

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LOCAL SUCCESS DOES NOT COMPOSE: BENCHMARKING LARGE LANGUAGE MODELS FOR COMPOSITIONAL FORMAL VERIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite rapid advances in code generation, current Large Language Models (LLMs) still lack an essential capability for reliable and verifiable code generation: compositional reasoning across multi-function programs. To explore this potential and important gap, we introduce DAFNYCOMP, a benchmark designed to systematically evaluate LLMs on the generation of compositional specifications in Dafny. Unlike prior benchmarks that primarily target single-function annotation, DAFNYCOMP focuses on programs composed of multiple interacting functions with necessary data dependencies, requiring LLMs to produce specifications that ensure correctness across component boundaries. Our benchmark comprises 300 automatically synthesized programs, each carefully constructed by combining 2–5 originally independent functions in a chain-based manner through LLM-driven synthesis. We evaluate LLMs from five leading research groups that represent the current frontier of reasoning-centric AI, including the GPT, CLAUDE, GEMINI, DEEPSEEK, and QWEN families. Our results reveal a striking dichotomy: while LLMs achieve both high syntax correctness (>99%) and moderate verification rates (>58%) in prior single-function benchmarks, they exhibit degraded syntax correctness (95.67%) and a catastrophic verification failure (3.69%) in DAFNYCOMP’s compositional tasks—a 92% performance gap. Even the most powerful LLM achieves only 7% verification at Pass@8, with most LLMs below 2%. Further analysis reveals that LLMs systematically fail at cross-functional reasoning through three primary failure modes: *specification fragility* (39.2%), *implementation-proof misalignment* (21.7%), and *reasoning instability* (14.1%). These failures clearly reveal the absence of compositional reasoning capabilities in current LLMs. DAFNYCOMP thus establishes a diagnostic benchmark for tracking progress in verifiable code generation with LLMs, highlighting that the path from local to compositional verification remains largely uncharted.

1 INTRODUCTION

Large language models (LLMs) have transformed software development through their remarkable code generation capabilities, enabling developers to produce complex programs from natural language descriptions (Chen et al., 2021; Austin et al., 2021). These advances have driven widespread adoption of programming assistants and development environments, fundamentally transforming how modern software is developed. As LLM-generated code becomes increasingly integrated into production systems, a critical question emerges: *how to ensure the correctness of automatically synthesized programs*. Unlike human-written code that can be manually reviewed and tested, the scale and complexity of LLM outputs demand systematic approaches to verification that go beyond traditional debugging methods. On the other hand, conventional testing provides only partial confidence and cannot rule out rare corner cases or subtle specification mismatches.

Formal verification provides a principled solution to this challenge by offering mathematical guarantees of program correctness through rigorous specification and proof techniques. Programming languages like Dafny enable developers to express precise contracts—preconditions, postconditions, and invariants—that can be mechanically verified against implementations (Leino, 2010b). However, the adoption of formal verification has historically been constrained by what we often refer to as the “specification bottleneck”: writing comprehensive annotations not only demands specialized

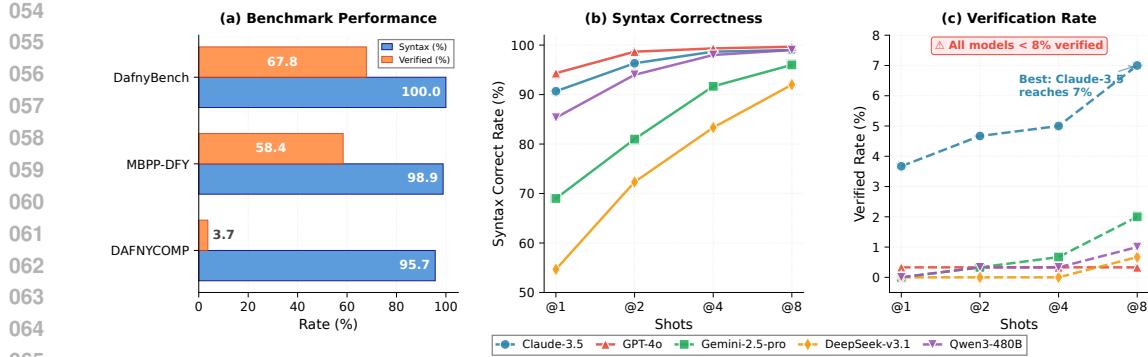


Figure 1: **The formal verification gap: high syntax success versus low verification rates.** (a) Benchmark performance reveals a dramatic gap between syntax correctness and verification success, with DAFNYCOMP showing a 92% drop from 95.67% to 3.69%. (b) All models converge to high syntax correctness at @8 shots, with performance ranging from 92% to 99%. (c) Verification rates remain critically low (<8%) across all models despite increased sampling, with Claude-3.5 achieving the highest rate at only 7%.

expertise but also produces specification code that is comparable in size to the implementation itself (Leino et al., 2017; Loughridge et al., 2024b). Recent research has explored the use of LLMs to automate this specification generation process, demonstrating promising results where models can complete missing annotations for individual functions and achieve moderate verification success rates (Loughridge et al., 2024a; Yan et al., 2025). However, current work in this area often suffers from a critical limitation: existing benchmarks, such as DAFNYBENCH, primarily evaluate annotation completion within isolated functions (Loughridge et al., 2024a), failing to address the compositional reasoning ability required for real-world, sophisticated software systems, where correctness emerges from complex interactions between multiple components (Keyser et al., 2020).

To fill this gap, we introduce DAFNYCOMP, the first benchmark explicitly designed to evaluate the generation of compositional specifications for programming languages equipped with formal verification. Concretely, we make the following contributions:

Contribution 1. To address the limitations of prior verification benchmarks, we present DAFNYCOMP, a new benchmark explicitly designed for compositional formal verification (§3). Unlike existing datasets such as DAFNYBENCH (Loughridge et al., 2024a) that focus on specification generation for isolated single functions, DAFNYCOMP evaluates LLMs on programs composed of multiple interacting functions with real data dependencies. The benchmark consists of 300 Dafny programs synthesized by combining 2–5 independent functions, forcing models to reason across function boundaries to ensure end-to-end correctness. Note that our design is the first to require actual compositional reasoning in specification generation, bridging a critical gap left by prior benchmarks and reflecting the complexities of real-world software systems.

Contribution 2. We comprehensively evaluate 13 state-of-the-art LLMs on the constructed DAFNYCOMP (§4) benchmark, including advanced models like GPT-4o, CLAUDE 3.5, GEMINI 2.5, DEEPSPEEK-V3.1, and QWEN3-CODER. The results reveal a dramatic collapse in verification performance despite high syntactic accuracy: while the models produce syntactically correct code for approximately 95.7% of the tasks, only 3.7% of their outputs actually pass the formal verifier. This staggering 92% gap between syntax success and semantic correctness persists across all model families, prompt settings, and sampling strategies. Even with up to 8 attempts per problem, the best model attains only around 7% verification success, indicating that increasing sampling or context does not remedy the fundamental limitation.

Contribution 3. We carefully analyze the failure cases in the benchmark, which pinpoints three primary failure modes underlying this breakdown (§5), highlighting systemic obstacles to compositional reasoning in current LLMs:

- **(i) Specification fragility:** we observe the brittleness of generated specifications wherein small omissions, over-/under-strengthening, or inconsistent framing (`reads/modifies`) clauses can invalidate downstream proofs. Concretely, in compositional settings, a missing or slightly weaker

108 postcondition at one stage can fail to imply a callee’s precondition, triggering a domino effect
 109 along the call chain even when each component appears locally reasonable.
 110

- 111 • (ii) *Implementation-proof misalignment*: We identify inconsistencies between the produced code
 112 and its associated specifications or proofs, indicating that models often generate implementations
 113 and annotations via largely independent pathways. Typical symptoms include plausible-but-false
 114 loop invariants, contradictory `requires`/`ensures` obligations, or termination metrics that do
 115 not match control flow, any of which cause verification to fail despite syntactic well-formedness,
 116 and in composed programs they immediately block end-to-end proofs because component con-
 117 tracts can no longer be trusted as summaries.
- 118 • (iii) *Reasoning instability*: we witness a tendency to lose the inductive thread of the argument
 119 over multiple steps, leading to invariants that are not preserved, incomplete coverage of cases,
 120 or missing well-founded `decreases` measures. These errors are most evident in composition,
 121 where maintaining complex state relationships across iterations and function boundaries is crucial
 122 for end-to-end correctness.

123 These failure modes were pervasive in the models’ outputs, revealing a fundamental absence of
 124 robust compositional reasoning capabilities. By identifying these issues, DAFNYCOMP serves as
 125 a diagnostic benchmark for the community, enabling systematic measurement of progress toward
 126 LLMs that can verify complex multi-component programs.
 127

2 RELATED WORK

128 **Formal Verification Benchmarks.** Existing benchmarks for verifiable code generation can be
 129 categorized into two types. Single-function benchmarks, such as DAFNYBENCH (Loughridge
 130 et al., 2024a) and MBPP-DFY (Misu et al., 2024), evaluate annotation completion within iso-
 131 lated methods, achieving moderate success rates (50-60%) but failing to capture inter-function de-
 132 pendencies. Interactive theorem proving benchmarks (miniCodeProps (Lohn & Welleck, 2024),
 133 FVAPPS (Dougherty & Mehta, 2025)) target proof synthesis in systems like Lean (De Moura et al.,
 134 2015) but require extensive manual validation and remain disconnected from practical programming.
 135 DAFNYCOMP bridges this gap by evaluating compositional specification generation—a prerequisite
 136 for scaling verification beyond toy programs to production systems. Unlike prior work, we explicitly
 137 construct multi-function programs with data dependencies, exposing the compositional reasoning
 138 deficit in current models (see Appendix C for detailed comparison).

139 **Dynamic Benchmark Generation.** Static benchmarks suffer from contamination and overfit-
 140 ting (Hu et al., 2025; Zhang et al., 2024). Dynamic generation techniques—creating new tasks,
 141 transforming problems, or perturbing reasoning structures (Zhu et al., 2024; 2023)—show promise
 142 in mathematics and logic but neglect formal verification’s unique demands: specifications must
 143 be syntactically valid, semantically precise, and correct across all execution paths. Our synthesis
 144 pipeline addresses this by generating verifiable multi-function Dafny programs through controlled
 145 composition, ensuring both novelty and correctness while maintaining the semantic complexity that
 146 exposes compositional reasoning gaps.

