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Abstract

In this study, we propose a novel federated learning (FL) approach that utilizes
3D style transfer for the multi-organ segmentation task. The multi-organ dataset,
obtained by integrating multiple datasets, has high scalability and can improve
generalization performance as the data volume increases. However, the heterogene-
ity of data owing to different clients with diverse imaging conditions and target
organs can lead to severe overfitting of local models. To align models that overfit to
different local datasets, existing methods require frequent communication with the
central server, resulting in higher communication costs and risk of privacy leakage.
To achieve an efficient and safe FL, we propose an Anatomical 3D Frequency
Domain Generalization (A3DFDG) method for FL. A3DFDG utilizes structural
information of human organs and clusters the 3D styles based on the location
of organs. By mixing styles based on these clusters, it preserves the anatomical
information and leads models to learn intra-organ diversity, while aligning the
optimization of each local model. Experiments indicate that our method can main-
tain its accuracy even in cases where the communication cost is highly limited
(= 1.25% of the original cost) while achieving a significant difference compared
to baselines, with a higher global dice similarity coefficient score of 4.3%. Despite
its simplicity and minimal computational overhead, these results demonstrate that
our method has high practicality in real-world scenarios where low communication
costs and a simple pipeline are required. The code used in this project will be
publicly available.

1 Introduction

Recently, the effectiveness of deep learning (DL) in the medical field has been demonstrated through
classification and segmentation tasks (16; 9). A large amount of labeled data is required for accu-
rate medical segmentation via DL. This requirement is critical in the field of healthcare because
annotating medical images requires high levels of expertise, and collecting pixel-level labels for
segmentation tasks is time-consuming and expensive. Furthermore, medical data are highly personal
and confidential, making it challenging to share raw data across institutions and countries.

In response to the aforementioned challenges, many studies have aimed to simultaneously protect
patient privacy and increase the amount of data available for training by utilizing federated learning
(FL) (14; 24; 25). Under the FL scheme, distributed clients perform training using local data and
upload their weights to a central server. The central server then aggregates these weights to acquire a
more generalized model, whereas all local data are stored under the distributed clients (14).
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Figure 1: (a) Our proposed setting with limitted communication rounds and shared style information.
(b)(c) Model accuracy evaluation. The hatched bars indicate the accuracy when the number of
communications is reduced from 400 to 5.

Another approach for increasing the amount of annotated data involves combining multiple datasets
targeting different organs, resulting in a multi-organ dataset (26; 12). By integrating datasets, the
amount of training data increases, resulting in higher accuracy than when training with individual
datasets (26). However, implementing FL using these integrated datasets presents a highly challenging
issue: since each local model is optimized in different directions, more iterations are required for
the global model to converge, leading to increased overall FL training time and communication
cost. In addition to the well-known domain shift caused by image appearance variation owing to
different imaging equipment and protocols (33), differences occur in the targeted organs and the
imaging ranges because each dataset was prepared for different purposes. These two sources of
domain shift force local models to overfit to their local datasets, significantly slowing down the
overall FL training convergence.

Fig 1 illustrates the inefficiency of the existing FL models by demonstrating a significant drop in
accuracy with low communication costs (i.e., the number of uploads of the local models to the central
server from each local client) while maintaining the total iterations. An in-federation setting means
that test data were provided by clients included in the training data, and an out-of-federation setting
means that we evaluate the accuracy against unseen clients. The accuracy under the conventional
setting with 400 rounds of communications is represented by the plain bars, while the accuracy
with five rounds of communications is depicted by the hatched bars. Owing to the aforementioned
variation in the optimization directions of local models caused by domain shift, existing models fail to
converge and experience a significant drop in accuracy when there is a strict limitation on the number
of communications with the central server. This leads to higher operational and communication
costs, increases the risk of data leakage when sharing the model, and hinders the system’s practical
application.

