
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOCAL SUCCESS DOES NOT COMPOSE:
BENCHMARKING LARGE LANGUAGE MODELS FOR
COMPOSITIONAL FORMAL VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite rapid advances in code generation, current Large Language Models
(LLMs) still lack an essential capability for reliable and verifiable code genera-
tion: compositional reasoning across multi-function programs. To explore this po-
tential and important gap, we introduce DAFNYCOMP, a benchmark designed to
systematically evaluate LLMs on the generation of compositional specifications in
Dafny. Unlike prior benchmarks that primarily target single-function annotation,
DAFNYCOMP focuses on programs composed of multiple interacting functions
with necessary data dependencies, requiring LLMs to produce specifications that
ensure correctness across component boundaries. Our benchmark comprises 300
automatically synthesized programs, each carefully constructed by combining 2–
5 originally independent functions in a chain-based manner through LLM-driven
synthesis. We evaluate LLMs from five leading research groups that represent
the current frontier of reasoning-centric AI, including the GPT, CLAUDE, GEM-
INI, DEEPSEEK, and QWEN families. Our results reveal a striking dichotomy:
while LLMs achieve both high syntax correctness (>99%) and moderate verifi-
cation rates (>58%) in prior single-function benchmarks, they exhibit degraded
syntax correctness (95.67%) and a catastrophic verification failure (3.69%) in
DAFNYCOMP’s compositional tasks—a 92% performance gap. Even the most
powerful LLM achieves only 7% verification at Pass@8, with most LLMs below
2%. Further analysis reveals that LLMs systematically fail at cross-functional
reasoning through three primary failure modes: specification fragility (39.2%),
implementation-proof misalignment (21.7%), and reasoning instability (14.1%).
These failures clearly reveal the absence of compositional reasoning capabilities in
current LLMs. DAFNYCOMP thus establishes a diagnostic benchmark for track-
ing progress in verifiable code generation with LLMs, highlighting that the path
from local to compositional verification remains largely uncharted.

1 INTRODUCTION

Large language models (LLMs) have transformed software development through their remarkable
code generation capabilities, enabling developers to produce complex programs from natural lan-
guage descriptions (Chen et al., 2021; Austin et al., 2021). These advances have driven widespread
adoption of programming assistants and development environments, fundamentally transforming
how modern software is developed. As LLM-generated code becomes increasingly integrated into
production systems, a critical question emerges: how to ensure the correctness of automatically syn-
thesized programs. Unlike human-written code that can be manually reviewed and tested, the scale
and complexity of LLM outputs demand systematic approaches to verification that go beyond tradi-
tional debugging methods. On the other hand, conventional testing provides only partial confidence
and cannot rule out rare corner cases or subtle specification mismatches.

Formal verification provides a principled solution to this challenge by offering mathematical guar-
antees of program correctness through rigorous specification and proof techniques. Programming
languages like Dafny enable developers to express precise contracts—preconditions, postconditions,
and invariants—that can be mechanically verified against implementations (Leino, 2010b). How-
ever, the adoption of formal verification has historically been constrained by what we often refer to
as the “specification bottleneck”: writing comprehensive annotations not only demands specialized

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Rate (%)

DAFNYCOMP

MBPP-DFY

DafnyBench

95.7

3.7

98.9

58.4

100.0

67.8

(a) Benchmark Performance
Syntax (%)
Verified (%)

@1 @2 @4 @8
Shots

50

60

70

80

90

100

Sy
nt

ax
 C

or
re

ct
 R

at
e

(%
)

(b) Syntax Correctness

@1 @2 @4 @8
Shots

0

1

2

3

4

5

6

7

8

Ve
rif

ie
d

Ra
te

 (%
)

Best: Claude-3.5
reaches 7%

⚠ All models < 8% verified

(c) Verification Rate

Claude-3.5 GPT-4o Gemini-2.5-pro DeepSeek-v3.1 Qwen3-480B

Figure 1: The formal verification gap: high syntax success versus low verification rates.
(a) Benchmark performance reveals a dramatic gap between syntax correctness and verification suc-
cess, with DAFNYCOMP showing a 92% drop from 95.67% to 3.69%. (b) All models converge to
high syntax correctness at @8 shots, with performance ranging from 92% to 99%. (c) Verification
rates remain critically low (<8%) across all models despite increased sampling, with Claude-3.5
achieving the highest rate at only 7%.

expertise but also produces specification code that is comparable in size to the implementation it-
self (Leino et al., 2017; Loughridge et al., 2024b). Recent research has explored the use of LLMs
to automate this specification generation process, demonstrating promising results where models
can complete missing annotations for individual functions and achieve moderate verification suc-
cess rates (Loughridge et al., 2024a; Yan et al., 2025). However, current work in this area often
suffers from a critical limitation: existing benchmarks, such as DAFNYBENCH, primarily evalu-
ate annotation completion within isolated functions (Loughridge et al., 2024a), failing to address
the compositional reasoning ability required for real-world, sophisticated software systems, where
correctness emerges from complex interactions between multiple components (Keysers et al., 2020).

To fill this gap, we introduce DAFNYCOMP, the first benchmark explicitly designed to evaluate
the generation of compositional specifications for programming languages equipped with formal
verification. Concretely, we make the following contributions:

Contribution 1. To address the limitations of prior verification benchmarks, we present DAFNY-
COMP, a new benchmark explicitly designed for compositional formal verification (§3). Unlike
existing datasets such as DAFNYBENCH (Loughridge et al., 2024a) that focus on specification gen-
eration for isolated single functions, DAFNYCOMP evaluates LLMs on programs composed of mul-
tiple interacting functions with real data dependencies. The benchmark consists of 300 Dafny pro-
grams synthesized by combining 2–5 independent functions, forcing models to reason across func-
tion boundaries to ensure end-to-end correctness. Note that our design is the first to require actual
compositional reasoning in specification generation, bridging a critical gap left by prior benchmarks
and reflecting the complexities of real-world software systems.

Contribution 2. We comprehensively evaluate 13 state-of-the-art LLMs on the constructed DAFNY-
COMP (§4) benchmark, including advanced models like GPT-4O, CLAUDE 3.5, GEMINI 2.5,
DEEPSEEK-V3.1, and QWEN3-CODER. The results reveal a dramatic collapse in verification per-
formance despite high syntactic accuracy: while the models produce syntactically correct code for
approximately 95.7% of the tasks, only 3.7% of their outputs actually pass the formal verifier. This
staggering 92% gap between syntax success and semantic correctness persists across all model
families, prompt settings, and sampling strategies. Even with up to 8 attempts per problem, the best
model attains only around 7% verification success, indicating that increasing sampling or context
does not remedy the fundamental limitation.

Contribution 3. We carefully analyze the failure cases in the benchmark, which pinpoints three
primary failure modes underlying this breakdown (§5), highlighting systemic obstacles to composi-
tional reasoning in current LLMs:

• (i) Specification fragility: we observe the brittleness of generated specifications wherein small
omissions, over-/under-strengthening, or inconsistent framing (reads/modifies) clauses can
invalidate downstream proofs. Concretely, in compositional settings, a missing or slightly weaker

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

postcondition at one stage can fail to imply a callee’s precondition, triggering a domino effect
along the call chain even when each component appears locally reasonable.

• (ii) Implementation–proof misalignment: We identify inconsistencies between the produced code
and its associated specifications or proofs, indicating that models often generate implementations
and annotations via largely independent pathways. Typical symptoms include plausible-but-false
loop invariants, contradictory requires/ensures obligations, or termination metrics that do
not match control flow, any of which cause verification to fail despite syntactic well-formedness,
and in composed programs they immediately block end-to-end proofs because component con-
tracts can no longer be trusted as summaries.

• (iii) Reasoning instability: we witness a tendency to lose the inductive thread of the argument
over multiple steps, leading to invariants that are not preserved, incomplete coverage of cases,
or missing well-founded decreases measures. These errors are most evident in composition,
where maintaining complex state relationships across iterations and function boundaries is crucial
for end-to-end correctness.

These failure modes were pervasive in the models’ outputs, revealing a fundamental absence of
robust compositional reasoning capabilities. By identifying these issues, DAFNYCOMP serves as
a diagnostic benchmark for the community, enabling systematic measurement of progress toward
LLMs that can verify complex multi-component programs.

2 RELATED WORK

Formal Verification Benchmarks. Existing benchmarks for verifiable code generation can be
categorized into two types. Single-function benchmarks, such as DAFNYBENCH (Loughridge
et al., 2024a) and MBPP-DFY (Misu et al., 2024), evaluate annotation completion within iso-
lated methods, achieving moderate success rates (50-60%) but failing to capture inter-function de-
pendencies. Interactive theorem proving benchmarks (miniCodeProps (Lohn & Welleck, 2024),
FVAPPS (Dougherty & Mehta, 2025)) target proof synthesis in systems like Lean (De Moura et al.,
2015) but require extensive manual validation and remain disconnected from practical programming.
DAFNYCOMP bridges this gap by evaluating compositional specification generation—a prerequisite
for scaling verification beyond toy programs to production systems. Unlike prior work, we explicitly
construct multi-function programs with data dependencies, exposing the compositional reasoning
deficit in current models (see Appendix C for detailed comparison).