147 **Compositional Reasoning in LLMs.** The ability to systematically combine simpler units into cor-
 148 rect larger structures remains a frontier challenge (Li et al., 2024; Dziri et al., 2023). While progress
 149 exists in natural language and symbolic domains, formal verification imposes stricter demands:
 150 specifications must preserve invariants across components and ensure global correctness. Existing
 151 training paradigms favor pattern matching over principled proof construction. By requiring models
 152 to generate specifications bridge function boundaries with explicit data dependencies, DAFNYCOMP
 153 provides the first diagnostic benchmark for compositional reasoning in formal verification.

3 BENCHMARK CONSTRUCTION

154 DAFNYCOMP synthesizes 300 verified multi-function programs through a two-stage pipeline (Fig-
 155 ure 2), including program assembly (§3.1) and formal translation (§3.2), which bridges the gap
 156 between practical Python implementations and verification-oriented Dafny specifications. Within
 157 this pipeline, program assembly ensures the construction of compositional Python programs with
 158 functional correctness, while specification translation with refinement ensures the quality and reli-
 159 ability of the resulting data. We also provide format details of evaluation tasks (§3.3) and the key
 160 characteristics of the benchmark (§3.4).

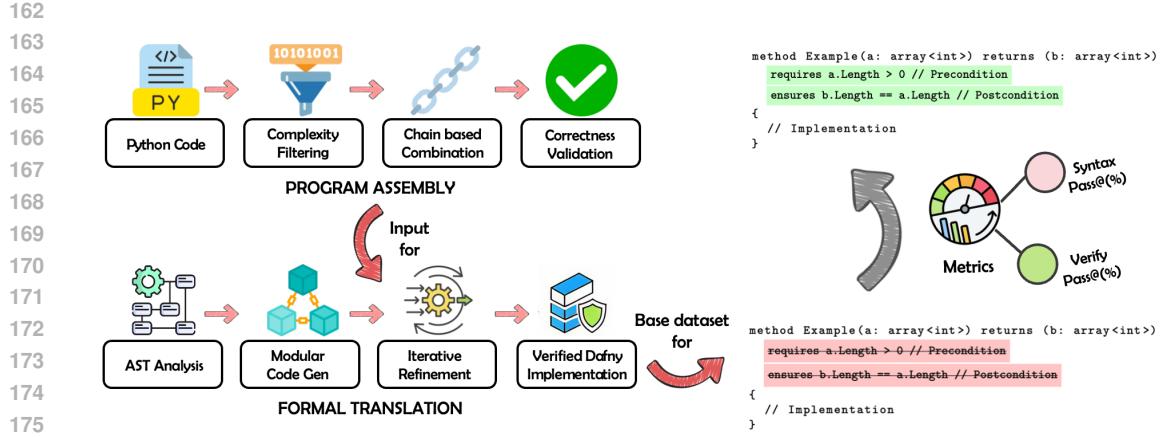


Figure 2: Two-stage benchmark synthesis: (1) Assembly combines independent Python functions with controlled data flow, ensuring algorithmic complexity while maintaining tractability; (2) Formal translation converts to verified Dafny through incremental AST-guided transformation.

3.1 PROGRAM ASSEMBLY

We construct compositional programs by systematically combining functions from LEETCODEDATASET (Xia et al., 2025), selected for their algorithmic depth and verification challenges.

Function Selection. We filter the corpus using McCabe’s cyclomatic complexity (McCabe, 1976) as a proxy for verification difficulty, retaining only functions with complexity > 5 (around top 30% of the dataset) and at least 10 lines of code. This threshold ensures non-trivial control flow—loops with complex termination conditions, nested conditionals, recursive patterns—that stress specification generation. For tractability, we restrict to single-input/single-output functions, yielding 1,847 candidate functions.

Compositional Strategy. Following Hu et al. (2025), we employ chain-based composition where each function’s output feeds the next’s input, creating explicit data dependencies. While more complex call graphs (trees, DAGs) are theoretically richer, empirical trials showed synthesis success drops from 47% (chains) to <8% (arbitrary graphs) while providing no additional diagnostic value—the chains suffice to expose compositional failures. After composition, we further identify the minimal set of shared import dependencies across the combined Python functions. This step is essential because the original LEETCODEDATASET often relies on broad `import *` statements, which obscure library ownership and names. Without explicit mappings, Dafny cannot interpret external libraries, preventing the synthesis of intermediate functions to replace missing third-party features. We generate programs with 2–5 functions, exploring multiple permutations since function ordering affects both data flow and verification complexity.

Validation Pipeline. After composition, the resulting Python code is subjected to a three-stage validation pipeline, which filters candidates before their use in Section 3.2.

- (i) *Type checking via constraint propagation:* We statically infer candidate types and shapes for each function’s inputs and outputs and propagate these constraints along the composition chain. This pass rejects compositions with incompatible interfaces (e.g., scalar-sequence or element-type mismatches) and flags violations of simple value constraints inferred from guards (such as non-negativity or length bounds). The result is a set of compositions whose interfaces are consistent end-to-end, providing a reliable basis for subsequent translation and verification.
- (ii) *Formatting standardization:* We apply a deterministic rewriter, implemented with tools such as Black and `isort`, to normalize code style, including indentation, whitespace, line breaking, and import organization. Canonicalizing these incidental variations yields stable, diff-friendly artifacts and reduces prompt variance in later stages. This step preserves semantics while producing uniform program layouts that are easier to parse, translate, and verify.
- (iii) *Test validation:* We execute each composed program against the reference unit tests from LEETCODEDATASET to confirm functional correctness and basic executability. [We construct](#)

216 unit tests for composed functions by intersecting the input–output constraints of their constituent
 217 functions. If the intersection is empty, the sample is discarded. Programs that raise runtime
 218 exceptions, fail assertions, or produce incorrect outputs are discarded, ensuring only behaviorally
 219 sound compositions advance. This filtering isolates verification challenges to specification and
 220 reasoning rather than implementation errors during the Dafny translation stage.

221 Following this procedure, we obtain 1,200 valid Python programs with 2–5 functions, which will be
 222 used in the next stage.
 223

224 3.2 FORMAL TRANSLATION

225 We translate validated Python compositions into Dafny implementations with formal guarantees,
 226 focusing on the verification-oriented aspects of the benchmark here.
 227

228 **Translation Challenges.** Direct end-to-end translation from Python to Dafny proved largely in-
 229 effective, with empirical success rates below 5%. The core difficulty lies in Dafny’s demand for
 230 explicit specifications, invariants, and termination arguments—semantic elements absent in Python.
 231 This semantic gap makes single-pass translation infeasible for non-trivial programs.

232 **Incremental Pipeline.** Inspired by Wen et al. (2024), we adopt an incremental approach: the
 233 abstract syntax tree (AST) of each Python program is decomposed into function- or control-
 234 structure–level fragments. Each fragment is translated into Dafny and immediately verified, lo-
 235 calizing errors to the smallest possible unit. Verified fragments are then progressively reassembled
 236 according to the AST hierarchy, culminating in a complete Dafny program. Importantly, although
 237 translation proceeds incrementally, the Python program must be composed in its entirety before it
 238 can be executed. Whole-program composition in Python provides two benefits: (i) Python’s ex-
 239 plicit AST nodes and mature tooling make program assembly more reliable and transparent; and (ii)
 240 having a coherent Python blueprint ensures that the incremental Dafny translation preserves global
 241 logical relationships, rather than producing isolated fragments that fail to compose. Thus, whole-
 242 program composition and incremental translation are complementary design choices. To further
 243 improve reliability, each candidate Dafny program undergoes up to ten refinement iterations, where
 244 specifications are strengthened in response to verifier feedback (e.g., adding loop invariants, refining
 245 postconditions, or inserting assertions). **We select CLAUDE-4-SONNET-20250514 for the entire**
 246 **synthesis and refinement process; see Appendix D for success rate comparisons and Appendix E for**
 247 **the exact prompts.**

248 In total, the pipeline ultimately yields 564 verified Dafny programs from 1,200 attempts (corre-
 249 sponding to an overall 47% success rate). Translation synthesis errors primarily arise from incom-
 250 plete specifications (31%), type inference errors (22%), timeouts (18%), and irreconcilable semantic
 251 gaps (29%). From these, we retain 300 programs carefully balanced across complexity levels (100
 252 each with 2–3, 3–4, and 4–5 functions). To ensure evaluation integrity, we conduct a thorough con-
 253 tamination analysis against MBPP-DFY (Misu et al., 2024), which is similarly synthesized from
 254 Python code as a Dafny benchmark dataset. The results in Appendix F provide strong evidence that
 255 our test set is indeed free from bias due to data overlap.

256 3.3 EVALUATION TASK FORMAT

257 We adopt a specification reconstruction task inspired by Loughridge et al. (2024a). Still, with a cru-
 258 cial difference: rather than removing all `assert` and invariant statements, we strip away the
 259 contract clauses (`requires`, `ensures`, `reads`, `modifies`, `decreases`) that appear before
 260 the opening brace of each method or function. LLMs to be evaluated are then required to regen-
 261 erate these specifications to enable verification. This design isolates the challenge of reconstructing
 262 cross-function contracts from implementation concerns, focusing evaluation on whether models can
 263 generate specifications that capture emergent correctness properties across component boundaries.
 264 Unlike annotation completion tasks that permit purely local reasoning, our multi-function programs
 265 require understanding how data flows and invariants propagate through compositions. We employ a
 266 unified prompt **together with standardized compute settings** across all evaluations (see Appendix G
 267 and Appendix H).

268 3.4 BENCHMARK STATISTICAL SUMMARY

269 The resulting benchmark comprises 300 mechanically verified Dafny test cases that jointly capture
 270 three key dimensions: compositional complexity from function-to-function call dependencies, algo-

270 rithmic diversity across multiple categories, and verification challenges arising from the increased
 271 specification burden.

272 **Compositional Complexity.** Each program contains 2–5 functions (mean = 3.2) with an average
 273 of 8.4 cross-function data dependencies, requiring models to reason about specification alignment
 274 across component boundaries. Unlike single-function benchmarks where specification generation
 275 is largely local, our programs demand that preconditions of called functions be implied by post-
 276 conditions of their callers—a requirement that introduces cascading verification challenges when
 277 specifications fail to propagate correctly.

