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Abstract—Given massive video data generated from different
applications such as security monitoring and traffic manage-
ment, to save cost and human labor, developing an industrial
intelligent video analytic system, which can automatically extract
and analyze the meaningful content of videos, is essential. For
achieving the objective of motion perception in video analytic
system, a key problem is how to perform effective tracking of
object of interest so that the location and the status of the tracked
object can be inferred accurately. To solve this problem, with
the popularity of RGB-infrared dual camera systems, this paper
proposes a new RGB-infrared tracking framework which aims
to exploit information from both RGB and infrared modalities
to enhance the tracking robustness. In particular, within the
tracking framework, a robust multi-modality anchor graph-
based label prediction model is developed, which is able to 1)
construct a scalable graph representation of the relationship of
the samples based on local anchor approximation; 2) defuse a
limited amount of known labels to large amount of unlabeled
sample efficiently based on transductive learning strategy; and 3)
adaptive incorporate importance weights for measuring modality
discriminability. Efficient optimization algorithms are derived to
solve the prediction model. Experimental results on various multi-
modality videos demonstrate the effectiveness of the proposed
method.

Index Terms—Multimodal sensor fusion, tracking system,
video surveillance system

I. INTRODUCTION

THE last decade has witnessed a substantially great de-
mand of the industrial intelligent video systems, which
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Fig. 1. Some video frames of RGB and infrared modalities which covers
challenging factors for RGB-infrared tracking. Top: RGB Bottom: infrared

is driven by many applications such as video surveillance,
traffic management, robotics, face recognition and so on [1]–
[9]. With the help of intelligent video systems, extracting and
analyzing the meaningful content of videos can be performed
automatically, which can save cost and human labor. A key
task of such kinds of video systems is to achieve the intelligent
motion perception of objects of interests. To this end, devel-
oping a robust object tracking model which is able to locate
the objects of interest and infer their motion status is very
important. However, it is still challenging to perform robust
object tracking due to many unpredictable variations and poor
environmental conditions, such as occlusion, poor illumination
conditions, scale changes and so on. Extensive studies on
object tracking have been made in tracking research in the
past decade [10], [11], and lots of tracking algorithms have
been developed to deal with various kinds of research issues,
such as the issues of model drift [12], feature selection and
fusion [13], etc.. However, most of these tracking algorithms
are designed based on RGB modality only. They construct the
appearance model by using the visual features from the RGB
video frames. In some extreme but common cases such as dim
environment at night, the RGB information is not reliable and
tracking failure may happen. Therefore, deploying an object
tracker with RGB modality only in intelligent video systems
may limit their real-world application (e.g. night time video
surveillance systems).

With the great advancement of multi-spectral imaging tech-
nology, forming multi-spectral images or videos has become
more and more effective. Besides, the increasingly lower
cost and higher quality of multispectral imaging devices has
brought the wide application of multi-spectral camera systems.
RGB-Infrared (thermal) camera systems, which are able to
capture images or videos of both RGB and infrared modali-
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ties, have been widely deployed in many industrial systems.
Compared with visible spectrum cameras which forms images
by visible lights, the infrared cameras produce images by
receiving the infrared radiation of a subject with a above-
zero temperature, and thus it is much less sensitive to large
illumination changes or poor lighting conditions. However, the
information from infrared cameras are not always reliable. For
example, when the tracked object is surrounded by background
with similar temperature which may cause the issue of thermal
crossover, the tracked target may not be distinguishable from
the background in infrared image. However, the visual features
extracted from RGB images may be more able to differenti-
ate the target from background since it carries more visual
characteristic such as color, texture, etc., which is beneficial
for appearance modeling. Therefore, developing an effective
model for integrating both RGB and infrared modalities for
object tracking is essential for intelligent video systems.

However, it is challenging to perform an effective inte-
gration of both RGB and infrared modalities for tracking
because several issues would limit the modality combination
performance. First, as shown in Figure 1, large variations
such as occlusion, illumination variation may be encountered
during the tracking process, which would introduce outliers
and contaminate the tracking examples. Modeling learning
(updating) with these examples may affect the tracker perfor-
mance negatively. Therefore, suppressing and removing the
contaminated features from the tracking samples is required.
Second, due to the dynamical changes of the background and
the appearance variation, the reliability of different modalities
would be different and keep changed during the tracking
process. For example, because of the issue of thermal cross
over issue, the RGB modality is more reliable than infrared
modality as shown in Figure 1(a). However, for the frame in
Figure 1(c), the poor illumination condition make information
from RGB modality less reliable than that in infrared modality.
As such, to ensure that more reliable modality play more
important roles in multi-modality appearance model while the
negative effect of the unreliable modality can be suppressed,
how to dynamically evaluate the reliability and incorporate the
importance weight for modality fusion should be considered.
Besides, only limited labeled tracking samples of different
modalities are available during the tracking process, which
makes it difficult to online train an power parametric dis-
criminative fusion model for label inference (i.e. target or
background) of testing samples (i.e. target candidates) with
large appearance variations. Therefore, how to utilize limited
tracking samples to infer the labels of target candidates for
target position determination is another important issue to
address.

