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ABSTRACT

Recent advancements in gait recognition have significantly enhanced performance
by treating silhouettes as either an unordered set or an ordered sequence. How-
ever, both set-based and sequence-based approaches exhibit notable limitations.
Specifically, set-based methods tend to overlook short-range temporal context for
individual frames, while sequence-based methods struggle to capture long-range
temporal dependencies effectively. To address these challenges, we draw inspira-
tion from human identification and propose a new perspective that conceptualizes
human gait as a composition of individualized actions. Each action is represented
by a series of frames, randomly selected from a continuous segment of the se-
quence, which we term a snippet. Fundamentally, the collection of snippets for
a given sequence enables the incorporation of multi-scale temporal context, fa-
cilitating more comprehensive gait feature learning. Moreover, we introduce a
non-trivial solution for snippet-based gait recognition, focusing on Snippet Sam-
pling and Snippet Modeling as key components. Extensive experiments on four
widely-used gait datasets validate the effectiveness of our proposed approach and,
more importantly, highlight the potential of gait snippets. For instance, our method
achieves the rank-1 accuracy of 77.5% on Gait3D and 81.7% on GREW using a
2D convolution-based backbone.

1 INTRODUCTION

Gait recognition aims to identify individuals based on their unique walking patterns. This technique
can be performed at a distance without the explicit cooperation of the subjects, making it highly
applicable in areas such as social security Rida et al. (2019), human-computer interaction Zhu et al.
(2022), and health monitoring Bortone et al. (2021), etc. Silhouettes are commonly used as input, as
they effectively eliminate clothing texture while remaining robust under low-resolution conditions.

In the gait recognition literature, early studies typically aggregated silhouettes into a template, such
as Gait Energy Image Han & Bhanu (2005), which, although simple, inevitably sacrifices fine-
grained details. Recent research predominantly treats silhouettes either as an unordered set or an
ordered sequence, leveraging deep neural networks to extract gait features. Specifically, set-based
methods Chao et al. (2019); Hou et al. (2020; 2021; 2022b) assume that the appearance of a sil-
houette inherently contains its positional information, rendering the order information unnecessary.
The pioneering GaitSet Chao et al. (2019), a representative of this category, significantly improves
performance over template-based methods and demonstrates resilience to frame permutations. In
contrast, sequence-based methods Lin et al. (2020; 2021); Huang et al. (2021b;a) treat a sequence of
silhouettes as a video, utilizing 3D Tran et al. (2015) or P3D Qiu et al. (2017) convolutions, along
with their variants Lin et al. (2020), to extract both spatial and temporal features.

Despite the significant performance gains of recent advancements, both set-based and sequence-
based paradigms exhibit notable limitations. First, in set-based methods, feature extraction in the
backbone, typically performed using 2D convolution, processes each silhouette independently, lack-
ing awareness of short-range temporal context between adjacent frames. Second, in sequence-based
methods, feature extraction primarily relies on 3D/P3D convolutions or their variants, with a limited
number of continuous frames (e.g., 30) sampled from each sequence during training. This approach
significantly hinders the ability to model long-range temporal dependencies, especially in long se-
quences (e.g., those with more than 200 frames in real-world benchmarks Zheng et al. (2022)). This
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Figure 1: Illustration of gait snippets in comparison to unordered sets and ordered sequences.

raises a critical question: Is there an alternative paradigm for extracting gait features from silhou-
ettes that addresses these limitations?

In this work, we propose a new perspective on gait recognition inspired by human cognition, ar-
guing that identification often depends on key actions in a few adjacent frames—not a full cycle.
This aligns with the biological finding that “recognition is possible for stimuli lasting a fraction of a
full walking cycle” Giese & Poggio (2003). Motivated by this insight, we propose to conceptualize
human gait as a composition of individualized actions. Specifically, as illustrated in Figure 1, we rep-
resent an action using several frames randomly selected from a continuous segment of the sequence,
which we term a snippet. This approach allows an individual’s walking pattern to be described
as the union of snippets derived from the same sequence. Gait snippets offer two notable concep-
tual advantages: (1) Compared to unordered sets, snippets facilitate the incorporation of short-range
temporal context for frame-level feature extraction. (2) Compared to ordered sequences, snippets
enable the capture of long-range temporal dependencies within a long sequence.

Building on these insights, we focus on snippet-based gait recognition and address two critical
challenges: (a) How to sample snippets during the input phase for training and inference? (b)
How to effectively model snippet-based inputs for gait recognition? In this work, we propose an
efficient yet effective solution, marking the first attempt to systematically tackle these challenges.

Regarding Snippet Sampling, given a sequence of silhouettes, we treat it as non-continuous due to
imperfect upstream processing and various occlusions Fan et al. (2023b), but we assume that the
relative order of frames is preserved. This order is used to divide the sequence into non-overlapping
segments of equal length. For training, we randomly select a subset of frames from each segment
to form a snippet representing an individualized action, with the number of snippets generally fewer
than the number of segments. For inference, all frames from each segment are used to construct a
snippet, and all snippets from a sequence are utilized to match the probe and gallery. In terms of Snip-
pet Modeling, we design an efficient framework to address three core challenges: (1) Intra-Snippet
Modeling: We introduce a Snippet Block where a non-parametric pooling operation captures local
temporal context within a snippet, merging it with frame-level features through a residual connec-
tion. (2) Cross-Snippet Modeling: We treat all snippets within a sequence as an unordered set,
employing Set Pooling to derive sequence-level representations based on intra-snippet modeling.
(3) Snippet-Level Supervision: Representing gait through snippets enables hierarchical represen-
tations at both the sequence and snippet levels. In addition to sequence-level loss, we introduce
snippet-level supervision to further enhance training.

In summary, the main contributions are threefold:

(1) We introduce a new perspective on gait recognition, organizing a sequence of silhouettes as a
union of snippets to characterize the walking pattern.

(2) We pioneer snippet-based gait recognition, designing a comprehensive solution that includes
Snippet Sampling and Snippet Modeling.

(3) Extensive experimental results demonstrate the potential of gait snippets, with our approach
achieving the rank-1 accuracy of 77.5% on Gait3D Zheng et al. (2022) and 81.7% on
GREW Zhu et al. (2021) using a 2D convolutional backbone.

2 RELATED WORK

Gait Recognition We address the fundamental challenges in the modeling paradigm for gait
recognition by using silhouettes as input. In early studies Han & Bhanu (2005); Wang et al. (2010),
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silhouettes were usually aggregated into templates. More recent advancements have treated silhou-
ettes as either unordered sets Chao et al. (2019); Hou et al. (2020; 2021; 2022b); Fan et al. (2023c)
or ordered sequences Lin et al. (2020); Fan et al. (2020); Lin et al. (2021); Huang et al. (2021b;a);
Ma et al. (2023); Dou et al. (2023); Wang et al. (2023a;c) for feature learning. Below, we briefly
review representative methods within these two subcategories.