278 **Algorithmic Diversity.** The benchmark spans 15 algorithmic categories with balanced representa-
 279 tion: dynamic programming (18%), string manipulation (20%), number theory (15%), and graph
 280 algorithms (12%) constitute the primary categories, with the remainder distributed across sorting,
 281 searching, and combinatorial problems. Beyond the balance of individual categories, diverse per-
 282 mutations and combinations of these types yield composed programs with more intricate, layered
 283 structures. Consequently, the target of composing function calls is reinforced by the characteristics
 284 of the source dataset (LEETCODEDATASET (Xia et al., 2025)), which in turn induces composition
 285 at the level of algorithmic logic. This design ensures models must develop general compositional
 286 reasoning rather than memorizing category-specific patterns.

287 **Verification Challenges.** Every program is mechanically verified by Dafny 4.10.0, thereby provid-
 288 ing ground-truth correctness. The median program requires 7 loop invariants and 4 assertions for
 289 verification, with 23% demanding intricate termination arguments via `decreases` clauses—a 3.5×
 290 increase in annotation density compared to DAFNYBENCH’s average of 2 per program. This added
 291 specification burden reflects the extra complexity of compositional verification, creating a graduated
 292 challenge that pinpoints where current models shift from local reasoning to compositional failure.

294 4 EXPERIMENTAL SETUP AND RESULTS

295 In this section, we enumerate the evaluation metrics (§4.1), LLM model selection for the benchmark
 296 (§4.2), and the corresponding evaluation results (§4.3).

300 4.1 METRICS

301 We evaluate two complementary aspects of model performance:

- 302 • **Syntax Correctness:** measures whether generated specifications parse successfully in Dafny.
 303 This baseline metric captures models’ grasp of the formal language syntax.
- 304 • **Verification Rate:** measures the fraction of syntactically correct programs that pass Dafny’s veri-
 305 fier—the ultimate test of semantic understanding. This metric is computed only over syntactically
 306 valid outputs, as verification requires parseable code.

307 Following Chen et al. (2021), we report Pass@ k for $k \in \{1, 2, 4, 8\}$, measuring the overall probabili-
 308 ty of successfully solving a problem within k attempts. Pass@1 provides a strict zero-shot baseline
 309 of immediate reasoning ability, whereas larger k values further exploit additional test-time compute
 310 to improve success on compositional tasks (Snell et al., 2024). In this setting, Pass@8 is particularly
 311 informative for clearly distinguishing model robustness and adaptability.

312 4.2 MODEL SELECTION

313 We evaluate 13 frontier models spanning five architectural families, chosen for their demonstrated
 314 strength in code generation and general reasoning:

- 315 • **OpenAI:** GPT-4O (Hurst et al., 2024), GPT-4.1 (OpenAI, 2024), o4-MINI (OpenAI, 2025)
- 317 • **Anthropic:** CLAUDE-3.5-SONNET (Anthropic, 2024), CLAUDE-4-SONNET (Anthropic, 2025)
- 318 • **Google:** GEMINI-2.5-PRO, GEMINI-2.5-FLASH (Google DeepMind, 2025)
- 320 • **DeepSeek:** DEEPSEEK-R1 (Guo et al., 2025), DEEPSEEK-V3 (Liu et al., 2024), DEEPSEEK-
 321 V3.1 (DeepSeek-AI, 2025)
- 322 • **Alibaba:** QWEN2.5-CODER-32B (Hui et al., 2024), QWEN3-CODER-480B (Qwen Team,
 323 2025a), QWQ-32B (Qwen Team, 2025b)

324
 325 Table 1: Model performance reveals high syntax mastery but catastrophic verification failure. While
 326 syntax correctness reaches 99% with sufficient sampling, verification rates remain below 7% even
 327 for the best models, exposing the compositional reasoning gap.

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Model	Syntax Correct Rate (%)				Verified Rate (%)			
		@1	@2	@4	@8	@1	@2	@4	@8
OpenAI Models									
GPT-4O		94.33	98.67	99.33	99.67	0.33	0.33	0.33	0.33
O4-MINI		80.00	92.67	98.00	99.00	0.00	0.00	0.67	0.67
GPT-4.1		59.00	69.67	79.33	86.33	0.00	0.00	0.00	0.00
Anthropic Models									
CLAUDE-3.5-SONNET [*]		90.67	96.33	98.67	99.00	3.67	4.67	5.00	7.00
CLAUDE-4-SONNET [†]		95.67	97.33	98.00	98.33	2.33	3.00	3.00	3.33
Google Models									
GEMINI-2.5-FLASH		54.00	64.00	81.00	89.67	0.00	0.00	0.00	0.00
GEMINI-2.5-PRO		69.00	81.00	91.67	96.00	0.00	0.33	0.67	2.00
DeepSeek Models									
DEEPEEK-R1		85.67	95.33	98.33	99.00	0.33	0.33	0.33	0.33
DEEPEEK-V3		77.33	88.67	95.33	97.33	0.00	0.00	0.33	0.33
DEEPEEK-V3.1		54.67	72.33	83.33	92.00	0.00	0.00	0.00	0.67
Alibaba Models									
QWEN3-CODER-480B-A35B-INSTRUCT		85.33	94.00	98.00	99.00	0.00	0.33	0.33	1.00
QWEN2.5-CODER-32B-INSTRUCT		62.00	74.67	85.00	89.00	0.00	0.33	0.33	0.67
QWQ-32B		46.67	61.33	78.00	91.00	0.00	0.00	0.00	0.00

*claude-3.5-sonnet-20241022, [†]claude-4-sonnet-20250514

4.3 RESULTS AND DISCUSSION

Table 1 presents our main experimental findings. We observe a systematic verification collapse across all evaluated models, with four interesting observations:

Observation 1. *Universal verification failure despite syntactic mastery.* The most striking result is the consistent 92-percentage-point gap between syntax correctness and verification success across all models. At Pass@8, models achieve $\mu = 95.67\%$ ($SD = 4.21\%$) syntax correctness but only $\mu = 3.69\%$ ($SD = 2.14\%$) verification. This gap persists independent of: (i) model scale (480B vs 32B parameters, $p > 0.05$), (ii) training specialization (code-specific vs general-purpose), (iii) architectural family (dense, MoE, constitutional), and (iv) increased sampling (Pass@1 to Pass@8). The universality of this failure suggests a fundamental architectural limitation rather than an optimization or data issue.

Observation 2. *Non-linear scaling reveals compositional breakdown.* Comparing performance degradation from single-function (DAFNYBENCH) to multi-function (DAFNYCOMP) tasks reveals super-linear complexity scaling. With $3.2\times$ increase in functions, we observe a $14.4\times$ decrease in verification success (from $\sim 53\%$ to 3.69%). This disproportionate degradation cannot be explained solely by additive difficulty. Instead, it suggests that specification requirements grow combinatorially with function composition—each function boundary introduces $O(n^2)$ potential specification dependencies that models fail to capture.

Observation 3. *Sampling saturation indicates capability ceiling, not search limitations.* The verification-sampling curve plateaus by Pass@4 for all models, with the marginal improvement from Pass@4 to Pass@8 averaging only 0.8%. In contrast, syntax correctness continues improving (+7.3% on average), demonstrating that models can explore the output space but cannot discover valid specifications. This divergent behavior between syntax and semantics strongly suggests that current architectures lack the inductive biases necessary for compositional reasoning, rather than merely requiring better search strategies or more compute.

Observation 4. *Reasoning-specialized models show no clear advantage, thereby confirming architectural barriers.* Models explicitly optimized for reasoning (QWQ-32B with chain-of-thought focus, DEEPEEK-R1 with reinforcement learning) perform no better than general-purpose models, with QWQ-32B still achieving 0% verification even at Pass@8. The tight clustering of verification rates (coefficient of variation = 0.58) across diverse training objectives strongly indicates

378 that compositional verification requires fundamentally different architectural primitives—not refinements
 379 of existing transformer-based reasoning. This null result is particularly informative: it clearly
 380 demonstrates that neither extended reasoning traces nor reward-based optimization can overcome
 381 the absence of compositional inductive biases.

383 5 FAILURE CASE ANALYSIS AND DISCUSSION

384 Table 2: Distribution of verification failure modes across 900 analyzed cases (3 best-performing
 385 models \times 300 benchmarks) from DafnyComp.

Failure Mode	Frequency	% of Total	Primary Mechanism
Specification Fragility	353/900	39.2	Contract propagation failure
Implementation–Proof Misalignment	195/900	21.7	Independent generation pathways
Reasoning Instability	127/900	14.1	Inductive chain breakdown
Other (syntax, timeout, misc.)	225/900	25.0	Various

393 The significant gap between syntax correctness and ultimate verification success demands a clear
 394 mechanistic explanation. Through a systematic analysis of 900 (3 best-performing models \times 300
 395 benchmarks) observed verification failures across three representative model families, we identify
 396 several distinct failure modes that reveal fundamental limitations in how transformers process com-
 397 positional specifications. Table 2 presents the overall distribution of these failures, which we analyze
 398 in detail below.

399 5.1 SPECIFICATION FRAGILITY: THE DOMINO EFFECT

400 *Specification fragility*, the inability to generate contracts that remain valid across function compo-
 401 sitions, constitutes the plurality of failures. Consider a representative case from our benchmark:
 402 a `digitSum` function correctly implemented but missing the postcondition `ensures result`
 403 ≥ 0 . In isolation, this omission appears minor. In composition, it cascades—when `digitSum`’s
 404 output feeds a downstream function expecting non-negative input, verification fails globally despite
 405 both functions being locally correct. Note that this pattern recurs throughout our dataset. Models
 406 generate specifications sufficient for local correctness but insufficient for compositional soundness.
 407 A `requires n >= 0` precondition absent from one function invalidates the entire pipeline’s veri-
 408 fication, even when each component individually passes most test cases. The fragility stems from
 409 a fundamental mismatch: LLMs learn specifications as local patterns rather than global contracts.
 410 They lack the architectural machinery to reason about how data constraints propagate through func-
 411 tion calls—a capability essential for modular verification. The implications extend beyond Dafny.
 412 Any system requiring compositional correctness—from distributed systems protocols to smart con-
 413 tract verification—will face similar failures until models can reason about specification flow across
 414 component boundaries.