To achieve FL with sufficient scalability and practicality, we propose a novel problem setting,
federated domain generalization with few-round communications. Toward this goal, we propose
A3DFDG, Anatomical 3D Frequency Domain Generalization for FL (Fig. 1 (a), Fig. 2). This
novel method utilizes domain generalization in the frequency space to eliminate differences between
domains (clients) and resolve optimization interference among local models. Specifically, we develop
a module that successfully extends the existing style adaptations defined in the 2D frequency domain
(FDA) (29) to 3D without sharing raw images across clients while utilizing anatomical structural
information.

Existing data augmentation methods mix multiple samples randomly, whether the mixing is done
in the spatial domain (31; 30) or in the frequency domain (29; 13). However, when dealing with
multi-organ datasets, mixing styles obtained from two different organs can lead to the loss of class
information contained in each style, potentially distorting the decision boundaries of the model.
Therefore, we cluster the styles in the frequency domain using an off-the-shelf organ localization
model. Based on these clustered 3D styles, we perform data augmentation in 3D frequency domain,
while preserving anatomical information and aligning the optimization of each client’s model.

To demonstrate the effectiveness of the proposed method, we conducted evaluations using six
datasets under two federated learning (FL) settings: an in-federation setting and an out-of-federation
setting. Our results show that even when the number of communications with the central server was
significantly reduced to 1.25% of the original setting, we maintained high accuracy comparable to
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Figure 2: Overview of our A3DFDG. (Stage1) First, we calculate the 3D visual style of each client in
the frequency space and store them in clusters based on the predicted slice scores (slice position).
(Stage2) During training, we retrieve 3D styles from the same cluster as the samples in the minibatch
and perform style transfer without losing organ information.

that of frequent communication settings (Fig 1). Conversely, existing baseline methods are unable to
learn multiple organs in a balanced manner and fail to achieve convergence of the global model with
limited communication. These findings demonstrate that our model is highly practical for conducting
large-scale learning with fewer communications and a simpler overall pipeline.

Table 1 summarizes the communication cost and accuracy when using the recently proposed MENU-
Net baseline (size: 6.3GB). Here, our method distributes the 3D style (0.23MB) among clients only
once before FL training and these styles are stored at local clients without the need for redistribution
during training. Also, as mentioned later, domain generalization is performed using only a part of the
frequency spectrums, resulting in much smaller additional communication overhead.

Table 1: Comparison of the trade-off between communication cost and prediction accuracy

Method Shared Data × # Rounds Data traffic DSC(%)

Existing Work (26) Model×400 2.5T 88.49
+ Communication Reduction Model×5 31.5G 71.42
+ A3DFDG Model×5+3D Style×1 31.5G 84.38

Our contributions are summarized as follows. (1) We propose the task of medical FL with low
communication cost and diverse datasets; (2) we introduce A3DFDG, a domain generalization method
utilizing organ structural and low frequency information; (3) we conducted extensive experiments
under various FL and communication settings, demonstrating that our simple, yet effective method
outperforms existing baselines in settings with limited communication cost.

2 Background and Related Work

Federated Learning. In the FL framework (14), which aims to protect the privacy of patients,
distributed learning is conducted without sharing the local data among clients. Clients perform a
fixed number of learning iterations using their local datasets, after which the weights of their models
are aggregated on a central server. This process involves calculating the weighted average of the local
models to obtain a global model (14). The global model is then redistributed to each client for further
local training, and this process is repeated until the global model converges.

Domain generalization. In the field of medical imaging, domain shift is a common issue owing to
differences in imaging parameters and subject cohorts among hospitals. To address this problem,
numerous domain adaptation and generalization methods (both supervised and unsupervised) have
been proposed. However, the raw data cannot be shared in the FL framework, strictly prohibiting
conventional domain adaptation/generalization approaches. For example, we cannot adopt an instance
weighting strategy (22; 3) that requires the similarity scores between the source and target domains
because it uses the latent features of each domain. Recently, some studies have addressed domain gen-
eralization using the FL scheme. For instance, (8) calculated prototypes that represent each domain
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(a) Minimum slice scores (b) Maximum slice scores (c) PCA results for each style

