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ABSTRACT

Recent advancements in gait recognition have significantly enhanced performance
by treating silhouettes as either an unordered set or an ordered sequence. How-
ever, both set-based and sequence-based approaches exhibit notable limitations.
Specifically, set-based methods tend to overlook short-range temporal context for
individual frames, while sequence-based methods struggle to capture long-range
temporal dependencies effectively. To address these challenges, we draw inspira-
tion from human identification and propose a new perspective that conceptualizes
human gait as a composition of individualized actions. Each action is represented
by a series of frames, randomly selected from a continuous segment of the se-
quence, which we term a snippet. Fundamentally, the collection of snippets for
a given sequence enables the incorporation of multi-scale temporal context, fa-
cilitating more comprehensive gait feature learning. Moreover, we introduce a
non-trivial solution for snippet-based gait recognition, focusing on Snippet Sam-
pling and Snippet Modeling as key components. Extensive experiments on four
widely-used gait datasets validate the effectiveness of our proposed approach and,
more importantly, highlight the potential of gait snippets. For instance, our method
achieves the rank-1 accuracy of 77.5% on Gait3D and 81.7% on GREW using a
2D convolution-based backbone.

1 INTRODUCTION

Gait recognition aims to identify individuals based on their unique walking patterns. This technique
can be performed at a distance without the explicit cooperation of the subjects, making it highly
applicable in areas such as social security |Rida et al.| (2019)), human-computer interaction [Zhu et al.
(2022), and health monitoring Bortone et al.| (2021]), efc. Silhouettes are commonly used as input, as
they effectively eliminate clothing texture while remaining robust under low-resolution conditions.

In the gait recognition literature, early studies typically aggregated silhouettes into a template, such
as Gait Energy Image Han & Bhanu| (2005), which, although simple, inevitably sacrifices fine-
grained details. Recent research predominantly treats silhouettes either as an unordered set or an
ordered sequence, leveraging deep neural networks to extract gait features. Specifically, set-based
methods |Chao et al.| (2019); [Hou et al.| (2020} [2021; |2022b) assume that the appearance of a sil-
houette inherently contains its positional information, rendering the order information unnecessary.
The pioneering GaitSet Chao et al.| (2019), a representative of this category, significantly improves
performance over template-based methods and demonstrates resilience to frame permutations. In
contrast, sequence-based methods|Lin et al.| (2020;|2021); Huang et al.|(2021bga) treat a sequence of
silhouettes as a video, utilizing 3D [Tran et al.|(2015) or P3D |Qiu et al.| (2017) convolutions, along
with their variants |Lin et al.|(2020), to extract both spatial and temporal features.

Despite the significant performance gains of recent advancements, both set-based and sequence-
based paradigms exhibit notable limitations. First, in set-based methods, feature extraction in the
backbone, typically performed using 2D convolution, processes each silhouette independently, lack-
ing awareness of short-range temporal context between adjacent frames. Second, in sequence-based
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Figure 1: Illustration of gait snippets in comparison to unordered sets and ordered sequences. Best
viewed in color.

methods, feature extraction primarily relies on 3D/P3D convolutions or their variants, with a limited
number of continuous frames (e.g., 30) sampled from each sequence during training. This approach
significantly hinders the ability to model long-range temporal dependencies, especially in long se-
quences (e.g., those with more than 200 frames in real-world benchmarks Zheng et al.|(2022)). This
raises a critical question: Is there an alternative paradigm for extracting gait features from silhou-
ettes that addresses these limitations?

In this work, we propose a new perspective on gait recognition inspired by human cognition, ar-
guing that identification often depends on key actions in a few adjacent frames—not a full cycle.
This aligns with the biological finding that “recognition is possible for stimuli lasting a fraction of a
Sfull walking cycle” |Giese & Poggio| (2003). Motivated by this insight, we propose to conceptualize
human gait as a composition of individualized actions. Specifically, as illustrated in Figure[T] we rep-
resent an action using several frames randomly selected from a continuous segment of the sequence,
which we term a snippet. This approach allows an individual’s walking pattern to be described
as the union of snippets derived from the same sequence. Gait snippets offer two notable concep-
tual advantages: (1) Compared to unordered sets, snippets facilitate the incorporation of short-range
temporal context for frame-level feature extraction. (2) Compared to ordered sequences, snippets
enable the capture of long-range temporal dependencies within a long sequence.