415 The first key takeaway insight about *specification fragility* is summarized below:

417 **Takeaways (i): LLMs handle local specs but fail under composition. Missing contract**
 418 **propagation is the main cause of verification breakdowns.**

420 5.2 IMPLEMENTATION–PROOF MISALIGNMENT: THE INDEPENDENCE ASSUMPTION

421 The second failure mode reveals a deeper architectural issue: LLMs treat implementation and spec-
 422 ification as independent generation tasks rather than coupled constraints. In 21.7% of failures, syn-
 423 tactically valid code contradicts its own specifications. One striking example: a model generated
 424 `assert 0 >= 1;` within otherwise reasonable code, [illustrating a recurring pattern of internally](#)
 425 [contradictory assertions rather than an isolated slip](#). More subtle misalignments prove equally fatal.
 426 Loop invariants like `forall k :: 0 <= k < i ==> cnt[k] >= 0` appear plausible but
 427 fail verification because the implementation’s array access patterns violate the stated bounds. The
 428 model generates invariants that “look right” based on training patterns but don’t correspond to the
 429 actual code behavior. [This pattern is consistent with mechanistic analyses of transformer attention](#)
 430 [heads, which often uncover relatively local algorithmic behaviors rather than globally consistent](#)
 431 [reasoning \(Olsson et al., 2022; Elhage et al., 2021\)](#) Current training paradigms exacerbate this is-
 sue. Models learn from code-specification pairs without explicit feedback on the mutual consistency

432 between them. The result: impressive performance on syntax and moderate success on individual
 433 functions, but catastrophic failure when consistency is required across boundaries.
 434

435 We summarize the second key takeaway about *implementation-proof misalignment* as:

436
 437 **Takeaways (ii):** *Code and specs are generated independently, leading to plausible but in-*
 438 *consistent invariants. Future training for this task should enforce better alignment.*

440 5.3 REASONING INSTABILITY: INDUCTION AS ACHILLES’ HEEL

441 The third failure pattern, which we refer to as *reasoning instability*, exposes perhaps the most funda-
 442 mental limitation. Formal verification relies on inductive reasoning: proving properties hold
 443 initially, maintain their validity through iterations, and compose across calls. LLMs consistently
 444 fail this inductive chain. Loop invariants that should accumulate state (e.g., invariant `res`
 445 `== stringToIntHelper(s[..i])`) break because models cannot track how program state
 446 evolves through iterations. Recursive functions lack proper termination arguments. Properties
 447 proven for base cases fail to extend inductively. This instability reflects the inherently statistical
 448 nature of reasoning exhibited by transformer architectures. While capable of pattern-matching simi-
 449 lar invariants from training data, models cannot construct the inductive proofs verification demands.
 450 They approximate rather than prove, which is sufficient for typical NLP tasks but inadequate for
 451 verifiable code generation, where formal verification is required.

452 We summarize the third insight about *reasoning instability* as:

453
 454 **Takeaways (iii):** *LLMs approximate base cases but fail to sustain inductive reasoning, ex-*
 455 *posing a structural gap in formal verification.*

457 6 LIMITATIONS AND FUTURE WORK

459 While DAFNYCOMP exposes fundamental limitations in compositional reasoning, we want to gently
 460 mention several constraints of our evaluation, which indicate some interesting future work.

- 461 **• Compositional Patterns.** We restrict to chain-based compositions (sequential function calls)
 462 rather than complex topologies (recursive compositions, mutual dependencies) due to synthesis
 463 tractability. While chains suffice to demonstrate compositional failure, real systems exhibit richer
 464 patterns. Extending to arbitrary call graphs requires solving verification tractability for cyclic
 465 dependencies—a challenge independent of LLM capabilities.
- 466 **• Specification Types.** Our benchmark tests functional correctness (preconditions, postconditions,
 467 invariants) but not liveness properties, resource bounds, or security policies. These orthogonal
 468 concerns—e.g., proving memory consumption remains constant across compositions—require
 469 different verification techniques and evaluation metrics.
- 470 **• Data Scarcity.** The core challenge may be training data availability. Repositories contain only a
 471 few verified multi-function programs with compositional specifications. Synthetic data generation
 472 or bootstrapped program synthesis could address this gap, although ensuring semantic diversity
 473 remains a challenge.

475 7 CONCLUSION

476 We introduce DAFNYCOMP, the first benchmark specifically designed to evaluate the generation
 477 of compositional specifications for formal verification. Through 300 synthesized multi-function
 478 Dafny programs, we systematically assessed 13 state-of-the-art LLMs on their ability to generate
 479 specifications that ensure correctness across function boundaries. Our results reveal a fundamental
 480 capability gap: while models achieve greater than 99% syntax correctness and more than 58% veri-
 481 fication on single-function benchmarks, they collapse to 3.69% verification on compositional tasks—a
 482 92% degradation. This performance cliff persists across all model families despite increased sam-
 483 pling (Pass@8), indicating an architectural rather than search limitation. Error analysis identifies
 484 three systematic failure modes: specification fragility (39.2%), implementation-proof misalignment
 485 (21.7%), and reasoning instability (14.1%), each reflecting the inability to maintain logical commit-
 486 ments across functional boundaries. In conclusion, DAFNYCOMP provides both a diagnostic tool

486 for current systems and a concrete target for future research. We release the benchmark, evaluation
 487 framework, and synthesis pipeline to accelerate progress on this critical challenge.
 488

489 **REFERENCES**

490 Anthropic. Introducing claude 3.5 sonnet. <https://www.anthropic.com/news/clause-3-5-sonnet>, 2024.

491 Anthropic. Claude 4 sonnet. <https://www.anthropic.com/news/clause-4-sonnet>, 2025. Accessed: 2025-09-21.

492

493 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 494 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 495 models. [arXiv preprint arXiv:2108.07732](https://arxiv.org/abs/2108.07732), 2021.

496

497 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 498 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 499 language models trained on code. [arXiv preprint arXiv:2107.03374](https://arxiv.org/abs/2107.03374), 2021.

500

501 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In *International conference*
 502 *on Tools and Algorithms for the Construction and Analysis of Systems*, pp. 337–340. Springer,
 503 2008.

504

505 Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
 506 lean theorem prover (system description). In *International Conference on Automated Deduction*,
 507 pp. 378–388. Springer, 2015.

508

509 DeepSeek-AI. Deepseek-v3.1 model introduction. <https://www.deepseek.com/>, 2025. Ac-
 510 cessed: 2025-09-21.

511

512 Quinn Dougherty and Ronak Mehta. Proving the coding interview: A benchmark for formally
 513 verified code generation. In *2025 IEEE/ACM International Workshop on Large Language Models*
 514 *for Code (LLM4Code)*, pp. 72–79. IEEE, 2025.

515

516 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
 517 Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of trans-
 518 formers on compositionality. *Advances in Neural Information Processing Systems*, 36:70293–
 70332, 2023.

519

520 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
 521 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
 522 transformer circuits. *Transformer Circuits Thread*, 1(1):12, 2021.

523

524 Google DeepMind. Gemini 2.5 models. <https://deepmind.google/technologies/gemini/>, 2025.

525

526 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 527 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 528 via reinforcement learning. [arXiv preprint arXiv:2501.12948](https://arxiv.org/abs/2501.12948), 2025.

529

530 Wenhao Hu, Jinhao Duan, Chunchen Wei, Li Zhang, Yue Zhang, and Kaidi Xu. Dynacode: A
 531 dynamic complexity-aware code benchmark for evaluating large language models in code gener-
 532 ation. [arXiv preprint arXiv:2503.10452](https://arxiv.org/abs/2503.10452), 2025.

533

534 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 535 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. [arXiv preprint arXiv:2409.12186](https://arxiv.org/abs/2409.12186),
 536 2024.

537

538 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 539 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. [arXiv preprint arXiv:2410.21276](https://arxiv.org/abs/2410.21276), 2024.

540

541 Daniel Keysers et al. Compositional generalization in natural language processing. *Transactions of*
 542 *the Association for Computational Linguistics*, 8:11–23, 2020.

540 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Logic for
 541 Programming, Artificial Intelligence, and Reasoning, pp. 348–370. Springer, 2010a.
 542

543 K. Rustan M. Leino. A Tour of the Dafny Program Verifier. Verified Software: Theories, Tools,
 544 Experiments, 2010b.

545 K. Rustan M. Leino et al. Compositional verification of a railway protection system with Dafny.
 546 Formal Aspects of Computing, 2017.

547 Yue Chen Li, Stefan Zetsche, and Siva Somayyajula. Dafny as verification-aware intermediate
 548 language for code generation. arXiv preprint arXiv:2501.06283, 2025.

549

550 Zhaoyi Li, Gangwei Jiang, Hong Xie, Linqi Song, Defu Lian, and Ying Wei. Understanding and
 551 patching compositional reasoning in llms. arXiv preprint arXiv:2402.14328, 2024.

552

553 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 554 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
 555 arXiv:2412.19437, 2024.

556 Evan Lohn and Sean Welleck. minicodeprops: a minimal benchmark for proving code properties.
 557 arXiv preprint arXiv:2406.11915, 2024.

558

559 James Loughridge et al. DafnyBench: A Benchmark for Formal Software Verification. Transactions
 560 on Machine Learning Research, 2024a. Describes the ‘fill annotations’ task.

561

562 James Loughridge et al. DafnySynth: A Synthetic Dataset for Formal Verification. arXiv preprint
 563 arXiv:2411.15143, 2024b.

564

565 Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, (4):308–
 566 320, 1976.

567

568 Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James Noble. Towards ai-assisted synthesis
 569 of verified dafny methods. Proceedings of the ACM on Software Engineering, 1(FSE):812–835,
 570 2024.

571

572 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 573 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
 574 heads. arXiv preprint arXiv:2209.11895, 2022.

575

576 OpenAI. Gpt-4.1 system card. <https://openai.com/index/introducing-gpt-4-1/>,
 577 2024.

578

579 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025. Accessed: 2025-09-21.

580

581 Gabriel Poesia, Chloe Loughridge, and Nada Amin. dafny-annotator: Ai-assisted verification of
 582 dafny programs. arXiv preprint arXiv:2411.15143, 2024.

583

584 Qwen Team. Qwen3-coder: Agentic coding in the world. <https://qwenlm.github.io/blog/qwen3-coder/>, 2025a. Accessed: 2025-09-21.

585

586 Qwen Team. Qwq-32b: Large-scale reinforcement learning for reasoning models. <https://qwenlm.github.io/zh/blog/qwq-32b/>, 2025b. Accessed: 2025-09-21.

587

588 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 589 can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

590

591 Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun Li, Shing-Chi
 592 Cheung, and Cong Tian. Enchanting program specification synthesis by large language models
 593 using static analysis and program verification. In International Conference on Computer Aided
 594 Verification, pp. 302–328. Springer, 2024.

595

596 Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong
 597 Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training of code llms.
 598 arXiv preprint arXiv:2504.14655, 2025.