Dynamic Benchmark Generation. Static benchmarks suffer from contamination and overfit-
ting (Hu et al., 2025; Zhang et al., 2024). Dynamic generation techniques—creating new tasks,
transforming problems, or perturbing reasoning structures (Zhu et al., 2024; 2023)—show promise
in mathematics and logic but neglect formal verification’s unique demands: specifications must
be syntactically valid, semantically precise, and correct across all execution paths. Our synthesis
pipeline addresses this by generating verifiable multi-function Dafny programs through controlled
composition, ensuring both novelty and correctness while maintaining the semantic complexity that
exposes compositional reasoning gaps.

Compositional Reasoning in LLMs. The ability to systematically combine simpler units into cor-
rect larger structures remains a frontier challenge (Li et al., 2024; Dziri et al., 2023). While progress
exists in natural language and symbolic domains, formal verification imposes stricter demands:
specifications must preserve invariants across components and ensure global correctness. Existing
training paradigms favor pattern matching over principled proof construction. By requiring models
to generate specifications bridge function boundaries with explicit data dependencies, DAFNYCOMP
provides the first diagnostic benchmark for compositional reasoning in formal verification.

3 BENCHMARK CONSTRUCTION

DAFNYCOMP synthesizes 300 verified multi-function programs through a two-stage pipeline (Fig-
ure 2), including program assembly (§3.1) and formal translation (§3.2), which bridges the gap
between practical Python implementations and verification-oriented Dafny specifications. Within
this pipeline, program assembly ensures the construction of compositional Python programs with
functional correctness, while specification translation with refinement ensures the quality and reli-
ability of the resulting data. We also provide format details of evaluation tasks (§3.3) and the key
characteristics of the benchmark (§3.4).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Two-stage benchmark synthesis: (1) Assembly combines independent Python functions
with controlled data flow, ensuring algorithmic complexity while maintaining tractability; (2) For-
mal translation converts to verified Dafny through incremental AST-guided transformation.

3.1 PROGRAM ASSEMBLY

We construct compositional programs by systematically combining functions from LEETCODE-
DATASET (Xia et al., 2025), selected for their algorithmic depth and verification challenges.

Function Selection. We filter the corpus using McCabe’s cyclomatic complexity (McCabe, 1976)
as a proxy for verification difficulty, retaining only functions with complexity >5 (around top 30%
of the dataset) and at least 10 lines of code. This threshold ensures non-trivial control flow—loops
with complex termination conditions, nested conditionals, recursive patterns—that stress specifica-
tion generation. For tractability, we restrict to single-input/single-output functions, yielding 1,847
candidate functions.

Compositional Strategy. Following Hu et al. (2025), we employ chain-based composition where
each function’s output feeds the next’s input, creating explicit data dependencies. While more
complex call graphs (trees, DAGs) are theoretically richer, empirical trials showed synthesis suc-
cess drops from 47% (chains) to <8% (arbitrary graphs) while providing no additional diagnostic
value—the chains suffice to expose compositional failures. After composition, we further identify
the minimal set of shared import dependencies across the combined Python functions. This step is
essential because the original LEETCODEDATASET often relies on broad import * statements,
which obscure library ownership and names. Without explicit mappings, Dafny cannot interpret
external libraries, preventing the synthesis of intermediate functions to replace missing third-party
features. We generate programs with 2–5 functions, exploring multiple permutations since function
ordering affects both data flow and verification complexity.

Validation Pipeline. After composition, the resulting Python code is subjected to a three-stage
validation pipeline, which filters candidates before their use in Section 3.2.

• (i) Type checking via constraint propagation: We statically infer candidate types and shapes for
each function’s inputs and outputs and propagate these constraints along the composition chain.
This pass rejects compositions with incompatible interfaces (e.g., scalar-sequence or element-type
mismatches) and flags violations of simple value constraints inferred from guards (such as non-
negativity or length bounds). The result is a set of compositions whose interfaces are consistent
end-to-end, providing a reliable basis for subsequent translation and verification.

• (ii) Formatting standardization: We apply a deterministic rewriter, implemented with tools such
as Black and isort, to normalize code style, including indentation, whitespace, line breaking,
and import organization. Canonicalizing these incidental variations yields stable, diff-friendly ar-
tifacts and reduces prompt variance in later stages. This step preserves semantics while producing
uniform program layouts that are easier to parse, translate, and verify.

• (iii) Test validation: We execute each composed program against the reference unit tests from
LEETCODEDATASET to confirm functional correctness and basic executability. We construct

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

unit tests for composed functions by intersecting the input–output constraints of their constituent
functions. If the intersection is empty, the sample is discarded. Programs that raise runtime
exceptions, fail assertions, or produce incorrect outputs are discarded, ensuring only behaviorally
sound compositions advance. This filtering isolates verification challenges to specification and
reasoning rather than implementation errors during the Dafny translation stage.

Following this procedure, we obtain 1,200 valid Python programs with 2–5 functions, which will be
used in the next stage.

3.2 FORMAL TRANSLATION

We translate validated Python compositions into Dafny implementations with formal guarantees,
focusing on the verification-oriented aspects of the benchmark here.

Translation Challenges. Direct end-to-end translation from Python to Dafny proved largely in-
effective, with empirical success rates below 5%. The core difficulty lies in Dafny’s demand for
explicit specifications, invariants, and termination arguments—semantic elements absent in Python.
This semantic gap makes single-pass translation infeasible for non-trivial programs.

Incremental Pipeline. Inspired by Wen et al. (2024), we adopt an incremental approach: the
abstract syntax tree (AST) of each Python program is decomposed into function- or control-
structure–level fragments. Each fragment is translated into Dafny and immediately verified, lo-
calizing errors to the smallest possible unit. Verified fragments are then progressively reassembled
according to the AST hierarchy, culminating in a complete Dafny program. Importantly, although
translation proceeds incrementally, the Python program must be composed in its entirety before it
can be executed. Whole-program composition in Python provides two benefits: (i) Python’s ex-
plicit AST nodes and mature tooling make program assembly more reliable and transparent; and (ii)
having a coherent Python blueprint ensures that the incremental Dafny translation preserves global
logical relationships, rather than producing isolated fragments that fail to compose. Thus, whole-
program composition and incremental translation are complementary design choices. To further
improve reliability, each candidate Dafny program undergoes up to ten refinement iterations, where
specifications are strengthened in response to verifier feedback (e.g., adding loop invariants, refining
postconditions, or inserting assertions). We select CLAUDE-4-SONNET-20250514 for the entire
synthesis and refinement process; see Appendix D for success rate comparisons and Appendix E for
the exact prompts.

In total, the pipeline ultimately yields 564 verified Dafny programs from 1,200 attempts (corre-
sponding to an overall 47% success rate). Translation synthesis errors primarily arise from incom-
plete specifications (31%), type inference errors (22%), timeouts (18%), and irreconcilable semantic
gaps (29%). From these, we retain 300 programs carefully balanced across complexity levels (100
each with 2–3, 3–4, and 4–5 functions). To ensure evaluation integrity, we conduct a thorough con-
tamination analysis against MBPP-DFY (Misu et al., 2024), which is similarly synthesized from
Python code as a Dafny benchmark dataset. The results in Appendix F provide strong evidence that
our test set is indeed free from bias due to data overlap.

3.3 EVALUATION TASK FORMAT

We adopt a specification reconstruction task inspired by Loughridge et al. (2024a). Still, with a cru-
cial difference: rather than removing all assert and invariant statements, we strip away the
contract clauses (requires, ensures, reads, modifies, decreases) that appear before
the opening brace of each method or function. LLMs to be evaluated are then required to regen-
erate these specifications to enable verification. This design isolates the challenge of reconstructing
cross-function contracts from implementation concerns, focusing evaluation on whether models can
generate specifications that capture emergent correctness properties across component boundaries.
Unlike annotation completion tasks that permit purely local reasoning, our multi-function programs
require understanding how data flows and invariants propagate through compositions. We employ a
unified prompt together with standardized compute settings across all evaluations (see Appendix G
and Appendix H).

3.4 BENCHMARK STATISTICAL SUMMARY

The resulting benchmark comprises 300 mechanically verified Dafny test cases that jointly capture
three key dimensions: compositional complexity from function-to-function call dependencies, algo-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

rithmic diversity across multiple categories, and verification challenges arising from the increased
specification burden.

Compositional Complexity. Each program contains 2–5 functions (mean = 3.2) with an average
of 8.4 cross-function data dependencies, requiring models to reason about specification alignment
across component boundaries. Unlike single-function benchmarks where specification generation
is largely local, our programs demand that preconditions of called functions be implied by post-
conditions of their callers—a requirement that introduces cascading verification challenges when
specifications fail to propagate correctly.

Algorithmic Diversity. The benchmark spans 15 algorithmic categories with balanced representa-
tion: dynamic programming (18%), string manipulation (20%), number theory (15%), and graph
algorithms (12%) constitute the primary categories, with the remainder distributed across sorting,
searching, and combinatorial problems. Beyond the balance of individual categories, diverse per-
mutations and combinations of these types yield composed programs with more intricate, layered
structures. Consequently, the target of composing function calls is reinforced by the characteristics
of the source dataset (LEETCODEDATASET (Xia et al., 2025)), which in turn induces composition
at the level of algorithmic logic. This design ensures models must develop general compositional
reasoning rather than memorizing category-specific patterns.