(1) Unordered Sets: GaitSet Chao et al. (2019) is the first to introduce set-based feature learning for
silhouettes, using horizontal splits of feature maps to learn multiple part representations. GLN Hou
et al. (2020) merges multi-stage features for set-based modeling, focusing on reducing feature di-
mensionality to enhance recognition performance. GaitBase Fan et al. (2023c) and its deeper variant,
DeepGaitV2-2D Fan et al. (2023a), present a robust ResNet-like 2D backbone, achieving competi-
tive performance across various benchmarks.

(2) Ordered Sequences: GaitGL Lin et al. (2021) utilizes 3D convolution to blend local and global
feature extraction in its architecture. GaitGCI Dou et al. (2023) introduces a counterfactual in-
tervention to mitigate the effects of confounding factors while using dynamic convolution for
factual/counterfactual attention generation. DyGait Wang et al. (2023c) captures dynamic fea-
tures by leveraging differences between frame-level and template features. DeepGaitV2-3D and
DeepGaitV2-P3D Fan et al. (2023a) are variants of GaitBase Fan et al. (2023c) that utilize ordered
input with 3D/P3D convolutions. VPNet Ma et al. (2024) employs a ResNet50-like backbone for
gait recognition and introduces visual prompts to handle complex variations in gait patterns.

Snippet Paradigm We noticed that the term “snippet” has been previously used in the action
recognition literature Wang et al. (2016); Duan et al. (2023), and we compare those approaches
with our own. For instance, TSN Wang et al. (2016) constructs RGB snippets in a similar fashion
but mandates that snippets be sampled from all segments and lacks intra-snippet modeling, which
we consider crucial for snippet-based gait recognition. SkeleTR Duan et al. (2023) processes short
skeleton sequences as snippets but requires continuity within each snippet. In our study, we extend
the concept of snippets to gait recognition, where neither the frames within a snippet nor the snippets
in a sequence need to be strictly continuous. Moreover, our approach diverges significantly from
these methods by emphasizing snippet modeling, which will be elaborated in the next Section 3.2.

3 OUR APPROACH

In this work, we investigate a fundamental paradigm for gait recognition that addresses the limita-
tions of unordered sets and ordered sequences. Specifically, we propose a new perspective that treats
human gait as a composition of individualized actions, with each action represented by a snippet,
which consists of a few frames randomly selected from a continuous segment of the sequence. This
snippet paradigm allows the model to leverage both short-range and long-range temporal contexts
during training, enhancing its capability for comprehensive gait feature learning.

In the following sections, we will first describe our strategy for organizing a sequence of silhouettes
into snippets. Subsequently, we will present an effective approach to conduct snippet-based gait
recognition.

3.1 SNIPPET SAMPLING

The underlying principles of sampling strategies for gait recognition can generally be summarized
from two perspectives: (1) During training, a limited number of frames are typically sampled to
represent a sequence due to the trade-off between computational cost and sampling diversity. (2)
During inference, all frames of a sequence are utilized to ensure accurate recognition. Below, we
briefly highlight the distinctions in sampling strategies when treating silhouettes as either unordered
sets or ordered sequences. Specifically, in the training phase, set-based methods randomly select
discontinuous frames from the entire sequence Chao et al. (2019), whereas sequence-based methods
select continuous or nearly continuous frames for temporal modeling Fan et al. (2020).

Our snippet-based sampling strategy influences both the training and inference phases, as described
in detail in this section. It is noteworthy that we assume the relative order of frames in a sequence
is reliable, even though the frames themselves may not necessarily be continuous, a condition that
aligns well with practical applications Sepas-Moghaddam & Etemad (2021); Shen et al. (2022).
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③ Sample
N frames

② Sample
M segments
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① Slice into
K Segments

L
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ᇱ

SnippetM
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Figure 2: Snippet sampling for training. {G1, · · · , GK} represent the total segments of a sequence,
where L is the segment length and L1 for the first segment is a random integer to enhance sampling
diversity. {G′

1, · · · , G
′

M} represent the sampled segments. M and N denote the number of sampled
snippets per sequence and the number of sampled frames per snippet, respectively.

3.1.1 TRAINING PHASE

During the training phase, we first partition a sequence into non-overlapping segments of equal
duration, preserving the relative order, and then design the snippet sampling strategy based on three
guiding principles: (a) Given the constraints of computational resources and the need for sampling
diversity, the total number of frames selected from a sequence should be limited, denoted as S.
(b) The fundamental unit within the sampled S frames is a snippet, where each snippet consists of
N frames randomly selected from a segment to capture an individualized action. (c) To increase
sampling diversity and enhance model robustness, the segment partition for a sequence should vary
across iterations.

Our approach is illustrated in Figure 2: (1) A sequence of silhouettes is divided into K segments,
denoted as {G1, G2, · · · , GK}, each of length L, where L typically approximates the number of
frames in a gait cycle (e.g., L = 16 in most cases Ma et al. (2024)). If the sequence length is
not perfectly divisible by L, the remaining frames are treated as an additional segment. (2) When
processing a sequence in a mini-batch, we randomly sample M segments from it and then randomly
select N frames from each chosen segment to construct the snippets. Sampling with replacement
is allowed when the number of segments or the number of frames in a segment is limited. We
ensure that S=M×N , assigning each snippet a segment label k (k∈{1, · · · ,K}) for subsequent
modeling. (3) To enhance sampling diversity within a sequence, the initial frames are treated as a
special segment, with its length L1 randomly chosen from {1, 2, · · · , L}.

3.1.2 INFERENCE PHASE

The snippet sampling strategy for the inference phase is also developed based on three guiding
principles: (a) All frames in a sequence should be utilized to ensure precise matching between the
probe and gallery. (b) To maintain consistency with the training phase, sequences are divided into
segments, with all frames in each segment forming a snippet. (c) The segment partition should
remain fixed to produce stable predictions.

Accordingly, our inference strategy involves the following three aspects: (1) A sequence of silhou-
ettes is divided into K segments of equal length L, as previously defined in the training phase (e.g.,
L = 16). (2) Each snippet comprises all frames within a segment, and prediction features are ex-
tracted using all snippets from the sequence, which is equivalent to setting M = K and N = L
during inference. (3) The length of the first segment L1 is fixed to L, thereby eliminating the need
for multiple forward passes and reducing inference overhead.