594 Chuanhao Yan, Fengdi Che, Xuhan Huang, Xu Xu, Xin Li, Yizhi Li, Xingwei Qu, Jingzhe Shi,
595 Zhuangzhuang He, Chenghua Lin, Yaodong Yang, Binhang Yuan, Hang Zhao, Yu Qiao, Bowen
596 Zhou, and Jie Fu. Re:Form – Reducing Human Priors in Scalable Formal Software Verification
597 with RL in LLMs: A Preliminary Study on Dafny. [arXiv preprint arXiv:2507.16331](https://arxiv.org/abs/2507.16331), 2025.

598 Zhehao Zhang, Jiaao Chen, and Difyi Yang. Darg: Dynamic evaluation of large language models
599 via adaptive reasoning graph. [Advances in Neural Information Processing Systems](https://proceedings.neurips.cc/paper/2024/file/135942.pdf), 37:135904–
600 135942, 2024.

602 Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Difyi Yang, and Xing Xie. Dyval: Dy-
603 namic evaluation of large language models for reasoning tasks. [arXiv preprint arXiv:2309.17167](https://arxiv.org/abs/2309.17167),
604 2023.

605 Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. Dyval 2: Dynamic evaluation
606 of large language models by meta probing agents. [arXiv preprint arXiv:2402.14865](https://arxiv.org/abs/2402.14865), 3, 2024.

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A THE USE OF LLMs IN WRITING
649650 During the preparation of this manuscript, we employed a large language model (OpenAI GPT-5)
651 to assist with language refinement and editorial improvements. Specifically, the LLM was used
652 to enhance sentence fluency, improve clarity of expression, and ensure consistency with academic
653 writing conventions. The tool was applied exclusively for linguistic polishing—all research design,
654 experimental work, data analysis, and core intellectual contributions remain entirely original.655 B INTRODUCTION TO DAFNY
656657 Dafny (Leino, 2010a), developed at Microsoft Research, is a verification-oriented programming
658 language specifically designed to support formal reasoning about software. Unlike conventional
659 languages where correctness is primarily assessed through testing, Dafny integrates an automated
660 program verifier directly into the development workflow, enabling developers to construct code that
661 is mathematically proven to satisfy its specifications. This approach shifts the discovery of defects
662 from the testing phase to the design and implementation phases, thereby improving software reliability.
663664 A distinctive feature of Dafny is that specifications are treated as first-class citizens. Methods can be
665 annotated with preconditions, postconditions, and logical properties that describe intended behavior.
666 For example:667

```
668 method Example(a: array<int>) returns (b: array<int>)
669     requires a.Length > 0           // Precondition
670     ensures b.Length == a.Length    // Postcondition
671     ensures forall i :: 0 <= i < b.Length ==> b[i] >= 0 // Property
672 {
673     // Implementation
674 }
```

675 The Dafny verifier relies on automated theorem proving (via Z3 solver (De Moura & Bjørner, 2008))
676 to ensure that implementations conform to these specifications, providing mathematical certainty
677 about program behavior. Crucially, the ability to reason about the composition of verified components
678 determines whether verification can scale from toy examples to real-world systems. Without
679 compositional reasoning, verification remains confined to small, isolated programs rather than
680 production-level software.681 C AUTOMATED THEOREM PROVING
682683 A complementary line of work contrasts automated verification frameworks with interactive theorem
684 proving (ITP) systems. Languages such as Dafny and Verus rely on SMT solvers to discharge
685 proof obligations, requiring only lightweight annotations (e.g., invariants, assertions). This design
686 lowers the barrier to entry but is constrained by the solver’s limited reasoning scope and opaque
687 failure modes. In contrast, ITPs such as Lean expose every proof step explicitly, enabling iterative
688 refinement and error diagnosis. Recent studies even show that LLMs can generate competition-level
689 mathematical proofs in Lean. However, existing Lean-based benchmarks (e.g., miniCodeProps,
690 FVAPPS) either focus narrowly on proof synthesis or lack human validation. By comparison, Dafny
691 offers a more balanced environment for benchmarking LLMs: it combines code, specifications, and
692 automated verification in a way that remains close to mainstream programming practice.693 **How Dafny Works and Its Core Strengths.** Dafny’s approach stems from its verification-aware
694 design. Developers embed formal specifications, such as preconditions, postconditions, and loop
695 invariants, directly within the code (Leino, 2010a). These specifications are not merely comments;
696 they are integral components checked by the built-in verifier. The verifier translates Dafny code
697 and its specifications into an intermediate verification language, Boogie, which then generates proof
698 obligations. These obligations are processed by an SMT solver (e.g., Z3) to prove their validity.
699 If all obligations are proven, the code is confirmed to be correct according to its specifications. If
700 a proof fails, Dafny provides precise feedback on the inconsistencies. This methodology supports
701 correctness by construction, helping to reduce common errors like null pointer dereferences or array
out-of-bounds access (Poesia et al., 2024). Once verified, Dafny code can be translated into
mainstream languages such as Python for execution (Li et al., 2025).

702 **Dafny vs. Python: A Fundamental Difference in Approach.** To understand Dafny’s position,
 703 it’s useful to compare it with a widely used language like Python. While both are effective, their
 704 fundamental design philosophies and primary objectives differ, as shown in Table 3.
 705

706 Feature	707 Dafny	708 Python
709 Year Introduced	2010 (Microsoft Research)	1991 (Guido van Rossum)
710 Type System	Static typing, compile-time checks	Dynamic typing, run-time checks
711 Formal Verification	Yes — built-in contracts and proofs	No — only basic <code>assert</code>
712 Main Use	Verified algorithms, critical systems	General-purpose programming
713 Execution Model	Compiled with verification	Interpreted (e.g., CPython)

713 Table 3: Key differences between Dafny and Python.
 714

715 In summary, Dafny offers a distinct approach to software development by integrating formal verifi-
 716 cation into the language itself. While Python excels in agile development and broad applicability,
 717 Dafny is particularly suited for domains where software correctness and formal guarantees are criti-
 718 cal. For more, please refer to the Dafny official website¹.
 719

720

D MODEL SELECTION FOR FORMAL TRANSLATION

721 Concretely, we randomly sampled 100 test cases from the 1,200 instances obtained after our as-
 722 sembly procedure to evaluate each model with identical prompts and decoding settings. We define
 723 success rate as the fraction of generations whose specifications are valid under the Dafny verifier.
 724

725 Model	726 Success rate (%)
727 Claude-4-Sonnet-20250514	58.00
728 claude-3.5-sonnet-20241022	55.00
729 gpt-3.5-turbo	45.00
730 gpt-4o	31.00
731 gpt-4o-mini	41.00
732 o1	36.00
733 o1-mini	33.00
734 o3-mini	37.00
735 gemini-2.0-flash	38.00

736 Table 4: Success rates for the formal translation step.
 737

738 As shown, we ultimately chose Claude-4-Sonnet-20250514 because it yielded the highest rate of
 739 valid specifications on these cases. This aligns with our design goal to prioritize the quality of
 740 generated specifications used downstream in our experiments.
 741

742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 1¹<https://dafny.org/dafny/OnlineTutorial/guide>

756 E PROMPTS FOR SYNTHESIS
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777778 The prompt templates used for annotating data with Claude 3.5 Sonnet are shown in the following
779 boxes.
780781 **Prompt for Initial Dafny Code Generation**
782
783784 **SYSTEM**
785 You are an expert AI assistant that writes Dafny programs. You excel at writing code
786 with formally verified correctness, providing precise preconditions and postconditions,
787 and finding the appropriate loop invariants to ensure all verification conditions are met.
788789 **TASK**
790 Below is the Python code:
791792

```
```python  
<python_code>
```
```

794 Please translate this Python code into Dafny, ensuring:
795796 1. **Method Signatures:** Each piece of functionality should be expressed as a Dafny
797 method (or set of methods) with a well-defined signature.
798 2. **Preconditions:** Clearly state any ‘requires’ clauses for each method (e.g., array
799 length constraints, non-null references, numeric domain restrictions, etc.).
800 3. **Postconditions:** State the logical guarantees about the returned values or final
801 state as ‘ensures’ clauses (e.g., correctness of returned results, absence of side
802 effects, etc.).
803 4. **Verification Details:** Include all necessary loop invariants (or other verification
804 hints) so Dafny can prove the postconditions, along with a brief explanation. For
805 example: - Explain how you chose your invariants. - Describe how they ensure
806 the correctness of the loop.
807808 Return the final Dafny code as a self-contained snippet that can be verified by Dafny as-is,
809 with a short explanation of how it connects to the original Python functionality.810 **AI ASSISTANT**

811 <The LLM’s generated Dafny code with specifications here.>

810

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863**Dynamic Debugging Prompt for Code Generation****SYSTEM**

You are an expert AI assistant that writes and debugs Dafny programs. You excel at diagnosing and fixing verification errors based on Dafny solver messages, while maintaining correct preconditions, postconditions, and loop invariants.

TASK

Below is the Python code:

```
```python
<python_code>
```
```

And the Dafny code you previously provided (which I tried to verify):

```
```dafny
<main_spec>
```

```

I ran `dafny verify *.dfy` and received this error message:

```
```
<dafny_analysis_result>
```

```

Can you please fix the main function specification so that it parses successfully? Output the corrected main function specification only, without any other text.

AI ASSISTANT

<The LLM’s generated Dafny code with specifications here.>

F DATA CONTAMINATION ANALYSIS

To validate the novelty of DAFNYCOMP, we conducted a rigorous data contamination analysis against the widely-used MBPP dataset (Austin et al., 2021), used to assess contamination in Python source data. We confirm that our benchmark source data shows no significant overlap, ensuring model performance reflects genuine reasoning capabilities rather than memorization.

Our analysis, focusing solely on code, employs two standard metrics: **Exact Match** to detect verbatim copies, and **n-gram Jaccard Similarity** to identify structurally similar code. We performed this analysis under four distinct configurations, the results of which are summarized in Table 5.

Across all scenarios, we found **zero exact matches**. The n-gram Jaccard similarity remains negligible, peaking at a mere 0.0078 even under the most aggressive settings. These findings provide strong evidence that DAFNYCOMP is free from training data contamination.