To overcome the aforementioned issues, we propose a
new discriminative learning model for RGB-infrared track-
ing. Specifically, we formulates RGB-infrared tracking as
transductive semi-supervised graph-based label propagation
problem, and propose a multi-modality anchor graph-based
label prediction model for inferring the labels of the target
candidate. The proposed label prediction model has four
advantages. First, transductive learning strategy is exploited to
perform the graph-based label prediction, in which the local

structural information of both the tracking examples collected
in previous frames and the target candidate examples (i.e.
testing samples) sampled in current frame are utilized to learn
the graphical representations of the relationship among these
samples, in which each node denotes the features of examples
in one specific modality, and the edges denote the pairwise
affinity of two nodes. With more unlabeled examples in the
new video frame introduced, the issues of limited samples
problem can be alleviated. Such learning strategy also enables
the objective of labeling target candidates to be coupled with
the tracking model learning, which ensures the optimality of
both objectives in our tracking task via an unified model. In
addition, instead of optimizing the label of all samples which
are in high computational complexity, the anchor label-based
prorogation only requires to infer the labels of small number
of anchor samples which can be used to infer the label of
target candidate under the manifold assumption [14]. Besides,
since the graph-based label prediction model can utilize some
unlabeled data for learning, by regarding some contaminated
examples (e.g. misaligned samples) which may degrade the
modal discriminability as unlabeled data, label ambiguity can
be avoided. Furthermore, an important weighting scheme is in-
corporated to dynamically adjust the modality weight accord-
ing to their discriminative power. In addition to the proposed
graph-based label prediction model, we propose to exploit
the robust joint sparse representation model for constructing
an accurate affinity matrix by simultaneous considering two
issues:1) removing sample contamination, and 2) exploiting
the correlation among different modalities. A fast relaxation
of the sparse model and the optimization algorithm of related
models are also derived. In general, the contributions of this
work are summarized as follows:
• A multi-modality anchor graph-based label prediction

model is proposed to predict the labels of target candidate
• A robust joint sparse representation model is formulated

to estimate the affinity matrix among the tracking samples
and the target candidates

• Effective model relaxation and learning algorithms are
derived to solve the related optimization models.

It should be noted that some anchor-graph label propagation
models have been proposed [15]–[17] which also diffuses the
labels of anchor samples to unlabeled data. However, their
model does not explicitly consider the label propagation for
multi-modality samples. This work shares similar merits with
them and focuses on label propagation on multi-modality
graphs.

The rest of this paper is organized as follows. Section II
introduces some related works which include RGB-infrared
tracking and graph-based object tracking. Section III presents
the proposed model and the related learning algorithms. Sec-
tion IV describes the implementation details. The experimental
evaluation and the conclusion are given in Sections V-B
and VI, respectively.

II. RELATED WORKS

This section introduces some related works for our proposed
method, i.e. RGB-infrared object tracking and graph-based
object tracking.
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A. RGB-Infrared Object Tracking

Numerous tracking algorithms for single modality video
(i.e. RGB) has been developed. For example, to account for
the variations existing in data sample, a latent constraint
correlation filter is developed in [18]. To model the distribution
of correlation response for mitigating the drift issue, an output
constraint transfer model is incorporated in the correlation fil-
ter framework [19]. To further enhance the tracking robustness,
inspired by promising performance of multi-modality/view
machine learning in pattern classification [20], [21], several
RGB-infrared tracking algorithms have been developed [18].
To simultaneously perform moving object segmentation and
tracking, a level set-based framework is proposed [22]. In [23],
the results of multiple spatiogram-based trackers which cor-
respond to RGB and infrared modalities are combined within
a new fusion-based tracking framework for determining the
target position. In [24], a probabilistic background subtrac-
tion model is utilized to generate confidence maps of both
RGB and infrared modalities, and then the confidence map
is combined by using sum rule for determining the target
position. There are several sparsity-based tracking algorithms
developed for RGB-infrared tracking based on joint sparsity
regularization [25], [26], feature concatenation [27], nuclear
norm regularization [28], feature template learning [29]. These
algorithms exploit sparsity constraint to exploit the correlation
among different modalities. Li et al. proposed path-based dy-
namic graph for structure SVM-based tracking [30]. Different
from these trackers which focus more on how to perform
effective fusion of RGB-infrared modalities, our proposed
method further considers the distribution properties of samples
of multiple modalities to account for the appearance variations
of the track target.