3.2 SNIPPET MODELING

Snippets provide a new paradigm for modeling silhouettes in gait recognition. However, fully ex-
ploiting the potential advantages of snippets remains an open question. In this work, we propose
an efficient yet effective solution to address this issue. Specifically, we identify three primary chal-
lenges in snippet modeling for gait recognition: Intra-Snippet Modeling, Cross-Snippet Model-
ing, and Snippet-Level Supervision. In the following sections, we systematically address these
challenges through our proposed approach, which we term GaitSnippet. The pipeline is illustrated
in Figure 3.
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Figure 3: Illustration of GaitSnippet. (1) Residual Snippet Block integrating Intra-Snippet Mod-
eling as shown in Figure 4(b) serves as the basic component to construct the backbone. (2) At the
end of the backbone, we first apply Intra-Snippet Gathering (the Gathering step for Intra-Snippet
Modeling) to derive snippet-level representations and then perform Cross-Snippet Modeling to
obtain sequence-level representations. (3) In addition to sequence-level supervision, an auxiliary
branch is introduced to enforce supervision on snippet-level features only for training.

3.2.1 INTRA-SNIPPET MODELING

In GaitSnippet, we address intra-snippet modeling with the objective of capturing local temporal
context to enhance frame-level feature extraction through a three-step process:

(1) Gathering: Considering that the frames within a snippet are not necessarily continuous, we
treat a snippet as an unordered set. Based on this formulation, we utilize the efficient Set Pooling
technique to aggregate the features of a snippet, which is implemented through a non-parametric
Temporal Max Pooling operation Chao et al. (2019).

(2) Smoothing: To mitigate the negative effects of noise within a snippet and reduce the semantic
gap between different levels of features, we apply a smoothing layer, typically implemented
using a 1× 1 convolution, following the Gathering step.

(3) Residual: To make frame-level feature extraction aware of local temporal context in a snippet,
we incorporate a residual connection to merge the snippet-level output after smoothing with the
frame-level features of the corresponding snippets.

As illustrated in Figure 4(a), these steps are formulated into a basic block called Snippet Block.

(a) (b)

Spatial Conv

⊕

XM × N× C× H× W

Snippet Block

Spatial Conv

M× N× C× H× W

M× N× C× H× W

M× N× C× H× W

M× N× C× H× W

Gathering

M × 1× C× H× W

Smoothing

M × 1× C× H× W

Repeat
M × N× C× H× W

⊕

Figure 4: (a) Snippet Block. (b) Residual Snippet Block.
M and N denote the number of snippets and the number
of frames per snippet in a sequence, while C, H , and W
represent the dimensions of channel, height, and width.

Furthermore, recent advancements
in gait recognition have demon-
strated that a plain 2D residual back-
bone Fan et al. (2023c;a) can achieve
highly competitive performance in
both constrained and unconstrained
environments, while maintaining sig-
nificantly lower computational costs
compared to their 3D counterparts.
The spatial convolution, specifically
applied along the height and width
dimensions, plays a critical role in
extracting frame-level features. To
facilitate effective collaboration be-
tween intra-snippet modeling and
spatial convolution, we draw inspi-
ration from P3D Qiu et al. (2017)
and integrate a Snippet Block be-
tween two spatial convolutional lay-
ers within a standard residual block.
The rationale behind this approach
is to enable each frame to be-
come aware of local temporal con-
text within a snippet during succes-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

sive stages of frame-level feature extraction. Ultimately, the architecture illustrated in Figure 4(b),
called Residual Snippet Block, serves as the basic component to construct the backbone for Gait-
Snippet as shown in Figure 3.

3.2.2 CROSS-SNIPPET MODELING

For cross-snippet modeling, our objective is to acquire a robust global representation for a gait
sequence based on the snippet-level features. As a pioneering attempt and to ensure a fair compar-
ison with the base models Fan et al. (2023c;a), we conduct cross-snippet modeling on the output
of the backbone which corresponds to the frame-level features. Specifically, we first apply Intra-
Snippet Gathering (the Gathering step for intra-snippet modeling) on the frame-level features to
derive snippet-level representations. Subsequently, we treat all snippets from a sequence as an un-
ordered set and employ another Set Pooling Chao et al. (2019) to perform cross-snippet modeling.
In practice, this is implemented using Temporal Max Pooling on all snippet-level representations
within a sequence.

It is crucial to highlight that (1) GaitSnippet involves two hierarchical unordered sets: frames within
a snippet and all snippets within a sequence. However, the snippet-based modeling approach is not
permutation-invariant to the frame order, distinguishing it from methods that exclusively rely on
unordered sets Chao et al. (2019); Fan et al. (2023c). Unlike unordered sets, the use of snippets
enables the exploitation of local temporal context in frame-level feature extraction, which is vital
for learning discriminative and complementary features for individual silhouettes. (2) At the end of
the backbone, Temporal Max Pooling employed for both intra-snippet and cross-snippet modeling
makes the sequence-level features equivalent to the maximum of all frames. Yet the intermediate
output from intra-snippet modeling is essential for enabling Snippet-Level Supervision. Further
discussion about the role of Temporal Max Pooling is provided in Section A.4.2 of the appendix.

3.2.3 SNIPPET-LEVEL SUPERVISION

The snippet-based modeling of gait conveniently facilitates the extraction of two hierarchical repre-
sentations for a sequence, namely, sequence-level and snippet-level representations. For supervision
on the sequence-level representations, we adopt the typical approach outlined in Fan et al. (2023c).
Initially, Horizontal Pyramid Mapping Fu et al. (2019); Chao et al. (2019) (including linear layers
for separate parts) is utilized to horizontally split the features for obtaining fine-grained part repre-
sentations efficiently. Then, for each part, we employ triplet loss Ltp and cross-entropy loss Lce,
assisted by BNNeck Luo et al. (2019), for training. Formally, these losses are defined as follows:

Ltp=
1

Ntp

anchor︷ ︸︸ ︷
U∑

u=1

V∑
v=1

pos︷︸︸︷
V∑

a=1

neg︷ ︸︸ ︷
U∑

b=1
b ̸=u

V∑
c=1

[δ+D(Fu,v,Fu,a)−D(Fu,v,Fb,c)]+

Lce=− 1

U × V

batch︷ ︸︸ ︷
U∑

u=1

V∑
v=1

sub︷︸︸︷
Nc∑
c=1

qu,v,c log pu,v,c

(1)

Here, pos, neg, and sub stand for positive, negative, and subjects, respectively. (U, V ) denote the
number of subjects and the number of sequences per subject in a mini-batch. Ntp serves as a normal-
ization coefficient accounting for the non-zero triplet terms. δ is a margin threshold and [ ]+ works
as the ReLU function. F denotes the sequence-level representations and D measures the Euclidean
distance. (Fu,v,Fu,a) and (Fu,v,Fb,c) represent positive and negative pairs, respectively. Nc is
the number of subjects in the training set, while p and q denote the predicted probabilities and the
one-hot ground-truth identity labels.