Table 5: Summary of Data Contamination Analysis. The table shows results for four testing configurations: **A (Conservative)** with minimal preprocessing; **B (Default)** with moderate preprocessing; **C (Aggressive)** with extensive preprocessing; and **D (Holistic)** for a structure-level check. Across all configurations, results show zero exact matches and negligible n-gram similarity when comparing DAFNYCOMP source data against MBPP, confirming the benchmark’s integrity.

| Analysis Configuration | N-gram (n) | Exact Overlap | Max Jaccard | vs. sanitized-mbpp |
|------------------------|----------------|---------------|-------------|--------------------|
| A: Conservative | 15 | 0 | 0.000078 | 0 |
| B: Default | 11, 13, 15 | 0 | 0.000389 | 0 |
| C: Aggressive | 9, 11, 13 | 0 | 0.007757 | 0 |
| D: Holistic | 11, 13, 15 | 0 | 0.000234 | 0 |

864 **G PROMPT FOR EVALUATION**
865866 The prompt template used for evaluation is shown in the following box. Note that all model outputs
867 are used directly for Dafny verification.868
869 **Evaluation Prompt for Dafny Specification Generation**
870871 **SYSTEM**
872873 You are an expert in Dafny. You will be given tasks dealing with Dafny programs includ-
874 ing precise annotations. You should only return code body in all circumstances. No text
875 is allowed.876 **TASK**
877878 Given a Dafny program with function signature, preconditions, postconditions, and code,
879 but with annotations missing. Please return a complete Dafny program with the strongest
880 possible annotation (loop invariants, assert statements, etc.) filled back in. Do not explain
881 or output any text. If you have to explain, put all explanations in comments form. There
882 should only be code body in your output. Please use exactly the same function signature,
883 preconditions, and postconditions. Do not ever modify the given lines.884 Below is the program:
885886

```
```dafny
887 <dafny_program_with_missing_annotations>
888 ```
```

889 **AI ASSISTANT**  
890891 

```
```dafny
892 <The LLM's generated Dafny code with specifications
893 here.>
894 ```
```

895 **H COMPUTE SETTINGS**
896897 **Details of Compute Settings**
898899 **Token budgets:**
900901

- No hard constraint is imposed on the number of generated tokens.
- For each model, `max_output_tokens` (or equivalent) is set to the **largest value**
allowed by the provider, so that long reasoning traces are not truncated.
- Many evaluated systems are reasoning-oriented (e.g., R1) and may follow long, iterative reasoning trajectories, so token usage is largely emergent and model-dependent.

905 **Inference sampling:**
906907

- Default decoding for most models: `temperature = 0.7`, `top-p = 0.8`.
- CLAUDE MODELS: provider default `top-p` (not exposed in the API), with `temperature = 0.7`.
- O4-MINI: provider default configuration, with fixed `temperature = 1` and no `top-p` parameter.

910 **Verifier retry policy:**
911912

- Exactly one verification attempt per output.
- SMT solver timeout: 60 s.
- If the solver does not finish within 60 s, the instance is treated as unsolved (not counted as a success).

918

I REAL EXAMPLES FROM BENCHMARK DATA

919

I.1 CHALLENGE 1: FORMAL SPECIFICATION SYNTHESIS

920

The following examples demonstrate failures in generating correct formal specifications, particularly preconditions and postconditions.

921

I.1.1 EXAMPLE 1.1: POSTCONDITION FAILURE (ORG_INPUT_ID: 2, SELF_ID: 20001)

922

LLM Response:

923

```

924
925
926 method digitSum(n: int) returns (sum: int)
927     requires n >= 0
928     ensures sum >= 0
929 {
930     var temp := n;
931     sum := 0;
932     while temp > 0
933         invariant temp >= 0
934         invariant sum >= 0
935         {
936             sum := sum + (temp % 10);
937             temp := temp / 10;
938         }
939
940
941 method countLargestGroup_1399(n: int) returns (result: int)
942     requires n >= 0
943     ensures result >= 1
944     ensures result <= 1000
945 {
946     var counts := new int[50];
947     var i := 0;
948     while i < 50
949         invariant 0 <= i <= 50
950         invariant forall j :: 0 <= j < i ==> counts[j] == 0
951         {
952             counts[i] := 0;
953             i := i + 1;
954         }
955     var maxCount := 0;
956     var groupsWithMaxCount := 0;
957     i := 1;
958     while i <= n
959         invariant 1 <= i <= n + 1
960         invariant maxCount >= 0
961         invariant groupsWithMaxCount >= 0
962         invariant maxCount > 0 ==> groupsWithMaxCount >= 1
963         invariant forall j :: 0 <= j < 50 ==> counts[j] >= 0
964         {
965             var ds := digitSum(i);
966             if ds < 50 {
967                 counts[ds] := counts[ds] + 1;
968                 if maxCount < counts[ds] {
969                     maxCount := counts[ds];
970                     groupsWithMaxCount := 1;
971                 } else if maxCount == counts[ds] {
972                     groupsWithMaxCount := groupsWithMaxCount + 1;
973                 }
974             }
975             i := i + 1;
976         }
977     result := groupsWithMaxCount;
978     if result == 0 {
979         result := 1;
980     }
981     assert result >= 1;

```

```

972     if result > 1000 {
973         result := 1000;
974     }
975 }
976
method main_3node_2(o: int) returns (result: int)
977     requires o >= 0
978     ensures result == -1 || result >= 2
979 {
980     var o1 := countLargestGroup_1399(o);
981     var o2 := sumOfMultiples_2652(o1);
982     if o2 >= 1 {
983         var o3 := nextGreaterElement_556(o2);
984         result := o3;
985         if result != -1 && result <= 1 {
986             result := 2;
987         }
988     } else {
989         result := -1;
990     }
991 }
```

Dafny Error:

```

992
993 ex.dfy(137,0): Error: a postcondition could not be proved on this return
994     path
995 ex.dfy(136,25): Related location: this is the postcondition that could
996     not be proved
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
```

1026 I.1.2 EXAMPLE 1.2: MISSING PRECONDITION (ORG_INPUT_ID: 6, SELF_ID: 60005)

1027 **LLM Response:**

```

1028
1029 method DigitSum(n: int) returns (sum: int)
1030     requires n >= 0
1031     ensures sum >= 0
1032 {
1033     var num := n;
1034     sum := 0;
1035     while num > 0
1036         invariant sum >= 0
1037         invariant num >= 0
1038         decreases num
1039         {
1040             sum := sum + (num % 10);
1041             num := num / 10;
1042         }
1043     }
1044
1045 method countLargestGroup_1399(n: int) returns (result: int)
1046     requires n >= 1
1047     ensures result >= 1
1048 {
1049     var digitSumCounts := map[];
1050     var maxCount := 0;
1051     var i := 1;
1052     while i <= n
1053         invariant 1 <= i <= n + 1
1054         invariant maxCount >= 0
1055         invariant forall k :: k in digitSumCounts ==> digitSumCounts[k]
1056             >= 0
1057         decreases n - i + 1
1058         {
1059             var digitSum := DigitSum(i);
1060             var currentCount := if digitSum in digitSumCounts then
1061                 digitSumCounts[digitSum] else 0;
1062             digitSumCounts := digitSumCounts[digitSum := currentCount + 1];
1063             if currentCount + 1 > maxCount {
1064                 maxCount := currentCount + 1;
1065             }
1066             i := i + 1;
1067         }
1068     result := 0;
1069     var possibleSum := 0;
1070     while possibleSum <= 9 * 4
1071         invariant possibleSum >= 0
1072         invariant result >= 0
1073         invariant forall k :: k in digitSumCounts ==> digitSumCounts[k]
1074             >= 0
1075         decreases 9 * 4 - possibleSum + 1
1076         {
1077             if possibleSum in digitSumCounts && digitSumCounts[possibleSum]
1078                 == maxCount {
1079                     result := result + 1;
1080                 }
1081             possibleSum := possibleSum + 1;
1082         }
1083     if result == 0 {
1084         result := 1;
1085     }
1086 }
1087
1088 method main_4node_4(o: int) returns (result: int)
1089     ensures result >= 1
1090 {

```

```

1080     var o1 := nextGreaterElement_556(o);
1081     var o2: int;
1082     if o1 == -1 {
1083         o2 := 1;
1084     } else if o1 > 10000 {
1085         o2 := 10000;
1086     } else {
1087         o2 := o1;
1088     }
1089     var o3 := countLargestGroup_1399(o2);
1090     var clampedO3: int;
1091     if o3 > 1000000000000000 {
1092         clampedO3 := 1000000000000000;
1093     } else if o3 < -1000000000000000 {
1094         clampedO3 := -1000000000000000;
1095     } else {
1096         clampedO3 := o3;
1097     }
1098     var o4 := smallestNumber_2165(clampedO3);
1099     var finalInput: int;
1100     if o4 < 1 {
1101         finalInput := 1;
1102     } else if o4 > 15 {
1103         finalInput := 15;
1104     } else {
1105         finalInput := o4;
1106     }
1107     result := countArrangement_526(finalInput);
1108 }
```

Dafny Error:

```
ex.dfy(177,36): Error: a precondition for this call could not be proved
```

```

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
```

1134

I.2 CHALLENGE 2: ENSURING CODE CORRECTNESS

1135

These examples show implementation issues where the code logic doesn't satisfy the specifications.

1136

I.2.1 EXAMPLE 2.1: ARRAY BOUNDS ERROR (ORG_INPUT_ID: 1, SELF_ID: 10002)

1137

LLM Response:

1138

```

1139 method smallestNumber_2165(num: int) returns (result: int)
1140 {
1141     var neg := num < 0;
1142     var n := if num < 0 then -num else num;
1143     var cnt := new int[10];
1144     var i := 0;
1145     while i < 10
1146         invariant 0 <= i <= 10
1147         invariant cnt.Length == 10
1148         invariant forall k :: 0 <= k < i ==> cnt[k] >= 0
1149     {
1150         cnt[i] := 0;
1151         i := i + 1;
1152     }
1153     // ... rest of implementation
1154 }
1155
1156 method main_5node_8(o: int) returns (result: int)
1157 {
1158     var o1 := smallestNumber_2165(o);
1159     var o2 := clumsy_1006(if o1 <= 10000 then o1 else 10000);
1160     var o3 := lastRemaining_390(o2);
1161     var o4 := getMoneyAmount_375(if o3 <= 200 then o3 else 200);
1162     var o5 := numberOfWorks_3183(if o4 <= 100000 then o4 else 100000);
1163     result := o5;
1164 }
```

1162

Dafny Error:

1163

```

1164 ex.dfy(44,30): Error: this loop invariant could not be proved on entry
1165 Related message: loop invariant violation
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
```

