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ABSTRACT

Despite rapid advances in code generation, current Large Language Models
(LLMs) still lack an essential capability for reliable and verifiable code genera-
tion: compositional reasoning across multi-function programs. To explore this po-
tential and important gap, we introduce DAFNYCOMP, a benchmark designed to
systematically evaluate LLMs on the generation of compositional specifications in
Dafny. Unlike prior benchmarks that primarily target single-function annotation,
DAFNYCOMP focuses on programs composed of multiple interacting functions
with necessary data dependencies, requiring LLMs to produce specifications that
ensure correctness across component boundaries. Our benchmark comprises 300
automatically synthesized programs, each carefully constructed by combining 2—
5 originally independent functions in a chain-based manner through LLM-driven
synthesis. We evaluate LLMs from five leading research groups that represent
the current frontier of reasoning-centric Al, including the GPT, CLAUDE, GEM-
INI, DEEPSEEK, and QWEN families. Our results reveal a striking dichotomy:
while LLMs achieve both high syntax correctness (>99%) and moderate verifi-
cation rates (>58%) in prior single-function benchmarks, they exhibit degraded
syntax correctness (95.67%) and a catastrophic verification failure (3.69%) in
DAFNYCOMP’s compositional tasks—a 92% performance gap. Even the most
powerful LLM achieves only 7% verification at Pass @8, with most LLMs below
2%. Further analysis reveals that LLMs systematically fail at cross-functional
reasoning through three primary failure modes: specification fragility (39.2%),
implementation-proof misalignment (21.7%), and reasoning instability (14.1%).
These failures clearly reveal the absence of compositional reasoning capabilities in
current LLMs. DAFNYCOMP thus establishes a diagnostic benchmark for track-
ing progress in verifiable code generation with LLMs, highlighting that the path
from local to compositional verification remains largely uncharted.

1 INTRODUCTION

Large language models (LLMs) have transformed software development through their remarkable
code generation capabilities, enabling developers to produce complex programs from natural lan-
guage descriptions (Chen et al.} 2021} |Austin et al.| 2021)). These advances have driven widespread
adoption of programming assistants and development environments, fundamentally transforming
how modern software is developed. As LLM-generated code becomes increasingly integrated into
production systems, a critical question emerges: how to ensure the correctness of automatically syn-
thesized programs. Unlike human-written code that can be manually reviewed and tested, the scale
and complexity of LLM outputs demand systematic approaches to verification that go beyond tradi-
tional debugging methods. On the other hand, conventional testing provides only partial confidence
and cannot rule out rare corner cases or subtle specification mismatches.

Formal verification provides a principled solution to this challenge by offering mathematical guar-
antees of program correctness through rigorous specification and proof techniques. Programming
languages like Dafny enable developers to express precise contracts—preconditions, postconditions,
and invariants—that can be mechanically verified against implementations (Leinol 2010b). How-
ever, the adoption of formal verification has historically been constrained by what we often refer to
as the “specification bottleneck™: writing comprehensive annotations not only demands specialized
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Figure 1: The formal verification gap: high syntax success versus low verification rates.
(a) Benchmark performance reveals a dramatic gap between syntax correctness and verification suc-
cess, with DAFNYCOMP showing a 92% drop from 95.67% to 3.69%. (b) All models converge to
high syntax correctness at @8 shots, with performance ranging from 92% to 99%. (c) Verification
rates remain critically low (<8%) across all models despite increased sampling, with Claude-3.5
achieving the highest rate at only 7%.

expertise but also produces specification code that is comparable in size to the implementation it-
self (Leino et al.| 2017; [Coughridge et al.l [2024b). Recent research has explored the use of LLMs
to automate this specification generation process, demonstrating promising results where models
can complete missing annotations for individual functions and achieve moderate verification suc-
cess rates (Loughridge et al] [2024a} [Yan et al, 2025). However, current work in this area often
suffers from a critical limitation: existing benchmarks, such as DAFNYBENCH, primarily evalu-
ate annotation completion within isolated functions (Loughridge et al. 2024a)), failing to address
the compositional reasoning ability required for real-world, sophisticated software systems, where
correctness emerges from complex interactions between multiple components (Keysers et al.},[2020).

To fill this gap, we introduce DAFNYCOMP, the first benchmark explicitly designed to evaluate
the generation of compositional specifications for programming languages equipped with formal
verification. Concretely, we make the following contributions:

Contribution 1. To address the limitations of prior verification benchmarks, we present DAFNY-
CoMmP, a new benchmark explicitly designed for compositional formal verification (§3). Unlike
existing datasets such as DAFNYBENCH |[Loughridge et al.|(2024a)) that focus on specification gen-
eration for isolated single functions, DAFNYCOMP evaluates LLMs on programs composed of mul-
tiple interacting functions with real data dependencies. The benchmark consists of 300 Dafny pro-
grams synthesized by combining 2-5 independent functions, forcing models to reason across func-
tion boundaries to ensure end-to-end correctness. Note that our design is the first to require actual
compositional reasoning in specification generation, bridging a critical gap left by prior benchmarks
and reflecting the complexities of real-world software systems.

Contribution 2. We comprehensively evaluate 13 state-of-the-art LLMs on the constructed DAFNY-
CoMP (§E[) benchmark, including advanced models like GPT-40, CLAUDE 3.5, GEMINI 2.5,
DEEPSEEK-V3.1, and QWEN3-CODER. The results reveal a dramatic collapse in verification per-
formance despite high syntactic accuracy: while the models produce syntactically correct code for
approximately 95.7% of the tasks, only 3.7% of their outputs actually pass the formal verifier. This
staggering 92% gap between syntax success and semantic correctness persists across all model
families, prompt settings, and sampling strategies. Even with up to 8 attempts per problem, the best
model attains only around 7% verification success, indicating that increasing sampling or context
does not remedy the fundamental limitation.

Contribution 3. We carefully analyze the failure cases in the benchmark, which pinpoints three
primary failure modes underlying this breakdown (§3), highlighting systemic obstacles to composi-
tional reasoning in current LLMs:

» (i) Specification fragility: we observe the brittleness of generated specifications wherein small
omissions, over-/under-strengthening, or inconsistent framing (reads/modifies) clauses can
invalidate downstream proofs. Concretely, in compositional settings, a missing or slightly weaker
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postcondition at one stage can fail to imply a callee’s precondition, triggering a domino effect
along the call chain even when each component appears locally reasonable.

o (ii) Implementation—proof misalignment: We identify inconsistencies between the produced code
and its associated specifications or proofs, indicating that models often generate implementations
and annotations via largely independent pathways. Typical symptoms include plausible-but-false
loop invariants, contradictory requires/ensures obligations, or termination metrics that do
not match control flow, any of which cause verification to fail despite syntactic well-formedness.

e (iii) Reasoning instability: we witness a tendency to lose the inductive thread of the argument
over multiple steps, leading to invariants that are not preserved, incomplete coverage of cases,
or missing well-founded decreases measures. These errors are most evident in composition,
where maintaining complex state relationships across iterations and function boundaries is crucial
for end-to-end correctness.