Building on these insights, we focus on snippet-based gait recognition and address two critical
challenges: (a) How to sample snippets during the input phase for training and inference? (b)
How to effectively model snippet-based inputs for gait recognition? In this work, we propose an
efficient yet effective solution, marking the first attempt to systematically tackle these challenges.

Regarding Snippet Sampling, given a sequence of silhouettes, we treat it as non-continuous due to
imperfect upstream processing and various occlusions |[Fan et al.| (2023b)), but we assume that the
relative order of frames is preserved. This order is used to divide the sequence into non-overlapping
segments of equal length. For training, we randomly select a subset of frames from each segment
to form a snippet representing an individualized action, with the number of snippets generally fewer
than the number of segments. For inference, all frames from each segment are used to construct a
snippet, and all snippets from a sequence are utilized to match the probe and gallery. In terms of Snip-
pet Modeling, we design an efficient framework to address three core challenges: (1) Intra-Snippet
Modeling: We introduce a Snippet Block where a non-parametric pooling operation captures local
temporal context within a snippet, merging it with frame-level features through a residual connec-
tion. (2) Cross-Snippet Modeling: We treat all snippets within a sequence as an unordered set,
employing Set Pooling to derive sequence-level representations based on intra-snippet modeling.
(3) Snippet-Level Supervision: Representing gait through snippets enables hierarchical represen-
tations at both the sequence and snippet levels. In addition to sequence-level loss, we introduce
snippet-level supervision to further enhance training.

In summary, the main contributions are threefold:

(1) We introduce a new perspective on gait recognition, organizing a sequence of silhouettes as a
union of snippets to characterize the walking pattern.

(2) We pioneer snippet-based gait recognition, designing a comprehensive solution that includes
Snippet Sampling and Snippet Modeling.

(3) Extensive experimental results demonstrate the potential of gait snippets, with our approach
achieving the rank-1 accuracy of 77.5% on Gait3D |[Zheng et al| (2022) and 81.7% on
GREW |[Zhu et al.| (2021)) using a 2D convolutional backbone.
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2 RELATED WORK

Gait Recognition We address the fundamental challenges in the modeling paradigm for gait
recognition by using silhouettes as input. In early studies[Han & Bhanu| (2005)); Wang et al.| (2010),
silhouettes were usually aggregated into templates. More recent advancements have treated silhou-
ettes as either unordered sets |Chao et al.| (2019); |[Hou et al.| (2020; {20215 [2022b)); [Fan et al. (2023c)
or ordered sequences [Lin et al.| (2020); [Fan et al|(2020); |Lin et al.| (2021); Huang et al.[|(2021bga);
Ma et al.| (2023)); [Dou et al.| (2023)); Wang et al.| (2023aic) for feature learning. Below, we briefly
review representative methods within these two subcategories.

(1) Unordered Sets: GaitSet|Chao et al. (2019) is the first to introduce set-based feature learning for
silhouettes, using horizontal splits of feature maps to learn multiple part representations. GLN Hou
et al.| (2020) merges multi-stage features for set-based modeling, focusing on reducing feature di-
mensionality to enhance recognition performance. GaitBase|Fan et al.|(2023c) and its deeper variant,
DeepGaitV2-2D |Fan et al.| (2023a)), present a robust ResNet-like 2D backbone, achieving competi-
tive performance across various benchmarks.

(2) Ordered Sequences: GaitGL [Lin et al.|(2021])) utilizes 3D convolution to blend local and global
feature extraction in its architecture. GaitGCI |Dou et al. (2023) introduces a counterfactual in-
tervention to mitigate the effects of confounding factors while using dynamic convolution for
factual/counterfactual attention generation. DyGait |Wang et al.| (2023c) captures dynamic fea-
tures by leveraging differences between frame-level and template features. DeepGaitV2-3D and
DeepGaitV2-P3D [Fan et al.| (2023a) are variants of GaitBase |[Fan et al.| (2023c) that utilize ordered
input with 3D/P3D convolutions. VPNet Ma et al.|(2024) employs a ResNet50-like backbone for
gait recognition and introduces visual prompts to handle complex variations in gait patterns.