B. Graph-based Object Tracking

Graph-based machine learning has attracted great research
interest in recent years [31]. Graph models have been exploited
in various tracking algorithms because of its capability in
representing structural relationships. In [32], a gragh-based
transductive learning model is incorporated for label prediction
under local and global constraints. In [33], a graph-based
tracking model which considers both the neighborhood and
pairwise information among samples are proposed to improve
adaptability. In [34], a graph mode-based contextual kernel is
introduced for SVM-based tracking. In [35], And-Or Graphs
are exploited for simultaneously tracking, learning and Pars-
ing. In [36], a random walk restart algorithm on 8-neighbor
graph is developed to estimate the local patch weights within
target object bounding box. Different from [36], Li et al.
proposed patch based dynamic graph learning algorithms to
estimate local patch weights in the bounding box, which has
been applied in visual tracking [37] and RGB-T tracking [30].
A multi-graph ranking which propagates labels using multiple
features is proposed in [38]. Wu et al. proposed a landmark-
based label prorogation model for tracking [17]. Different from
these graph-based tracking methods, the proposed graph model
can exploit the heterogeneous data modalities to facilitate the
label prediction performance.

III. PROPOSED METHOD

This section first give a overview of the problem and the
idea of the proposed method, and then introduces the novel
aspects of the proposed method: 1) joint sparsity-regularized
anchor graph learning, and 2) multi-modality anchor graph-
based label prediction.

A. Overview

Assume that we are given N tracking examples of M
modalities (M=2 for our case of RGB-infrared tracking),
which is composed of labeled and unlabeled examples and
denoted as {xmn |n = 1, . . . , N,m = 1, . . . ,M}. Without
the loss of generality, let the first N1 examples {xmn |n =
1, . . . , N1,m = 1, . . . ,M} be the labeled examples with
label vectors yn ∈ RC×1, n = 1, . . . , N1 (C=2 for the
tracking problem), and the remaining examples {xmn |n = N1+
1, . . . , N1 + N2,m = 1, . . . ,M} be the unlabeled examples
where N = N1 + N2. We are also given a set of anchor
examples of multiple modalities, i.e. {dmr |m = 1, . . . ,M, r =
1, . . . , R} which can be obtained by taking cluster centers
on {xmn } after clustering is performed. Under the manifold
(smoothness) assumption that the data points close to each
other are more likely to share the same label, given unlabeled
data Xm = {xmn }, one objective of the proposed model is to
exploit the label vector of the nearby anchor points to predict
their soft label of different modalities, i.e.

[`m(xm1 ), . . . , `m(xmN )]T = HmAm, m = 1, . . . ,M (1)

where `(xmn′) ∈ RC×1 denotes the output of the labeling
function on xmn′ , H

m ∈ RN×R, Hm
n,r = (Km(xmn , d

m
r )), which

encodes the pairwise similarity between input example of the
function xmn and the anchor example dmr , Am =

(
Amr,c

)
∈

RR×C and Amr,c is the confidence value of c-th label of
the r-th anchor example. To achieve this objective, several
issues should be considered. Since large appearance variation
may exist and contaminate the tracking sample during the
tracking process, the first issue is how to deal with the
contaminated samples and accurately estimate the similarity
matrix. Besides, the number of anchor examples is limited, and
how to effectively and efficiently propagate the label of anchor
examples to large number of unlabeled data is the second issue
we need to consider. To address these two issues, inspired
by the graph-based semi-supervised scalable learning [15], we
will exploit adjacency matrix-based graphical representation to
capture the pairwise relationship among all the examples using
anchor examples, for which the adjacency matrix would be
constructed based on the estimated similarity matrix between
the examples and anchor examples.

B. Joint Sparsity Regularized Multi-modality Anchor Graph
Learning

a) Formulation of Anchor Graph: Inspired by the idea
of locally linear embedding [39], the embedding weights can
reflect the similarity between the example and the nearby
anchor example. For the example Xm, since large appearance
variation may also be encountered during the tracking process,



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2947293, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 4

which would introduce (contaminated) corrupted samples, we
further introduce the error term Em to capture the sample-
specific corruption as follows:

Xm = Dm(Hm)T + Em, Hm
n,·1 = 1, Hm ≥ 0 (2)

where Dm = {dm1 , . . . , dmR }. To capture the similarity among
these examples, Hm should be learned to satisfied two con-
ditions. The first one is the sparsity requirement that Hm

should be a sparse matrix because only small number of
nearby anchor examples is required to linearly approximate
the examples. The second one is the nonnegative requirement
that Hm should be nonnegative to make sure that the similarity
value is interpretable and comparable.