These failure modes were pervasive in the models’ outputs, revealing a fundamental absence of
robust compositional reasoning capabilities. By identifying these issues, DAFNYCOMP serves as
a diagnostic benchmark for the community, enabling systematic measurement of progress toward
LLMs that can verify complex multi-component programs.

2 RELATED WORK

Formal Verification Benchmarks. Existing benchmarks for verifiable code generation can be
categorized into two types. Single-function benchmarks, such as DAFNYBENCH (Loughridge
et al| [2024a) and MBPP-DFY (Misu et al.l [2024), evaluate annotation completion within iso-
lated methods, achieving moderate success rates (50-60%) but failing to capture inter-function de-
pendencies. Interactive theorem proving benchmarks (miniCodeProps (Lohn & Welleck, 2024),
FVAPPS (Dougherty & Mehtal, 2025))) target proof synthesis in systems like Lean (De Moura et al.,
2015)) but require extensive manual validation and remain disconnected from practical programming.
DAFNYCOMP bridges this gap by evaluating compositional specification generation—a prerequisite
for scaling verification beyond toy programs to production systems. Unlike prior work, we explicitly
construct multi-function programs with data dependencies, exposing the compositional reasoning
deficit in current models (see Appendix [C|for detailed comparison).

Dynamic Benchmark Generation. Static benchmarks suffer from contamination and overfit-
ting (Hu et al.| 2025} [Zhang et al. 2024). Dynamic generation techniques—creating new tasks,
transforming problems, or perturbing reasoning structures (Zhu et al., [2024; 2023))—show promise
in mathematics and logic but neglect formal verification’s unique demands: specifications must
be syntactically valid, semantically precise, and correct across all execution paths. Our synthesis
pipeline addresses this by generating verifiable multi-function Dafny programs through controlled
composition, ensuring both novelty and correctness while maintaining the semantic complexity that
exposes compositional reasoning gaps.

Compositional Reasoning in LLMs. The ability to systematically combine simpler units into cor-
rect larger structures remains a frontier challenge (Li et al.,|[2024; Dziri et al.,2023)). While progress
exists in natural language and symbolic domains, formal verification imposes stricter demands:
specifications must preserve invariants across components and ensure global correctness. Existing
training paradigms favor pattern matching over principled proof construction. By requiring models
to generate specifications bridge function boundaries with explicit data dependencies, DAFNYCOMP
provides the first diagnostic benchmark for compositional reasoning in formal verification.

3 BENCHMARK CONSTRUCTION

DAFNYCOMP synthesizes 300 verified multi-function programs through a two-stage pipeline (Fig-
ure [2)), including program assembly (§3.1) and formal translation (§3.2), which bridges the gap
between practical Python implementations and verification-oriented Dafny specifications. Within
this pipeline, program assembly ensures the construction of compositional Python programs with
functional correctness, while specification translation with refinement ensures the quality and reli-
ability of the resulting data. We also provide format details of evaluation tasks (§3.3) and the key
characteristics of the benchmark (§3.4).
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Figure 2: Two-stage benchmark synthesis: (1) Assembly combines independent Python functions
with controlled data flow, ensuring algorithmic complexity while maintaining tractability; (2) For-
mal translation converts to verified Dafny through incremental AST-guided transformation.

3.1 PROGRAM ASSEMBLY

We construct compositional programs by systematically combining functions from LEETCODE-
DATASET (Xia et al.| 2023)), selected for their algorithmic depth and verification challenges.

Function Selection. We filter the corpus using McCabe’s cyclomatic complexity (McCabel |1976)
as a proxy for verification difficulty, retaining only functions with complexity >5 (around top 30%
of the dataset) and at least 10 lines of code. This threshold ensures non-trivial control flow—Iloops
with complex termination conditions, nested conditionals, recursive patterns—that stress specifica-
tion generation. For tractability, we restrict to single-input/single-output functions, yielding 1,847
candidate functions.

Compositional Strategy. Following Hu et al.| (2025)), we employ chain-based composition where
each function’s output feeds the next’s input, creating explicit data dependencies. While more
complex call graphs (trees, DAGs) are theoretically richer, empirical trials showed synthesis suc-
cess drops from 47% (chains) to <8% (arbitrary graphs) while providing no additional diagnostic
value—the chains suffice to expose compositional failures. After composition, we further identify
the minimal set of shared import dependencies across the combined Python functions. This step is
essential because the original LEETCODEDATASET often relies on broad import = statements,
which obscure library ownership and names. Without explicit mappings, Dafny cannot interpret
external libraries, preventing the synthesis of intermediate functions to replace missing third-party
features. We generate programs with 2—5 functions, exploring multiple permutations since function
ordering affects both data flow and verification complexity.

Validation Pipeline. After composition, the resulting Python code is subjected to a three-stage
validation pipeline, which filters candidates before their use in Section 3.2}

* (i) Type checking via constraint propagation: We statically infer candidate types and shapes for
each function’s inputs and outputs and propagate these constraints along the composition chain.
This pass rejects compositions with incompatible interfaces (e.g., scalar-sequence or element-type
mismatches) and flags violations of simple value constraints inferred from guards (such as non-
negativity or length bounds). The result is a set of compositions whose interfaces are consistent
end-to-end, providing a reliable basis for subsequent translation and verification.

e (ii) Formatting standardization: We apply a deterministic rewriter, implemented with tools such
as Black and isort, to normalize code style, including indentation, whitespace, line breaking,
and import organization. Canonicalizing these incidental variations yields stable, diff-friendly ar-
tifacts and reduces prompt variance in later stages. This step preserves semantics while producing
uniform program layouts that are easier to parse, translate, and verify.

o (iii) 7est validation: We execute each composed program against the reference unit tests from
LEETCODEDATASET to confirm functional correctness and basic executability. Programs that
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raise runtime exceptions, fail assertions, or produce incorrect outputs are discarded, ensuring only
behaviorally sound compositions advance. This filtering isolates verification challenges to speci-
fication and reasoning rather than implementation errors during the Dafny translation stage.

Following this procedure, we obtain 1,200 valid Python programs with 2-5 functions, which will be
used in the next stage.

3.2 FORMAL TRANSLATION

We translate validated Python compositions into Dafny implementations with formal guarantees,
focusing on the verification-oriented aspects of the benchmark here.