Verification Challenges. Every program is mechanically verified by Dafny 4.10.0, thereby provid-
ing ground-truth correctness. The median program requires 7 loop invariants and 4 assertions for
verification, with 23% demanding intricate termination arguments via decreases clauses—a 3.5×
increase in annotation density compared to DAFNYBENCH’s average of 2 per program. This added
specification burden reflects the extra complexity of compositional verification, creating a graduated
challenge that pinpoints where current models shift from local reasoning to compositional failure.

4 EXPERIMENTAL SETUP AND RESULTS

In this section, we enumerate the evaluation metrics (§4.1), LLM model selection for the benchmark
(§4.2), and the corresponding evaluation results (§4.3).

4.1 METRICS

We evaluate two complementary aspects of model performance:

• Syntax Correctness: measures whether generated specifications parse successfully in Dafny.
This baseline metric captures models’ grasp of the formal language syntax.

• Verification Rate: measures the fraction of syntactically correct programs that pass Dafny’s veri-
fier—the ultimate test of semantic understanding. This metric is computed only over syntactically
valid outputs, as verification requires parseable code.

Following Chen et al. (2021), we report Pass@k for k ∈ {1, 2, 4, 8}, measuring the overall probabil-
ity of successfully solving a problem within k attempts. Pass@1 provides a strict zero-shot baseline
of immediate reasoning ability, whereas larger k values further exploit additional test-time compute
to improve success on compositional tasks (Snell et al., 2024). In this setting, Pass@8 is particularly
informative for clearly distinguishing model robustness and adaptability.

4.2 MODEL SELECTION

We evaluate 13 frontier models spanning five architectural families, chosen for their demonstrated
strength in code generation and general reasoning:

• OpenAI: GPT-4O (Hurst et al., 2024), GPT-4.1 (OpenAI, 2024), O4-MINI (OpenAI, 2025)

• Anthropic: CLAUDE-3.5-SONNET (Anthropic, 2024), CLAUDE-4-SONNET (Anthropic, 2025)

• Google: GEMINI-2.5-PRO, GEMINI-2.5-FLASH (Google DeepMind, 2025)

• DeepSeek: DEEPSEEK-R1 (Guo et al., 2025), DEEPSEEK-V3 (Liu et al., 2024), DEEPSEEK-
V3.1 (DeepSeek-AI, 2025)

• Alibaba: QWEN2.5-CODER-32B (Hui et al., 2024), QWEN3-CODER-480B (Qwen Team,
2025a), QWQ-32B (Qwen Team, 2025b)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Model performance reveals high syntax mastery but catastrophic verification failure. While
syntax correctness reaches 99% with sufficient sampling, verification rates remain below 7% even
for the best models, exposing the compositional reasoning gap.

Model Syntax Correct Rate (%) Verified Rate (%)
@1 @2 @4 @8 @1 @2 @4 @8

OpenAI Models
GPT-4O 94.33 98.67 99.33 99.67 0.33 0.33 0.33 0.33
O4-MINI 80.00 92.67 98.00 99.00 0.00 0.00 0.67 0.67
GPT-4.1 59.00 69.67 79.33 86.33 0.00 0.00 0.00 0.00

Anthropic Models
CLAUDE-3.5-SONNET∗ 90.67 96.33 98.67 99.00 3.67 4.67 5.00 7.00
CLAUDE-4-SONNET† 95.67 97.33 98.00 98.33 2.33 3.00 3.00 3.33

Google Models
GEMINI-2.5-FLASH 54.00 64.00 81.00 89.67 0.00 0.00 0.00 0.00
GEMINI-2.5-PRO 69.00 81.00 91.67 96.00 0.00 0.33 0.67 2.00

DeepSeek Models
DEEPSEEK-R1 85.67 95.33 98.33 99.00 0.33 0.33 0.33 0.33
DEEPSEEK-V3 77.33 88.67 95.33 97.33 0.00 0.00 0.33 0.33
DEEPSEEK-V3.1 54.67 72.33 83.33 92.00 0.00 0.00 0.00 0.67

Alibaba Models
QWEN3-CODER-480B-A35B-INSTRUCT 85.33 94.00 98.00 99.00 0.00 0.33 0.33 1.00
QWEN2.5-CODER-32B-INSTRUCT 62.00 74.67 85.00 89.00 0.00 0.33 0.33 0.67
QWQ-32B 46.67 61.33 78.00 91.00 0.00 0.00 0.00 0.00

∗claude-3.5-sonnet-20241022, †claude-4-sonnet-20250514

4.3 RESULTS AND DISCUSSION

Table 1 presents our main experimental findings. We observe a systematic verification collapse
across all evaluated models, with four interesting observations:

Observation 1. Universal verification failure despite syntactic mastery. The most striking result is
the consistent 92-percentage-point gap between syntax correctness and verification success across
all models. At Pass@8, models achieve µ = 95.67% (SD = 4.21%) syntax correctness but only
µ = 3.69% (SD = 2.14%) verification. This gap persists independent of: (i) model scale (480B
vs 32B parameters, p > 0.05), (ii) training specialization (code-specific vs general-purpose), (iii)
architectural family (dense, MoE, constitutional), and (iv) increased sampling (Pass@1 to Pass@8).
The universality of this failure suggests a fundamental architectural limitation rather than an opti-
mization or data issue.

Observation 2. Non-linear scaling reveals compositional breakdown. Comparing performance
degradation from single-function (DAFNYBENCH) to multi-function (DAFNYCOMP) tasks reveals
super-linear complexity scaling. With 3.2× increase in functions, we observe a 14.4× decrease in
verification success (from ∼53% to 3.69%). This disproportionate degradation cannot be explained
solely by additive difficulty. Instead, it suggests that specification requirements grow combinatori-
ally with function composition—each function boundary introduces O(n2) potential specification
dependencies that models fail to capture.

Observation 3. Sampling saturation indicates capability ceiling, not search limitations. The
verification-sampling curve plateaus by Pass@4 for all models, with the marginal improvement
from Pass@4 to Pass@8 averaging only 0.8%. In contrast, syntax correctness continues improving
(+7.3% on average), demonstrating that models can explore the output space but cannot discover
valid specifications. This divergent behavior between syntax and semantics strongly suggests that
current architectures lack the inductive biases necessary for compositional reasoning, rather than
merely requiring better search strategies or more compute.

Observation 4. Reasoning-specialized models show no clear advantage, thereby confirming ar-
chitectural barriers. Models explicitly optimized for reasoning (QWQ-32B with chain-of-thought
focus, DEEPSEEK-R1 with reinforcement learning) perform no better than general-purpose mod-
els, with QWQ-32B still achieving 0% verification even at Pass@8. The tight clustering of ver-
ification rates (coefficient of variation = 0.58) across diverse training objectives strongly indicates

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

that compositional verification requires fundamentally different architectural primitives—not refine-
ments of existing transformer-based reasoning. This null result is particularly informative: it clearly
demonstrates that neither extended reasoning traces nor reward-based optimization can overcome
the absence of compositional inductive biases.

5 FAILURE CASE ANALYSIS AND DISCUSSION

Table 2: Distribution of verification failure modes across 900 analyzed cases (3 best-performing
models × 300 benchmarks) from DafnyComp.

Failure Mode Frequency % of Total Primary Mechanism
Specification Fragility 353/900 39.2 Contract propagation failure
Implementation–Proof Misalignment 195/900 21.7 Independent generation pathways
Reasoning Instability 127/900 14.1 Inductive chain breakdown
Other (syntax, timeout, misc.) 225/900 25.0 Various

The significant gap between syntax correctness and ultimate verification success demands a clear
mechanistic explanation. Through a systematic analysis of 900 (3 best-performing models × 300
benchmarks) observed verification failures across three representative model families, we identify
several distinct failure modes that reveal fundamental limitations in how transformers process com-
positional specifications. Table 2 presents the overall distribution of these failures, which we analyze
in detail below.

5.1 SPECIFICATION FRAGILITY: THE DOMINO EFFECT

Specification fragility, the inability to generate contracts that remain valid across function compo-
sitions, constitutes the plurality of failures. Consider a representative case from our benchmark:
a digitSum function correctly implemented but missing the postcondition ensures result
>= 0. In isolation, this omission appears minor. In composition, it cascades—when digitSum’s
output feeds a downstream function expecting non-negative input, verification fails globally despite
both functions being locally correct. Note that this pattern recurs throughout our dataset. Models
generate specifications sufficient for local correctness but insufficient for compositional soundness.
A requires n >= 0 precondition absent from one function invalidates the entire pipeline’s ver-
ification, even when each component individually passes most test cases. The fragility stems from
a fundamental mismatch: LLMs learn specifications as local patterns rather than global contracts.
They lack the architectural machinery to reason about how data constraints propagate through func-
tion calls—a capability essential for modular verification. The implications extend beyond Dafny.
Any system requiring compositional correctness—from distributed systems protocols to smart con-
tract verification—will face similar failures until models can reason about specification flow across
component boundaries.