With the snippet-based approach to gait, we can conveniently obtain snippet-level representations
in addition to sequence-level representations, motivating us to introduce the following fine-grained
supervision. Specifically, we add a separate branch to process snippet-level representations prior to
cross-snippet modeling, using Horizontal Pyramid Mapping to obtain part-level features and incor-
porating BNNeck analogous to the sequence-level branch. Formally, for each part, the snippet-level
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triplet loss L⋆
tp and cross-entropy loss L⋆

ce are computed as follows:

L⋆
tp=

1

N⋆
tp

anchor︷ ︸︸ ︷
batch︷ ︸︸ ︷
U∑

u=1

V∑
v=1

snp︷︸︸︷
M∑

m=1

pos︷ ︸︸ ︷
V∑

a=1

snp︷︸︸︷
M∑
i=1

neg︷ ︸︸ ︷
U∑

b=1
b ̸=u

V∑
c=1

snp︷︸︸︷
M∑
j=1

[
δ+D(F⋆

u,v,m,F⋆
u,a,i)−D(F⋆

u,v,m,F⋆
b,c,j)

]
+

L⋆
ce=− 1

U×V ×M

batch︷ ︸︸ ︷
U∑

u=1

V∑
v=1

snp︷︸︸︷
M∑

m=1

sub︷︸︸︷
Nc∑
c=1

q⋆u,v,m,c log p
⋆
u,v,m,c

(2)

where snp denotes snippets, M is the number of sampled snippets per sequence for training, and F⋆

refers to snippet-level representations. The remaining symbols are similar to those in Eq. 1, with the
superscript ⋆ indicating snippet-level computations.

We then define the integrated objective for one of the part representations as:
Lall = Ltp + Lce + α× (L⋆

tp + L⋆
ce) (3)

where α is a hyperparameter to balance the two levels of supervision signals. The final loss is
computed by averaging the above losses across all parts, which is used to train the entire network.

It is important to emphasize that the additional branch for snippet-level supervision is employed only
during the training phase, thereby leaving the inference complexity unaffected. For evaluation, we
utilize the features extracted before BNNeck in the sequence-level branch to compute similarities
between the probe and gallery sequences.

4 EXPERIMENTS

4.1 SETTINGS

We conduct experiments on four widely-used gait datasets: Gait3D Zheng et al. (2022) and
GREW Zhu et al. (2021), CCPG Li et al. (2023) and CCGR-MINI Zou et al. (2024). In the train-
ing phase, we adopt L= 16 to approximate the number of frames depicting a gait cycle Ma et al.
(2024) for segment partition, and L1 is a random integer sampled from {1, 2, · · · , 16}. To sample a
sequence, we randomly select M=4 snippets and N=8 frames per snippet, i.e., we sample S=32
frames for each sequence. For evaluation, we set L1 =L=16 for segment partition. All frames in
a segment are treated as a snippet, and all snippets for a sequence are used to extract gait features.
Detailed dataset statistics and implementation details are provided in the appendix.

4.2 PERFORMANCE COMPARISON

Method Cate-
gory

Back-
bone

Gait3D GREW
R1 mAP R1 R5

GaitPart Fan et al. (2020)

Seq

2D 28.2 21.6 47.6 60.7
GaitGL Lin et al. (2021) 3D 29.7 22.3 47.3 63.6

GaitGCI Dou et al. (2023) 3D 50.3 39.5 68.5 80.8
DyGait Wang et al. (2023c) 3D 66.3 56.4 71.4 83.2
HSTL Wang et al. (2023a) 3D 61.3 55.5 62.7 76.6

SwinGait-3D Fan et al. (2023a) Swin3D 75.0 67.2 79.3 88.9
DeepGaitV2-3D Fan et al. (2023a) 3D 72.8 63.9 79.4 88.9

DeepGaitV2-P3D Fan et al. (2023a) P3D 74.4 65.8 77.7 87.9
VPNet Ma et al. (2024) 3D 75.4 / 80.0 89.4

CLTD Xiong et al. (2024) 3D 69.7 / 78.0 87.8
GaitMoE Huang et al. (2024) 3D 73.7 66.2 79.6 89.1

GaitSet Chao et al. (2019)

Set

2D 36.7 30.0 48.4 63.6
GaitBase Fan et al. (2023c) 2D 64.6 55.3 60.1 75.5

SwinGait-2D Fan et al. (2023a) Swin2D 69.4 61.6 70.8 83.7
DeepGaitV2-2D Fan et al. (2023a) 2D 68.2 60.4 68.6 82.0

GaitSnippet (Ours) Snippet 2D 77.5 69.4 81.7 90.9

Table 1: Performance comparison on Gait3D Zheng et al.
(2022) and GREW Zhu et al. (2021). The results are re-
ported in rank-1 (R1, %), rank-5 (R5, %), and mean Aver-
age Precision (mAP, %). The best results in each category
are marked in red, blue, and bold, respectively.

Gait3D & GREW The emergence
of Gait3D and GREW has advanced
gait recognition research from con-
trolled laboratory settings to real-
world environments. In Table 1, we
present a performance comparison on
in-the-wild benchmarks. The meth-
ods are categorized into three groups
based on how they treat the input:
Ordered Sequences, Unordered Sets,
and the brand-new Snippets.

From the results in Table 1, the
following observations can be made:
(1) Sequence-based methods achieve
state-of-the-art performance and
mostly employ 3D or P3D con-
volution in the backbone, which
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Method Category Backbone CCPG CCGR-MINI
CL UP DN BG AVG R1 mAP

GaitPart Fan et al. (2020) Seq 2D 79.2 85.3 86.5 88.0 84.8 8.0 10.1
DeepGaitV2-P3D Fan et al. (2023a) P3D 90.5 96.3 91.4 96.7 93.7 39.4 36.0

GaitSet Chao et al. (2019) Set 2D 77.5 85.0 82.9 87.5 83.2 13.8 15.4
GaitBase Fan et al. (2023c) 2D 88.5 92.7 93.4 93.2 92.0 27.0 24.9

GaitSnippet (Ours) Snippet 2D 94.0 96.8 96.9 98.0 96.4 42.4 39.5

Table 2: Performance comparison on CCPG Li et al. (2023) and CCGR-MINI Zou et al. (2024).
The results on CCPG are reported in rank-1 (R1, %) accuracy, while those on CCGR-MINI are
reported in rank-1 accuracy (R1, %) and mean Average Precision (mAP, %). CL, UP, DN, BG, and
AVG refer to changing full outfits, changing top clothes, changing pants, walking with bags, and
mean accuracy, respectively. The best performance in each category is highlighted in red, blue, and
bold, respectively.

generally entails higher computational costs compared to 2D convolution-based backbones. (2)
DeepGaitV2-2D Fan et al. (2023a), despite their simplicity, achieve highly competitive performance
on these benchmarks. (3) GaitSnippet outperforms advanced methods on both benchmarks using a
2D convolutional backbone. Specifically, the performance gains compared to 2D convolution-based
baselines (e.g., R1: +9.3%, mAP: +9.0% over DeepGaitV2-2D on Gait3D with the same network
depth) effectively demonstrate the effectiveness of snippet-based gait recognition.