Snippet Paradigm We noticed that the term “snippet” has been previously used in the action
recognition literature [Wang et al.| (2016); Duan et al.| (2023)), and we compare those approaches
with our own. For instance, TSN Wang et al.| (2016) constructs RGB snippets in a similar fashion
but mandates that snippets be sampled from all segments and lacks intra-snippet modeling, which
we consider crucial for snippet-based gait recognition. SkeleTR [Duan et al.| (2023) processes short
skeleton sequences as snippets but requires continuity within each snippet. In our study, we extend
the concept of snippets to gait recognition, where neither the frames within a snippet nor the snippets
in a sequence need to be strictly continuous. Moreover, our approach diverges significantly from
these methods by emphasizing snippet modeling, which will be elaborated in the next Section

3 OUR APPROACH

In this work, we investigate a fundamental paradigm for gait recognition that addresses the limita-
tions of unordered sets and ordered sequences. Specifically, we propose a new perspective that treats
human gait as a composition of individualized actions, with each action represented by a snippet,
which consists of a few frames randomly selected from a continuous segment of the sequence. This
snippet paradigm allows the model to leverage both short-range and long-range temporal contexts
during training, enhancing its capability for comprehensive gait feature learning.

In the following sections, we will first describe our strategy for organizing a sequence of silhouettes
into snippets. Subsequently, we will present an effective approach to conduct snippet-based gait
recognition.

3.1 SNIPPET SAMPLING

The underlying principles of sampling strategies for gait recognition can generally be summarized
from two perspectives: (1) During training, a limited number of frames are typically sampled to
represent a sequence due to the trade-off between computational cost and sampling diversity. (2)
During inference, all frames of a sequence are utilized to ensure accurate recognition. Below, we
briefly highlight the distinctions in sampling strategies when treating silhouettes as either unordered
sets or ordered sequences. Specifically, in the training phase, set-based methods randomly select
discontinuous frames from the entire sequence|Chao et al.|(2019), whereas sequence-based methods
select continuous or nearly continuous frames for temporal modeling [Fan et al.| (2020).
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Figure 2: Snippet sampling for training. {G1, - - - , G } represent the total segments of a sequence,
where L is the segment length and L, for the first segment is a random integer to enhance sampling
diversity. {G'l, SRR G/M} represent the sampled segments. M and /N denote the number of sampled
snippets per sequence and the number of sampled frames per snippet, respectively.

Our snippet-based sampling strategy influences both the training and inference phases, as described
in detail in this section. It is noteworthy that we assume the relative order of frames in a sequence
is reliable, even though the frames themselves may not necessarily be continuous, a condition that
aligns well with practical applications |Sepas-Moghaddam & Etemad|(2021)); [Shen et al.| (2022).

3.1.1 TRAINING PHASE

During the training phase, we first partition a sequence into non-overlapping segments of equal
duration, preserving the relative order, and then design the snippet sampling strategy based on three
guiding principles: (a) Given the constraints of computational resources and the need for sampling
diversity, the total number of frames selected from a sequence should be limited, denoted as S.
(b) The fundamental unit within the sampled S frames is a snippet, where each snippet consists of
N frames randomly selected from a segment to capture an individualized action. (c) To increase
sampling diversity and enhance model robustness, the segment partition for a sequence should vary
across iterations.

Our approach is illustrated in Figure [2f (1) A sequence of silhouettes is divided into K segments,
denoted as {G1,Ga, -+ ,Gk}, each of length L, where L typically approximates the number of
frames in a gait cycle (e.g., L = 16 in most cases Ma et al. (2024)). If the sequence length is
not perfectly divisible by L, the remaining frames are treated as an additional segment. (2) When
processing a sequence in a mini-batch, we randomly sample M segments from it and then randomly
select NV frames from each chosen segment to construct the snippets. Sampling with replacement
is allowed when the number of segments or the number of frames in a segment is limited. We
ensure that S = M x N, assigning each snippet a segment label k (k € {1,--- , K'}) for subsequent
modeling. (3) To enhance sampling diversity within a sequence, the initial frames are treated as a
special segment, with its length L, randomly chosen from {1,2,--- , L}.