1188 I.2.2 EXAMPLE 2.2: ASSERTION FAILURE (ORG_INPUT_ID: 6, SELF_ID: 60001)

1189 **LLM Response:**

```

1190
1191 method DigitSum(n: int) returns (sum: int)
1192     requires n >= 0
1193     ensures sum >= 0
1194 {
1195     var num := n;
1196     sum := 0;
1197     while num > 0
1198         invariant sum >= 0
1199         invariant num >= 0
1200         decreases num
1201         {
1202             sum := sum + (num % 10);
1203             num := num / 10;
1204         }
1205     }
1206
1207 method countLargestGroup_1399(n: int) returns (result: int)
1208     requires n >= 1
1209     ensures result >= 1
1210 {
1211     var digitSumCounts := map[];
1212     var maxCount := 0;
1213     var i := 1;
1214     while i <= n
1215         invariant 1 <= i <= n + 1
1216         invariant maxCount >= 0
1217         invariant forall k :: k in digitSumCounts ==> digitSumCounts[k] >
1218             0
1219         decreases n - i + 1
1220     {
1221         var digitSum := DigitSum(i);
1222         var currentCount := if digitSum in digitSumCounts then
1223             digitSumCounts[digitSum] else 0;
1224         digitSumCounts := digitSumCounts[digitSum := currentCount + 1];
1225         if currentCount + 1 > maxCount {
1226             maxCount := currentCount + 1;
1227         }
1228         i := i + 1;
1229     }
1230
1231     result := 0;
1232     var possibleSum := 0;
1233     while possibleSum <= 9 * 4
1234         invariant possibleSum >= 0
1235         invariant result >= 0
1236         decreases 9 * 4 - possibleSum + 1
1237     {
1238         if possibleSum in digitSumCounts && digitSumCounts[possibleSum]
1239             == maxCount {
1240             result := result + 1;
1241         }
1242         possibleSum := possibleSum + 1;
1243     }
1244
1245     if result == 0 {
1246         result := 1;
1247     }
1248 }
1249
1250 method main_4node_4(o: int) returns (result: int)
1251     ensures result >= 1
1252 {

```

```

1242     var o1 := nextGreaterElement_556(o);
1243     var o2: int;
1244     if o1 == -1 {
1245         o2 := 1;
1246     } else if o1 > 10000 {
1247         o2 := 10000;
1248     } else {
1249         o2 := o1;
1250     }
1251     assert o2 >= 1;

1252     var o3 := countLargestGroup_1399(o2);
1253     var clampedO3: int;
1254     if o3 > 10000000000000000000 {
1255         clampedO3 := 10000000000000000000;
1256     } else if o3 < -10000000000000000000 {
1257         clampedO3 := -10000000000000000000;
1258     } else {
1259         clampedO3 := o3;
1260     }

1261     var o4 := smallestNumber_2165(clampedO3);
1262     var finalInput: int;
1263     if o4 < 1 {
1264         finalInput := 1;
1265     } else if o4 > 15 {
1266         finalInput := 15;
1267     } else {
1268         finalInput := o4;
1269     }
1270     assert finalInput >= 1;

1271     result := countArrangement_526(finalInput);
1272 }
```

Dafny Error:

```

1273     ex.dfy(181, 4): Error: assertion might not hold
1274     assert o2 >= 1;
1275
```

```

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
```

1296

I.3 CHALLENGE 3: PROOF GENERATION AND FORMAL REASONING

1297

Examples demonstrating failures in generating proper loop invariants and formal proofs.

1298

I.3.1 EXAMPLE 3.1: INVARIANT NOT MAINTAINED (ORG.INPUT_ID: 0, SELF.ID: 6)

1299

LLM Response:

1300

```

1301 method stringToInt(s: seq<char>) returns (result: int)
1302   requires |s| > 0
1303   requires forall i :: 0 <= i < |s| ==> '0' <= s[i] <= '9'
1304   ensures result >= 0
1305 {
1306   var res := 0;
1307   var i := 0;
1308   while i < |s|
1309     invariant 0 <= i <= |s|
1310     invariant res >= 0
1311     invariant res == stringToIntHelper(s[..i])
1312     {
1313       var digit := digitToInt(s[i]);
1314       assert 0 <= digit <= 9;
1315       res := res * 10 + digit;
1316       i := i + 1;
1317     }
1318   return res;
1319 }

1320 method monotoneIncreasingDigits_738(n: int) returns (result: int)
1321   requires n >= 0
1322   ensures result >= 1
1323   ensures result <= 1000000000
1324 {
1325   if n == 0 {
1326     return 1;
1327   }
1328   var s := intToString(n);
1329   var i := 1;
1330   while i < |s| && digitToInt(s[i-1]) <= digitToInt(s[i])
1331     invariant 1 <= i <= |s|
1332     invariant forall j :: 0 <= j < |s| ==> '0' <= s[j] <= '9'
1333     {
1334       i := i + 1;
1335     }
1336   if i < |s| {
1337     while i > 0 && i < |s| && digitToInt(s[i-1]) > digitToInt(s[i])
1338       invariant 0 <= i < |s|
1339       invariant forall j :: 0 <= j < |s| ==> '0' <= s[j] <= '9'
1340       decreases i
1341       {
1342         var prevDigit := digitToInt(s[i-1]);
1343         if prevDigit > 0 {
1344           s := s[i-1 := intToChar(prevDigit - 1)];
1345         }
1346         i := i - 1;
1347       }
1348     i := i + 1;
1349     while i < |s|
1350       invariant i <= |s|
1351       invariant forall j :: 0 <= j < |s| ==> '0' <= s[j] <= '9'
1352       {
1353         s := s[i := '9'];
1354         i := i + 1;
1355       }
1356     }
1357   var res := stringToInt(s);
1358   if res >= 1 && res <= 1000000000 {

```

```

1350     return res;
1351 } else {
1352     return 1;
1353 }
1354 }

1355 method main_3node_2(o: int) returns (result: int)
1356     requires o >= 0
1357     ensures result >= 0
1358 {
1359     var o1 := smallestFactorization_625(o);
1360     if o1 == 0 {
1361         return 0;
1362     }
1363     var o2 := monotoneIncreasingDigits_738(o1);
1364     var o3 := minOperations_2571(o2);
1365     return o3;
1366 }
```

Dafny Error:

```

1367
1368 ex.dfy(25,18): Error: this invariant could not be proved to be maintained
1369     by the loop
1370 Related message: loop invariant violation
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
```

1404 I.3.2 EXAMPLE 3.2: RECURSION TERMINATION (ORG_INPUT_ID: 4, SELF_ID: 40003)

1405 **LLM Response:**

1406

```

1407 function gcd_func(a: int, b: int): int
1408 {
1409     if b == 0 then a else gcd_func(b, a % b)
1410 }
1411
1412 method gcd(a: int, b: int) returns (result: int)
1413 requires a > 0 && b >= 0
1414 ensures result == gcd_func(a, b)
1415 {
1416     var x := a;
1417     var y := b;
1418     while y != 0
1419         invariant x > 0 && y >= 0
1420         invariant gcd_func(a, b) == gcd_func(x, y)
1421         decreases y
1422         {
1423             var temp := x % y;
1424             x := y;
1425             y := temp;
1426         }
1427         result := x;
1428 }
1429
1430 method distinctSequences_2318(n: int) returns (result: int)
1431 requires n >= 1
1432 ensures result >= 0
1433 {
1434     if n == 1 {
1435         return 6;
1436     }
1437     var mod := 1000000007;
1438     var dp := new int[n + 1, 6, 6];
1439     var k := 0;
1440     while k <= n
1441         invariant 0 <= k <= n + 1
1442         {
1443             var i := 0;
1444             while i < 6
1445                 invariant 0 <= i <= 6
1446                 {
1447                     var j := 0;
1448                     while j < 6
1449                         invariant 0 <= j <= 6
1450                         {
1451                             dp[k, i, j] := 0;
1452                             j := j + 1;
1453                         }
1454                         i := i + 1;
1455                     }
1456                     k := k + 1;
1457                 }
1458             var i := 0;
1459             while i < 6
1460                 invariant 0 <= i <= 6
1461                 {
1462                     var j := 0;
1463                     while j < 6
1464                         invariant 0 <= j <= 6
1465                         {
1466                             var g := gcd(i + 1, j + 1);
1467                             if g == 1 && i != j {
1468                                 dp[2, i, j] := 1;
1469                             }
1470                         }
1471                     }
1472                 }
1473             }
1474         }
1475     }
1476 }

```

```

1458
1459         }
1460         j := j + 1;
1461     }
1462     i := i + 1;
1463 }
1464 k := 3;
1465 while k <= n
1466     invariant 3 <= k <= n + 1
1467 {
1468     i := 0;
1469     while i < 6
1470         invariant 0 <= i <= 6
1471     {
1472         var j := 0;
1473         while j < 6
1474             invariant 0 <= j <= 6
1475         {
1476             var g1 := gcd(i + 1, j + 1);
1477             if g1 == 1 && i != j {
1478                 var h := 0;
1479                 while h < 6
1480                     invariant 0 <= h <= 6
1481                 {
1482                     var g2 := gcd(h + 1, i + 1);
1483                     if g2 == 1 && h != i && h != j {
1484                         dp[k, i, j] := (dp[k, i, j] + dp[k - 1, h, i
1485                             ]) % mod;
1486                     }
1487                     h := h + 1;
1488                 }
1489             }
1490             j := j + 1;
1491         }
1492         i := i + 1;
1493     }
1494     k := k + 1;
1495 }
1496 var ans := 0;
1497 i := 0;
1498 while i < 6
1499     invariant 0 <= i <= 6
1500     invariant ans >= 0
1501 {
1502     var j := 0;
1503     while j < 6
1504         invariant 0 <= j <= 6
1505         invariant ans >= 0
1506         {
1507             ans := (ans + dp[n, i, j]) % mod;
1508             j := j + 1;
1509         }
1510         i := i + 1;
1511     }
1512     result := ans;
1513 }
1514
1515 method main_3node_2(o: int) returns (result: int)
1516 requires o >= 1
1517 ensures result >= 0
1518 {
1519     var o1 := clumsy_1006(o);
1520     var o2 := numSquares_279(o1);
1521     var o3 := distinctSequences_2318(o2);
1522     result := o3;
1523 }

```

1512

1513

1514

1515

Dafny Error:
1516 ex.dfy(3,34): Error: cannot prove termination; try supplying a *decreases*
1517 clause
1518 **if** b == 0 **then** a **else** gcd_func(b, a % b)

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

I.4 CHALLENGE 4: SPEC-CODE-PROOF ALIGNMENT

1567

1568 These examples show misalignment between specifications and implementation, particularly
 1569 method vs. function usage.