Figure 3: (a)(b) Distribution of the predicted slice scores (= predicted slice position at which images
are captured) across six datasets. (c) The distribution of extracted style. Here, color indicates its slice
score and PCA is implemented for visualization.

in the feature space, and (23) created synthesized datasets using a generative model to train domain
classifiers to obtain domain-invariant features when training local models. However, recent studies
have revealed that the latent features of trained models risk privacy data leakage (20) even under
collaborative training schemes (5; 28), making these approaches unsuitable in the medical field where
strong privacy protections is required. Other studies calculated styles based on FDA (29) to obtain the
domain knowledge of each client because the amplitude information of lower frequency bands cannot
be used for original image reconstruction without higher frequency and phase components (17; 13).
However, to the best of our knowledge, no studies have ever implemented these frequency-based
approaches toward 3D medical segmentation tasks with diverse multi-organ datasets.

Multi-organ datasets. Many existing studies that perform learning by combining multiple medical
datasets focus on addressing the issue of partial labels in the integrated dataset (18; 26). (18) proposed
the exclusion and marginal loss to calculate additional supervision with partial label and (26) tackled
the partial label problem under the FL scheme by separating the encoder into sub-encoders to prevent
expert models, which undergo supervision with labels, from losing their knowledge by averaging
their weights with other non-expert models. Note that this paper addresses the domain shift that arises
from merging multiple datasets; thus, handling partial labels falls outside the scope of our proposed
method.

Low communication FL. FL requires many communication rounds between a central server and its
clients to achieve high accuracy, increasing computational costs and the risk of privacy leakage (32;
4; 15; 21). Furthermore, frequent communication complicates the FL pipeline, making it challenging
to handle confidential local data and tmodels. Existing studies have reduced communication costs
by decreasing the size of trainable models or sharing the residuals of updates (4; 21). Regarding the
reduction in communication frequency, a recent study addressed few-round FL (32; 15). However,
DENSE (32) assumes the same task among clients, making it difficult to apply to multi-organ FL.
Additionally, these methods have been implemented for relatively simple recognition tasks such as
CIFAR-10/100, and they have not been used for 3D medical image segmentation, which requires
both high-level and fine-grained visual understanding.

3 Method

Fig. 2 shows the overview of our method. Our proposed framework consists of three parts designed
to share the domain information of local datasets while avoiding raw feature leakage and losing
anatomical information. Secs. 3.1 and 3.2 describe the style calculation and the style clustering based
on organ positions. Sec. 3.3 then explains the training of our models based on these registered style
banks. Algorithm 1 presents the detailed steps of our proposed method.

Preliminaries. In this study, K is the number of clients with local datasets. They are expressed as

D = {D1, D2, D3, . . . , DK}. Each client contains its local confidential data Dk =
{
(xk

i , y
k
i )
}Nk

i=1

while Nk, xk
i , and yki indicate the size of local data, i-th CT volume, and labels in the k-th dataset,

respectively.
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3.1 3D style calculation

Previous studies (13; 17; 29) have proved that transferring distribution information in 2D frequency
space across clients is effective for domain generalization in the FL training. Toward 3D medical
segmentation, our proposed method uses the outputs of a 3D Fourier transform applied to a volume as
a style representing each client’s domain. First, we respace (up/down-sample) each voxel because the
difference in imaging space results in frequency resolution discrepancy when implementing Fourier
transformation. We then extract volumes of the same size as used during training and prediction
from each voxel at a consistent height interval, thereby creating a 3D style bank keyed by height (the
motivation for registration by height is described in Sec. 3.2). The amplitude and phase components
of the Fourier transform are denoted as FA and FP , respectively. The style of each local volume xk

i
is expressed as follows:

ski (u, v, t) = FA(xk
i )(u, v, t) = |

H−1∑
h=0

W−1∑
w=0

D−1∑
d=0

xk
i (h,w, d)e

−j2π(hu
H +wv

W + dt
D )| (1)

where H,W, and D indicate the height, width, and depth of cropped volume, respectively. To preserve
the privacy of the patients, we center-crop each Fourier 3D representation, and only the amplitude
information in the low-frequency band is registered in the style bank, thus making it impossible to
reconstruct the original volume. Additionally, these styles are extracted only from the training data to
prevent potential leakage from test data. Following the previous work (13; 29), we calculate weighted
sums between different frequency styles to represent continuous and diverse 3D domain information
(see Sec. 3.3 for detail).