The first key takeaway insight about specification fragility is summarized below:

Takeaways (i): LLMs handle local specs but fail under composition. Missing contract
propagation is the main cause of verification breakdowns.

5.2 IMPLEMENTATION–PROOF MISALIGNMENT: THE INDEPENDENCE ASSUMPTION

The second failure mode reveals a deeper architectural issue: LLMs treat implementation and spec-
ification as independent generation tasks rather than coupled constraints. In 21.7% of failures, syn-
tactically valid code contradicts its own specifications. One striking example: a model generated
assert 0 >= 1; within otherwise reasonable code, illustrating a recurring pattern of internally
contradictory assertions rather than an isolated slip. More subtle misalignments prove equally fatal.
Loop invariants like forall k :: 0 <= k < i ==> cnt[k] >= 0 appear plausible but
fail verification because the implementation’s array access patterns violate the stated bounds. The
model generates invariants that “look right” based on training patterns but don’t correspond to the
actual code behavior. This pattern is consistent with mechanistic analyses of transformer attention
heads, which often uncover relatively local algorithmic behaviors rather than globally consistent
reasoning (Olsson et al., 2022; Elhage et al., 2021) Current training paradigms exacerbate this is-
sue. Models learn from code-specification pairs without explicit feedback on the mutual consistency

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

between them. The result: impressive performance on syntax and moderate success on individual
functions, but catastrophic failure when consistency is required across boundaries.

We summarize the second key takeaway about implementation-proof misalignment as:

Takeaways (ii): Code and specs are generated independently, leading to plausible but in-
consistent invariants. Future training for this task should enforce better alignment.

5.3 REASONING INSTABILITY: INDUCTION AS ACHILLES’ HEEL

The third failure pattern, which we refer to as reasoning instability, exposes perhaps the most fun-
damental limitation. Formal verification relies on inductive reasoning: proving properties hold
initially, maintain their validity through iterations, and compose across calls. LLMs consistently
fail this inductive chain. Loop invariants that should accumulate state (e.g., invariant res
== stringToIntHelper(s[..i])) break because models cannot track how program state
evolves through iterations. Recursive functions lack proper termination arguments. Properties
proven for base cases fail to extend inductively. This instability reflects the inherently statistical
nature of reasoning exhibited by transformer architectures. While capable of pattern-matching simi-
lar invariants from training data, models cannot construct the inductive proofs verification demands.
They approximate rather than prove, which is sufficient for typical NLP tasks but inadequate for
verifiable code generation, where formal verification is required.

We summarize the third insight about reasoning instability as:

Takeaways (iii): LLMs approximate base cases but fail to sustain inductive reasoning, ex-
posing a structural gap in formal verification.

6 LIMITATIONS AND FUTURE WORK

While DAFNYCOMP exposes fundamental limitations in compositional reasoning, we want to gently
mention several constraints of our evaluation, which indicate some interesting future work.

• Compositional Patterns. We restrict to chain-based compositions (sequential function calls)
rather than complex topologies (recursive compositions, mutual dependencies) due to synthesis
tractability. While chains suffice to demonstrate compositional failure, real systems exhibit richer
patterns. Extending to arbitrary call graphs requires solving verification tractability for cyclic
dependencies—a challenge independent of LLM capabilities.

• Specification Types. Our benchmark tests functional correctness (preconditions, postconditions,
invariants) but not liveness properties, resource bounds, or security policies. These orthogonal
concerns—e.g., proving memory consumption remains constant across compositions—require
different verification techniques and evaluation metrics.

• Data Scarcity. The core challenge may be training data availability. Repositories contain only a
few verified multi-function programs with compositional specifications. Synthetic data generation
or bootstrapped program synthesis could address this gap, although ensuring semantic diversity
remains a challenge.

7 CONCLUSION

We introduce DAFNYCOMP, the first benchmark specifically designed to evaluate the generation
of compositional specifications for formal verification. Through 300 synthesized multi-function
Dafny programs, we systematically assessed 13 state-of-the-art LLMs on their ability to generate
specifications that ensure correctness across function boundaries. Our results reveal a fundamental
capability gap: while models achieve greater than 99% syntax correctness and more than 58% verifi-
cation on single-function benchmarks, they collapse to 3.69% verification on compositional tasks—a
92% degradation. This performance cliff persists across all model families despite increased sam-
pling (Pass@8), indicating an architectural rather than search limitation. Error analysis identifies
three systematic failure modes: specification fragility (39.2%), implementation-proof misalignment
(21.7%), and reasoning instability (14.1%), each reflecting the inability to maintain logical commit-
ments across functional boundaries. In conclusion, DAFNYCOMP provides both a diagnostic tool

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

for current systems and a concrete target for future research. We release the benchmark, evaluation
framework, and synthesis pipeline to accelerate progress on this critical challenge.

REFERENCES

Anthropic. Introducing claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024.

Anthropic. Claude 4 sonnet. https://www.anthropic.com/news/claude-4-sonnet,
2025. Accessed: 2025-09-21.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer,
2008.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In International Conference on Automated Deduction,
pp. 378–388. Springer, 2015.

DeepSeek-AI. Deepseek-v3.1 model introduction. https://www.deepseek.com/, 2025. Ac-
cessed: 2025-09-21.

Quinn Dougherty and Ronak Mehta. Proving the coding interview: A benchmark for formally
verified code generation. In 2025 IEEE/ACM International Workshop on Large Language Models
for Code (LLM4Code), pp. 72–79. IEEE, 2025.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of trans-
formers on compositionality. Advances in Neural Information Processing Systems, 36:70293–
70332, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1(1):12, 2021.

Google DeepMind. Gemini 2.5 models. https://deepmind.google/technologies/
gemini/, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Wenhao Hu, Jinhao Duan, Chunchen Wei, Li Zhang, Yue Zhang, and Kaidi Xu. Dynacode: A
dynamic complexity-aware code benchmark for evaluating large language models in code gener-
ation. arXiv preprint arXiv:2503.10452, 2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Daniel Keysers et al. Compositional generalization in natural language processing. Transactions of
the Association for Computational Linguistics, 8:11–23, 2020.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-4-sonnet
https://www.deepseek.com/
https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Logic for
Programming, Artificial Intelligence, and Reasoning, pp. 348–370. Springer, 2010a.

K. Rustan M. Leino. A Tour of the Dafny Program Verifier. Verified Software: Theories, Tools,
Experiments, 2010b.

K. Rustan M. Leino et al. Compositional verification of a railway protection system with Dafny.
Formal Aspects of Computing, 2017.

Yue Chen Li, Stefan Zetzsche, and Siva Somayyajula. Dafny as verification-aware intermediate
language for code generation. arXiv preprint arXiv:2501.06283, 2025.

Zhaoyi Li, Gangwei Jiang, Hong Xie, Linqi Song, Defu Lian, and Ying Wei. Understanding and
patching compositional reasoning in llms. arXiv preprint arXiv:2402.14328, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Evan Lohn and Sean Welleck. minicodeprops: a minimal benchmark for proving code properties.
arXiv preprint arXiv:2406.11915, 2024.

James Loughridge et al. DafnyBench: A Benchmark for Formal Software Verification. Transactions
on Machine Learning Research, 2024a. Describes the ‘fill annotations‘ task.

James Loughridge et al. DafnySynth: A Synthetic Dataset for Formal Verification. arXiv preprint
arXiv:2411.15143, 2024b.

Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, (4):308–
320, 1976.

Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James Noble. Towards ai-assisted synthesis
of verified dafny methods. Proceedings of the ACM on Software Engineering, 1(FSE):812–835,
2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Gpt-4.1 system card. https://openai.com/index/introducing-gpt-4-1/,
2024.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025. Accessed: 2025-09-21.

Gabriel Poesia, Chloe Loughridge, and Nada Amin. dafny-annotator: Ai-assisted verification of
dafny programs. arXiv preprint arXiv:2411.15143, 2024.

Qwen Team. Qwen3-coder: Agentic coding in the world. https://qwenlm.github.io/
blog/qwen3-coder/, 2025a. Accessed: 2025-09-21.

Qwen Team. Qwq-32b: Large-scale reinforcement learning for reasoning models. https://
qwenlm.github.io/zh/blog/qwq-32b/, 2025b. Accessed: 2025-09-21.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun Li, Shing-Chi
Cheung, and Cong Tian. Enchanting program specification synthesis by large language models
using static analysis and program verification. In International Conference on Computer Aided
Verification, pp. 302–328. Springer, 2024.

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong
Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training of code llms.
arXiv preprint arXiv:2504.14655, 2025.

11

https://openai.com/index/introducing-gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://qwenlm.github.io/blog/qwen3-coder/
https://qwenlm.github.io/blog/qwen3-coder/
https://qwenlm.github.io/zh/blog/qwq-32b/
https://qwenlm.github.io/zh/blog/qwq-32b/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chuanhao Yan, Fengdi Che, Xuhan Huang, Xu Xu, Xin Li, Yizhi Li, Xingwei Qu, Jingzhe Shi,
Zhuangzhuang He, Chenghua Lin, Yaodong Yang, Binhang Yuan, Hang Zhao, Yu Qiao, Bowen
Zhou, and Jie Fu. Re:Form – Reducing Human Priors in Scalable Formal Software Verification
with RL in LLMs: A Preliminary Study on Dafny. arXiv preprint arXiv:2507.16331, 2025.