From (2), we can see that the examples Xm is represented
as the embedding weights with respect to the anchor samples
Dm, and thus the embedding weights can be regarded as
one kind of feature representations of the examples. An
intuitive interpretation is that if two examples are similar, they
should share similar neighborhood information which means
similar anchor examples can be used to approximate these two
example. Therefore, the embedding weights should be similar.
Therefore, after the Hm is learned, the anchor graph of each
modality Wm which reflect the affinity among these examples
can be formulated as follows:

Wm = Hm(Hm)T ,m = 1, . . . ,M (3)

Here we use the inner product (i.e. linear kernel) on the
embedding weights to measure the similarity among samples.
The formulation of Wm also shows that the sparse and
nonnegative property of Hm can enable Wm to be positive
and sparse which meet the requirements of adjacent matrix in
label propagation. Therefore, imposing proper constraint on
the learning of Hm is necessary.

b) Multi-modality Anchor Graph Learning: To ensure
that only small number of nearby samples can be used for lin-
ear approximation, some sparsity constraints such as `1 norm
can be utilized to enforce the sparsity. In addition, we further
consider to exploit the interdependency of different modalities
to facilitate the earning of a more accurate similarity matrix
using multiple modalities. Therefore, we impose the joint
sparsity constraint to enforce modality-consistency sparsity
so that the consistency properties of different modalities can
be utilized to deduct the same neighborhood information for
different modalities. Then the joint sparsity regularized multi-
modality anchor graph learning can be formulated as

min
{Em,Hm}

λ1‖(Em)T ‖2,1 +
R∑
r=1

‖Hr‖2,1 (4)

s.t. Hm
n,·1 = 1, Hm ≥ 0, Xm = Dm(Hm)T + Em

Hr = [(H1
r,·)

T , . . . , (Hm
r,·)

T ]

where 1 is the all 1’s vector, ‖ · ‖2,1 is the joint sparsity

regularization that ‖A‖2,1 =
∑M
m=1

√∑N
n=1(Am,n)

2 given
A ∈ RM×N . Hm

r,· means the r-th row vector of the matrix Hm,
and the matrix Hr can be formed by putting all the transpose
of the r-th row vector of of the matrix H1, . . . ,Hm together.
Here we impose the joint sparsity constraint on the error term

which aims to detect the sample-specific corruption in the
tracking sample. If the n′-th example of m′-th modality is
corrupted and cannot be well approximated by the anchor ex-
amples, then `2 norm on the corresponding error term ‖Em′·,n′‖2
would be large. The second joint sparsity regularization is
exploited to enforce different modalities of the same anchor
examples are activated to linearly approximate the example.
By inducing the consistent representation of anchor examples
in different modalities, similar prorogation patterns in the
multi-modality graph can be derived, which facilitates the
confidence in label prediction.

However, directly solving (4) would be of high computa-
tional complexity because it involves some non-smooth terms.
Therefore, we relax the solver to use KNN to (4) as follows:
First, we select the nearby anchor examples for each input
example using the concatenation of the RGB and infrared
modalities by KNN. Then the corresponding nearby anchor
examples would be used to approximate each example using
LLE [39] for embedding weight estimation. To deal with
corrupted samples, we make the following judgement. If the
example is the tracking example (not the target candidate) in
previous video frame with large approximation error which
means the example may be corrupted, we replace the example
with the mean feature vector of the tracking samples and then
perform LLE again to estimate the embedding weights. In our
implementation, the number of nearby anchor samples (i.e. the
k in KNN) is set to 10, and the Euclidean distance is used as
the criteria to select the nearby samples.

C. Multi-modality Anchor Graph-based Label Prediction

To construct the multi-modality gragh-based label prediction
model, two objectives should be considered in constructing the
model. Since the pair-wise similarity of different samples in
each modality are captured by corresponding graph model, the
graph-based label prediction results should be consistent with
the similarity pattern. In addition, the label prediction error of
the labeled training data should be as low as possible. The pro-
posed label prediction model formulates the aforementioned
objectives within the following framework:

min
{`m,αm}

M∑
m=1

(
(αm)2G(`m) + ηF (`m)

)
(5)

s.t.