3.2 Anatomical position registration

Our dataset is a multi-organ dataset created by merging data from multiple clients, each featuring
different organs. As a result, while the dataset is large in scale, it covers a wide range of anatomical
locations. To investigate the statistics regarding this aspect, we used a pretrained off-the-shelf body
part regressor (27). This model outputs slice scores, relative height of the imaging location, where
the pelvis and head are set to 0 and 100, respectively. Fig. 3(a) and (b) show the distribution of the
maximum and minimum slice scores of the ranges spanned by each volume in the datasets. We can
see that different datasets feature different organs, resulting in variations in the imaging locations and
potential domain shifts among clients.

To examine the relationship between organ position and domain information defined in the frequency
space, we performed dimensionality reduction on the 3D Frequency styles described in Sec. 3.1 using
PCA and visualized the results (Fig. 3 (c)). Here, different colors correspond to different estimated
slice scores. This visualization demonstrates that styles with the same color tend to cluster together,
indicating that our 3D styles encapsulate information related to the position of the organs.

However, with these frequency styles that contain organ position information, randomly mixing the
two styles for data augmentation as has been done previously in the spatial or frequency domains
(31; 30; 13) can result in the loss of crucial organ information while distorting the decision boundaries
of the model. In other words, by mixing these styles during training, the model is optimized to
make predictions without relying on the slice position information of the organs, even though
this information is actually beneficial for organ identification. Therefore, in this study, we first
predict organ locations using a pretrained organ locator model (27) and cluster each style based on
predetermined binning thresholds (see 3D Style Bank in Fig. 2). For each cluster, we then perform
data augmentation in the frequency domain. This approach forces models to learn intra-organ diversity
without imparting biases related to incorrect low-frequency information to the model. Nnote that each
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client calculates the slice scores for their data only once before the FL training, and the body position
estimator (27) is lightweight, resulting in a minimal additional computation cost for the client.

Algorithm 1 3D Style Bank Registration
Input: Off-the-shelf body part regressor ϕ(w), clients k ∈ K with local dataset Dk, pre-defined

slice score bin size zbin and volume size width w, height h, and depth d
Output: Unified 3D Style Bank B

1: for client k ∈ K do
2: for volume v ∈ Dk do
3: Predict the maximum and minimum slice scores with ϕ(w) and calculate volume height

zlength = zmax − zmin.
4: Random crop sub-volume v of size w, h and d.
5: Calculate the corresponding slice score z′ based on zmin, zlength, and stride size (z-axis)

used for cropping.
6: Calculate 3D style s based on Eq. 1 and register it for the style bank B.

B[k][z′//zbin].append(CenterCrop(s)) (2)

7: end for
8: end for
9: Distribute B across all clients and start FL training utilizing fourier domain generalization (Eq. 4).

3.3 FL training with 3D style bank

Suppose we are training the k-th local model f t
k(x; θ

t
k) in round t with the local i-th data xk

i , where
θtk denotes the k-th local model. In each iteration, the local model randomly selects another client k′
and retrieves a target 3D style starget that has a similar slice score with the cropped local volume
from the precomputed style bank B[k′][zxk

i
//zbin] randomly. During training, the slice score of each

cropped sample for style retrieval is calculated based on the maximum/minimum slice score of the
original volume and the size of the stride in the z-direction similar to the style bank registration (see
Algorithm 1). Subsequently, the two styles are mixed in the frequency space as follows:

s′ = αFA(xk
i ) + (1− α)starget (3)

xk
i

′
= F−1

(
[(Mβ ◦ s′) +

(
(1−Mβ) ◦ FA(xk

i )
)
,FP (xk

i )
]
) (4)

where F−1 is the inverse Fourier Transform, α is the hyperparameter for this MixUp operation, and
M is a mask whose value is one at the predefined center region; otherwise, it is zero.