CCPG & CCGR-MINI With the increasing interest in gait recognition, several new datasets have
recently been introduced Li et al. (2023); Shen et al. (2023); Li et al. (2024); Zou et al. (2024), aiming
to address more diverse and challenging scenarios. To further demonstrate the generalizability of
GaitSnippet, we additionally evaluate it on two representative emerging datasets: CCPG Li et al.
(2023) and CCGR-MINI Zou et al. (2024). As shown in Table 2, GaitSnippet achieves state-of-the-
art performance on both datasets, further validating the effectiveness and adaptability of snippet-
based modeling for gait recognition.

4.3 ABLATION STUDY

4.3.1 ABLATION STUDY ON SNIPPET SAMPLING

Model Sampling
Strategy L M N R1 mAP

DeepGaitV2-2D
Set - - - 68.2 60.4
Seq - - - 66.0 58.7

Snippet 16 4 8 69.5 61.5

GaitSnippet Snippet

8 4 8 76.4 69.0
32 4 8 74.7 67.5
16 8 4 74.3 66.7
16 2 16 75.2 66.9
16 4 8 77.5 69.4

Table 3: Ablation study on snippet sampling. L, M , and N
denote the segment length for sequence partition, the num-
ber of snippets sampled per sequence, and the number of
frames sampled per snippet, respectively. The results are
reported on Gait3D.

In Table 3, we present an ablation
study on Snippet Sampling from two
perspectives.

First, we evaluate the overall effect
of the sampling strategy using our
base model (i.e., DeepGaitV2-2D)
in the first part, including set-based,
sequence-based, and snippet-based
strategies. Interestingly, from the first
three rows, we observe that Snippet
Sampling during training also ben-
efits recognition performance with
DeepGaitV2-2D, which is based on
unordered sets. A likely reason for

this is that our sampling strategy enhances the robustness of DeepGaitV2-2D by narrowing the dis-
tribution gap between discontinuous frames during training and continuous sequences during testing.

Second, we analyze the effect of hyper-parameters for Snippet Sampling in the second part. Specif-
ically, during the training phase, there are four hyper-parameters for sampling snippets from a se-
quence: L–the segment length, S–the total number of frames sampled from a sequence, M–the
number of snippets sampled from a sequence, and N–the number of frames sampled per snippet
from a segment. Note that S=M×N is always maintained. During our experiments with Snippet
Sampling, we fix S=32, considering computational cost and ensuring fair comparisons. In Table 3,
we conduct ablation studies on the other sampling parameters. (1) We set L=16 to approximate the
number of frames in a gait cycle Ma et al. (2024), and we also tried L∈ {8, 32} in the fourth/fifth
rows. (2) We set N=8, which is half of a gait cycle, and also tried N ∈{4, 16} in the sixth/seventh
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rows. (3) Given that S=M×N , M varies with different values of N in each case (i.e., M =4 for
N=8, M=8 for N=4, and M=2 for N=16).

4.3.2 ABLATION STUDY ON SNIPPET BLOCK

Snippet Block Snippet Supervision R1 mAPGathering Smoothing Residual α SW
×

√ √
- - 73.3 65.7√

×
√

0.75 × 74.8 66.6√ √
× 0.75 × 72.5 63.7√ √ √

0.75 × 77.5 69.4√ √ √
0.00 × 75.8 68.5√ √ √
0.50 × 76.4 69.4√ √ √
1.00 × 76.6 69.4√ √ √
0.75

√
75.5 68.8

Table 4: Ablation study on snippet modeling on Gait3D.
Gathering, Smoothing, and Residual are the three steps in
a Snippet Block. α represents the loss weight for snippet-
level losses, and SW denotes sharing weights between the
sequence-level and snippet-level branches in Figure 3.

In this section, we analyze the three
steps involved in intra-snippet mod-
eling, namely Gathering, Smoothing,
and Residual. The results are pre-
sented in the first part of Table 4.

To clarify the results: (1) If none of
the techniques in Table 4 is applied,
GaitSnippet reduces to DeepGaitV2-
2D with Snippet Sampling. (2) In the
first row, when Gathering is removed
for each stage of intra-snippet mod-
eling, snippet-level supervision be-
comes inapplicable. (3) In the sec-
ond row, the experiment highlights

the importance of the smoothing layer, which acts as a bridge between frame-level features and
those aggregated from a snippet. When Smoothing is removed, the model for inference does not
introduce any additional parameters, as the snippet-level branch is only employed during training.
In this case, the local context modeling within each Snippet Block still works but is more susceptible
to the noise within a snippet and the semantic gap between different levels of features. (4) For the
third row, it is worth emphasizing that Residual in Table 4 refers to the integration of local contex-
tual information from a snippet with frame-level features as depicted in Figure 4(a), rather than the
standard residual connection shown in Figure 4(b). When Residual is removed, only the contextual
information from the snippet is used for subsequent layers, which inevitably results in the loss of
fine-grained details from each silhouette after the first Snippet Block.

4.3.3 ABLATION STUDY ON SNIPPET-LEVEL SUPERVISION

Benefitting from the snippet paradigm, we can easily incorporate snippet-level losses to provide
fine-grained supervision for gait feature learning. In the second part of Table 4, we perform ablation
studies to analyze the effect of snippet-level supervision. We can observe that: (1) When α = 0, as
shown in the fifth row, only the sequence-level loss is used to train the entire model, and our approach
still achieves highly competitive performance. (2) Snippet-level supervision improves recognition
performance with varied loss weights.

Additionally, in the last row of Table 4, we experiment with sharing weights between the sequence-
level and snippet-level branches shown in Figure 3, consisting of Horizontal Pyramid Mapping and
BNNeck. The corresponding results show a moderate performance degradation, likely due to the
semantic gap between the sequence-level and snippet-level features, making weight sharing between
the branches inappropriate.