Zhehao Zhang, Jiaao Chen, and Diyi Yang. Darg: Dynamic evaluation of large language models
via adaptive reasoning graph. Advances in Neural Information Processing Systems, 37:135904–
135942, 2024.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval: Dy-
namic evaluation of large language models for reasoning tasks. arXiv preprint arXiv:2309.17167,
2023.

Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. Dyval 2: Dynamic evaluation
of large language models by meta probing agents. arXiv preprint arXiv:2402.14865, 3, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LLMS IN WRITING

During the preparation of this manuscript, we employed a large language model (OpenAI GPT-5)
to assist with language refinement and editorial improvements. Specifically, the LLM was used
to enhance sentence fluency, improve clarity of expression, and ensure consistency with academic
writing conventions. The tool was applied exclusively for linguistic polishing—all research design,
experimental work, data analysis, and core intellectual contributions remain entirely original.

B INTRODUCTION TO DAFNY

Dafny (Leino, 2010a), developed at Microsoft Research, is a verification-oriented programming
language specifically designed to support formal reasoning about software. Unlike conventional
languages where correctness is primarily assessed through testing, Dafny integrates an automated
program verifier directly into the development workflow, enabling developers to construct code that
is mathematically proven to satisfy its specifications. This approach shifts the discovery of defects
from the testing phase to the design and implementation phases, thereby improving software relia-
bility.

A distinctive feature of Dafny is that specifications are treated as first-class citizens. Methods can be
annotated with preconditions, postconditions, and logical properties that describe intended behavior.
For example:

method Example(a: array<int>) returns (b: array<int>)
requires a.Length > 0 // Precondition
ensures b.Length == a.Length // Postcondition
ensures forall i :: 0 <= i < b.Length ==> b[i] >= 0 // Property

{
// Implementation

}

The Dafny verifier relies on automated theorem proving (via Z3 solver (De Moura & Bjørner, 2008))
to ensure that implementations conform to these specifications, providing mathematical certainty
about program behavior. Crucially, the ability to reason about the composition of verified compo-
nents determines whether verification can scale from toy examples to real-world systems. With-
out compositional reasoning, verification remains confined to small, isolated programs rather than
production-level software.

C AUTOMATED THEOREM PROVING

A complementary line of work contrasts automated verification frameworks with interactive theorem
proving (ITP) systems. Languages such as Dafny and Verus rely on SMT solvers to discharge
proof obligations, requiring only lightweight annotations (e.g., invariants, assertions). This design
lowers the barrier to entry but is constrained by the solver’s limited reasoning scope and opaque
failure modes. In contrast, ITPs such as Lean expose every proof step explicitly, enabling iterative
refinement and error diagnosis. Recent studies even show that LLMs can generate competition-level
mathematical proofs in Lean. However, existing Lean-based benchmarks (e.g., miniCodeProps,
FVAPPS) either focus narrowly on proof synthesis or lack human validation. By comparison, Dafny
offers a more balanced environment for benchmarking LLMs: it combines code, specifications, and
automated verification in a way that remains close to mainstream programming practice.

How Dafny Works and Its Core Strengths. Dafny’s approach stems from its verification-aware
design. Developers embed formal specifications, such as preconditions, postconditions, and loop
invariants, directly within the code (Leino, 2010a). These specifications are not merely comments;
they are integral components checked by the built-in verifier. The verifier translates Dafny code
and its specifications into an intermediate verification language, Boogie, which then generates proof
obligations. These obligations are processed by an SMT solver (e.g., Z3) to prove their validity.
If all obligations are proven, the code is confirmed to be correct according to its specifications. If
a proof fails, Dafny provides precise feedback on the inconsistencies. This methodology supports
correctness by construction, helping to reduce common errors like null pointer dereferences or ar-
ray out-of-bounds access (Poesia et al., 2024). Once verified, Dafny code can be translated into
mainstream languages such as Python for execution (Li et al., 2025).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dafny vs. Python: A Fundamental Difference in Approach. To understand Dafny’s position,
it’s useful to compare it with a widely used language like Python. While both are effective, their
fundamental design philosophies and primary objectives differ, as shown in Table 3.

Feature Dafny Python
Year Introduced 2010 (Microsoft Research) 1991 (Guido van Rossum)
Type System Static typing, compile-time checks Dynamic typing, run-time checks
Formal Verification Yes — built-in contracts and proofs No — only basic assert
Main Use Verified algorithms, critical systems General-purpose programming
Execution Model Compiled with verification Interpreted (e.g., CPython)

Table 3: Key differences between Dafny and Python.

In summary, Dafny offers a distinct approach to software development by integrating formal verifi-
cation into the language itself. While Python excels in agile development and broad applicability,
Dafny is particularly suited for domains where software correctness and formal guarantees are criti-
cal. For more, please refer to the Dafny official website1.

D MODEL SELECTION FOR FORMAL TRANSLATION

Concretely, we randomly sampled 100 test cases from the 1,200 instances obtained after our as-
sembly procedure to evaluate each model with identical prompts and decoding settings. We define
success rate as the fraction of generations whose specifications are valid under the Dafny verifier.

Model Success rate (%)
Claude-4-Sonnet-20250514 58.00
claude-3.5-sonnet-20241022 55.00
gpt-3.5-turbo 45.00
gpt-4o 31.00
gpt-4o-mini 41.00
o1 36.00
o1-mini 33.00
o3-mini 37.00
gemini-2.0-flash 38.00

Table 4: Success rates for the formal translation step.

As shown, we ultimately chose Claude-4-Sonnet-20250514 because it yielded the highest rate of
valid specifications on these cases. This aligns with our design goal to prioritize the quality of
generated specifications used downstream in our experiments.

1https://dafny.org/dafny/OnlineTutorial/guide

14

https://dafny.org/dafny/OnlineTutorial/guide

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E PROMPTS FOR SYNTHESIS

The prompt templates used for annotating data with Claude 3.5 Sonnet are shown in the following
boxes.

Prompt for Inital Dafny Code Generation

SYSTEM
You are an expert AI assistant that writes Dafny programs. You excel at writing code
with formally verified correctness, providing precise preconditions and postconditions,
and finding the appropriate loop invariants to ensure all verification conditions are met.

TASK
Below is the Python code:

```python
<python code>
```

Please translate this Python code into Dafny, ensuring:
1. Method Signatures: Each piece of functionality should be expressed as a Dafny

method (or set of methods) with a well-defined signature.
2. Preconditions: Clearly state any ‘requires‘ clauses for each method (e.g., array

length constraints, non-null references, numeric domain restrictions, etc.).
3. Postconditions: State the logical guarantees about the returned values or final

state as ‘ensures‘ clauses (e.g., correctness of returned results, absence of side
effects, etc.).

4. Verification Details: Include all necessary loop invariants (or other verification
hints) so Dafny can prove the postconditions, along with a brief explanation. For
example: - Explain how you chose your invariants. - Describe how they ensure
the correctness of the loop.

Return the final Dafny code as a self-contained snippet that can be verified by Dafny as-is,
with a short explanation of how it connects to the original Python functionality.

AI ASSISTANT
<The LLM’s generated Dafny code with specifications here.>

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Dynamic Debugging Prompt for Code Generation

SYSTEM
You are an expert AI assistant that writes and debugs Dafny programs. You excel at diag-
nosing and fixing verification errors based on Dafny solver messages, while maintaining
correct preconditions, postconditions, and loop invariants.

TASK
Below is the Python code:

```python
<python code>
```

And the Dafny code you previously provided (which I tried to verify):

```dafny
<main spec>
```

I ran dafny verify *.dfy and received this error message:

```
<dafny analysis result>
```

Can you please fix the main function specification so that it parses successfully? Output
the corrected main function specification only, without any other text.

AI ASSISTANT
<The LLM’s generated Dafny code with specifications here.>

F DATA CONTAMINATION ANALYSIS

To validate the novelty of DAFNYCOMP, we conducted a rigorous data contamination analysis
against the widely-used MBPP dataset (Austin et al., 2021), used to assess contamination in Python
source data. We confirm that our benchmark source data shows no significant overlap, ensuring
model performance reflects genuine reasoning capabilities rather than memorization.

Our analysis, focusing solely on code, employs two standard metrics: Exact Match to detect ver-
batim copies, and n-gram Jaccard Similarity to identify structurally similar code. We performed
this analysis under four distinct configurations, the results of which are summarized in Table 5.

Across all scenarios, we found zero exact matches. The n-gram Jaccard similarity remains neg-
ligible, peaking at a mere 0.0078 even under the most aggressive settings. These findings provide
strong evidence that DAFNYCOMP is free from training data contamination.

Table 5: Summary of Data Contamination Analysis. The table shows results for four testing config-
urations: A (Conservative) with minimal preprocessing; B (Default) with moderate preprocessing;
C (Aggressive) with extensive preprocessing; and D (Holistic) for a structure-level check. Across
all configurations, results show zero exact matches and negligible n-gram similarity when compar-
ing DAFNYCOMP source data against MBPP, confirming the benchmark’s integrity.

