employing CL to enhance robustness in RL.
Notably, our work represents the first instance of CL being used to address multi-modal uncertainty,
and also first in the context of MARL.

2 Robust Markov Game

The interaction among multiple agents is modeled as a Markov game G [27]. Real-world scenarios
often involve uncertainty, affecting various components such as reward, state, action, and transition
probability. Hence, we define Robust Markov game [28] as,

Ḡgeneral = ⟨N , {Si}i∈N , {Ōi}i∈N , {Ai}i∈N , {Āi}i∈N , {R̄i
s}(i,s)∈N×S , {P̄s}s∈S , γ⟩, (1)

where N , Si, Ai, and γ ∈ [0, 1) denote the set of agents, the state space, the action space for each
agent i, and the discounting factor, respectively. R̄i

s ∈ R|A| and P̄s denotes the uncertainty sets of all
possible reward function values and that of all possible transition probabilities at state s. Ōi and Āi

denotes the uncertainty sets of all possible values of perturbed state s̄i and āi respectively. The state
space and action space of the uncertainty sets is similar to that of the true state s and true action a
respectively. γ ∈ [0, 1) is the discounting factor. Note that the state perturbation reflects the state
uncertainty from the perspective of each agent so it does not change the true state of multi-agent
systems. Each agent is associated with a policy πi : S → ∆(Ai) to choose an action ai ∈ Ai given
the perturbed state s̄. The agents’ joint policy π = Πi∈Nπi : S → ∆(A).
In RL, there are three primary sources of aleatoric uncertainty [29]: stochastic rewards, stochastic
observations, and stochastic actions. Note that stochastic observations can arise from both uncertain
transition dynamics and inherent observation noise. Stochastic Rewards: We denote perturbed
rewards as R̄i(s, a) = Ntrunc(R

i(s, a), ϵ), where Ri and R̄i represent the true and perturbed rewards
for agent i. Stochastic Observations: Perturbed states are defined as s̄i = Ntrunc(s

i, µ), with si

and s̄i representing true and perturbed states. Stochastic Actions: Perturbed actions are expressed as
āi = Ntrunc(a

i, ν), where ai and āi denote true and perturbed actions. In these equations, ϵ, µ, ν
denote the standard deviations. Higher ϵ, µ, ν implies more uncertainty. Ntrunc refers to a truncated
normal distribution, with truncation limits set at 2ϵ, 2µ, and 2ν respectively.

In appendix section 6.2 we define the solution for the general robust Markov game in equation 1. We
also show proof for
Theorem 1: Existence of robust Nash equilibrium implies existence of optimal value function.

3 CL based robustness to multi-modal uncertainty
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Figure 1: Multi-modal CL algorithm with look-ahead

CL [22; 23] optimizes the order of experience
accumulation to enhance performance or train-
ing speed on a set of final tasks. Measuring
task difficulty is a key challenge in curriculum
design, and we use noise parameters (ϵ, µ, and
ν) to increase task complexity. This allows
us to leverage knowledge gained from simpler
tasks (lower uncertainty) for faster learning on
more complex ones (higher uncertainty). From
the curriculum learning training plots (refer to
figures 4, 6, 7, 8 and 10), it is observed that
complex tasks use the knowledge gained from
simpler tasks and hence converge in fewer it-
erations as compared to training from scratch
on the complex task. Our base model is from
[8]. Efficient Lookahead CL Algorithm is
designed for single-parameter uncertainty sce-
narios. In each CL iteration, the model trains
on a specific noise parameter and evaluates at
higher noise levels, enabling it to skip already-
learned noise values and streamline CL training.
Efficient Lookahead CL for Multiple Uncer-
tainties The algorithm for curriculum learning
with combined reward and state/action pertur-
bations is outlined in 1 and flowchart in 1. Our
goal is to efficiently increase both reward and
state/action uncertainty in each CL iteration,
ultimately training a model capable of handling
two uncertainties simultaneously. Note that

there is no skip-ahead in the reward uncertainty parameter, as reward uncertainty is not present during
evaluation. Similarly, algorithms can be defined for action and reward perturbations.