Mβ(h,w, d) = 1(h,w,d)∈[[−βhH:βhH],[−βwW :βwW ],[−βdD:βdD]] (5)

where β is a hyperparameter that controls the extent of the style transfer. Note that since β is very
small (Sec. 4), the communication cost for sharing these styles is limited (Table 1).

Inverse Fourier Transformation after style mixing results in artifacts in the external regions of the body
as shown in Fig 4. Therefore, we preserve anatomical information, such as the distance to the contour
of the body using a threshold-based air mask for post-refinement. We use air threshold τair = −200
to filter air pixels and those pixels are filled with the original value after style transformation.

Each time local training is completed, we obtain the global model by calculating the weighted average
of each local model based on their dataset sizes following common FL implementation (14; 26).

θt+1 =
∑
k

|Dk|∑
j |Dj |

· θtk. (6)

4 Experimental Settings

Datasets and Preprocessing. Following previous work (26), we used six (multi-) organ segmentation
datasets: 1) the liver tumor segmentation challenge (2) (LiTs), 2) kidney tumor segmentation challenge
(KiTS) (7; 6), 3) pancreas, 4) spleen segmentation datasets in medical segmentation decathlon
challenge(19; 1), 5) multi-modal abdominal multi-organ segmentation challenge (AMOS)(10), and 6)
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Table 2: Dice similarity coefficient (DSC) scores in the in-federation setting.
DSC (%)

Model # Rounds Liver Kidney Pancreas Spleen Gallbladder Global

FedAvg (14) 400 94.95 94.62 81.40 92.13 80.24 88.67
5 91.29 90.28 58.75 75.07 43.46 71.77

MENU-Net (26) 400 94.43 94.85 81.97 92.60 78.6 88.49
5 92.29 91.64 76.44 28.92 67.81 71.42

MENU-Net 400 93.94 94.25 82.08 91.70 80.62 88.52
+ BigAug (26; 34) 5 91.19 90.00 75.12 80.63 64.43 80.28

MENU-Net 400 94.39 94.87 81.77 93.18 82.77 89.40
+ FedDG (26; 13) 5 92.52 80.81 77.79 8.51 69.89 65.90

Ours 400 94.57 94.61 81.64 93.02 82.21 89.21
5 92.51 92.59 77.17 89.23 70.42 84.38

multi-atlas labeling beyond the cranial vault challenge (BTCV) (11) datasets. These datasets contain
131, 210, 281, 41, 200, and 30 volumes, respectively. For more detailed information about these
datasets please refer to the prior work (26). We also implemented the same preprocessing as in (26)
for downsampling and pixel normalization with clipping.

Baselines. We compared our proposed model with the following baseline models: (i) FedAvg (14),
the original work on FL that calculates the average of weights after local training; (ii) MENU-Net (26),
which separates the encoder into multiple sub-encoders to prevent model optimization interference
during the global model update; (iii) BigAug (33), which utilizes a set of heavy augmentations to
generalize the model towards unknown domains; (iv) FedDG (13), the closest research to our work,
and it achieves highly generalized Federated Learning while preserving privacy by center-cropped
frequency spectrums. The 3D organ datasets we handle are difficult to collect, and some clients
have limited local data (e.g., the spleen segmentation dataset (1) contains only 24 training samples).
Therefore, instead of adopting the meta-learning approach proposed in the FedDG paper, we adopted
only the data augmentation part toward the multi-source domain based on continuous frequency space
interpolation. Regarding (iii) (iv), MENU-Net was adopted as the network architecture. In addition,
(i) uses the same 3D convolutional layers as MENU-Net except for sub-encoders. For more detailed
hyperparameter settings, please refer to the Supplementary Material.