Translation Challenges. Direct end-to-end translation from Python to Dafny proved largely in-
effective, with empirical success rates below 5%. The core difficulty lies in Dafny’s demand for
explicit specifications, invariants, and termination arguments—semantic elements absent in Python.
This semantic gap makes single-pass translation infeasible for non-trivial programs.

Incremental Pipeline. Inspired by [Wen et al.| (2024), we adopt an incremental approach: the
abstract syntax tree (AST) of each Python program is decomposed into function- or control-
structure—level fragments. Each fragment is translated into Dafny and immediately verified, lo-
calizing errors to the smallest possible unit. Verified fragments are then progressively reassembled
according to the AST hierarchy, culminating in a complete Dafny program. Importantly, although
translation proceeds incrementally, the Python program must be composed in its entirety before it
can be executed. Whole-program composition in Python provides two benefits: (i) Python’s ex-
plicit AST nodes and mature tooling make program assembly more reliable and transparent; and (ii)
having a coherent Python blueprint ensures that the incremental Dafny translation preserves global
logical relationships, rather than producing isolated fragments that fail to compose. Thus, whole-
program composition and incremental translation are complementary design choices. To further
improve reliability, each candidate Dafny program undergoes up to ten refinement iterations, where
specifications are strengthened in response to verifier feedback (e.g., adding loop invariants, refining
postconditions, or inserting assertions). The entire synthesis and refinement process is carried out
by CLAUDE-4-SONNET-20250514, with the exact prompts provided in Appendix [D]

In total, the pipeline ultimately yields 564 verified Dafny programs from 1,200 attempts (corre-
sponding to an overall 47% success rate). Translation synthesis errors primarily arise from incom-
plete specifications (31%), type inference errors (22%), timeouts (18%), and irreconcilable semantic
gaps (29%). From these, we retain 300 programs carefully balanced across complexity levels (100
each with 2-3, 3-4, and 4-5 functions). To ensure evaluation integrity, we conduct a thorough con-
tamination analysis against MBPP-DFY (Misu et al., [2024), which is similarly synthesized from
Python code as a Dafny benchmark dataset. The results in Appendix [E|provide strong evidence that
our test set is indeed free from bias due to data overlap.

3.3 EVALUATION TASK FORMAT

We adopt a specification reconstruction task inspired by [Loughridge et al.|(2024a). Still, with a cru-
cial difference: rather than removing all assert and invariant statements, we strip away the
contract clauses (requires, ensures, reads, modifies, decreases) that appear before
the opening brace of each method or function. LLMs to be evaluated are then required to regen-
erate these specifications to enable verification. This design isolates the challenge of reconstructing
cross-function contracts from implementation concerns, focusing evaluation on whether models can
generate specifications that capture emergent correctness properties across component boundaries.
Unlike annotation completion tasks that permit purely local reasoning, our multi-function programs
require understanding how data flows and invariants propagate through compositions. We employ a
unified prompt across all evaluations (see Appendix [F).

3.4 BENCHMARK STATISTICAL SUMMARY

The resulting benchmark comprises 300 mechanically verified Dafny test cases that jointly capture
three key dimensions: compositional complexity from function-to-function call dependencies, algo-
rithmic diversity across multiple categories, and verification challenges arising from the increased
specification burden.

Compositional Complexity. Each program contains 2-5 functions (mean = 3.2) with an average
of 8.4 cross-function data dependencies, requiring models to reason about specification alignment
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across component boundaries. Unlike single-function benchmarks where specification generation
is largely local, our programs demand that preconditions of called functions be implied by post-
conditions of their callers—a requirement that introduces cascading verification challenges when
specifications fail to propagate correctly.

Algorithmic Diversity. The benchmark spans 15 algorithmic categories with balanced representa-
tion: dynamic programming (18%), string manipulation (20%), number theory (15%), and graph
algorithms (12%) constitute the primary categories, with the remainder distributed across sorting,
searching, and combinatorial problems. Beyond the balance of individual categories, diverse per-
mutations and combinations of these types yield composed programs with more intricate, layered
structures. Consequently, the target of composing function calls is reinforced by the characteristics
of the source dataset (LEETCODEDATASET (Xia et al., 2025)), which in turn induces composition
at the level of algorithmic logic. This design ensures models must develop general compositional
reasoning rather than memorizing category-specific patterns.

Verification Challenges. Every program is mechanically verified by Dafny 4.10.0, thereby provid-
ing ground-truth correctness. The median program requires 7 loop invariants and 4 assertions for
verification, with 23% demanding intricate termination arguments via decreases clauses—a 3.5%
increase in annotation density compared to DAFNYBENCH’s average of 2 per program. This added
specification burden reflects the extra complexity of compositional verification, creating a graduated
challenge that pinpoints where current models shift from local reasoning to compositional failure.

4 EXPERIMENTAL SETUP AND RESULTS

In this section, we enumerate the evaluation metrics (§4.1)), LLM model selection for the benchmark
(§4.2), and the corresponding evaluation results (§4.3).
4.1 METRICS

We evaluate two complementary aspects of model performance:

» Syntax Correctness: measures whether generated specifications parse successfully in Dafny.
This baseline metric captures models’ grasp of the formal language syntax.

* Verification Rate: measures the fraction of syntactically correct programs that pass Dafny’s veri-
fier—the ultimate test of semantic understanding. This metric is computed only over syntactically
valid outputs, as verification requires parseable code.

Following|Chen et al.| (2021), we report Pass @k for k € {1, 2,4, 8}, measuring the overall probabil-
ity of successfully solving a problem within % attempts. Pass@ 1 provides a strict zero-shot baseline
of immediate reasoning ability, whereas larger k values further exploit additional test-time compute
to improve success on compositional tasks (Snell et al.,[2024). In this setting, Pass @38 is particularly
informative for clearly distinguishing model robustness and adaptability.

4.2 MODEL SELECTION

We evaluate 13 frontier models spanning five architectural families, chosen for their demonstrated
strength in code generation and general reasoning:

* OpenAl: GPT-40 (Hurst et al.| 2024), GPT-4.1 (OpenAl, [2024), 04-MINI (OpenAl, [2025)
* Anthropic: CLAUDE-3.5-SONNET (Anthropic} 2024), CLAUDE-4-SONNET (Anthropic, [2025)
* Google: GEMINI-2.5-PRO, GEMINI-2.5-FLASH (Google DeepMind| 2025)

* DeepSeek: DEEPSEEK-R1 (Guo et al 2025), DEEPSEEK-V3 (Liu et al., [2024), DEEPSEEK-
V3.1 (DeepSeek-AlL [2025))

e Alibaba: QWEN2.5-CODER-32B (Hui et al.l 2024), QWEN3-CODER-480B (Qwen Team,
2025al), QWQ-32B (Qwen Team, 2025b)
4.3 RESULTS AND DISCUSSION

Table [I] presents our main experimental findings. We observe a systematic verification collapse
across all evaluated models, with four interesting observations:
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Table 1: Model performance reveals high syntax mastery but catastrophic verification failure. While
syntax correctness reaches 99% with sufficient sampling, verification rates remain below 7% even
for the best models, exposing the compositional reasoning gap.