4 Experiments

In this section, we present results for our curriculum learning-based method on three multi-particle
environments (cooperative navigation, keep-away, and physical deception) and compare them with
state-of-the-art robustness in those environments. For cooperative navigation, we present detailed
results in Table 1. Experimental results for keep-away and physical deception are shown in Fig. 2.
We start by comparing the base method (without CL) with our CL method in each environment under
varying levels of reward, state, or action uncertainty. Then, we explore dual uncertainty combinations:
state + reward, action + reward, and state + action. Notably, this paper is first to handle multi-modal
uncertainty in MARL. We report values related to action and state uncertainty by evaluating the
trained model 1000 times, reporting its mean and standard deviation. However, for reward uncertainty,
we illustrate training plots since rewards aren’t involved in evaluation, making reward uncertainty
during evaluation irrelevant.

Cooperative Navigation Environment. In this cooperative setting, three agents aim to occupy all
three landmarks while avoiding collisions. Robustness under uncertainty in a single parameter:
Regarding reward uncertainty, the success rate (see Figure 3a) shows that the model’s learning
extends up to ϵ = 9, which matches the current state-of-the-art robustness [8]. However, our
lookahead-CL approach achieves robustness up to ϵ = 47 (reward plot in Figure 4a). For state
uncertainty, the model’s learning reaches µ = 0.5, but with CL, it reaches µ = 1.1 (reward plot in
Figure 4b,). In the case of action uncertainty, the model’s learning goes up to ν = 2.0, and with CL,
it reaches ν = 2.2 (check Figure 3c). This is the first work addressing action uncertainty, thus lacking
a baseline for comparison. Regarding state uncertainty, [9] does not provide comparisons for various
uncertainty values. Table 1 shows detailed comparison between CL and the baseline demonstrating
that CL achieves state-of-the-art robustness.
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Reward Uncertainty
ϵ 6 9 10 11 12 15 47 48

Baseline ✓ ✓ × × × × × ×
CL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

State Uncertainty
µ 0.25 0.45 0.5 0.55 0.75 1.0 1.1 1.2

Baseline 1 ± 0.04 0.97 ± 0.15 1 ± 0.1 0.6 ± 0.5 - - - -
CL 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0.1 0.98 ± 0.2 0.94 ± 0.2 0.82 ± 0.4

Action Uncertainty
ν 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Baseline 1 ± 0.13 1 ± 0 1 ± 0 1 ± 0 1 ± 0.1 0.93 ± 0.26 0.78 ± 0.41 -
CL 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0.1 1 ± 0 1 ± 0.03 0.9 ± 0.04

Reward + State Uncertainty
µ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

0.97 ± 0.2 0.95 ± 0.2 0.95 ± 0.2 0.96 ± 0.2 0.95 ± 0.2 0.94 ± 0.23 0.91 ± 0.3 0.81 ± 0.4
Reward + Action Uncertainty

ν 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.96 ± 0.2 0.96 ± 0.2 0.97 ± 0.2 0.97 ± 0.2 0.97 ± 0.2 0.96 ± 0.2 0.96 ± 0.2 0.96 ± 0.2

State+Action Uncertainty
µ - ν 0 1 1.4 1.6 2 2.4 2.6 3
0 1 ± 0 1 ± 0.6 1 ± 0.04 1 ± 0.03 1 ± 0.04 1 ± 0.05 1 ± 0.06 0.96 ± 0.18
0.6 1 ± 0.6 0.98 ± 0.1 0.98 ± 0.14 0.96 ± 0.2 0.92 ± 0.28 0.8 ± 0.4 0.73 ± 0.4 0.6 ± 0.5
0.8 0.98 ± 0.14 0.95 ± 0.2 0.9 ± 0.3 0.85 ± 0.35 0.8 ± 0.45 0.6 ± 0.5 0.5 ± 0.5 0.4 ± 0.5
1 0.93 ± 0.25 0.8 ± 0.4 0.75 ± 0.43 0.67 ± 0.5 0.6 ± 0.5 0.42 ± 0.5 0.36 ± 0.5 0.26 ± 0.23

Table 1: The table shows a detailed comparison between baseline, CL for single and dual uncertainty using
success rates at various values of noise. An episode is successful if all landmarks are occupied by agents. The first
three blocks in the table are for single uncertainty, followed by three blocks for dual uncertainty combinations.