Analysis Configuration N-gram (n) Exact Overlap Max Jaccard vs. sanitized-mbpp
A: Conservative 15 0 0.000078 0
B: Default 11, 13, 15 0 0.000389 0
C: Aggressive 9, 11, 13 0 0.007757 0
D: Holistic 11, 13, 15 0 0.000234 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G PROMPT FOR EVALUATION

The prompt template used for evaluation is shown in the following box. Note that all model outputs
are used directly for Dafny verification.

Evaluation Prompt for Dafny Specification Generation

SYSTEM
You are an expert in Dafny. You will be given tasks dealing with Dafny programs includ-
ing precise annotations. You should only return code body in all circumstances. No text
is allowed.

TASK
Given a Dafny program with function signature, preconditions, postconditions, and code,
but with annotations missing. Please return a complete Dafny program with the strongest
possible annotation (loop invariants, assert statements, etc.) filled back in. Do not explain
or output any text. If you have to explain, put all explanations in comments form. There
should only be code body in your output. Please use exactly the same function signature,
preconditions, and postconditions. Do not ever modify the given lines.
Below is the program:

```dafny
<dafny program with missing annotations>
```

AI ASSISTANT

```dafny
<The LLM’s generated Dafny code with specifications
here.>
```

H COMPUTE SETTINGS

Details of Compute Settings

Token budgets:
• No hard constraint is imposed on the number of generated tokens.
• For each model, max output tokens (or equivalent) is set to the largest value

allowed by the provider, so that long reasoning traces are not truncated.
• Many evaluated systems are reasoning-oriented (e.g., R1) and may follow long, itera-

tive reasoning trajectories, so token usage is largely emergent and model-dependent.
Inference sampling:

• Default decoding for most models: temperature = 0.7, top-p = 0.8.
• CLAUDE MODELS: provider default top-p (not exposed in the API), with temperature
= 0.7.

• O4-MINI: provider default configuration, with fixed temperature = 1 and no top-p
parameter.

Verifier retry policy:
• Exactly one verification attempt per output.
• SMT solver timeout: 60 s.
• If the solver does not finish within 60 s, the instance is treated as unsolved (not counted

as a success).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

I REAL EXAMPLES FROM BENCHMARK DATA

I.1 CHALLENGE 1: FORMAL SPECIFICATION SYNTHESIS

The following examples demonstrate failures in generating correct formal specifications, particularly
preconditions and postconditions.

I.1.1 EXAMPLE 1.1: POSTCONDITION FAILURE (ORG INPUT ID: 2, SELF ID: 20001)
LLM Response:

method digitSum(n: int) returns (sum: int)
requires n >= 0
ensures sum >= 0

{
var temp := n;
sum := 0;
while temp > 0

invariant temp >= 0
invariant sum >= 0

{
sum := sum + (temp % 10);
temp := temp / 10;

}
}

method countLargestGroup_1399(n: int) returns (result: int)
requires n >= 0
ensures result >= 1
ensures result <= 1000

{
var counts := new int[50];
var i := 0;
while i < 50

invariant 0 <= i <= 50
invariant forall j :: 0 <= j < i ==> counts[j] == 0

{
counts[i] := 0;
i := i + 1;

}
var maxCount := 0;
var groupsWithMaxCount := 0;
i := 1;
while i <= n

invariant 1 <= i <= n + 1
invariant maxCount >= 0
invariant groupsWithMaxCount >= 0
invariant maxCount > 0 ==> groupsWithMaxCount >= 1
invariant forall j :: 0 <= j < 50 ==> counts[j] >= 0

{
var ds := digitSum(i);
if ds < 50 {

counts[ds] := counts[ds] + 1;
if maxCount < counts[ds] {

maxCount := counts[ds];
groupsWithMaxCount := 1;

} else if maxCount == counts[ds] {
groupsWithMaxCount := groupsWithMaxCount + 1;

}
}
i := i + 1;

}
result := groupsWithMaxCount;
if result == 0 {

result := 1;
}
assert result >= 1;

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

if result > 1000 {
result := 1000;

}
}

method main_3node_2(o: int) returns (result: int)
requires o >= 0
ensures result == -1 || result >= 2

{
var o1 := countLargestGroup_1399(o);
var o2 := sumOfMultiples_2652(o1);
if o2 >= 1 {

var o3 := nextGreaterElement_556(o2);
result := o3;
if result != -1 && result <= 1 {

result := 2;
}

} else {
result := -1;

}
}

Dafny Error:

ex.dfy(137,0): Error: a postcondition could not be proved on this return
path

ex.dfy(136,25): Related location: this is the postcondition that could
not be proved

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

I.1.2 EXAMPLE 1.2: MISSING PRECONDITION (ORG INPUT ID: 6, SELF ID: 60005)
LLM Response:

method DigitSum(n: int) returns (sum: int)
requires n >= 0
ensures sum >= 0

{
var num := n;
sum := 0;
while num > 0

invariant sum >= 0
invariant num >= 0
decreases num

{
sum := sum + (num % 10);
num := num / 10;

}
}

method countLargestGroup_1399(n: int) returns (result: int)
requires n >= 1
ensures result >= 1

{
var digitSumCounts := map[];
var maxCount := 0;
var i := 1;
while i <= n

invariant 1 <= i <= n + 1
invariant maxCount >= 0
invariant forall k :: k in digitSumCounts ==> digitSumCounts[k]

>= 0
decreases n - i + 1

{
var digitSum := DigitSum(i);
var currentCount := if digitSum in digitSumCounts then

digitSumCounts[digitSum] else 0;
digitSumCounts := digitSumCounts[digitSum := currentCount + 1];
if currentCount + 1 > maxCount {

maxCount := currentCount + 1;
}
i := i + 1;

}
result := 0;
var possibleSum := 0;
while possibleSum <= 9 * 4

invariant possibleSum >= 0
invariant result >= 0
invariant forall k :: k in digitSumCounts ==> digitSumCounts[k]

>= 0
decreases 9 * 4 - possibleSum + 1

{
if possibleSum in digitSumCounts && digitSumCounts[possibleSum]

== maxCount {
result := result + 1;

}
possibleSum := possibleSum + 1;

}
if result == 0 {

result := 1;
}

}

method main_4node_4(o: int) returns (result: int)
ensures result >= 1

{

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

var o1 := nextGreaterElement_556(o);
var o2: int;
if o1 == -1 {

o2 := 1;
} else if o1 > 10000 {

o2 := 10000;
} else {

o2 := o1;
}
var o3 := countLargestGroup_1399(o2);
var clampedO3: int;
if o3 > 1000000000000000 {

clampedO3 := 1000000000000000;
} else if o3 < -1000000000000000 {

clampedO3 := -1000000000000000;
} else {

clampedO3 := o3;
}
var o4 := smallestNumber_2165(clampedO3);
var finalInput: int;
if o4 < 1 {

finalInput := 1;
} else if o4 > 15 {

finalInput := 15;
} else {

finalInput := o4;
}
result := countArrangement_526(finalInput);

}

Dafny Error:

ex.dfy(177,36): Error: a precondition for this call could not be proved

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I.2 CHALLENGE 2: ENSURING CODE CORRECTNESS

These examples show implementation issues where the code logic doesn’t satisfy the specifications.

I.2.1 EXAMPLE 2.1: ARRAY BOUNDS ERROR (ORG INPUT ID: 1, SELF ID: 10002)
LLM Response:

method smallestNumber_2165(num: int) returns (result: int)
{

var neg := num < 0;
var n := if num < 0 then -num else num;
var cnt := new int[10];
var i := 0;
while i < 10

invariant 0 <= i <= 10
invariant cnt.Length == 10
invariant forall k :: 0 <= k < i ==> cnt[k] >= 0

{
cnt[i] := 0;
i := i + 1;

}
// ... rest of implementation

}

method main_5node_8(o: int) returns (result: int)
{

var o1 := smallestNumber_2165(o);
var o2 := clumsy_1006(if o1 <= 10000 then o1 else 10000);
var o3 := lastRemaining_390(o2);
var o4 := getMoneyAmount_375(if o3 <= 200 then o3 else 200);
var o5 := numberOfWays_3183(if o4 <= 100000 then o4 else 100000);
result := o5;

}

Dafny Error:

ex.dfy(44,30): Error: this loop invariant could not be proved on entry
Related message: loop invariant violation

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

I.2.2 EXAMPLE 2.2: ASSERTION FAILURE (ORG INPUT ID: 6, SELF ID: 60001)
LLM Response:

method DigitSum(n: int) returns (sum: int)
requires n >= 0
ensures sum >= 0

{
var num := n;
sum := 0;
while num > 0

invariant sum >= 0
invariant num >= 0
decreases num

{
sum := sum + (num % 10);
num := num / 10;

}
}

method countLargestGroup_1399(n: int) returns (result: int)
requires n >= 1
ensures result >= 1

{
var digitSumCounts := map[];
var maxCount := 0;
var i := 1;
while i <= n

invariant 1 <= i <= n + 1
invariant maxCount >= 0
invariant forall k :: k in digitSumCounts ==> digitSumCounts[k] >