Model Syntax Correct Rate (%) Verified Rate (%)
@1 @2 @4 @38 @] @2 @4 @8

OpenAl Models

GPT-40 9433 98.67 99.33 99.67 0.33 0.33 033 0.33

04-MINI 80.00 92.67 98.00 99.00 0.00 0.00 0.67 0.67

GPT-4.1 59.00 69.67 79.33 86.33 0.00 0.00 0.00 0.00
Anthropic Models

CLAUDE-3.5-SONNET* 90.67 96.33 98.67 99.00 3.67 4.67 5.00 7.00

CLAUDE-4-SONNET' 95.67 97.33 98.00 9833 233 3.00 3.00 3.33
Google Models

GEMINI-2.5-FLASH 54.00 64.00 81.00 89.67 0.00 0.00 0.00 0.00

GEMINI-2.5-PRO 69.00 81.00 91.67 96.00 0.00 0.33 0.67 2.00
DeepSeek Models

DEEPSEEK-R1 85.67 9533 9833 99.00 0.33 0.33 033 0.33

DEEPSEEK-V3 77.33 88.67 9533 9733 0.00 0.00 033 0.33

DEEPSEEK-V3.1 54.67 7233 83.33 92.00 0.00 0.00 0.00 0.67
Alibaba Models

QWEN3-CODER-480B-A35B-INSTRUCT 85.33 94.00 98.00 99.00 0.00 0.33 0.33 1.00

QWEN2.5-CODER-32B-INSTRUCT 62.00 74.67 85.00 89.00 0.00 0.33 0.33 0.67

QWQ-32B 46.67 61.33 78.00 91.00 0.00 0.00 0.00 0.00

*claude-3.5-sonnet-20241022, fclaude-4-sonnet-20250514

Observation 1. Universal verification failure despite syntactic mastery. The most striking result is
the consistent 92-percentage-point gap between syntax correctness and verification success across
all models. At Pass@8, models achieve p = 95.67% (SD = 4.21%) syntax correctness but only
u = 3.69% (SD = 2.14%) verification. This gap persists independent of: (i) model scale (480B
vs 32B parameters, p > 0.05), (ii) training specialization (code-specific vs general-purpose), (iii)
architectural family (dense, MoE, constitutional), and (iv) increased sampling (Pass@1 to Pass@8).
The universality of this failure suggests a fundamental architectural limitation rather than an opti-
mization or data issue.

Observation 2. Non-linear scaling reveals compositional breakdown. Comparing performance
degradation from single-function (DAFNYBENCH) to multi-function (DAFNYCOMP) tasks reveals
super-linear complexity scaling. With 3.2 increase in functions, we observe a 14.4x decrease in
verification success (from ~53% to 3.69%). This disproportionate degradation cannot be explained
solely by additive difficulty. Instead, it suggests that specification requirements grow combinatori-
ally with function composition—each function boundary introduces O(n?) potential specification
dependencies that models fail to capture.

Observation 3. Sampling saturation indicates capability ceiling, not search limitations. The
verification-sampling curve plateaus by Pass@4 for all models, with the marginal improvement
from Pass@4 to Pass@8 averaging only 0.8%. In contrast, syntax correctness continues improving
(+7.3% on average), demonstrating that models can explore the output space but cannot discover
valid specifications. This divergent behavior between syntax and semantics strongly suggests that
current architectures lack the inductive biases necessary for compositional reasoning, rather than
merely requiring better search strategies or more compute.

Observation 4. Reasoning-specialized models show no clear advantage, thereby confirming ar-
chitectural barriers. Models explicitly optimized for reasoning (QWQ-32B with chain-of-thought
focus, DEEPSEEK-R1 with reinforcement learning) perform no better than general-purpose mod-
els, with QwQ-32B still achieving 0% verification even at Pass@8. The tight clustering of ver-
ification rates (coefficient of variation = 0.58) across diverse training objectives strongly indicates
that compositional verification requires fundamentally different architectural primitives—not refine-
ments of existing transformer-based reasoning. This null result is particularly informative: it clearly
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demonstrates that neither extended reasoning traces nor reward-based optimization can overcome
the absence of compositional inductive biases.

5 FAILURE CASE ANALYSIS AND DISCUSSION

Table 2: Distribution of verification failure modes across 900 analyzed cases from DAFNYCOMP.
Categories determined through automated error analysis and manual validation on 10% sample.

Failure Mode Frequency % of Total Primary Mechanism
Specification Fragility 353/900 39.2 Contract propagation failure
Implementation—-Proof Misalignment 195/900 21.7 Independent generation pathways
Reasoning Instability 127/900 14.1 Inductive chain breakdown
Other (syntax, timeout, misc.) 225/900 25.0 Various

The significant gap between syntax correctness and ultimate verification success demands a clear
mechanistic explanation. Through a systematic analysis of 900 observed verification failures across
three representative model families, we identify several distinct failure modes that reveal fundamen-
tal limitations in how transformers process compositional specifications. Table[2]presents the overall
distribution of these failures, which we analyze in detail below.

5.1 SPECIFICATION FRAGILITY: THE DOMINO EFFECT

Specification fragility, the inability to generate contracts that remain valid across function compo-
sitions, constitutes the plurality of failures. Consider a representative case from our benchmark:
a digitSum function correctly implemented but missing the postcondition ensures result
>= 0. In isolation, this omission appears minor. In composition, it cascades—when digitSum’s
output feeds a downstream function expecting non-negative input, verification fails globally despite
both functions being locally correct. Note that this pattern recurs throughout our dataset. Models
generate specifications sufficient for local correctness but insufficient for compositional soundness.
A requires n >= 0 precondition absent from one function invalidates the entire pipeline’s ver-
ification, even when each component individually passes most test cases. The fragility stems from
a fundamental mismatch: LLMs learn specifications as local patterns rather than global contracts.
They lack the architectural machinery to reason about how data constraints propagate through func-
tion calls—a capability essential for modular verification. The implications extend beyond Dafny.
Any system requiring compositional correctness—from distributed systems protocols to smart con-
tract verification—will face similar failures until models can reason about specification flow across
component boundaries.