M∑
m=1

αm = 1, αm ≥ 0, m = 1, . . . ,M

where `m is the prediction function, G(`m) is the graph-based
regularization term of each modality, F (`m) is the prediction
error term of the labeled training data of each modality,
and α is the importance weight of each modality. Based on
parametric form of `(·) in (1), given the estimated similarity
matrix between the anchor examples and the training exam-
ples, obtaining the solution of `m is equivalent to estimate
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Am. Let Dm
i =

∑N
j=1W

m
ij . Then Gm can be formulated as

Gm =
1

2

N∑
i=1

N∑
j=1

‖`m(xmi )− `m(xmj )‖22Wm
ij (6)

=
1

2

N∑
i=1

N∑
j=1

‖(A)T (Hm
i,·)

T − (A)T (Hm
j,·)

T ‖22Wm
ij

=
N∑
i=1

Hm
i,·AA

T (Hm
i,·)

TDm
i −

N∑
i=1

N∑
j=1

Hm
i,·AA

T (Hm
j,·)

TWm
ij

= Tr(AT (Hm)T (Dm −Wm)HmA)

= Tr(AT (Hm)TLmHmA)

where Lm is the graph Laplacian regularization of the m-th
modality. We can derive Lm = Dm−Wm = Hm(Hm)T −
diag{

(
Hm(Hm)T

)
1}. We adopt the square loss as the predic-

tion loss on the labeled training data Then (5) is re-formulated
as

min
{A,αm}

(
Tr(AT (

∑M
m=1(α

m)2(Hm)TLmHm)A)

+η
∑M
m=1 ‖AT (Hm

l,·)
T − Y ‖2F

)
(7)

s.t.
M∑
m=1

αm = 1, αm ≥ 0, m = 1, . . . ,M

where Hm
l,· denote the similarity matrix between the labeled

examples and the anchor example, and the square loss asso-
ciated with the tradeoff parameter η corresponds to the label
prediction error term for the labeled data F (`m). Here we use
the (αm)2 instead of αm to avoid the trivial solution that only
one important weight is activated to 1 while the others are zero.
We can see that in (7), the label prediction model is formulated
as minimizing a square loss of perdition with weighted fusion
of multiple graph laplacian regularizer. Therefore, the struc-
tural information among examples of multiple modalities are
jointly exploited through the regularizer for label propagation.

After obtaining the label prediction matrix A, given the
sample of m-th modality x̂m, the label prediction results on
x̂m is calculated as

Sm = ATHm(x̂m)T (8)

where Hm(x̂m) is the similarity weight between the sample
x̂ and the anchor samples of m-th modality. Following [17],
we utilize the score of all samples (including the labeled and
unlabeled ones) for normalization. The prediction score Sm
can be used to infer the tracker position. Traditional graph-
based label propagation algorithm usually need a cubic time
complexity O(N3) where N is the number of data point
because N×N matrix inversion is needed for performing label
prediction of all data point. For the proposed graph model,
label prediction of all data points are based on the prediction
label of smaller number of anchor samples, whose data size
R is much smaller than N . Thus, the complexity is reduced
to O(R3), which means the label prorogation model is more
efficient.
Optimization: To obtain the optimal solution to (7), we alter-
natively update the optimal variable {αm} and A interatively.
{A}-subproblem: With {αm} fixed, by taking the derivatives

Algorithm 1: Optimization Algorithm for (7)
Input: Graph Laplacian {Lm}Mm=1, embedding weights

{Hm}Mm=1, sample number N and modality number
M , An

Output: {αm}Mm=1, A
Initialization: i← 1, αm,i ← 0.5

while stopping conditions are not satisfied do
Update Ai+1 via (9)
Update {αm,i+1}Mm=1 via solving (10)
i← i+ 1
Check stopping conditions

end

of the objecting function in (7) with respect to A and setting
it to be zero, we can derive

A =

[
M∑
m=1

(
(αm)2(Hm)TLmHm + η(Hm

l,·)
T (Hm

l,·)
)]−1

•

(9)[
M∑
m=1

Hm
l,·

]
{αm}-subproblem: With A fixed, let Rm =

Tr(AT (Hm)TLmHmA), then αm can be obtained by
solving the following problem:

min
{αm}

M∑
m=1

(αm)2Rm (10)

s.t.
M∑
m=1

αm = 1, αm ≥ 0, m = 1, . . . ,M

By taking the derivatives of the Lagrange function of (10) i.e.
L({αm}) =

∑M
m=1(α

m)2Rm+β(
∑M
m=1 α

m−1), and setting
it to be zeros. we can obtain αmrm + β = 0. Based on the
equality

∑M
m=1 α

m = 1, we can derive αm
′
= (Rm′ )−1∑M

m=1(R
m)−1 .

We iteratively update the optimal variables until the `2 norm
of the value difference of optimal variables in consecutive
iterations is less than the threshold 10−3. The optimization
algorithm is summarized in Algorithm 1.