0
decreases n - i + 1

{
var digitSum := DigitSum(i);
var currentCount := if digitSum in digitSumCounts then

digitSumCounts[digitSum] else 0;
digitSumCounts := digitSumCounts[digitSum := currentCount + 1];
if currentCount + 1 > maxCount {

maxCount := currentCount + 1;
}
i := i + 1;

}

result := 0;
var possibleSum := 0;
while possibleSum <= 9 * 4

invariant possibleSum >= 0
invariant result >= 0
decreases 9 * 4 - possibleSum + 1

{
if possibleSum in digitSumCounts && digitSumCounts[possibleSum]

== maxCount {
result := result + 1;

}
possibleSum := possibleSum + 1;

}

if result == 0 {
result := 1;

}
}

method main_4node_4(o: int) returns (result: int)
ensures result >= 1

{

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

var o1 := nextGreaterElement_556(o);
var o2: int;
if o1 == -1 {

o2 := 1;
} else if o1 > 10000 {

o2 := 10000;
} else {

o2 := o1;
}
assert o2 >= 1;

var o3 := countLargestGroup_1399(o2);
var clampedO3: int;
if o3 > 1000000000000000 {

clampedO3 := 1000000000000000;
} else if o3 < -1000000000000000 {

clampedO3 := -1000000000000000;
} else {

clampedO3 := o3;
}

var o4 := smallestNumber_2165(clampedO3);
var finalInput: int;
if o4 < 1 {

finalInput := 1;
} else if o4 > 15 {

finalInput := 15;
} else {

finalInput := o4;
}
assert finalInput >= 1;

result := countArrangement_526(finalInput);
}

Dafny Error:

ex.dfy(181,4): Error: assertion might not hold
assert o2 >= 1;

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

I.3 CHALLENGE 3: PROOF GENERATION AND FORMAL REASONING

Examples demonstrating failures in generating proper loop invariants and formal proofs.

I.3.1 EXAMPLE 3.1: INVARIANT NOT MAINTAINED (ORG INPUT ID: 0, SELF ID: 6)
LLM Response:
method stringToInt(s: seq<char>) returns (result: int)

requires |s| > 0
requires forall i :: 0 <= i < |s| ==> ’0’ <= s[i] <= ’9’
ensures result >= 0

{
var res := 0;
var i := 0;
while i < |s|

invariant 0 <= i <= |s|
invariant res >= 0
invariant res == stringToIntHelper(s[..i])

{
var digit := digitToInt(s[i]);
assert 0 <= digit <= 9;
res := res * 10 + digit;
i := i + 1;

}
return res;

}

method monotoneIncreasingDigits_738(n: int) returns (result: int)
requires n >= 0
ensures result >= 1
ensures result <= 1000000000

{
if n == 0 {

return 1;
}
var s := intToString(n);
var i := 1;
while i < |s| && digitToInt(s[i-1]) <= digitToInt(s[i])

invariant 1 <= i <= |s|
invariant forall j :: 0 <= j < |s| ==> ’0’ <= s[j] <= ’9’

{
i := i + 1;

}
if i < |s| {

while i > 0 && i < |s| && digitToInt(s[i-1]) > digitToInt(s[i])
invariant 0 <= i < |s|
invariant forall j :: 0 <= j < |s| ==> ’0’ <= s[j] <= ’9’
decreases i

{
var prevDigit := digitToInt(s[i-1]);
if prevDigit > 0 {
s := s[i-1 := intToChar(prevDigit - 1)];

}
i := i - 1;

}
i := i + 1;
while i < |s|
invariant i <= |s|
invariant forall j :: 0 <= j < |s| ==> ’0’ <= s[j] <= ’9’

{
s := s[i := ’9’];
i := i + 1;

}
}
var res := stringToInt(s);
if res >= 1 && res <= 1000000000 {

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

return res;
} else {

return 1;
}

}

method main_3node_2(o: int) returns (result: int)
requires o >= 0
ensures result >= 0

{
var o1 := smallestFactorization_625(o);
if o1 == 0 {

return 0;
}
var o2 := monotoneIncreasingDigits_738(o1);
var o3 := minOperations_2571(o2);
return o3;

}

Dafny Error:

ex.dfy(25,18): Error: this invariant could not be proved to be maintained
by the loop

Related message: loop invariant violation

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

I.3.2 EXAMPLE 3.2: RECURSION TERMINATION (ORG INPUT ID: 4, SELF ID: 40003)
LLM Response:

function gcd_func(a: int, b: int): int
{

if b == 0 then a else gcd_func(b, a % b)
}

method gcd(a: int, b: int) returns (result: int)
requires a > 0 && b >= 0
ensures result == gcd_func(a, b)
{

var x := a;
var y := b;
while y != 0

invariant x > 0 && y >= 0
invariant gcd_func(a, b) == gcd_func(x, y)
decreases y

{
var temp := x % y;
x := y;
y := temp;

}
result := x;

}

method distinctSequences_2318(n: int) returns (result: int)
requires n >= 1
ensures result >= 0
{

if n == 1 {
return 6;

}
var mod := 1000000007;
var dp := new int[n + 1, 6, 6];
var k := 0;
while k <= n

invariant 0 <= k <= n + 1
{

var i := 0;
while i < 6

invariant 0 <= i <= 6
{

var j := 0;
while j < 6

invariant 0 <= j <= 6
{

dp[k, i, j] := 0;
j := j + 1;

}
i := i + 1;

}
k := k + 1;

}
var i := 0;
while i < 6

invariant 0 <= i <= 6
{

var j := 0;
while j < 6

invariant 0 <= j <= 6
{

var g := gcd(i + 1, j + 1);
if g == 1 && i != j {

dp[2, i, j] := 1;

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

}
j := j + 1;

}
i := i + 1;

}
k := 3;
while k <= n

invariant 3 <= k <= n + 1
{

i := 0;
while i < 6

invariant 0 <= i <= 6
{

var j := 0;
while j < 6

invariant 0 <= j <= 6
{

var g1 := gcd(i + 1, j + 1);
if g1 == 1 && i != j {

var h := 0;
while h < 6

invariant 0 <= h <= 6
{

var g2 := gcd(h + 1, i + 1);
if g2 == 1 && h != i && h != j {

dp[k, i, j] := (dp[k, i, j] + dp[k - 1, h, i
]) % mod;

}
h := h + 1;

}
}
j := j + 1;

}
i := i + 1;

}
k := k + 1;

}
var ans := 0;
i := 0;
while i < 6

invariant 0 <= i <= 6
invariant ans >= 0

{
var j := 0;
while j < 6

invariant 0 <= j <= 6
invariant ans >= 0

{
ans := (ans + dp[n, i, j]) % mod;
j := j + 1;

}
i := i + 1;

}
result := ans;

}

method main_3node_2(o: int) returns (result: int)
requires o >= 1
ensures result >= 0
{

var o1 := clumsy_1006(o);
var o2 := numSquares_279(o1);
var o3 := distinctSequences_2318(o2);
result := o3;

}

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Dafny Error:

ex.dfy(3,34): Error: cannot prove termination; try supplying a decreases
clause

if b == 0 then a else gcd_func(b, a % b)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

I.4 CHALLENGE 4: SPEC-CODE-PROOF ALIGNMENT

These examples show misalignment between specifications and implementation, particularly
method vs. function usage.

I.4.1 EXAMPLE 4.1: METHOD IN EXPRESSION CONTEXT (ORG INPUT ID: 0, SELF ID: 5)
LLM Response:

method stringToInt(s: seq<char>) returns (result: int)
requires forall i :: 0 <= i < |s| ==> ’0’ <= s[i] <= ’9’
ensures result >= 0
{

var res := 0;
var i := 0;
while i < |s|

invariant 0 <= i <= |s|
invariant res >= 0
invariant res == if i == 0 then 0 else stringToInt(s[..i])

{
res := res * 10 + digitToInt(s[i]);
i := i + 1;

}
result := res;

}

method monotoneIncreasingDigits_738(n: int) returns (result: int)
requires n >= 0
ensures result >= 1
ensures result <= 1000000000

{
if n == 0 {

return 1;
}
var s := intToString(n);
var i := 1;
while i < |s| && digitToInt(s[i-1]) <= digitToInt(s[i])

invariant 1 <= i <= |s|
invariant forall j :: 0 <= j < |s| ==> ’0’ <= s[j] <= ’9’

{
i := i + 1;

}
if i < |s| {

while i > 0 && i < |s| && digitToInt(s[i-1]) > digitToInt(s[i])
invariant 0 <= i < |s|
invariant forall j :: 0 <= j < |s| ==> ’0’ <= s[j] <= ’9’
decreases i

{
var prevDigit := digitToInt(s[i-1]);
if prevDigit > 0 {
s := s[i-1 := intToChar(prevDigit - 1)];

}
i := i - 1;

}
i := i + 1;
while i < |s|
invariant i <= |s|
invariant forall j :: 0 <= j < |s| ==> ’0’ <= s[j] <= ’9’

{
s := s[i := ’9’];
i := i + 1;

}
}
var res := stringToInt(s);
if res >= 1 && res <= 1000000000 {

return res;