Evaluation Metrics. We calculated the average dice similarity coefficient score (DSC) and average
symmetric surface distance (ASD) for each organ. The macro average across clients was calculated
in an in-federation setting. Also, the global accuracy was calculated using the macro average across
all organs.

Implementation Details. We adopted the MENU-Net architecture for the model of our proposed
method and trained our model with dice, cross-entropy, and marginal and exclusion loss functions
following (26). Regarding the hyperparameters, α is randomly sampled within [0.0, 1.0], and we set
βw, βh,, and βd to 0.01, 0.01, and 0.05, respectively. These hyperparameters are used for both of our
method and FedDG (13). We used 10% and 30% of each local data for validation and testing while
all images in BTCV were used for out-of-federation testing. The training and testing batch sizes were
set to four and two, respectively. The learning rate was set to 0.01 for 400 communication rounds
setting and 0.001 for 5 rounds settings to stabilize the training processes.

5 Experimental Results.

To evaluate the efficacy of our model and the other baselines, we trained and evaluated them with
two communication frequencies under two distinct settings: (i) an in-federation setting and (ii) an
out-of-federation setting.
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Table 3: DSC scores in the out-of-federation setting.
DSC (%)

Model # Rounds Liver Kidney Pancreas Spleen Gallbladder Global

FedAvg (14) 400 95.03 88.57 79.10 90.99 67.84 84.31
5 92.20 87.89 53.07 66.59 32.42 66.43

MENU-Net (26) 400 94.83 87.87 77.85 89.19 68.73 83.69
5 94.41 87.65 74.45 33.23 45.78 67.10

MENU-Net 400 94.57 87.77 79.58 90.72 70.70 84.67
+BigAug (26; 34) 5 93.98 85.44 72.20 81.04 44.13 75.36

MENU-Net 400 94.95 88.12 78.77 92.27 68.59 84.54
+ FedDG (26; 13) 5 94.15 78.40 75.92 6.84 56.59 62.38

Ours 400 94.76 87.68 79.65 91.67 68.21 84.39
5 94.64 89.35 75.98 88.79 49.56 79.66

Table 4: ASD scores in the out-of-federation setting.
ASD (mm)

Model # Rounds Liver Kidney Pancreas Spleen Gallbladder Global

FedAvg (14) 400 2.57 4.27 1.98 1.67 2.60 2.62
5 3.91 6.08 38.15 5.18 11.18 12.90

MENU-Net (26) 400 2.53 4.74 2.66 2.43 2.21 2.91
5 3.33 6.41 4.70 166.84 2.55 36.77

MENU-Net 400 2.83 4.95 2.23 2.22 2.00 2.84
+ BigAug (26; 34) 5 2.74 7.64 12.25 3.61 5.85 6.42

MENU-Net 400 2.60 4.90 2.69 1.40 1.22 2.56
+ FedDG (26; 13) 5 2.66 9.24 3.22 26.16 8.41 9.94

Ours 400 2.71 5.31 2.49 2.05 3.99 3.31
5 2.49 4.69 2.59 4.34 3.91 3.60

5.1 Comparison with Other Baselines

Table 2 presents a quantitative comparison in the in-federation setting. We can see that the methods
using domain generalization in frequency space recorded high accuracy under the frequent com-
munication setting (Rounds= 400). However, only the proposed method is able to maintain high
accuracy even when the number of communications with the central server is significantly reduced to
1.25 % of the original cost (Rounds= 5). Also, it can be observed that many previous studies face
challenges in maintaining accuracy for all organs when the number of communications is restricted.
For example, while FedDG (13) achieves high accuracy for all organs with frequent communications,
in the limited communication setting, the training for the spleen and kidney has not converged,
resulting in significantly lower accuracy for these organs.