Multi-modal CL combining two uncertainty: We explore the combinations, reward + state, reward
+ action, and action + state, uncertainity to assess the effectiveness of CL when dealing with dual
uncertainties. Refer to Table 1 for detailed results. In the case of reward + state uncertainty , our
model successfully learns up to µ = 0.7 when ϵ = 0 and ϵ = 29 during training. Refer to reward
plots in Fig. 6. For reward + action uncertainty the model achieves learning up to ν = 2.4 when
ϵ = 0 and ϵ = 50 during training (reward plots in Figure 7). Finally, in the case of action + state
uncertainty the model learns up to ν = 3 when µ = 0 and µ = 1 when ν = 0 (reward plots in Figure
8). This demonstrates that even when faced with two uncertain parameter, our method surpasses the
baseline performance.

Other Environments: Figure 2 shows results for Keep Away (competitive) and Physical Deception
(competitive and cooperative) environments. We observe that with both multi-parameter and single-
parameter CL outperforms the baseline.

Figure 2: Highest noise values that result in convergence for Keep Away (left) and Physical Deception (right).
For each environment, we show three figures in order - Reward, State and Action uncertainty. For the above
environments, success is defined as the agent reaching its goal within 100 steps, with model convergence defined
as a success rate exceeding 90%. Noise is only added to the agent’s reward, state and action.

5 Conclusion

We explore curriculum learning to enhance the robustness of a MARL model in the presence of multi-
modal environmental uncertainty. We devise an efficient curriculum that ultimately achieves state-of-
the-art robustness on three multi-particle environment tasks (Cooperative-Navigation, Keep-Away,
Physical Deception). Our approach outperforms the baseline across various forms of uncertainty,
including state, reward, and action uncertainty, both in single and multi-modal (dual) uncertainty
scenarios. This research holds significant promise for applications in sim-to-real scenarios. As future
work, we plan to evaluate the model’s performance in sim-to-real settings.
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[13] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathematics of
Operations Research, 38(1):153–183, 2013. 2

[14] Annie Xie, Shagun Sodhani, Chelsea Finn, Joelle Pineau, and Amy Zhang. Robust policy learning over
multiple uncertainty sets. In International Conference on Machine Learning, pages 24414–24429. PMLR,
2022. 2

[15] Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain transition
matrices. Operations Research, 53(5):780–798, 2005. 2
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6 Notations

6.1 Markov game

The interaction among multiple agents can be modeled as markov game G [27], which can be defined as a tuple,

G = ⟨N , {Si}i∈N , {Ai}i∈N , {Ri
s}(i,s)∈N×S , {Ps}s∈S , γ⟩.

Here N = [N ] denotes the set of N agents, Si and Ai denotes the state space and action space of agent
i ∈ N respectively. S = S1 × · · · × SN is the joint state space. Ri : S × A1 × · · · × AN → R represents
the reward function of agent i, which depends on the current state and the joint action of all agents. P :
S × A1 × · · · × AN → ∆(S) represents the state transition probability that is a mapping from the current
state and the joint action to the probability distribution over the state space. γ ∈ [0, 1) is the discounting
factor. At time t, agent i chooses its action ai

t according to policy πi : Si → ∆(Ai). The agents’ joint policy
π = Πi∈Nπi : S → ∆(A).