5 CONCLUSION

In this work, we explore a new paradigm for gait recognition that integrates the strengths of un-
ordered sets and ordered sequences. Motivated by the observation that human identification does not
necessarily rely on a complete gait cycle Giese & Poggio (2003), we conceptualize human gait as a
combination of individualized actions, with each action represented by a few frames that are adjacent
but not necessarily continuous. In essence, gait snippets enable the model to simultaneously exploit
both short-range and long-range temporal contexts, which is beneficial for learning identity-related
features from entire walking sequences. Furthermore, we provide a non-trivial solution based on gait
snippets, addressing the challenges of Snippet Sampling and Snippet Modeling. Extensive experi-
ments across various benchmarks demonstrate that our approach consistently improves performance
and achieves state-of-the-art results in the wild, effectively verifying the potential of snippet-based
gait recognition.
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ETHICAL STATEMENT

The datasets used in our experiments are widely adopted in the literature, with informed consent
obtained from all subjects during data collection. Additionally, no personal identifiers are accessible.
We strongly advocate that research in this field should be conducted with strict privacy protection
measures in place.

REPRODUCIBILITY STATEMENT

All experiments are conducted on publicly available gait recognition datasets (Gait3D, GREW,
CCPG and CCGR-MINI) following the official splits and evaluation protocols. Detailed hyper-
parameters and training procedures are provided in the paper. The complete code and pre-trained
models will be released upon acceptance of this manuscript.
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A APPENDIX

A.1 DATASET DETAILS

The statistics for the widely-used datasets employed in our research, namely Gait3D Zheng et al.
(2022), GREW Zhu et al. (2021), CCPG Li et al. (2023) and CCGR-MINI Zou et al. (2024), are
presented in Table 5.

Gait3D is a large-scale benchmark dataset captured in a supermarket environment, with two two-
hour video segments randomly selected from each of seven days. During evaluation, one sequence
per subject is designated as the probe, while the remaining sequences are utilized as the gallery.

GREW is collected from multiple cameras in an uncontrolled environment over the course of a
single day, resulting in diverse view variations. Following the official evaluation protocol, each
subject has four sequences, with two sequences used as the probe and the remaining two as the
gallery.

CCPG is a cloth-changing benchmark dataset for person re-identification and gait recognition. It
includes sequences of subjects captured in indoor and outdoor scenes, with the subjects having
different clothing variations. Following the standard protocol, the subjects are divided into two
parts: the first half is used for training, and the remaining data is used for testing.

CCGR-MINI is a subset of the Cross-Covariate Gait Recognition (CCGR) dataset, specifically
designed to address covariate diversity at both population and individual levels. CCGR-MINI retains
the diversity while enabling efficient evaluation and training under limited computational budgets.

A.2 IMPLEMENTATION DETAILS

Residual Snippet Block in Figure 4(b) is used as the basic component to construct the backbone
for GaitSnippet, where the smoothing layer is implemented using a 1×1 convolution. The number
of blocks (blocks), convolutional channels (channels), and strides (strides) for each stage across
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Dataset Train Set Test Set Walking
Condition #Cam#ID #Seq #ID #Seq

Gait3D 3000 18940 1000 6369 Diverse 39
GREW 20000 102887 6000 24000 Diverse 882
CCPG 100 8187 100 8379 NM/BG/CL 10

CCGR-MINI 570 27507 400 20377 Diverse 33

Table 5: Dataset statistics. For each dataset, we present the number of subjects (#ID) and sequences
(#Seq), walking conditions (NM/BG/CL for normal walking, walking with bags, and walking in
different clothes), and the number of cameras (#Cam).

Dataset blocks channels strides
Gait3D [1, 4, 4, 1] [64, 128, 256, 512] [1, 2, 2, 1]
GREW [3, 4, 6, 3] [64, 128, 256, 512] [1, 2, 2, 1]
CCPG [1, 1, 1, 1] [64, 128, 256, 512] [1, 2, 2, 1]

CCGR-MINI [1, 4, 4, 1] [64, 128, 256, 512] [1, 2, 2, 1]

Table 6: The backbone settings for each dataset. Blocks, channels, and strides refer to the num-
ber of blocks, convolutional channels, and strides for all stages, respectively. We configure the
snippet-based backbone for each dataset with reference to the sequence-based counterparts Fan et al.
(2023a); Ma et al. (2024).

the four datasets are detailed in Table 6, referring to the network configurations used in Fan et al.
(2023a); Ma et al. (2024), e.g., blocks = [1, 4, 4, 1] for DeepGaitV2 on Gait3D Fan et al. (2023a) and
blocks = [3, 4, 6, 3] for VPNet on GREW Ma et al. (2024). The settings for CCPG and CCGR-MINI
follow those used for Gait3D, with one modification: the backbone architecture used for CCPG
employs a reduced number of blocks, specifically [1, 1, 1, 1].

Besides, the margin threshold δ for triplet loss is set to 0.2 and the loss weight α for snippet-level
supervision is set to 0.75. During inference, Snippet-level Branch is disabled, and we use Sequence-
level Branch output for similarity computation. The feature dimensions match DeepGaitV2 (e.g.,
16×256 on Gait3D/GREW). For other settings, such as data preprocessing and training strategies,
we refer to those described in Fan et al. (2023a); Ma et al. (2024). To ensure reproducibility, the
PyTorch-based source code and pretrained models will be made publicly available.

A.3 MORE EXPERIMENTAL RESULTS

A.3.1 ANALYSES ON COMPUTATION COST

In Figure 5, we compare the computational cost of GaitSnippet with several representative methods
in terms of parameter count and FLOPs. The statistics are obtained on the Gait3D dataset, follow-
ing the methodology of Wang et al. (2023b); Huang et al. (2024). We focus our comparison on
DeepGaitV2-2D/3D/P3D, all of which adopt the same network depth on Gait3D.

(1) Notably, GaitSnippet has significantly fewer parameters and FLOPs than DeepGaitV2-3D, and
even fewer than DeepGaitV2-P3D.

(2) Compared to DeepGaitV2-2D, GaitSnippet exhibits a slightly higher computational cost, pri-
marily due to the introduction of smoothing layers and temporal aggregation in intra-snippet
modeling. However, this modest increase is justified by a substantial performance improve-
ment over DeepGaitV2-2D, with a +9.3% gain in Rank-1 accuracy and a +9.0% gain in
mAP on Gait3D. It is noteworthy that GaitSnippet also outperforms both DeepGaitV2-3D and
DeepGaitV2-P3D.