IV. TRACKER IMPLEMENTATION DETAIL

This section mainly describes some important implementa-
tion details of the proposed tracker. The proposed tracker is
implemented in the same framework with [17].

A. Object Representation

To exploit the local structure information of target appear-
ance for deal with local deformation and occlusion, besides
exploiting holistic representation, we further use part-based
features for the label prediction model training. Following
the feature representation scheme in [17], 5 different image
patches are sampled from the target region, which include
the whole patch with sub-sampling rate 0.5, 4 local patches
from 2-by-2 partitions. For each kind of image patches with
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RGB-Infrared modalities, we will train a corresponding multi-
modality classification model based on the (7) denoted as
Sk,m, where k = 1, . . . ,K,m = 1, . . . ,M , k is the patch
index and m is the modality index. By exploiting the sum
rule, based on the modality important weight learned in (7)
final classification score Stotal is computed as

Stotal =
K∑
k=1

M∑
m=1

αmSk,m (11)

B. Model Initialization and Updating

The target location in the first frame is initialized according
to the annotation data. Then we shift the tracker location about
1 to 2 pixels to obtain the positive examples, and randomly
sample image patches which are far away from the tracker lo-
cation as negative samples. Then we apply the aforementioned
object representation scheme to sample 5 different types of
image patches. Standard clustering algorithms (k-means used
in our method) are applied on the examples of each type of
image patch in RGB-infrared modalities to select the center
of each cluster as the anchor examples. Based on the anchor
examples and the collected labeled examples, the initial label
prediction model can be trained.

To enable the tracker to be adapted to appearance variation
and background changes, model updating is essential. In the
new video frame, target candidate will be sampled around
the target location in the previous frame of RGB-infrared
modalities using particle filtering. As mentioned in previous
section, features extracted from the target candidates of RGB-
infrared modalities would be regarded as unlabeled data of
the label prediction model. After obtaining the classification
scores of target candidates, the candidate with largest scores
is the most likely to be the tracked target. After determining
the tracking results, following the way of collecting sample
in the first frame, we can collect more examples nearby and
far away from the target position. If the classification score
is higher than a predefined threshold, then the examples are
reliable and is regarded as labeled example. Otherwise, they
are regarded as unlabeled examples.

The tracker maintains two kinds of example pools for
updating the example and anchor examples. They are training
example pool and temporal example pool. The tracking results
of RGB-infrared modalities in previous T frames would be put
in the temporal example pool. The examples in the temporal
example pool would be utilized to update the training example
pool. The size of the training example pool is predefined
and limited every T frames. If the training example pool is
full, then the updating will be performed by being randomly
replaced with T examples. For the sake of adaptivity and
stability, we always augment the training example pool with
the example in the initial frame after the model updating is
performed. It should be noted that both the unlabeled target
candidate examples and collected examples in the training
example pool will be utilized for prediction model learning.

When the training example pool is updated, k-means clus-
tering would be performed on the examples in the training

example pool to obtain the cluster centers as the new potential
anchor examples. Then k-means clustering are performed
with the potential anchor examples with the previous ones
again. Since the each examples in the training example pool
carries feature representation of RGB-infrared modalities, for
simplicity and efficiency while maintaining the correlation
between RGB and infrared modalities in the anchor examples,
the features of the k-means clustering are the concatenation
of features extracted from the RGB and infrared modalities.

C. Target Position Estimation within Paritle Filtering Frame-
work

The target position is estimated within the particle filtering
framework. The tracking results at Frame t can be obtained
by maximizing a posteriori:

s̃t = argmax
sit

p(sit|Pt) (12)

where Pt = {pj |j = 1, . . . , t} denote the observation variable
set from Frame 1 to Frame t, pj is the observation variable
at Frame j, and sit is the state variable of the i-th particle at
Frame t. The particle filtering can be utilized to infer the true
posterior by a set of particles with different states sit where
the posterior probability p(sit|Pt) is recursively computed as

p(st|PT ) ∝ p(pt|st)
∫
p(st|st−1)p(st−1|Pt−1)dst−1 (13)

where p(st|st−1) and p(pt|st) denote the motion model and
the observation model, respectively. After obtaining the final
classification score, then the observation likelihood can be
defined as

p(st|pt) ∝ Stotal(ot) (14)

V. EXPERIMENTS

This section presents the experimental setting, and then
describes the quantitative and qualitative results, respectively.