6.2 Robust Nash Equilibrium in MARL with multi-modal uncertainty
In this section, we define the solution for the general robust Markov game in equation 1. Uncertainty in one
model parameter influences others, while real-world scenarios may involve additional stochasticity. Ideally,
we’d like to make our model robust to all four model uncertainties, but dealing with all four is complex. Most
prior work focuses on single uncertainties (state [9], action [10], reward [8]). This is due to the complexity of
finding Nash equilibrium and the optimal Bellman equation. Now, we define the Bellman equation for the value
function, encompassing all four uncertainties: state, action, reward, and transition dynamics. We follow the
maximin approach of optimization where we minimize the Bellman equation for each agent i with respect to the
four uncertainty sets and maximize with respect to its policy πi. Our aim is to select the entries P̄ , R̄i

s, s̄, ā, from
uncertainty set P̄s, R̄i

s, Ō, Ā that minimises the expected return. Thus, the optimal Bellman equation will be,

V̄ i
∗ (s

i) = max
πi(.|si)

min
P̄ (.|s,.)∈P̄s

R̄i
s∈R̄i

s
s̄∈Ō
ā∈Ā

∑
a∈A

N∏
j=1

πj(aj |s̄j)(R̄i(s, ā) + γ
∑
s′∈S

P̄ (s′|s, ā)V̄ i
∗ (s

′)),

where s̄ = {s̄1, s̄2, ...s̄N} and ā = {ā1, ā2, ...āN}. The true state of an agent remains unaltered, with only the
state perceived by other agents being perturbed. As a result, policy πi takes perturbed state s̄i as input whereas
reward R and transition dynamics P function takes true state s as input. Policy πi(.|s̄i) generates true actions a
which are then perturbed by the environment to become ā. The reward R and transition dynamics P function
takes perturbed ā as input and undergo perturbation themselves. If an optimal value function exists, then we
define the existence of robust Nash equilibrium (RNE). RNE is the solution for the robust Markov game. Check
appendix section 6.5 for the definition.

Theorem 1: Existence of robust Nash equilibrium → Existence of optimal value function.

For detailed proof check appx 7. Theoretically proving the existence of NE policy for the Ḡgeneral is out of the
scope of this work. [9] find NE for state uncertainty (shown in appx. 8) and [8] find NE for reward/transition
dynamics uncertainty (shown in appx 9).

6.3 Nash Equilibrium in MARL

NE is one of the commonly used solution concept in multi-agent static games. We will now introduce NE in
MARL The expected return in case of multi agent RL for ith agent is

V i
π(s) = E[

∞∑
t=0

γtrit|s0 = s, ai
t ∼ πi(.|st), a−i

t ∼ π−i(.|st)],

where −i represents the indices of all agents except agent i, and π−i = Πi ̸=jπj refers to the joint policy of
all agents except agent i. In order to find the optimal robust value function for the single agent the other agent
policies are considered stationary. Since all policies are evolving continuously and expected return is dependent
on all agent policies, one commonly used solution for optimal policy π∗ = {π∗

1 , π
∗
2 , . . . π

∗
N} is nash equilibrium.

π∗ is called Markov perfect Nash Equilibrium. Optimal value function is defined by,

V i
∗ (s) = max

πi(.|s)

∑
a∈A

N∏
j=1

πj(aj |sj)(Ri(s, a) + γ
∑
s′∈S

P (s′|s, a)V i
∗ (s

′)). (2)

Non-stationarity is one of the main reasons for difficulty in MARL convergence, which is further attenuated with
uncertainty.
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6.4 Uncertainty in RL

In this section we explain the different types of uncertainty in RL and introduce our uncertainty model for each.

Uncertainty can be categorised into two kinds, aleatoric and epistemic. Aleatoric uncertainty or statistical
uncertainty originates from the statistic nature of the environment and interactions with the environment. This
uncertainty can be modeled and evaluated but cannot be reduced. Whereas epistemic uncertainty or model
uncertainty originates from current limitations of training the neural network and is reducible. There are 3 main
potential sources of aleatoric uncertainty in RL [29] which corresponds to the three main components of the
MDP, stochastic rewards, stochastic observations, and stochastic actions. However, stochastic observations can
occur due to stochastic transition dynamics as well as stochastic observations itself.