3.1.2 INFERENCE PHASE

The snippet sampling strategy for the inference phase is also developed based on three guiding
principles: (a) All frames in a sequence should be utilized to ensure precise matching between the
probe and gallery. (b) To maintain consistency with the training phase, sequences are divided into
segments, with all frames in each segment forming a snippet. (c) The segment partition should
remain fixed to produce stable predictions.

Accordingly, our inference strategy involves the following three aspects: (1) A sequence of silhou-
ettes is divided into K segments of equal length L, as previously defined in the training phase (e.g.,
L =16). (2) Each snippet comprises all frames within a segment, and prediction features are ex-
tracted using all snippets from the sequence, which is equivalent to setting M = K and N = L
during inference. (3) The length of the first segment L is fixed to L, thereby eliminating the need
for multiple forward passes and reducing inference overhead.

3.2 SNIPPET MODELING

Snippets provide a new paradigm for modeling silhouettes in gait recognition. However, fully ex-
ploiting the potential advantages of snippets remains an open question. In this work, we propose
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Figure 3: Illustration of GaitSnippet. (1) Residual Snippet Block integrating Intra-Snippet Model-
ing as shown in Figure @]b) serves as the basic component to construct the backbone. (2) At the end
of the backbone, we first apply Intra-Snippet Gathering (the Gathering step for Intra-Snippet Mod-
eling) to derive snippet-level representations and then perform Cross-Snippet Modeling to obtain
sequence-level representations. (3) In addition to sequence-level supervision, an auxiliary branch is
introduced to enforce supervision on snippet-level features only for training.

an efficient yet effective solution to address this issue. Specifically, we identify three primary chal-
lenges in snippet modeling for gait recognition: Intra-Snippet Modeling, Cross-Snippet Model-
ing, and Snippet-Level Supervision. In the following sections, we systematically address these
challenges through our proposed approach, which we term GaitSnippet. The pipeline is illustrated

in Figure 3]
3.2.1 INTRA-SNIPPET MODELING

In GaitSnippet, we address intra-snippet modeling with the objective of capturing local temporal
context to enhance frame-level feature extraction through a three-step process:

(1) Gathering: Considering that the frames within a snippet are not necessarily continuous, we
treat a snippet as an unordered set. Based on this formulation, we utilize the efficient Set Pooling
technique to aggregate the features of a snippet, which is implemented through a non-parametric
Temporal Max Pooling operation (Chao et al.[(2019).

(2) Smoothing: To mitigate the negative effects of noise within a snippet and reduce the semantic
gap between different levels of features, we apply a smoothing layer, typically implemented
using a 1 x 1 convolution, following the Gathering step.

(3) Residual: To make frame-level feature extraction aware of local temporal context in a snippet,
we incorporate a residual connection to merge the snippet-level output after smoothing with the
frame-level features of the corresponding snippets.

As illustrated in Figure f[a), these steps are formulated into a basic block called Snippet Block.

Furthermore, recent advancements in gait recognition have demonstrated that a plain 2D residual
backbone [Fan et al.[(2023cfja)) can achieve highly competitive performance in both constrained and
unconstrained environments, while maintaining significantly lower computational costs compared
to their 3D counterparts. The spatial convolution, specifically applied along the height and width
dimensions, plays a critical role in extracting frame-level features. To facilitate effective collabo-
ration between intra-snippet modeling and spatial convolution, we draw inspiration from P3D |Qiu
et al.| (2017) and integrate a Snippet Block between two spatial convolutional layers within a stan-
dard residual block. The rationale behind this approach is to enable each frame to become aware of
local temporal context within a snippet during successive stages of frame-level feature extraction.
Ultimately, the architecture illustrated in Figure [4[b), called Residual Snippet Block, serves as the
basic component to construct the backbone for GaitSnippet as shown in Figure [3]