The first key takeaway insight about specification fragility is summarized below:

Takeaways (i): LLMs handle local specs but fail under composition. Missing contract
propagation is the main cause of verification breakdowns.

5.2 IMPLEMENTATION-PROOF MISALIGNMENT: THE INDEPENDENCE ASSUMPTION

The second failure mode reveals a deeper architectural issue: LLMs treat implementation and spec-
ification as independent generation tasks rather than coupled constraints. In 21.7% of failures,
syntactically valid code contradicts its own specifications. One striking example: a model gener-
ated assert 0 >= 1; within otherwise reasonable code—not a typo but a systematic failure to
maintain logical consistency. More subtle misalignments prove equally fatal. Loop invariants like
forall k :: 0 <= k < i ==> cnt[k] >= 0 appear plausible but fail verification be-
cause the implementation’s array access patterns violate the stated bounds. The model generates
invariants that “look right” based on training patterns but don’t correspond to the actual code behav-
ior. This isn’t surprising given transformer architecture: attention mechanisms excel at capturing
local dependencies but struggle with the bidirectional constraints between specifications and imple-
mentations. Current training paradigms exacerbate this issue. Models learn from code-specification
pairs without explicit feedback on the mutual consistency between them. The result: impressive
performance on syntax and moderate success on individual functions, but catastrophic failure when
consistency is required across boundaries.
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We summarize the second key takeaway about implementation-proof misalignment as:

Takeaways (ii): Code and specs are generated independently, leading to plausible but in-
consistent invariants. Future training for this task should enforce better alignment.

5.3 REASONING INSTABILITY: INDUCTION AS ACHILLES’ HEEL

The third failure pattern, which we refer to as reasoning instability, exposes perhaps the most fun-
damental limitation. Formal verification relies on inductive reasoning: proving properties hold
initially, maintain their validity through iterations, and compose across calls. LLMs consistently
fail this inductive chain. Loop invariants that should accumulate state (e.g., invariant res
== stringToIntHelper (s[..1i])) break because models cannot track how program state
evolves through iterations. Recursive functions lack proper termination arguments. Properties
proven for base cases fail to extend inductively. This instability reflects the inherently statistical
nature of reasoning exhibited by transformer architectures. While capable of pattern-matching simi-
lar invariants from training data, models cannot construct the inductive proofs verification demands.
They approximate rather than prove, which is sufficient for typical NLP tasks but inadequate for
verifiable code generation, where formal verification is required.

We summarize the third insight about reasoning instability as:

Takeaways (iii): LLMs approximate base cases but fail to sustain inductive reasoning, ex-
posing a structural gap in formal verification.

6 LIMITATIONS AND FUTURE WORK

While DAFNYCOMP exposes fundamental limitations in compositional reasoning, we want to gently
mention several constraints of our evaluation, which indicate some interesting future work.

* Compositional Patterns. We restrict to chain-based compositions (sequential function calls)
rather than complex topologies (recursive compositions, mutual dependencies) due to synthesis
tractability. While chains suffice to demonstrate compositional failure, real systems exhibit richer
patterns. Extending to arbitrary call graphs requires solving verification tractability for cyclic
dependencies—a challenge independent of LLM capabilities.

* Specification Types. Our benchmark tests functional correctness (preconditions, postconditions,
invariants) but not liveness properties, resource bounds, or security policies. These orthogonal
concerns—e.g., proving memory consumption remains constant across compositions—require
different verification techniques and evaluation metrics.

» Data Scarcity. The core challenge may be training data availability. Repositories contain only a
few verified multi-function programs with compositional specifications. Synthetic data generation
or bootstrapped program synthesis could address this gap, although ensuring semantic diversity
remains a challenge.

7 CONCLUSION

We introduce DAFNYCOMP, the first benchmark specifically designed to evaluate the generation
of compositional specifications for formal verification. Through 300 synthesized multi-function
Dafny programs, we systematically assessed 13 state-of-the-art LLMs on their ability to generate
specifications that ensure correctness across function boundaries. Our results reveal a fundamental
capability gap: while models achieve greater than 99% syntax correctness and more than 58% verifi-
cation on single-function benchmarks, they collapse to 3.69% verification on compositional tasks—a
92% degradation. This performance cliff persists across all model families despite increased sam-
pling (Pass@8), indicating an architectural rather than search limitation. Error analysis identifies
three systematic failure modes: specification fragility (39.2%), implementation-proof misalignment
(21.7%), and reasoning instability (14.1%), each reflecting the inability to maintain logical commit-
ments across functional boundaries. In conclusion, DAFNYCOMP provides both a diagnostic tool
for current systems and a concrete target for future research. We release the benchmark, evaluation
framework, and synthesis pipeline to accelerate progress on this critical challenge.
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A THE USE OF LLMS IN WRITING

During the preparation of this manuscript, we employed a large language model (OpenAl GPT-5)
to assist with language refinement and editorial improvements. Specifically, the LLM was used
to enhance sentence fluency, improve clarity of expression, and ensure consistency with academic
writing conventions. The tool was applied exclusively for linguistic polishing—all research design,
experimental work, data analysis, and core intellectual contributions remain entirely original.

B INTRODUCTION TO DAFNY

Dafny (Leinol 2010a), developed at Microsoft Research, is a verification-oriented programming
language specifically designed to support formal reasoning about software. Unlike conventional
languages where correctness is primarily assessed through testing, Dafny integrates an automated
program verifier directly into the development workflow, enabling developers to construct code that
is mathematically proven to satisfy its specifications. This approach shifts the discovery of defects
from the testing phase to the design and implementation phases, thereby improving software relia-
bility.

A distinctive feature of Dafny is that specifications are treated as first-class citizens. Methods can be
annotated with preconditions, postconditions, and logical properties that describe intended behavior.
For example:

method Example (a: array<int>) returns (b: array<int>)
requires a.Length > 0 // Precondition
ensures b.Length == a.Length // Postcondition
ensures forall i :: 0 <= 1 < b.Length ==> b[i] >= // Property

// Implementation

The Dafny verifier relies on automated theorem proving (via Z3 solver (De Moura & Bjgrner, 2008))
to ensure that implementations conform to these specifications, providing mathematical certainty
about program behavior. Crucially, the ability to reason about the composition of verified compo-
nents determines whether verification can scale from toy examples to real-world systems. With-
out compositional reasoning, verification remains confined to small, isolated programs rather than
production-level software.