Stochastic rewards would mean that for every state and action pair, we now have a distribution of the reward
rather than a fixed reward. Rewards only play a role during training and not during testing. Thus developing a
robust system to reward uncertainties imply that we are able to train the model to converge and achieve the goal
even with high reward uncertainty. The model we have used for stochastic reward function is defined as:

R̄i(s, a) = Ntrunc(R
i(s, a), ϵ), (3)

where Ri is true reward for agent i, R̄i is perturbed reward, ϵ is standard deviation and Ntrunc is truncated
normal distribution truncated at 2ϵ. Increasing ϵ will increase the uncertainty.

The stochastic observations can stem from stochastic transition dynamics or stochastic observations itself. If
the P function in the MDP is non-deterministic, then the transition from one state to the next is a source of
uncertainty. Thus, stochastic transition dynamics means that for every current state and action pair, we now
have a distribution over the next state and not a fixed specific next state.

In the other scenario of stochastic observations, the true state of the system remains unchanged and only the
observed state is perturbed. The input to the policy network is the perturbed state, but for the reward and
transition dynamics functions input is the true state. The model we have used for stochastic observation
function is:

s̄i = Ntrunc(s
i, µ), (4)

where s is true state, s̄ the perturbed state, µ is standard deviation and Ntrunc is truncated normal distribution
truncated at 2µ. Increasing µ will increase the uncertainty.

The stochastic actions means that there is uncertainty in about the next state due to uncertain actions. One
example is any stochastic policy algorithm (PPO, SAC) in which the action is chosen from a distribution instead
of a deterministic point. We define our model for stochastic actions as:

āi = Ntrunc(a
i, ν), (5)

where a is true action, ā the perturbed action, ν is standard deviation and Ntrunc is truncated normal distribution
truncated at 2ν. Increasing ν will increase the uncertainty.

Note that the range of value of observations and actions is quite small as compared to that of reward. Thus, the
magnitude of robustness is different for different uncertainty parameters.

6.5 Robust Nash Equilibrium

Definition 1: (Robust Nash Equilibrium) Given a Markov game Ḡgeneral with state, reward, action and transition
dynamics uncertainty, a joint policy π∗ = {π1

∗, π
2
∗ . . . π

N
∗ } is said to be RNE for i ∈ N , s ∈ S, iff there exists

optimal value function V∗ = {V 1
∗ , V

2
∗ , . . . V

N
∗ } and satisfies,

πi
∗(.|si) ∈ argmax

πi(.|si)
min

P̄ (.|s,.)∈P̄s
R̄i

s∈R̄i
s

s̄∈Ō
ā∈Ā

∑
a∈A

πi(ai|s̄i)
∏
i ̸=j

πj
∗(a

j |s̄j)(R̄i(s, ā) + γ
∑
s′∈S

P̄ (s′|s, ā)V̄ i
∗ (s

′)).
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6.6 Algorithm

Algorithm 1 Reward With State/Action Uncertainty

Require: ∆ϵ,∆µ/ν
ϵ← 0, µ/ν ← 0
ϵconverged ← False,
µ/νconverged ← False
TrainT illSuccess(ϵ, µ/ν)
µ/ν ← SkipAhead(µ/ν)
while not (ϵconverged and µ/νconverged) do

if not ϵconverged then
ϵ← ϵ+∆ϵ
ϵconverged ← TrainToSucc(ϵ, µ/ν)

end if
if not µ/νconverged then

µ/ν ← µ/ν +∆µ/ν
µ/νconverged ← TrainToSucc(ϵ, µ/ν)
µ/ν ← SkipAhead(µ/ν)

end if
end while

7 Proof for Theorem 1: Existence of robust Nash Equilibrium→ Existence of
optimal Value Function

This proof has been conducted for reward and transition dynamics uncertainty [8] but not for partially observable
games. It has also been explored for state uncertainty [9]. We focus on developing the general proof when all
possible uncertainties are present in MARL.