3.2.2 CROSS-SNIPPET MODELING

For cross-snippet modeling, our objective is to acquire a robust global representation for a gait
sequence based on the snippet-level features. As a pioneering attempt and to ensure a fair compar-
ison with the base models [Fan et al.| (2023cza), we conduct cross-snippet modeling on the output
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Figure 4: (a) Snippet Block. (b) Residual Snippet Block. M and N denote the number of snippets
and the number of frames per snippet in a sequence, while C, H, and W represent the dimensions
of channel, height, and width.

of the backbone which corresponds to the frame-level features. Specifically, we first apply Intra-
Snippet Gathering (the Gathering step for intra-snippet modeling) on the frame-level features to
derive snippet-level representations. Subsequently, we treat all snippets from a sequence as an un-
ordered set and employ another Set Pooling (Chao et al.|(2019)) to perform cross-snippet modeling.
In practice, this is implemented using Temporal Max Pooling on all snippet-level representations
within a sequence.

It is crucial to highlight that (1) GaitSnippet involves two hierarchical unordered sets: frames within
a snippet and all snippets within a sequence. However, the snippet-based modeling approach is not
permutation-invariant to the frame order, distinguishing it from methods that exclusively rely on
unordered sets |(Chao et al.| (2019); [Fan et al.| (2023c). Unlike unordered sets, the use of snippets
enables the exploitation of local temporal context in frame-level feature extraction, which is vital
for learning discriminative and complementary features for individual silhouettes. (2) At the end of
the backbone, Temporal Max Pooling employed for both intra-snippet and cross-snippet modeling
makes the sequence-level features equivalent to the maximum of all frames. Yet the intermediate
output from intra-snippet modeling is essential for enabling Snippet-Level Supervision. Further
discussion about the role of Temporal Max Pooling is provided in Section[A.4.2]of the appendix.

3.2.3 SNIPPET-LEVEL SUPERVISION

The snippet-based modeling of gait conveniently facilitates the extraction of two hierarchical repre-
sentations for a sequence, namely, sequence-level and snippet-level representations. For supervision
on the sequence-level representations, we adopt the typical approach outlined in|Fan et al.| (2023c).
Initially, Horizontal Pyramid Mapping [Fu et al.| (2019)); |Chao et al|(2019)) (including linear layers
for separate parts) is utilized to horizontally split the features for obtaining fine-grained part repre-
sentations efficiently. Then, for each part, we employ triplet loss L, and cross-entropy loss L.,
assisted by BNNeck|Luo et al.|(2019), for training. Formally, these losses are defined as follows:

anchor pos neg

—N AN
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Here, pos, neg, and sub stand for positive, negative, and subjects, respectively. (U, V') denote the
number of subjects and the number of sequences per subject in a mini-batch. Ny, serves as a normal-
ization coefficient accounting for the non-zero triplet terms. J is a margin threshold and [ |4 works
as the ReLU function. F denotes the sequence-level representations and D measures the Euclidean
distance. (Fy v, Fu,q) and (Fy ., Fp,c) represent positive and negative pairs, respectively. N, is
the number of subjects in the training set, while p and ¢ denote the predicted probabilities and the
one-hot ground-truth identity labels.

With the snippet-based approach to gait, we can conveniently obtain snippet-level representations
in addition to sequence-level representations, motivating us to introduce the following fine-grained
supervision. Specifically, we add a separate branch to process snippet-level representations prior to
cross-snippet modeling, using Horizontal Pyramid Mapping to obtain part-level features and incor-
porating BNNeck analogous to the sequence-level branch. Formally, for each part, the snippet-level
triplet loss £7, and cross-entropy loss L7, are computed as follows:

anchor pos neg
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where snp denotes snippets, M is the number of sampled snippets per sequence for training, and F*
refers to snippet-level representations. The remaining symbols are similar to those in Eq.[I] with the
superscript = indicating snippet-level computations.

We then define the integrated objective for one of the part representations as:
Eall = Ltp + ﬁce +a X (L;p + ﬁze) (3)

where « is a hyperparameter to balance the two levels of supervision signals. The final loss is
computed by averaging the above losses across all parts, which is used to train the entire network.