C AUTOMATED THEOREM PROVING

A complementary line of work contrasts automated verification frameworks with interactive theorem
proving (ITP) systems. Languages such as Dafny and Verus rely on SMT solvers to discharge
proof obligations, requiring only lightweight annotations (e.g., invariants, assertions). This design
lowers the barrier to entry but is constrained by the solver’s limited reasoning scope and opaque
failure modes. In contrast, ITPs such as Lean expose every proof step explicitly, enabling iterative
refinement and error diagnosis. Recent studies even show that LLMs can generate competition-level
mathematical proofs in Lean. However, existing Lean-based benchmarks (e.g., miniCodeProps,
FVAPPS) either focus narrowly on proof synthesis or lack human validation. By comparison, Dafny
offers a more balanced environment for benchmarking LLMs: it combines code, specifications, and
automated verification in a way that remains close to mainstream programming practice.

How Dafny Works and Its Core Strengths. Dafny’s approach stems from its verification-aware
design. Developers embed formal specifications, such as preconditions, postconditions, and loop
invariants, directly within the code (Leinol 2010a)). These specifications are not merely comments;
they are integral components checked by the built-in verifier. The verifier translates Dafny code
and its specifications into an intermediate verification language, Boogie, which then generates proof
obligations. These obligations are processed by an SMT solver (e.g., Z3) to prove their validity.
If all obligations are proven, the code is confirmed to be correct according to its specifications. If
a proof fails, Dafny provides precise feedback on the inconsistencies. This methodology supports
correctness by construction, helping to reduce common errors like null pointer dereferences or ar-
ray out-of-bounds access (Poesia et al.l 2024). Once verified, Dafny code can be translated into
mainstream languages such as Python for execution (L1 et al.| [2025).
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Dafny vs. Python: A Fundamental Difference in Approach. To understand Dafny’s position,
it’s useful to compare it with a widely used language like Python. While both are effective, their
fundamental design philosophies and primary objectives differ, as shown in Table 3]

Feature Dafny Python

Year Introduced 2010 (Microsoft Research) 1991 (Guido van Rossum)

Type System Static typing, compile-time checks =~ Dynamic typing, run-time checks
Formal Verification = Yes — built-in contracts and proofs ~No — only basic assert

Main Use Verified algorithms, critical systems  General-purpose programming
Execution Model Compiled with verification Interpreted (e.g., CPython)

Table 3: Key differences between Dafny and Python.

In summary, Dafny offers a distinct approach to software development by integrating formal verifi-
cation into the language itself. While Python excels in agile development and broad applicability,
Dafny is particularly suited for domains where software correctness and formal guarantees are criti-
cal. For more, please refer to the Dafny official Website{ﬂ

D PROMPT FOR SYNTHESIS

The prompt templates used for annotating data with Claude 3.5 Sonnet are shown in the following
boxes.

Prompt for Inital Dafny Code Generation

SYSTEM

You are an expert Al assistant that writes Dafny programs. You excel at writing code
with formally verified correctness, providing precise preconditions and postconditions,
and finding the appropriate loop invariants to ensure all verification conditions are met.
TASK

Below is the Python code:

“python
<python_code>

Please translate this Python code into Dafny, ensuring:

1. Method Signatures: Each piece of functionality should be expressed as a Dafny
method (or set of methods) with a well-defined signature.

2. Preconditions: Clearly state any ‘requires‘ clauses for each method (e.g., array
length constraints, non-null references, numeric domain restrictions, etc.).

3. Postconditions: State the logical guarantees about the returned values or final
state as ‘ensures‘ clauses (e.g., correctness of returned results, absence of side
effects, etc.).

4. Verification Details: Include all necessary loop invariants (or other verification
hints) so Dafny can prove the postconditions, along with a brief explanation. For
example: - Explain how you chose your invariants. - Describe how they ensure
the correctness of the loop.

Return the final Dafny code as a self-contained snippet that can be verified by Dafny as-is,
with a short explanation of how it connects to the original Python functionality.

AI ASSISTANT
<The LLM’s generated Dafny code with specifications here.>

"https://dafny.org/dafny/OnlineTutorial/guide
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Dynamic Debugging Prompt for Code Generation

SYSTEM

You are an expert Al assistant that writes and debugs Dafny programs. You excel at diag-
nosing and fixing verification errors based on Dafny solver messages, while maintaining
correct preconditions, postconditions, and loop invariants.

TASK

Below is the Python code:

““python
<python_code>

And the Dafny code you previously provided (which I tried to verify):

T dafny
<main_spec>

Iran dafny verify =.dfy and received this error message:

<dafny_analysis_result>

Can you please fix the main function specification so that it parses successfully? Output
the corrected main function specification only, without any other text.

AT ASSISTANT

<The LLM’s generated Dafny code with specifications here.>

. J

E DATA CONTAMINATION ANALYSIS

To validate the novelty of DAFNYCOMP, we conducted a rigorous data contamination analysis
against the widely-used MBPP dataset (Austin et al.,|2021)), used to assess contamination in Python
source data. We confirm that our benchmark source data shows no significant overlap, ensuring
model performance reflects genuine reasoning capabilities rather than memorization.

Our analysis, focusing solely on code, employs two standard metrics: Exact Match to detect ver-
batim copies, and n-gram Jaccard Similarity to identify structurally similar code. We performed
this analysis under four distinct configurations, the results of which are summarized in Table[z_f}

Across all scenarios, we found zero exact matches. The n-gram Jaccard similarity remains neg-
ligible, peaking at a mere 0.0078 even under the most aggressive settings. These findings provide
strong evidence that DAFNYCOMP is free from training data contamination.

Table 4: Summary of Data Contamination Analysis. The table shows results for four testing config-
urations: A (Conservative) with minimal preprocessing; B (Default) with moderate preprocessing;
C (Aggressive) with extensive preprocessing; and D (Holistic) for a structure-level check. Across
all configurations, results show zero exact matches and negligible n-gram similarity when compar-
ing DAFNYCOMP source data against MBPP, confirming the benchmark’s integrity.

Analysis Configuration N-gram (n) Exact Overlap Max Jaccard vs. sanitized-mbpp

A: Conservative 15 0 0.000078 0
B: Default 11, 13, 15 0 0.000389 0
C: Aggressive 9,11, 13 0 0.007757 0
D: Holistic 11, 13, 15 0 0.000234 0
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F PROMPT FOR EVALUATION

The prompt template used for evaluation is shown in the following box. Note that all model outputs
are used directly for Dafny verification.

Evaluation Prompt for Dafny Specification Generation

SYSTEM

You are an expert in Dafny. You will be given tasks dealing with Dafny programs includ-
ing precise annotations. You should only return code body in all circumstances. No text
is allowed.