Lets define the non-linear operator on L such that,

Livi(s) = max
πi(.|si)

min
ρ

[∑
a∈A

R̄i(s, ā) + γ
∑
s′∈S

P̄ (s′|s, ā)vi(s′)

]
, where ρ = {P̄ , R̄, s̄, ā}

We can think of ρ as adversarial strategy that is playing against the good policy π by selecting the values
{P̄ , R̄, s̄, ā} from their respective uncertainty sets such that it minimises the expected return.

Let u and v be two value functions in V. Let {πu
∗ , ρ

u
∗} and {πv

∗ , ρ
v
∗} be two different Nash Equilibrium with

respect to Ḡgeneral.

Livi(s) =
∑
a∈A

R̄i(s, ā)(πv
∗ ,ρv∗) + γ

∑
s′∈S

P̄ (s′|s, ā)(πv
∗ ,ρv∗)v

i(s′)

, where ρv∗ = {P̄ , R̄, s̄, ā} is the optimal value that minimises the value function equation.

Liui(s) =
∑
a∈A

R̄i(s, ā)(πu
∗ ,ρu∗ ) + γ

∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρu∗ )u

i(s′)

, where ρu∗ = {P̄ , R̄, s̄, ā} is the optimal value that minimises the value function equation.

Its intuitive that optimal π∗ maximizes the above equation, whereas optimal ρ∗ minimises the above equation.
Therefore we can write the following equation,

∑
a∈A

R̄i(s, ā)(πu
∗ ,ρv∗)+γ

∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρv∗)v

i(s′) ≤ Livi(s) ≤
∑
a∈A

R̄i(s, ā)(πv
∗ ,ρu∗ )+γ

∑
s′∈S

P̄ (s′|s, ā)(πv
∗ ,ρu∗ )v

i(s′)

∑
a∈A

R̄i(s, ā)(πv
∗ ,ρu∗ )+γ

∑
s′∈S

P̄ (s′|s, ā)(πv
∗ ,ρu∗ )u

i(s′) ≤ Liui(s) ≤
∑
a∈A

R̄i(s, ā)(πu
∗ ,ρv∗)+γ

∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρv∗)u

i(s′)

9



(a) Now lets assume, Livi(s) ≤ Liui(s)

0 ≤ Liui(s)− Livi(s)

≤

[∑
a∈A

R̄i(s, ā)(πu
∗ ,ρv∗) + γ

∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρv∗)u

i(s′)

]
−

[∑
a∈A

R̄i(s, ā)(πu
∗ ,ρv∗) + γ

∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρv∗)v

i(s′)

]
≤ γ

∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρv∗)(u

i(s′)− vi(s′))

≤ γ||ui(s′)− vi(s′)||

(b) Assuming , Liui(s) ≤ Livi(s) and following the same argument as before we get,

Livi(s)− Liui(s) ≤ γ||vi(s′)− ui(s′)||

Thus, combining (a) and (b), we get,

||Livi(s)− Liui(s)|| ≤ γ||vi(s′)− ui(s′)||

Thus, Li is a contraction mapping on V

Now since ||v|| = supi ||vi||, we can write the following -

||Lv − Lu|| = sup
i

||Livi − Liui|| ≤ γ sup
i

||vi − ui|| = γ||v − u||

Thus, L is a contraction mapping on V

8 Nash Equilibrium for state uncertainty in MARL

A nice proof for the conditional existence of Nash equilibrium is done in [30] for the case of state uncertainty.
They define the following robust Markov game,

G = {N ,M, {Si}i∈N , {Ai}i∈N , {Bi}i∈N , {ri}i∈N , p, γ}

N = {1, 2, ..., N} is the set of N agents and M = {1̄, 2̄, ..., N̄} is the corresponding set of N adversaries.
γ ∈ [0, 1) is the discount factor. S = S1 × S2... × SN is the joint state space. A = A1 × A2... × AN is
the joint action space. p : S × A → ∆(S) are the state transition probabilities. ri is the reward function for
each agent. Every agent i is associated with an adversary ī. The adversary perturbs the true state of each agent
si ∈ Si by producing an action bi ∈ Bi. The perturbed state s̄i = f(si, bi) where f is a unique bijection given
the state si.