Table 3 presents the quantitative results in the out-of-federation setting. Similar to the in-federation
setting, accuracy reduction is limited (< 5%) even when the number of rounds is significantly
reduced while other baseline methods significantly degraded their accuracy (-18%, -17%, -8%, -22%),
indicating that our domain generalization method enables efficient FL training while reducing the
optimization interference among local models.

Table 4 shows the ASD scores in the out-of-federation setting. The accuracy of our proposed method
is significantly higher than that of existing methods in realistic settings under low communication
costs while other models have very unstable training processes and fail to converge. For the results in
the in-federation setting, please refer to our supplementary material.
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Figure 5: Qualitative results in the out-of-federation setting.

These results suggest the following. First, when communication rounds are limited, performing heavy
data augmentation (ours, BigAug (33)) achieves efficient model aggregation. Alternatively, when
random mixup is applied as in FedDG (13), incorrect biases can be introduced into the local models,
leading to lower accuracy for some organs compared to when no data augmentation is applied.

5.2 Qualitative results

Fig 5 shows the qualitative results in an out-of-federation setting. These results included two
patients, and we displayed the results by slicing at equal intervals in the z-direction. The existing
methods (14; 26; 33; 13) produce many false positives (red arrows), false negatives (brown arrows),
and misclassification (yellow arrows) in a low communication setting. By contrast, our proposed
method maintains high accuracy even when the number of communications is restricted.

5.3 Ablation study

We investigated the effects of our technical contributions, including position-based style clustering
(slice score matching) and post-processing with an air mask. Table 5 presents the accuracy in the
in-federation and the out-of-federation setting respectively. Based on these results, we can see that
both our proposed modules contributed to improving the estimation accuracy compared with the
scores in Table 2, specifically in a low communication setting.

5.4 Model-Agnostic Efficacy of our method

Tables 6 demonstrates the global accuracy in both settings when we apply our method for the
FedAvg (14) model. We can observe that our method significantly improved accuracy at lower
communication costs, demonstrating that it has a minimal dependency on model architecture choice
and a high potential to be utilized as a plug-in function for various model architectures.
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Table 5: Ablation study

Model #Rounds In-Fed DSC (%) Out-of-Fed DSC (%)

Ours 400 88.69 (-0.52) 83.51 (-0.88)
w/o slice score matching 5 73.01 (-11.37) 65.97 (-13.68)

Ours 400 87.90 (-1.3) 84.69 (+0.30)
w/o contour preservation 5 83.01 (-1.37) 78.16 (-1.5)

Table 6: Model-agnostic efficacy

Model # Rounds In-Fed DSC(%) Out-of-Fed DSC(%)

FedAvg (14) 400 88.67 84.31
5 71.77 66.43

FedAvg (14)+A3DFDG 400 88.62 (-0.05) 84.07 (-0.28)
5 73.71 (+1.94) 68.56 (+2.13)

6 Discussion and Limitations

Although our proposed method significantly improves accuracy in settings with limited communica-
tion costs, the improvement margin is limited in scenarios where frequent communication is possible.
Moreover, one of the current main limitations of our framework is that each client needs to calculate
the height of local volumes using a pre-trained organ position estimator beforehand. In future work,
we plan to address this by using segmentation predictions to determine the volume occupied by each
organ and dynamically calculating the corresponding slice score on the fly.

7 Conclusion

This paper propose A3DFDG, an Anatomical 3D Frequency Domain Generalization method to
achieve efficient FL for a heterogeneous multi-organ dataset. Compared with existing methods that
randomly sample and mix styles, the proposed method utilizes 3D styles clustered based on the
organ location. This approach enables domain generalization without compromising anatomical
information and forces models to learn intra-organ diversity. Despite its simplicity and minimal
computational overhead, our method maintains accuracy with restricted communication frequency
while existing methods significantly decrease in accuracy or fail to converge. We believe that this
work offers a new possibility for highly practical large-scale FL with limited communication costs
and diverse data.

Acknowledgements. We would like to express our gratitude to the medical imaging team at Preferred
Networks for the valuable discussions and helpful feedbacks, and to the cluster team for enabling the
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