TASK

Given a Dafny program with function signature, preconditions, postconditions, and code,
but with annotations missing. Please return a complete Dafny program with the strongest
possible annotation (loop invariants, assert statements, etc.) filled back in. Do not explain
or output any text. If you have to explain, put all explanations in comments form. There
should only be code body in your output. Please use exactly the same function signature,
preconditions, and postconditions. Do not ever modify the given lines.

Below is the program:

dafny
<dafny programwith missing_annotations>

AT ASSISTANT

" dafny
<The LLM’s generated Dafny code with specifications
NEEg >

\ J

G REAL EXAMPLES FROM BENCHMARK DATA

G.1 CHALLENGE 1: FORMAL SPECIFICATION SYNTHESIS
The following examples demonstrate failures in generating correct formal specifications, particularly
preconditions and postconditions.

G.1.1 EXAMPLE 1.1: POSTCONDITION FAILURE (ORG_INPUT_ID: 2, SELF_ID: 20001)
LLM Response:

method digitSum(n: int) returns (sum: int)
requires n >= 0
ensures sum >= 0

var temp := n;

sum := 0;

while temp > 0
invariant temp >= 0
invariant sum >= 0
sum := sum + (temp % 10);
temp := temp / 10;
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Dafny Error:

ex.dfy (137,0): Error: a postcondition could not be proved on this return
path

ex.dfy (136,25): Related location: this is the postcondition that could
not be proved

G.1.2 EXAMPLE 1.2: MISSING PRECONDITION (ORG_INPUT_ID: 6, SELF_ID: 60005)
LLM Response:

method DigitSum(n: int) returns (sum: int)
requires n >= 0
ensures sum >= 0

var num := n;

sum := 0;

while num > 0
invariant sum >= 0
invariant num >= 0
decreases num

sum := sum + (num % 10);
num := num / 10;
}
}
Dafny Error:

ex.dfy(177,36): Error: a precondition for this call could not be proved

G.2 CHALLENGE 2: ENSURING CODE CORRECTNESS

These examples show implementation issues where the code logic doesn’t satisfy the specifications.

G.2.1 EXAMPLE 2.1: ARRAY BOUNDS ERROR (ORG_INPUT_ID: 1, SELF_ID: 10002)
LLM Response:

method smallestNumber 2165 (num: int) returns (result: int)

{

var neg := num < 0;

var n := if num < 0 then -num else num;
var cnt := new int[10];

var 1 := 0;

while i < 10
invariant 0 <= i <= 10

invariant cnt.Length == 10
invariant forall k :: 0 <= k < i ==> cnt[k] >= 0
{
cnt [i] = 0;
i =1+ 1;
}
// ... rest of implementation
}
Dafny Error:

ex.dfy (44,30): Error: this loop invariant could not be proved on entry
Related message: loop invariant violation
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G.2.2 EXAMPLE 2.2: ASSERTION FAILURE (ORG_INPUT_ID: 6, SELF_ID: 60001)
LLM Response:

method DigitSum(n: int) returns (sum: int)
requires n >= 0
ensures sum >= 0

var num := n;

sum := 0;

while num > 0
invariant sum >= 0
invariant num >= 0
decreases num

sum := sum + (num % 10);
num := num / 10;
}
}
Dafny Error:

ex.dfy(181,4): Error: assertion might not hold
assert o2 >= 1;

G.3 CHALLENGE 3: PROOF GENERATION AND FORMAL REASONING

Examples demonstrating failures in generating proper loop invariants and formal proofs.

G.3.1 EXAMPLE 3.1: INVARIANT NOT MAINTAINED (ORG_INPUT_ID: 0, SELF_ID: 6)
LLM Response:

method stringTolInt (s: seg<char>) returns (result: int)
requires forall i :: 0 <= i < |s| ==> "0’ <= s[i] <= "9’
ensures result >= 0

{

var res := 0;
var 1 := 0;
while 1 < |s|
invariant 0 <= 1 <= |s]|
invariant res >= 0
invariant res == stringToIntHelper(s[..i])
{
res := res % 10 + digitToInt(s[il]);
i =1 + 1;
}
result := res;
}
Dafny Error:

ex.dfy(25,18) : Error: this invariant could not be proved to be maintained
by the loop
Related message: loop invariant violation
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G.3.2 EXAMPLE 3.2: RECURSION TERMINATION (ORG_INPUT_ID: 4, SELF_ID: 40003)
LLM Response:

function gcd_func(a: int, b: int): int
{

if b == 0 then a else gcd_func(b, a % b)
}

method gcd(a: int, b: int) returns (result: int)
requires a > 0 && b >= 0

ensures result == gcd_func(a, b)
{
var x := a;
var y := b;
while y !'= 0
invariant x > 0 && y >= 0
invariant gcd_func(a, b) == gcd_func(x, V)

decreases y

var temp := x % y;
X =y
y := temp;
}
result := x;
}
Dafny Error:
ex.dfy(3,34): Error: cannot prove termination; try supplying a decreases
clause
if b == 0 then a else gcd_func(b, a % b)

G.4 CHALLENGE 4: SPEC-CODE-PROOF ALIGNMENT

These examples show misalignment between specifications and implementation, particularly
method vs. function usage.

G.4.1 EXAMPLE 4.1: METHOD IN EXPRESSION CONTEXT (ORG_INPUT_ID: 0, SELF_ID: 5)
LLM Response:

method stringToInt (s: seg<char>) returns (result: int)
requires forall i :: 0 <=1 < |[s| ==> '0" <= s[i] <= "9’
ensures result >= 0
{
var res := 0;
var 1 := 0;
while i < |s]|
invariant 0 <= i <= |s]|
invariant res >= 0
invariant res == if i == 0 then 0 else stringToInt(s[..i])

res := res % 10 + digitToInt(s[i]);
i :=1i + 1;

result := res;

Dafny Error:

ex.dfy(26,43): Error: expression is not allowed to invoke a method (
stringTolInt)
invariant res == if i == 0 then 0 else stringToInt(s[..i])
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G.4.2 EXAMPLE 4.2: FUNCTION VS METHOD CONFUSION (ORG_INPUT_ID: 16, SELF_ID:
160000)
LLM Response:

method reverse_7(x: int) returns (ans: int)
{
ans := 0;
var temp_x := X;
while temp_x != 0
invariant ans >= 0
decreases if temp_x >= 0 then temp_x else -temp_x
ans := ans * 10 + temp_x % 10;
temp_x := temp_x / 10;

}

method isBeautiful (n: int) returns (result: bool)

{
// Implementation for checking if number is beautiful
result := true; // Simplified

}

method nextBeautifulNumber_ 769 (n: int) returns (result: int)
{
var x :=n + 1;
while true
invariant x >= n + 1
invariant forall y :: n + 1 <= y < x ==> !isBeautiful (y)
decreases *

var beautiful := isBeautiful (x);
if beautiful {

result := x;

return;

Dafny Error:

ex.dfy (248,46): Error: expression is not allowed to invoke a method (
isBeautiful)
invariant forall y :: n + 1 <= y < x ==> !isBeautiful (y)
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G.5 CHALLENGE 5: COMPLEXITY AND SCALABILITY ISSUES

Examples where complex programs or large data structures cause verification failures.