(3) To rule out the impact of model size, we further evaluate a lightweight version of GaitSnippet
with reduced network depth (blocks = [1, 3, 3, 1]), resulting in only 22.8M parameters and 68.6G
FLOPs lower than those of DeepGaitV2-2D. Despite this compact design, the model achieves
competetive performance (Rank-1: 77.0%, mAP: 69.3%), still outperforming DeepGaitV2-2D
and even DeepGaitV2-3D/P3D. This confirms that the performance gains stem from the pro-
posed snippet-based modeling rather than increased model complexity.
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DeepGaitV2-P3D (74.4 %)
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DyGait (66.3 %)
133.05 M, 238.99 G

GaitSnippet (77.5 %)
24.31 M, 82.63 G

Set-based Method
Sequence-based Method
Snippet-based Method

Figure 5: Computation cost in terms of parameters and FLOPs. The statistics are obtained on
Gait3D, following the methodology of Wang et al. (2023b); Huang et al. (2024).

A.3.2 ABLATION STUDY ON EVALUATION

During the evaluation phase, we fix L1 = 16, which requires only a single forward pass and does
not add additional inference burden. In this section, we explore different values of L1 (e.g., L1=8)
and evaluate the ensemble of multiple segment partitions (e.g., L1 ∈ {8, 16}) only for evaluation.
The results in Table 7 indicate that: (1) The segment partition has a minor effect on evaluation, as
the model is trained with various partition strategies. (2) Averaging the features from multiple seg-
ment partitions can slightly improve recognition performance in terms of mAP, but this significantly
increases the inference cost. Further discussion is provided in Section A.4.2.

Additionally, in the last row of Table 7, we experiment with using snippet-level representations for
evaluation. Snippet-level features from a sequence are averaged to match the probe and gallery. Un-
surprisingly, the results are inferior to those using sequence-level representations which effectively
capture long-range temporal dependencies.

A.3.3 ABLATION STUDY ON GENERALIZATION

In this section, we aim to verify the generalization capability of our approach by applying the snippet
paradigm to some set-based methods. It is important to note that sequence-based methods rely on
continuous input, whereas both the snippets within a sequence and the frames within each snippet are
discontinuous, making it infeasible to transform sequence-based methods into their snippet-based
counterparts. Thus, we adopt the set-based methods GaitSet Chao et al. (2019) and GaitBase Fan
et al. (2023c) for our analysis. Specifically: (1) We redesign the input phase using the snippet-
based sampling strategy. (2) We insert a Snippet Block, as illustrated in Figure 4, between two
convolutional layers in each stage of the backbone. Finally, we observe significant performance
gains, as shown in Table 8.

A.3.4 ABLATION STUDY ON FRAME SAMPLING

In Section 3.1, we provide a brief review of the sampling strategies used in recent set-based and
sequence-based studies Chao et al. (2019); Fan et al. (2020); Lin et al. (2021). Typically, a limited
number of frames (i.e., S=30 in most cases) are sampled during training for each sequence. In our

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Feature Type L1 (for evaluation) R1 mAP
Sequence-level Features 16 77.5 69.4
Sequence-level Features 8 77.3 69.5
Sequence-level Features {8, 16} 77.2 69.8
Snippet-level Features 16 65.2 54.8

Table 7: Ablation study on evaluation. Sequence-level Features and Snippet-level Features denote
the features before BNNeck generated by the sequence-level and snippet-level branches, respec-
tively. L1 denotes the length of the first segment for evaluation. For the ensemble of different
L1 values, we average the features from multiple sequence partitions. The results are reported on
Gait3D in terms of rank-1 accuracy (R1, %) and mean Average Precision (mAP, %).

Model R1 mAP
GaitSet Chao et al. (2019) 36.7 30.0

GaitSet Chao et al. (2019) + Snippet 48.2 39.1
GaitBase Fan et al. (2020) 64.6 55.3

GaitBase Fan et al. (2020) + Snippet 69.7 60.2

Table 8: Ablation study on generalization. Experiments are conducted on Gait3D, with results
reported in terms of rank-1 accuracy (R1, %) and mean Average Precision (mAP, %).

experiments, however, we sample S = 32 frames per sequence, corresponding to M = 4 snippets
per sequence and N=8 frames per snippet. For a rigorous ablation study, we also apply a sampling
strategy of S=32 frames per sequence to several representative baseline methods Fan et al. (2023a),
which has a slight impact on performance, as indicated in Table 9.

A.4 MORE DISCUSSION

A.4.1 DISCUSSION ON SNIPPET SAMPLING

In this section, we provide additional clarifications on Snippet Sampling from three perspectives:

(1) Frame Order for Segment Partition. As clarified in Section 3.1, the snippet-based sampling relies
on frame order to partition the sequence into segments. As a result, the snippet-based modeling is
not permutation invariant to frame order, making it inappropriate to categorize it into the set-based
category Zaheer et al. (2017). In our formulation, frames in a snippet are randomly sampled from
a continuous segment of the sequence to describe an action, which forms the basis for crucial local
context modeling.

(2) Random Selection within Each Segment. Randomly selecting frames within each segment for
snippet sampling reduces dependency on continuous input and enhances robustness to missing sil-
houettes. An interesting future direction could involve sampling snippets by identifying important
silhouettes Hou et al. (2022b); Wang et al. (2024); however, measuring frame importance is chal-
lenging, especially during the input phase.

(3) Data Augmentation. The augmentation strategy of varying the first segment to increase snippet
diversity is naturally suited for snippet-based gait recognition. Similarly, state-of-the-art set-based
and sequence-based methods adopt their own specific augmentation strategies, such as randomly
sampling frames from a continuous segment in sequence-based methods Fan et al. (2020); Wang
et al. (2023a). As evidenced in previous works, such augmentation does not hinder fair comparisons
under the same evaluation protocol Hou et al. (2022a).

(4) Sampling Hyper-parameters. During training, sampling with replacement is adopted when the
sequence length is insufficient. If the number of segments K is smaller than M , some segments may
be sampled multiple times. Similarly, if a segment contains fewer than N frames, repeated frames
may appear within a snippet. During inference, all segments are used (M = K), and each snippet
includes all frames in the segment (N = L).