It is important to emphasize that the additional branch for snippet-level supervision is employed only
during the training phase, thereby leaving the inference complexity unaffected. For evaluation, we
utilize the features extracted before BNNeck in the sequence-level branch to compute similarities
between the probe and gallery sequences.

4 EXPERIMENTS

4.1 SETTINGS

We conduct experiments on four widely-used gait datasets: Gait3D |[Zheng et al.| (2022) and
GREW [Zhu et al.| (2021), CCPG |L1 et al.| (2023) and CCGR-MINI [Zou et al.| (2024)). In the train-
ing phase, we adopt L = 16 to approximate the number of frames depicting a gait cycle Ma et al.
(2024) for segment partition, and L, is a random integer sampled from {1,2,--- ,16}. To sample a
sequence, we randomly select M =4 snippets and N =8 frames per snippet, i.e., we sample S =32
frames for each sequence. For evaluation, we set L; = L =16 for segment partition. All frames in
a segment are treated as a snippet, and all snippets for a sequence are used to extract gait features.
Detailed dataset statistics and implementation details are provided in the appendix.

4.2 PERFORMANCE COMPARISON

Gait3D & GREW The emergence of Gait3D and GREW has advanced gait recognition research
from controlled laboratory settings to real-world environments. In Table[I] we present a performance
comparison on in-the-wild benchmarks. The methods are categorized into three groups based on
how they treat the input: Ordered Sequences, Unordered Sets, and the brand-new Snippets.
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Method Cate- Back- Gait3D GREW

gory bone R1 mAP R1 RS

GaitPart|Fan et al.[(2020}) 2D 282 21.6 | 47.6  60.7
GaitGL |Lin et al.|(2021) 3D 29.7 223 | 473 63.6
GaitGCI|Dou et al.|(2023) 3D 503 395 | 685 808
DyGait/Wang et al.|(2023c) 3D 66.3 564 | 714 832
HSTL |Wang et al.|(2023a) 3D 61.3 555 | 627 76.6
SwinGait-3D |Fan et al.|(2023a) Seq Swin3D | 750 67.2 793 889
DeepGaitV2-3D|Fan et al.|(2023a) 3D 72.8 63.9 79.4 88.9
DeepGaitV2-P3D|Fan et al.|(2023a) P3D 744 658 | 7717 879
VPNet Ma et al.|(2024) 3D 75.4 / 80.0 894
CLTD |Xiong et al.|(2024) 3D 69.7 / 78.0 878
GaitMoE Huang et al.[(2024) 3D 73.7 662 | 79.6  89.1
GaitSet|Chao et al.|(2019) 2D 36.7 300 | 484 63.6
GaitBase|Fan et al.[(2023c) Set 2D 64.6 553 60.1 755
SwinGait-2D |Fan et al.|(2023a) Swin2D 69.4 61.6 70.8 83.7
DeepGaitV2-2D|Fan et al.|(2023a) 2D 682 604 | 686 82.0
GaitSnippet (Ours) Snippet 2D 715 694 | 81.7 90.9

Table 1: Performance comparison on Gait3D|Zheng et al.|(2022)) and GREW Zhu et al|(2021). The
results are reported in rank-1 (R1, %), rank-5 (RS, %), and mean Average Precision (mAP, %). The
best results in each category are marked in red, blue, and bold, respectively.

From the results in Table[I] the following observations can be made: (1) Sequence-based methods
achieve state-of-the-art performance and mostly employ 3D or P3D convolution in the backbone,
which generally entails higher computational costs compared to 2D convolution-based backbones.
(2) DeepGaitV2-2D |Fan et al|(2023a)), despite their simplicity, achieve highly competitive per-
formance on these benchmarks. (3) GaitSnippet outperforms advanced methods on both bench-
marks using a 2D convolutional backbone. Specifically, the performance gains compared to 2D
convolution-based baselines (e.g., R1: +9.3%, mAP: +9.0% over DeepGaitV2-2D on Gait3D with
the same network depth) effectively demonstrate the effectiveness of snippet-based gait recognition.