G.5.1 EXAMPLE 5.1: LARGE ARRAY ALLOCATION (ORG_INPUT_ID: 1, SELF_ID: 10002)
LLM Response:

method smallestNumber 2165 (num: int) returns (result: int)

{

var neg := num < 0;

var n := if num < 0 then -num else num;
var cnt := new int[10];

var 1 := 0;

while 1 < 10
invariant 0 <= i <= 10

invariant cnt.Length == 10

invariant forall k :: 0 <= k < i ==> cnt[k] >= 0
{

cnt[i] := 0;

i :=1i + 1;

}

// Count digits

var temp := n;

while temp > 0
invariant temp >= 0
invariant forall k :: 0 <= k < 10 ==> cnt[k] >= 0
decreases temp

var digit := temp % 10;
cnt [digit] := cnt[digit] + 1;
temp := temp / 10;

}

// Construct result

result := 0;

i := if neg then 1 else 0;

while 1 < 10
invariant 0 <= i <= 10
invariant result >= 0
decreases 10 - i

while cnt[i1] > O
invariant cnt[i]
invariant result >
decreases cnt[i]

\
Il
o o

result := result * 10 + i;
cnt[i] := cnt[i] - 1;
}
i :=1i+ 1;
}
if neg {
result := -result;

}

Dafny Error:

ex.dfy (44,30): Error: this loop invariant could not be proved on entry
Related message: loop invariant violation
invariant ans >= 0
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G.6 CHALLENGE 7: AVOIDING TRIVIAL SOLUTIONS

Note: This category had limited representation in the dataset. The theoretical examples that would
fit this category include:

* Overly permissive postconditions like ensures true

* Methods with missing functional specifications

* Weak preconditions that don’t prevent edge cases

 Specifications that allow degenerate solutions

* Missing bounds on return values

* Incomplete coverage of input space

* Trivial loop invariants that don’t capture semantics

* Weak assertions that don’t prevent bugs

* Generic error handling without specific constraints
G.7 CHALLENGE 8: LIMITED TRAINING IN FORMAL DOMAINS
Examples showing basic syntax errors and misuse of Dafny constructs.

G.7.1 EXAMPLE 8.1: PARSE ERROR (ORG_INPUT_ID: 0, SELF_ID: 0)
LLM Response:

function digitToInt (c: char): int
requires 0’ <= c <= '9’
ensures 0 <= digitToInt(c) <= 9
{
(c as int) - ("0’ as int)

}

function intToChar (i: int): char
requires 0 <= i <= 9
ensures 0’ <= intToChar (i) <= ’'9’/
{
(("0" as int) + i) as char

}

method stringToInt (s: string) returns (result: int)
requires forall i :: 0 <=1 < |[|s| ==> "0’ <= s[i] <= "9’
ensures result >= 0

var res := 0;
var 1 := 0;
while i < |s]|
invariant 0 <= i <= |s]|
invariant res >= 0
{
res := res * 10 + digitToInt(s[i]);
i =1+ 1;
}
result := res;
}
Dafny Error:

ex.dfy(16,35): Error: type string is not expected in Dafny; use seg<char>
instead
method stringToInt (s: string) returns (result: int)

2 parse errors detected in ex.dfy
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G.7.2 EXAMPLE 8.2: SYNTAX ERROR (ORG_INPUT._ID: 0, SELF_ID: 2)
LLM Response:

function digitToInt (c: char): int
requires 0’ <= c <= '9’
ensures 0 <= digitToInt (c) <= 9
{
(c as int) - ("0’ as int)

}

function intToChar (i: int): char
requires 0 <= i <= 9
ensures 0’ <= intToChar (i) <= ’9’/
{
(("0" as int) + 1) as char

}

method stringTolInt (s: seg<char>) returns (result: int)
requires forall i :: 0 <= 1 < |s]| ==> "0’ <= s[i] <= "9’
ensures result >= 0

var res := 0;

var 1 := 0;

while 1 < |s|
invariant 0 <= i <= |s|
invariant res >= 0

res := res x 10 + digitToInt(s[i]);
i =1+ 1;

result := res;

Dafny Error:

ex.dfy(29,5): Error: "closeparen" expected
result := res;

2 parse errors detected in ex.dfy

23




	Introduction
	Related Work
	Benchmark Construction
	Program Assembly
	Formal Translation
	Evaluation Task Format
	Benchmark Statistical Summary

	Experimental Setup And Results
	Metrics
	Model Selection
	Results and Discussion

	Failure Case Analysis and Discussion
	Specification Fragility: The Domino Effect
	Implementation–Proof Misalignment: The Independence Assumption
	Reasoning Instability: Induction as Achilles' Heel

	Limitations and Future Work
	Conclusion
	The Use of LLMs in Writing
	Introduction to Dafny
	Automated Theorem Proving
	Prompt for Synthesis
	Data Contamination Analysis
	Prompt for Evaluation
	Real Examples from Benchmark Data
	Challenge 1: Formal Specification Synthesis
	Example 1.1: Postcondition Failure (org_input_id: 2, self_id: 20001)
	Example 1.2: Missing Precondition (org_input_id: 6, self_id: 60005)

	Challenge 2: Ensuring Code Correctness
	Example 2.1: Array Bounds Error (org_input_id: 1, self_id: 10002)
	Example 2.2: Assertion Failure (org_input_id: 6, self_id: 60001)

	Challenge 3: Proof Generation and Formal Reasoning
	Example 3.1: Invariant Not Maintained (org_input_id: 0, self_id: 6)
	Example 3.2: Recursion Termination (org_input_id: 4, self_id: 40003)

	Challenge 4: Spec-Code-Proof Alignment
	Example 4.1: Method in Expression Context (org_input_id: 0, self_id: 5)
	Example 4.2: Function vs Method Confusion (org_input_id: 16, self_id: 160000)

	Challenge 5: Complexity and Scalability Issues
	Example 5.1: Large Array Allocation (org_input_id: 1, self_id: 10002)

	Challenge 7: Avoiding Trivial Solutions
	Challenge 8: Limited Training in Formal Domains
	Example 8.1: Parse Error (org_input_id: 0, self_id: 0)
	Example 8.2: Syntax Error (org_input_id: 0, self_id: 2)