The Markov game G is shown to be equivalent to a zero-sum two-person extensive-form game with finite
strategies and perfect recall in [30].

8.1 Extensive-form game

An extensive-form game (EFG) is a tree-based representation of a game. An EFG has one root node which
indicates the start of the game. Each node branches out into multiple children nodes and each branch represents
one possible action. The leaf nodes indicate the end of the game and contain the pay-off/reward for the actions
specified by the path from the root node to the leaf node.

The robust optimization equation can be decomposed into a two-player EFG. The first player is the
nature/combined adversary who selects the perturbed state and the next player is the combined agent which
chooses the best action according to the policy to be learned. The nature player has |S̄| possible choices for
the action and the agent player has |A| choices where A = A1 ×A2 × ...×An i.e. the space of all possible
actions for all agents. The reward for the nature player is the negative of the reward obtained by the action taken
by the combined agent.

The Bellman equation for the above game G is written as below:

vi(s) = max
πi

min
ρi

E

∑
s
′∈S

p(s
′
|s, a, b)[ri(s, a, b) + γvi(s)]|a ∼ π(·|s̄), b ∼ ρ(·|s)
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In order for the NE (and the optimal solution to the above equation) to exist, below conditions need to be met:

• Si, Ai and Bi must be finite sets ∀i ∈ N .

• |ri(s, a, b)| < Mi < M < ∞ ∀ i ∈ N, a ∈ A, b ∈ B and s ∈ S

• Stationary reward and transition probabilities

• f is a bijection for a given si

• All agents have the same reward function.

9 NE for reward and transition dynamics uncertainty in MARL

In this section, we show how uncertainty in reward and transition dynamics is handled in a multi-agent setting.
We follow [16] and use the following definition of robust Markov game.

Ḡ = ⟨N ,S, {Ai}i∈N , {R̄i
s}(i,s)∈N×S , {P̄s}s∈S , γ⟩

Note: In this proof following [16] st denotes the system state and not the individual agent state. The expected
return in case of multi-agent RL with no uncertainty for ith agent is -

V i
π(s) = E[

∞∑
t=0

γtrit|s0 = s, ai
t ∼ πi(.|st), a−i

t ∼ π−i(.|st)]

where −i represents the indices of all agents except agent i, and π−i = Πi ̸=jπj refers to the joint policy
of all agents except agent i. In order to find the optimal robust value function for the single agent the other
agent policies are considered stationary. Since all policies are evolving continuously and expected return is
dependent on all agent policies, one commonly used solution for optimal policy π∗ = {π∗

1 , π
∗
2 , . . . π

∗
N} is Nash

equilibrium. Non-stationarity is also one of the main reasons for difficulty in MARL convergence as compared
to single agent RL which also reflects when uncertainty is added.

We now introduce uncertainty in rewards and transition dynamics. Thus, the desired policy should now not
only be able to play against other agents’ policies but also robust to the possible uncertainty of the MARL
model. Each player considers a distribution-free Markov game to be played using robust optimization. To find
the optimal value function we focus on the following idea from [16]. If the player knows how to play in the
robust Markov game optimally starting from the next stage on, then it would play to maximize not only the
worst-case (minimal) expected immediate reward, due to the model uncertainty set at the current stage, but also
the worst-case expected reward incurred in the future stages. Formally, such a recursion property leads to the
following Bellman-type equation:

V̄ i
∗ (s) = max

πi(.|s)
min

P̄ (.|s,.)∈P̄s
R̄i

s∈R̄i
s

∑
a∈A

N∏
j=1

πj(aj |s)(R̄i(s, a) + γ
∑
s′∈S

P̄ (s′|s, a)V̄ i
∗ (s

′))

The corresponding joint policy π∗ = {π1, π2 . . . πN} is robust Markov perfect Nash equilibrium.
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10 Environment Details and Training Parameter Details

Cooperative navigation (CN): This is a cooperative game. There are 3 agents and 3 landmarks. Agents are
rewarded based on how far any agent is from each landmark. Agents are penalized if they collide with other
agents. So, agents have to learn to cover all the landmarks while avoiding collisions.