1570

I.4.1 EXAMPLE 4.1: METHOD IN EXPRESSION CONTEXT (ORG_INPUT_ID: 0, SELF_ID: 5)

1571

LLM Response:

1572

```

1573 method stringToInt(s: seq<char>) returns (result: int)
1574   requires forall i :: 0 <= i < |s| ==> '0' <= s[i] <= '9'
1575   ensures result >= 0
1576 {
1577   var res := 0;
1578   var i := 0;
1579   while i < |s|
1580     invariant 0 <= i <= |s|
1581     invariant res >= 0
1582     invariant res == if i == 0 then 0 else stringToInt(s[..i])
1583     {
1584       res := res * 10 + digitToInt(s[i]);
1585       i := i + 1;
1586     }
1587   result := res;
1588 }

1589 method monotoneIncreasingDigits_738(n: int) returns (result: int)
1590   requires n >= 0
1591   ensures result >= 1
1592   ensures result <= 1000000000
1593 {
1594   if n == 0 {
1595     return 1;
1596   }
1597   var s := intToString(n);
1598   var i := 1;
1599   while i < |s| && digitToInt(s[i-1]) <= digitToInt(s[i])
1600     invariant 1 <= i <= |s|
1601     invariant forall j :: 0 <= j < |s| ==> '0' <= s[j] <= '9'
1602     {
1603       i := i + 1;
1604     }
1605   if i < |s| {
1606     while i > 0 && i < |s| && digitToInt(s[i-1]) > digitToInt(s[i])
1607       invariant 0 <= i < |s|
1608       invariant forall j :: 0 <= j < |s| ==> '0' <= s[j] <= '9'
1609       decreases i
1610       {
1611         var prevDigit := digitToInt(s[i-1]);
1612         if prevDigit > 0 {
1613           s := s[i-1 := intToChar(prevDigit - 1)];
1614         }
1615         i := i - 1;
1616       }
1617     i := i + 1;
1618     while i < |s|
1619       invariant i <= |s|
1620       invariant forall j :: 0 <= j < |s| ==> '0' <= s[j] <= '9'
1621       {
1622         s := s[i := '9'];
1623         i := i + 1;
1624       }
1625   }
1626   var res := stringToInt(s);
1627   if res >= 1 && res <= 1000000000 {
1628     return res;
1629   }

```

```

1620     } else {
1621         return 1;
1622     }
1623 }
1624
1625 method main_3node_2(o: int) returns (result: int)
1626     requires o >= 0
1627     ensures result >= 0
1628 {
1629     var o1 := smallestFactorization_625(o);
1630     if o1 == 0 {
1631         return 0;
1632     }
1633     var o2 := monotoneIncreasingDigits_738(o1);
1634     var o3 := minOperations_2571(o2);
1635     return o3;
1636 }
```

Dafny Error:

```

1637 ex.dfy(26,43): Error: expression is not allowed to invoke a method (
1638     stringToInt)
1639 invariant res == if i == 0 then 0 else stringToInt(s[..i])
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
```

1674 I.4.2 EXAMPLE 4.2: FUNCTION VS METHOD CONFUSION (ORG_INPUT_ID: 16, SELF_ID:
 1675 160000)

1676 **LLM Response:**

```

1677
1678 method isBeautiful(n: int) returns (result: bool)
1679 {
1680     // Implementation for checking if number is beautiful
1681     result := true; // Simplified
1682 }
1683
1684 method nextBeautifulNumber_769(n: int) returns (result: int)
1685 {
1686     var x := n + 1;
1687     while true
1688         invariant x >= n + 1
1689         invariant forall y :: n + 1 <= y < x ==> !isBeautiful(y)
1690         decreases *
1691     {
1692         var beautiful := isBeautiful(x);
1693         if beautiful {
1694             result := x;
1695             return;
1696         }
1697         x := x + 1;
1698     }
1699
1700 method main_5node_8(o: int) returns (result: int)
1701 {
1702     var o1 := reverse_7(o);
1703     if o1 == 0 {
1704         result := 1;
1705         return;
1706     }
1707     var o2 := lastRemaining_390(o1);
1708     var o3 := closestFair_2417(o2);
1709     var o4 := nextGreaterElement_556(o3);
1710     if o4 == -1 {
1711         result := 1;
1712         return;
1713     }
1714     var o5 := nextBeautifulNumber_2048(o4);
1715     result := o5;
1716 }
```

1713 **Dafny Error:**

```

1714
1715 ex.dfy(248,46): Error: expression is not allowed to invoke a method (
1716     isBeautiful)
1717     invariant forall y :: n + 1 <= y < x ==> !isBeautiful(y)
```

1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728

I.5 CHALLENGE 5: COMPLEXITY AND SCALABILITY ISSUES

1729

Examples where complex programs or large data structures cause verification failures.

1730

I.5.1 EXAMPLE 5.1: LARGE ARRAY ALLOCATION (ORG_INPUT_ID: 1, SELF_ID: 10002)

1731

LLM Response:

1732

```

1733 method smallestNumber_2165(num: int) returns (result: int)
1734 {
1735     var neg := num < 0;
1736     var n := if num < 0 then -num else num;
1737     var cnt := new int[10];
1738     var i := 0;
1739     while i < 10
1740         invariant 0 <= i <= 10
1741         invariant cnt.Length == 10
1742         invariant forall k :: 0 <= k < i ==> cnt[k] >= 0
1743         {
1744             cnt[i] := 0;
1745             i := i + 1;
1746         }
1747
1748         // Count digits
1749         var temp := n;
1750         while temp > 0
1751             invariant temp >= 0
1752             invariant forall k :: 0 <= k < 10 ==> cnt[k] >= 0
1753             decreases temp
1754             {
1755                 var digit := temp % 10;
1756                 cnt[digit] := cnt[digit] + 1;
1757                 temp := temp / 10;
1758             }
1759
1760         // Construct result
1761         result := 0;
1762         i := if neg then 1 else 0;
1763         while i < 10
1764             invariant 0 <= i <= 10
1765             invariant result >= 0
1766             decreases 10 - i
1767             {
1768                 while cnt[i] > 0
1769                     invariant cnt[i] >= 0
1770                     invariant result >= 0
1771                     decreases cnt[i]
1772                     {
1773                         result := result * 10 + i;
1774                         cnt[i] := cnt[i] - 1;
1775                     }
1776                     i := i + 1;
1777                 }
1778
1779                 if neg {
1780                     result := -result;
1781                 }
1782             }
1783
1784 method main_5node_8(o: int) returns (result: int)
1785 {
1786     var o1 := smallestNumber_2165(o);
1787     var o2 := clumsy_1006(if o1 <= 10000 then o1 else 10000);
1788     var o3 := lastRemaining_390(o2);
1789     var o4 := getMoneyAmount_375(if o3 <= 200 then o3 else 200);
1790     var o5 := numberOfWorks_3183(if o4 <= 100000 then o4 else 100000);
1791     result := o5;
1792 }
```

1782 }
1783 }

1784 **Dafny Error:**

1786 ex.dfy(44,30): Error: this loop **invariant** could not be proved on entry
1787 Related message: loop **invariant** violation
1788 **invariant** ans ≥ 0

1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836

I.6 CHALLENGE 6: AVOIDING TRIVIAL SOLUTIONS

1837

Note: This category had limited representation in the dataset. The theoretical examples that would fit this category include:

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

I.7 CHALLENGE 7: LIMITED TRAINING IN FORMAL DOMAINS

1854

Examples showing basic syntax errors and misuse of Dafny constructs.

1855

1856

I.7.1 EXAMPLE 7.1: PARSE ERROR (ORG_INPUT_ID: 0, SELF_ID: 0)

1857

LLM Response:

1858

```

function digitToInt(c: char): int
  requires '0' <= c <= '9'
  ensures 0 <= digitToInt(c) <= 9
{
  (c as int) - ('0' as int)
}

function intToChar(i: int): char
  requires 0 <= i <= 9
  ensures '0' <= intToChar(i) <= '9'
{
  ('0' as int) + i as char
}

method stringToInt(s: string) returns (result: int)
  requires forall i :: 0 <= i < |s| ==> '0' <= s[i] <= '9'
  ensures result >= 0
{
  var res := 0;
  var i := 0;
  while i < |s|
    invariant 0 <= i <= |s|
    invariant res >= 0
  {
    res := res * 10 + digitToInt(s[i]);
    i := i + 1;
  }
  result := res;
}

method monotoneIncreasingDigits_738(n: int) returns (result: int)
requires n >= 0
ensures 1 <= result <= 1000000000
{
  if n == 0 {
    return 1;
  }
  var s := intToString(n);
  var digits := s;
}

```

```

1890     var i := 1;
1891     while i < |digits| && digitToInt(digits[i-1]) <= digitToInt(digits[i])
1892     ]
1893         invariant 1 <= i <= |digits|
1894         invariant forall j :: 0 <= j < |digits| ==> '0' <= digits[j] <=
1895             '9'
1896         invariant forall j,k :: 0 <= j < k < i ==> digitToInt(digits[j])
1897             <= digitToInt(digits[k])
1898     {
1899         i := i + 1;
1900     }
1901     if i < |digits| {
1902         while i > 0 && i < |digits| && digitToInt(digits[i-1]) >
1903             digitToInt(digits[i])
1904             invariant 0 <= i < |digits|
1905             invariant forall j :: 0 <= j < |digits| ==> '0' <= digits[j]
1906                 <= '9'
1907             decreases i
1908         {
1909             var prevDigit := digitToInt(digits[i-1]);
1910             if prevDigit > 0 {
1911                 digits := digits[i-1 := intToChar(prevDigit - 1)];
1912             }
1913             i := i - 1;
1914         }
1915         i := i + 1;
1916         while i < |digits|
1917             invariant 0 <= i <= |digits|
1918             invariant forall j :: 0 <= j < |digits| ==> '0' <= digits[j]
1919                 <= '9'
1920             {
1921                 digits := digits[i := '9'];
1922                 i := i + 1;
1923             }
1924         }
1925         var res := stringToInt(digits);
1926         if res == 0 {
1927             return 1;
1928         }
1929         if res > 1000000000 {
1930             return 1000000000;
1931         }
1932         return res;
1933     }
1934
1935
1936     method main_3node_2(o: int) returns (result: int)
1937     requires o >= 0
1938     ensures result >= 1
1939     {
1940         var o1 := smallestFactorization_625(o);
1941         var o2 := monotoneIncreasingDigits_738(o1);
1942         var o3 := lastRemaining_390(o2);
1943         return o3;
1944     }

```

Dafny Error:

```

1938     ex.dfy(22,12): Error: invalid ForLoopStmt
1939             reads s
1940     method stringToInt(s: string) returns (result: int)
1941
1942     2 parse errors detected in ex.dfy

```

1943