A. Experimental Setting

c) Testing data and compared methods: Twenty pairs
of videos captured by visible and infrared cameras are used
for evaluation of the tracking performance. Challenging fac-
tors such as occlusion, thermal crossover, poor illumination
condition can be found in these testing videos. All the video
frames of RGB and infrared modalities have been aligned via
registration so that the target position is nearly the same in
each video frame of both modalities. We adopt 10 tracking
algorithms for comparison, which includes STC [40], CT [41],
RPT [42], STUCK [43], MIL [12], L1 [27], JSR [26], CN [44],
KCF [45], MEEM [46]. Except the L1 and JSR methods
which are designed specifically for RGB-infrared tracking, the
other trackers only focus on tracking on RGB videos. The
experimental section in [25] provides the way to implement the
multi-modality version of these trackers. We can follow them
and compare the results with our proposed method. Some of
the compared results of these multi-modality trackers on these
video data can also be obtained from [25].
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Fig. 2. Qualitative comparison of the 11 trackers on some frames of RGB-infrared videos covering some large variations, such as occlusion (e.g. OccCar-1,
MinibusNigOcc),scale variatons(e.g. BlackCar), Thermal crossover (e.g. CrowdNig), low illumination (e.g. CarNig, FastCarNig). For each sub-figure, images
of RGB modality are shown in the top row while images of infrared modality are shown in the bottom row.

(a) BlackCar (b) FastCarNig (c) MotorBike (d) CarNig

(a) LightOcc (b) MinibusNgOcc (c) CrowdNig (d) Occbike
STRUCK STC CT MIL RPT MEEM KCF CN JSR L1 Proposed method

Fig. 3. Quantitative results of 11 trackers on 8 challenging videos in terms of overlapping rate. The frame index is shown in the horizontal axis and the
overlapping rate is indicated in the vertical index.
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TABLE I
OVERLAPPING RATE. THE BEST THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN.

STRUCK STC CT MIL RPT MEEM KCF CN JSR L1 Proposed Method

BlackCar 0.24 0.31 0.21 0.22 0.33 0.23 0.21 0.24 0.23 0.64 0.74
BlueCar 0.37 0.27 0.34 0.4 0.65 0.47 0.4 0.4 0.4 0.63 0.79
BusScale 0.47 0.45 0.46 0.49 0.57 0.52 0.51 0.51 0.54 0.72 0.81

Exposure2 0.32 0.37 0.31 0.32 0.48 0.3 0.32 0.32 0.35 0.82 0.82
FastCarNig 0.46 0.75 0.36 0.36 0.63 0.41 0.43 0.43 0.38 0.75 0.76
Motorbike 0.31 0.31 0.31 0.31 0.31 0.3 0.31 0.31 0.3 0.5 0.67

CarNig 0.25 0.21 0.2 0.18 0.36 0.19 0.16 0.25 0.2 0.35 0.68
Cycling 0.62 0.47 0.51 0.64 0.55 0.03 0.61 0.63 0.49 0.36 0.74

Minibus1 0.53 0.05 0.52 0.55 0.06 0.38 0.56 0.05 0.53 0.69 0.79
FastMotor 0.43 0.24 0.43 0.42 0.36 0.37 0.4 0.41 0.41 0.02 0.46
LightOcc 0.46 0.25 0.27 0.43 0.5 0.45 0.41 0.5 0.43 0.46 0.66
Minibus 0.43 0.46 0.42 0.34 0.43 0.39 0.41 0.41 0.42 0.37 0.82

MinibusNigOcc 0.51 0.07 0.04 0.05 0.08 0.48 0.07 0.5 0.1 0.08 0.5
OccCar-1 0.45 0.46 0.43 0.33 0.68 0.41 0.45 0.45 0.07 0.82 0.78
Otcbvs1 0.63 0.69 0.65 0.73 0.72 0.66 0.66 0.68 0.79 0.14 0.82

Pool 0.62 0.06 0.05 0.05 0.04 0.66 0.03 0.06 0.05 0.06 0.16
RainyCar1 0.58 0.5 0.55 0.07 0.69 0.49 0.55 0.55 0.05 0.07 0.72
Running 0.22 0.32 0.17 0.14 0.38 0.37 0.3 0.33 0.18 0.36 0.41

CrowdNig 0.51 0.46 0.12 0.23 0.46 0.55 0.22 0.81 0.69 0.77 0.77
OccBike 0.07 0.24 0.23 0.31 0.04 0.04 0.04 0.21 0.06 0.26 0.61

Average 0.42 0.35 0.33 0.33 0.42 0.39 0.35 0.4 0.33 0.44 0.68

TABLE II
SUCCESS RATE. THE BEST THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN.