Keep away (KA): This is a competitive task. There is 1 agent, 1 adversary, and 1 landmark. The agent knows
the position of the target landmark and wants to reach it. The adversary is rewarded if it is close to the landmark
and if the agent is far from the landmark. The adversary should learn to push the agent away from the landmark.

Physical deception (PD): This is a mixed cooperative and competitive task. There are 2 collaborative agents,
2 landmarks, and 1 adversary. Both the collaborative agents and the adversary want to reach the target, but
only collaborative agents know the correct target. The collaborative agents should learn a policy to cover all
landmarks so that the adversary does not know which one is the true target.

11 Reward Plots for Experiments

11.1 Cooperative Navigation Environment

(a) Reward uncertainty. (b) State uncertainty. (c) Action uncertainty.

Figure 3: Cooperative Navigation: Baseline Performance. Success rate vs training time. An episode is
successful if all landmarks are occupied by all agents. Reward uncertainty shows good performance until ϵ=9
(left), state uncertainty until µ=0.5 (middle) and action uncertainty until ν=2.0 (right).

(a) Reward Uncertainty. (b) State Uncertainty. (c) Action Uncertainty.

Figure 4: Cooperative Navigation: CL Method Performance. This plot shows the changing reward as the
noise value is incremented in the CL method for the three uncertain parameters separately. Reward uncertainty
learns until ϵ=47 (left), state uncertainty until µ=1.1 (middle), and action uncertainty learns until ν=2.2 (right).
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(a) Reward plot for baseline for
various ϵ in reward uncertainty.
Baseline was able to learn only
till ϵ = 9.

(b) Reward plot for baseline for
various µ in state uncertainty. The
baseline was able to learn only till
µ = 0.5.

(c) Reward plot for baseline for
various ν in action uncertainty.
The baseline was able to learn
only till µ = 2.0.

Figure 5: Cooperative Navigation: Baseline Performance. Rewards vs training time. Reward uncertainty
shows good performance until ϵ=9 (left), state uncertainty shows good performance until µ=0.5 (middle) and
action uncertainty shows good performance until ν=2.0 (right).

(a) Reward changes with µ (b) Reward changes with ϵ

Figure 6: Reward plot for lookahead CL for the case of multiple uncertainties (reward and state) showing the
changing reward for various µ (left) and ϵ (right).

(a) Reward changes with ν (b) Reward changes with ϵ

Figure 7: Reward plot for lookahead CL for the case of multiple uncertainties (reward and action) showing the
changing reward for various ν (left) and ϵ (right).
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(a) Reward changes with µ (b) Reward changes with ν

Figure 8: Reward plot for lookahead CL for the case of multiple uncertainties (state and action) showing the
changing reward for various µ (left) and ν (right).

11.2 Keep Away Environment

(a) Time taken by agent to reach
the goal in reward uncertainty.

(b) Reward changes for various µ
in state uncertainty.

(c) Reward changes for various ν
in action uncertainty.

Figure 9: Keep Away: Baseline Performance. For reward uncertainty we show the plot between number of
steps taken by an agent to reach the goal vs training time. This is because due to reward uncertainty reward is
noisy and hence a plot of noisy reward will not give good conclusions. We observe that this number saturates for
ϵ = 40 but for number higher that this, its heavily fluctuating hence concluding that reward uncertainty learns
until ϵ = 40. For state and action uncertainty we show reward vs training time. State uncertainty shows good
performance until µ=0.9 (middle) and action uncertainty shows good performance until ν=2.0 (last).

(a) Reward Uncertainty. (b) State Uncertainty. (c) Action Uncertainty.

Figure 10: Keep Away: CL Method Performance. This plot shows the changing reward as the noise value is
incremented in the CL method for the three uncertain parameters separately. Reward uncertainty learns until
ϵ=43 (left), state uncertainty until µ=2.5 (middle), and action uncertainty learns until ν=3.1 (last).
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