CCPG & CCGR-MINI With the increasing interest in gait recognition, several new datasets have
recently been introduced |Li et al.|(2023));|Shen et al.|(2023);|L1 et al.[(2024)); [Zou et al.|(2024), aiming
to address more diverse and challenging scenarios. To further demonstrate the generalizability of
GaitSnippet, we additionally evaluate it on two representative emerging datasets: CCPG |Li et al.
(2023)}'| and CCGR-MINI |Zou et al.[(2024). As shown in Table 2] GaitSnippet achieves state-of-
the-art performance on both datasets, further validating the effectiveness and adaptability of snippet-
based modeling for gait recognition.

4.3 ABLATION STUDY

4.3.1 ABLATION STUDY ON SNIPPET SAMPLING

In Table[3] we present an ablation study on Snippet Sampling from two perspectives.

First, we evaluate the overall effect of the sampling strategy using our base model (i.e., DeepGaitV2-
2D) in the first part, including set-based, sequence-based, and snippet-based strategies. Interestingly,
from the first three rows, we observe that Snippet Sampling during training also benefits recognition
performance with DeepGaitV2-2D, which is based on unordered sets. A likely reason for this is that
our sampling strategy enhances the robustness of DeepGaitV2-2D by narrowing the distribution gap
between discontinuous frames during training and continuous sequences during testing.

Second, we analyze the effect of hyper-parameters for Snippet Sampling in the second part. Specif-
ically, during the training phase, there are four hyper-parameters for sampling snippets from a se-
quence: L—the segment length, S—the total number of frames sampled from a sequence, M—the
number of snippets sampled from a sequence, and N-the number of frames sampled per snippet
from a segment. Note that S = M x N is always maintained. During our experiments with Snippet
Sampling, we fix S'= 32, considering computational cost and ensuring fair comparisons. In Table[3]

"We re-ran the experiments on CCPG using the same preprocessing and protocols as the baselines [Fan et al.
(2023alic) to ensure fair comparisons. The results differ slightly from those in the initial submission, but they
remain state of the art.
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CCPG CCGR-MINI

Method Category | Backbone CL UP DN BG AVG R1 mAP

GaitPart|Fan et al.|(2020) Se 2D 792 853 865 88.0 848 8.0 10.1
DeepGaitV2-P3D |Fan et al.[(2023a) 4 P3D 9.5 963 914 967 93.7 | 394  36.0
GaitSet/Chao et al.[(2019] Set 2D 775 850 829 875 832 | 138 154
GaitBase|Fan et al.|(2023c) 2D 885 927 934 932 920 | 27.0 249
GaitSnippet (Ours) Snippet 2D 915 966 946 977 951 | 424 395

Table 2: Performance comparison on CCPG |Li et al.| (2023) and CCGR-MINI Zou et al.| (2024).
The results on CCPG are reported in rank-1 (R1, %) accuracy, while those on CCGR-MINI are
reported in rank-1 accuracy (R1, %) and mean Average Precision (mAP, %). CL, UP, DN, BG, and
AVG refer to changing full outfits, changing top clothes, changing pants, walking with bags, and
mean accuracy, respectively. The best performance in each category is highlighted in red, blue, and
bold, respectively.

we conduct ablation studies on the other sampling parameters. (1) We set L =16 to approximate the
number of frames in a gait cycle [Ma et al.|(2024)), and we also tried L € {8, 32} in the fourth/fifth
rows. (2) We set N =8, which is half of a gait cycle, and also tried N € {4, 16} in the sixth/seventh
rows. (3) Given that S =M x N, M varies with different values of IV in each case (i.e., M =4 for
N=8, M=8for N=4,and M =2 for N =16).