It is worth noting that, the segment length L is an important hyper-parameter for both training and
inference, and K is derived from the sequence length and L. We set L=16 as an empirical approxi-
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Model Sampling
Strategy S R1 mAP

DeepGaitV2-2D Fan et al. (2023a) Set min:10,max:50 68.2 60.4
DeepGaitV2-3D Fan et al. (2023a) Seq 30 72.8 63.9

DeepGaitV2-P3D Fan et al. (2023a) Seq 30 74.4 65.8
DeepGaitV2-2D Fan et al. (2023a) Set 32 68.6 60.1
DeepGaitV2-3D Fan et al. (2023a) Seq 32 72.1 64.6

DeepGaitV2-P3D Fan et al. (2023a) Seq 32 74.2 65.8

Table 9: Ablation study on frame sampling. Set and Seq represent the set-based Chao et al.
(2019) and sequence-based Fan et al. (2020) sampling strategies, respectively. S denotes the num-
ber of frames sampled per sequence during the training phase. In the original implementation of
DeepGaitV2-2D Fan et al. (2023a), S is randomly selected from {10, 11, · · · , 49, 50}. We conduct
the experiments on Gait3D and report the results in terms of rank-1 accuracy (R1, %) and mean
Average Precision (mAP, %).

mation of the frames per gait cycle, based on previous study Ma et al. (2024), dataset analysis Zheng
et al. (2022); Zhu et al. (2021), and the ablation studies in Table 3. Although gait cycles vary across
individuals and walking speeds, L = 16 serves as a reasonable average Ma et al. (2024). Further
experiments on CCGR-MINI shown in Table 2, which covers diverse walking speeds, reaffirm the
model’s effectiveness under varying temporal conditions. We will explore dynamic estimation of
gait cycles for improved adaptability.

A.4.2 DISCUSSION ON SNIPPET MODELING

In this section, we further compare GaitSnippet with the set-based and sequence-based modeling.
Additionally, we analyze the role of Temporal Max Pooling in our framework and discuss potential
directions for improvement.

(1) Comparisons to Set-based Modeling. The potential to exploit short-term context is a fundamental
advantage of the snippet-based paradigm compared to set-based methods. Our framework focuses
on leveraging short-term context modeling to enhance frame-level feature extraction and differs
from set-based methods Chao et al. (2019); Fan et al. (2023c) in four distinct ways: i) Sampling:
Snippet sampling relies on frame order for sequence partition and constructs two hierarchical sets
for sampled frames. The outputs are not permutation-invariant to frame order as clarified above. ii)
Modeling: We propose an efficient and effective Snippet Block for local context modeling, integrated
between two spatial convolutions in a residual block to assist in frame-level feature extraction. iii)
Supervision: Fine-grained snippet-level supervision is introduced to further enhance the training
process. iv) Performance: With a backbone composed of 2D convolutions, GaitSnippet significantly
outperforms the best set-based method, DeepGaitV2-2D, by a large margin (e.g., R1-+9.3% and
mAP-+9.0% on Gait3D).

(2) Comparisons to Sequence-based Modeling. The potential to capture long-term dependencies is
another fundamental advantage of the snippet-based paradigm compared to sequence-based meth-
ods, as snippets sampled from a sequence are not temporally continuous and likely cover long-term
frames. As a pioneering attempt, GaitSnippet improves long-term modeling through two key as-
pects: i) Fine-grained Snippet-level Supervision: This encourages the features of snippets from the
same sequence to remain similar, even when there is a large temporal interval between snippets.
ii) Diverse Sequence-level Representations: Unlike sequence-based methods, the input for Tempo-
ral Max Pooling at the end of the backbone to derive sequence-level representations changes from
continuous frames to snippets that span long-term frames. It significantly enhances the diversity of
sequence-level representations for training, which helps the recognition head (i.e., HPM and BN-
Neck) better adapt to long-term modeling.

(3) Role of Temporal Max Pooling: i) Temporal Max Pooling is indeed an effective manner for fea-
ture aggregation in unordered sets Zaheer et al. (2017); Chao et al. (2019); Fan et al. (2023c). Taking
GaitSet Chao et al. (2019) as an example, it applies it to all frames per sequence, treating them as a
single set. In contrast, GaitSnippet organizes data hierarchically, i.e., frames per snippet and snip-
pets per sequence, enabling more structured modeling. ii) GaitSet adopts Temporal Max Pooling
after the backbone for global aggregation, whereas GaitSnippet integrates it within the backbone to
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enhance frame-level feature extraction via snippet-level context. iii) In our design, Temporal Max
Pooling serves as a pioneering component for intra-snippet gathering, consistently yielding perfor-
mance gains across benchmarks. We will explore more advanced hierarchical temporal aggregation
strategies under the snippet paradigm.

(4) Limitations and Further Improvement. It is important to acknowledge that our solution for
snippet-based gait recognition is not necessarily optimal, and we recognize some limitations in
GaitSnippet. For example, in the inference phase, while we achieve superior performance with a
single forward process (i.e., L1 =16), multiple forward processes are required to benefit from dif-
ferent partition strategies (i.e., L1∈{8, 16}). Incorporating partition ensemble into a single forward
process represents a meaningful direction for future work. Despite this, our solution consistently
shows performance gains across various benchmarks, suggesting that snippet-based gait recognition
is a highly promising approach.

A.5 MORE LITERATURE REVIEW

In Section 2, we primarily review silhouette-based gait recognition methods, which fall under the
appearance-based category. For completeness, we also provide a brief summary of model-based gait
recognition here.

Model-based approaches primarily focus on explicitly modeling the walking process. While early
research in this category relied on hand-crafted features Lee & Grimson (2002); Zhang et al. (2007),
recent studies predominantly leverage 2D/3D pose representations Liao et al. (2020); Teepe et al.
(2021; 2022); Zhang et al. (2023); Pinyoanuntapong et al. (2023); Guo & Ji (2023); Fan et al. (2024)
or SMPL parameters Li et al. (2020; 2022) as input for data-driven feature learning using deep neural
networks. For instance, Teepe et al Teepe et al. (2021) model 2D poses as graphs and process pose
sequences using a Graph Convolutional Network. Fu et al Fu et al. (2023) enhance the generalization
capability of 2D pose-based gait recognition by applying normalization techniques to the input and
extracting fine-grained features. Guo et al Guo & Ji (2023) develop a physics-augmented auto-
encoder framework for 3D pose-based gait recognition. SkeletonGait Fan et al. (2024) converts 2D
pose data into a heatmap-like representation, enabling the use of Convolutional Neural Networks for
feature extraction.

Moreover, emerging research has focused on fusing multiple modalities Hsu et al. (2022); Peng
et al. (2023); Cui & Kang (2023) for gait recognition or exploring new modalities, including RGB
images Liang et al. (2022); Ye et al. (2024), point clouds Shen et al. (2023); Han et al. (2022), and
event cameras Wang et al. (2019).

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, Large Language Models (LLMs) were used solely for checking po-
tential grammatical and stylistic issues in the writing. The use of LLMs did not influence the de-
velopment of research ideas, experimental design, data analysis, or the interpretation of results. All
scientific contributions, including the methodology, experiments, and conclusions, are entirely the
work of the authors.
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