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

} else {
return 1;

}
}

method main_3node_2(o: int) returns (result: int)
requires o >= 0
ensures result >= 0

{
var o1 := smallestFactorization_625(o);
if o1 == 0 {

return 0;
}
var o2 := monotoneIncreasingDigits_738(o1);
var o3 := minOperations_2571(o2);
return o3;

}

Dafny Error:

ex.dfy(26,43): Error: expression is not allowed to invoke a method (
stringToInt)

invariant res == if i == 0 then 0 else stringToInt(s[..i])

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

I.4.2 EXAMPLE 4.2: FUNCTION VS METHOD CONFUSION (ORG INPUT ID: 16, SELF ID:
160000)

LLM Response:

method isBeautiful(n: int) returns (result: bool)
{

// Implementation for checking if number is beautiful
result := true; // Simplified

}

method nextBeautifulNumber_769(n: int) returns (result: int)
{

var x := n + 1;
while true

invariant x >= n + 1
invariant forall y :: n + 1 <= y < x ==> !isBeautiful(y)
decreases *

{
var beautiful := isBeautiful(x);
if beautiful {

result := x;
return;

}
x := x + 1;

}
}

method main_5node_8(o: int) returns (result: int)
{

var o1 := reverse_7(o);
if o1 == 0 {

result := 1;
return;

}
var o2 := lastRemaining_390(o1);
var o3 := closestFair_2417(o2);
var o4 := nextGreaterElement_556(o3);
if o4 == -1 {

result := 1;
return;

}
var o5 := nextBeautifulNumber_2048(o4);
result := o5;

}

Dafny Error:

ex.dfy(248,46): Error: expression is not allowed to invoke a method (
isBeautiful)

invariant forall y :: n + 1 <= y < x ==> !isBeautiful(y)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

I.5 CHALLENGE 5: COMPLEXITY AND SCALABILITY ISSUES

Examples where complex programs or large data structures cause verification failures.

I.5.1 EXAMPLE 5.1: LARGE ARRAY ALLOCATION (ORG INPUT ID: 1, SELF ID: 10002)
LLM Response:
method smallestNumber_2165(num: int) returns (result: int)
{

var neg := num < 0;
var n := if num < 0 then -num else num;
var cnt := new int[10];
var i := 0;
while i < 10

invariant 0 <= i <= 10
invariant cnt.Length == 10
invariant forall k :: 0 <= k < i ==> cnt[k] >= 0

{
cnt[i] := 0;
i := i + 1;

}

// Count digits
var temp := n;
while temp > 0

invariant temp >= 0
invariant forall k :: 0 <= k < 10 ==> cnt[k] >= 0
decreases temp

{
var digit := temp % 10;
cnt[digit] := cnt[digit] + 1;
temp := temp / 10;

}

// Construct result
result := 0;
i := if neg then 1 else 0;
while i < 10

invariant 0 <= i <= 10
invariant result >= 0
decreases 10 - i

{
while cnt[i] > 0

invariant cnt[i] >= 0
invariant result >= 0
decreases cnt[i]

{
result := result * 10 + i;
cnt[i] := cnt[i] - 1;

}
i := i + 1;

}

if neg {
result := -result;

}
}

method main_5node_8(o: int) returns (result: int)
{

var o1 := smallestNumber_2165(o);
var o2 := clumsy_1006(if o1 <= 10000 then o1 else 10000);
var o3 := lastRemaining_390(o2);
var o4 := getMoneyAmount_375(if o3 <= 200 then o3 else 200);
var o5 := numberOfWays_3183(if o4 <= 100000 then o4 else 100000);
result := o5;

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

}

Dafny Error:

ex.dfy(44,30): Error: this loop invariant could not be proved on entry
Related message: loop invariant violation
invariant ans >= 0

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

I.6 CHALLENGE 6: AVOIDING TRIVIAL SOLUTIONS

Note: This category had limited representation in the dataset. The theoretical examples that would
fit this category include:

• Overly permissive postconditions like ensures true

• Methods with missing functional specifications

• Weak preconditions that don’t prevent edge cases

• Specifications that allow degenerate solutions

• Missing bounds on return values

• Incomplete coverage of input space

• Trivial loop invariants that don’t capture semantics

• Weak assertions that don’t prevent bugs

• Generic error handling without specific constraints

I.7 CHALLENGE 7: LIMITED TRAINING IN FORMAL DOMAINS

Examples showing basic syntax errors and misuse of Dafny constructs.

I.7.1 EXAMPLE 7.1: PARSE ERROR (ORG INPUT ID: 0, SELF ID: 0)
LLM Response:

function digitToInt(c: char): int
requires ’0’ <= c <= ’9’
ensures 0 <= digitToInt(c) <= 9

{
(c as int) - (’0’ as int)

}

function intToChar(i: int): char
requires 0 <= i <= 9
ensures ’0’ <= intToChar(i) <= ’9’

{
((’0’ as int) + i) as char

}

method stringToInt(s: string) returns (result: int)
requires forall i :: 0 <= i < |s| ==> ’0’ <= s[i] <= ’9’
ensures result >= 0

{
var res := 0;
var i := 0;
while i < |s|

invariant 0 <= i <= |s|
invariant res >= 0

{
res := res * 10 + digitToInt(s[i]);
i := i + 1;

}
result := res;

}

method monotoneIncreasingDigits_738(n: int) returns (result: int)
requires n >= 0
ensures 1 <= result <= 1000000000
{

if n == 0 {
return 1;

}
var s := intToString(n);
var digits := s;

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

var i := 1;
while i < |digits| && digitToInt(digits[i-1]) <= digitToInt(digits[i

])
invariant 1 <= i <= |digits|
invariant forall j :: 0 <= j < |digits| ==> ’0’ <= digits[j] <=

’9’
invariant forall j,k :: 0 <= j < k < i ==> digitToInt(digits[j])

<= digitToInt(digits[k])
{

i := i + 1;
}
if i < |digits| {

while i > 0 && i < |digits| && digitToInt(digits[i-1]) >
digitToInt(digits[i])
invariant 0 <= i < |digits|
invariant forall j :: 0 <= j < |digits| ==> ’0’ <= digits[j]

<= ’9’
decreases i

{
var prevDigit := digitToInt(digits[i-1]);
if prevDigit > 0 {

digits := digits[i-1 := intToChar(prevDigit - 1)];
}
i := i - 1;

}
i := i + 1;
while i < |digits|

invariant 0 <= i <= |digits|
invariant forall j :: 0 <= j < |digits| ==> ’0’ <= digits[j]

<= ’9’
{

digits := digits[i := ’9’];
i := i + 1;

}
}
var res := stringToInt(digits);
if res == 0 {

return 1;
}
if res > 1000000000 {

return 1000000000;
}
return res;

}

method main_3node_2(o: int) returns (result: int)
requires o >= 0
ensures result >= 1
{

var o1 := smallestFactorization_625(o);
var o2 := monotoneIncreasingDigits_738(o1);
var o3 := lastRemaining_390(o2);
return o3;

}

Dafny Error:

ex.dfy(22,12): Error: invalid ForLoopStmt
22 | reads s
method stringToInt(s: string) returns (result: int)

2 parse errors detected in ex.dfy

36

	Introduction
	Related Work
	Benchmark Construction
	Program Assembly
	Formal Translation
	Evaluation Task Format
	Benchmark Statistical Summary

	Experimental Setup And Results
	Metrics
	Model Selection
	Results and Discussion

	Failure Case Analysis and Discussion
	Specification Fragility: The Domino Effect
	Implementation–Proof Misalignment: The Independence Assumption
	Reasoning Instability: Induction as Achilles' Heel

	Limitations and Future Work
	Conclusion
	The Use of LLMs in Writing
	Introduction to Dafny
	Automated Theorem Proving
	Model Selection for Formal Translation
	Prompts for Synthesis
	Data Contamination Analysis
	Prompt for Evaluation
	Compute Settings
	Real Examples from Benchmark Data
	Challenge 1: Formal Specification Synthesis
	Example 1.1: Postcondition Failure (org_input_id: 2, self_id: 20001)
	Example 1.2: Missing Precondition (org_input_id: 6, self_id: 60005)

	Challenge 2: Ensuring Code Correctness
	Example 2.1: Array Bounds Error (org_input_id: 1, self_id: 10002)
	Example 2.2: Assertion Failure (org_input_id: 6, self_id: 60001)

	Challenge 3: Proof Generation and Formal Reasoning
	Example 3.1: Invariant Not Maintained (org_input_id: 0, self_id: 6)
	Example 3.2: Recursion Termination (org_input_id: 4, self_id: 40003)

	Challenge 4: Spec-Code-Proof Alignment
	Example 4.1: Method in Expression Context (org_input_id: 0, self_id: 5)
	Example 4.2: Function vs Method Confusion (org_input_id: 16, self_id: 160000)

	Challenge 5: Complexity and Scalability Issues
	Example 5.1: Large Array Allocation (org_input_id: 1, self_id: 10002)

	Challenge 6: Avoiding Trivial Solutions
	Challenge 7: Limited Training in Formal Domains
	Example 7.1: Parse Error (org_input_id: 0, self_id: 0)