4.3.2 ABLATION STUDY ON SNIPPET BLOCK

In this section, we analyze the three steps involved in intra-snippet modeling, namely Gathering,
Smoothing, and Residual. The results are presented in the first part of Table ]

To clarify the results: (1) If none of the techniques in Table [4]is applied, GaitSnippet is equivalent
to DeepGaitV2-2D with Snippet Sampling. (2) In the first row, when Gathering is removed for
each stage of intra-snippet modeling, snippet-level supervision becomes inapplicable. (3) In the
second row, the experiment highlights the importance of the smoothing layer, which acts as a bridge
between frame-level features and those aggregated from a snippet. When Smoothing is removed, the
model for inference does not introduce any additional parameters, as the snippet-level branch is only
employed during training. In this case, the local context modeling within each Snippet Block still
works but is more susceptible to the noise within a snippet and the semantic gap between different
levels of features. (4) For the third row, it is worth emphasizing that Residual in Table |4] refers to
the integration of local contextual information from a snippet with frame-level features as depicted
in Figure[d{a), rather than the standard residual connection shown in Figure f(b). When Residual
is removed, only the contextual information from the snippet is used for subsequent layers, which
inevitably results in the loss of fine-grained details from each silhouette after the first Snippet Block.

4.3.3 ABLATION STUDY ON SNIPPET-LEVEL SUPERVISION

Benefitting from the snippet paradigm, we can easily incorporate snippet-level losses to provide
fine-grained supervision for gait feature learning. In the second part of Table[d] we perform ablation
studies to analyze the effect of snippet-level supervision. We can observe that: (1) When o« = 0, as
shown in the fifth row, only the sequence-level loss is used to train the entire model, and our approach
still achieves highly competitive performance. (2) Snippet-level supervision improves recognition
performance with varied loss weights.

Additionally, in the last row of Table[d] we experiment with sharing weights between the sequence-
level and snippet-level branches shown in Figure[3] consisting of Horizontal Pyramid Mapping and
BNNeck. The corresponding results show a moderate performance degradation, likely due to the
semantic gap between the sequence-level and snippet-level features, making weight sharing between
the branches inappropriate.

5 CONCLUSION

In this work, we explore a new paradigm for gait recognition that integrates the strengths of un-
ordered sets and ordered sequences. Motivated by the observation that human identification does not
necessarily rely on a complete gait cycle (Giese & Poggio| (2003), we conceptualize human gait as a
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Model Sampling | M N | Rl | mAP
Strategy

Set - - - 68.2 60.4

DeepGaitV2-2D Seq - - - 66.0 58.7

Snippet 16 4 8 69.5 61.5

8 4 8 76.4 69.0

32 4 8 74.7 67.5

GaitSnippet Snippet 16 8 4 74.3 66.7

16 2 16 75.2 66.9

16 4 8 715 69.4

Table 3: Ablation study on snippet sampling. L, M, and N denote the segment length for sequence
partition, the number of snippets sampled per sequence, and the number of frames sampled per
snippet, respectively. The results are reported on Gait3D.

Snippet Block Snippet Supervision
Gathering | Smoothing | Residual @ SwW Rl mAP
X Vv V4 - - 733 | 65.7
vV X Vv 0.75 X 74.8 | 66.6
Vv Vv X 0.75 X 725 | 63.7
v/ v/ v/ 0.75 X 775 | 694
V4 V4 V4 0.00 X 75.8 | 68.5
v Vv v 0.50 X 764 | 694
Vv Vv Vv 1.00 X 76.6 | 69.4
Vv v v 0.75 v 75.5 | 68.8

Table 4: Ablation study on snippet modeling on Gait3D. Gathering, Smoothing, and Residual are
the three steps in a Snippet Block. « represents the loss weight for snippet-level losses, and SW
denotes sharing weights between the sequence-level and snippet-level branches in Figure [3] The
experiments are conducted on Gait3D.

combination of individualized actions, with each action represented by a few frames that are adjacent
but not necessarily continuous. In essence, gait snippets enable the model to simultaneously exploit
both short-range and long-range temporal contexts, which is beneficial for learning identity-related
features from entire walking sequences. Furthermore, we provide a non-trivial solution based on gait
snippets, addressing the challenges of Snippet Sampling and Snippet Modeling. Extensive experi-
ments across various benchmarks demonstrate that our approach consistently improves performance
and achieves state-of-the-art results in the wild, effectively verifying the potential of snippet-based
gait recognition.
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