STRUCK STC CT MIL RPT MEEM KCF CN JSR L1 Proposed Method

BlackCar 0.12 0.16 0.1 0.12 0.29 0.12 0.12 0.12 0.15 0.83 1
BlueCar 0.33 0.33 0.28 0.38 0.94 0.46 0.38 0.38 0.44 0.68 0.97
BusScale 0.48 0.4 0.46 0.44 0.61 0.53 0.5 0.51 0.56 0.82 0.98

Exposure2 0.2 0.26 0.2 0.2 0.45 0.16 0.2 0.2 0.19 1 1
FastCarNig 0.31 0.93 0.28 0.28 0.73 0.26 0.28 0.28 0.39 1 0.99
Motorbike 0.14 0.16 0.14 0.13 0.13 0.12 0.14 0.14 0.12 0.48 0.98

CarNig 0.13 0.19 0.13 0.13 0.21 0.13 0.13 0.13 0.17 0.43 0.87
Cycling 0.71 0.43 0.53 0.71 0.68 0.02 0.71 0.71 0.48 0.33 0.99

Minibus1 0.59 0.04 0.54 0.58 0.05 0.32 0.54 0.04 0.49 0.69 1
FastMotor 0.32 0.19 0.33 0.33 0.3 0.2 0.27 0.3 0.27 0.02 0.45
LightOcc 0.4 0.23 0.18 0.29 0.69 0.56 0.46 0.48 0.46 0.6 0.92
Minibus 0.27 0.42 0.27 0.24 0.25 0.21 0.27 0.27 0.24 0.32 1

MinibusNigOcc 0.46 0.06 0.02 0.04 0.08 0.45 0.06 0.46 0.11 0.08 0.51
OccCar-1 0.32 0.44 0.27 0.24 0.89 0.21 0.32 0.32 0.08 1 1
Otcbvs1 0.91 0.87 0.98 1 0.98 0.94 0.84 0.82 1 0.12 1

Pool 0.85 0.08 0.06 0.06 0.04 0.83 0.04 0.08 0.04 0.08 0.09
RainyCar1 0.58 0.35 0.55 0.08 0.98 0.45 0.57 0.57 0.05 0.07 1
Running 0.27 0.45 0.17 0.13 0.51 0.47 0.43 0.43 0.22 0.46 0.53

CrowdNig 0.67 0.38 0.16 0.26 0.34 0.67 0.2 1 0.92 1 0.93
OccBike 0.06 0.18 0.2 0.38 0.02 0.02 0.03 0.15 0.05 0.26 0.69

Average 0.41 0.33 0.29 0.3 0.46 0.36 0.32 0.37 0.32 0.51 0.85

d) Parameter settings: The target region is warped and
resized to 24-by-24 image patch, and thus all the five image
patches for model learning are 12 by 12. For the image patch
in RGB modality, we extract HOG features and gray scale
intensity features, and concatenate them into a single vector.
For infrared modality, we extract the intensity features only.
In the initial frame, the number of positive examples and
negative examples are 20 and 200, respectively. The threshold
for determining the reliability of tracking sample is set to 0.3.
After obtaining the tracking results, 2 positive example and 50
negative examples will be collected if the results are reliable
and 100 unlabeled data would be collected if the result is
not reliable. The limitation of the number of examples in
the training example pool is set to 310 which include 50
positive examples, 160 negative examples, and 100 unlabeled
examples. The number of anchor samples is set to 30 and the
model updating is performed every 10 frames.

B. Experimental Results

To evaluate the tracking performance quantitatively, two
criteria are used, i.e. overlapping rate and success rate. The
overlapping rate is defined as area(A1

⋂
A2)

area(A1

⋃
A2)

where A1 and
A2 are the bounding box generated by the tracker and the
groundtruth. The tracking in each frame is counted as a success
if the overlapping rate is greater than 0.5. The percentage
of video frames in which a tracking success happens is
used to define the success rate. The overlapping rate and

the success rate of all the compared methods in the twenty
videos are shown in Tables I and II, respectively. We can
see that generally, the proposed tracker outperforms other
compared methods. It can also be observed that that the
proposed tracker ranks in top two on nineteen videos in
terms of success rate and overlapping rate, where the top
one performance is achieved on sixteen videos in terms of
overlapping rate and on seventeen videos in terms of success
rate. As shown in Figure 2, the proposed tracker can more able
to deal with some large variations such as occlusion (OccCar-
1#46, MinibusNigOcc#99), thermal crossover (CrowdNig#46).
This is because 1) the proposed tracker can suppress the
contaminated features when constructing the anchor graph,
which makes it less sensitive to the outliers introduced by
occlusion; 2) full utilization of different kinds of tracking
examples especially these unlabeled can further enhance the
discriminative power of the tracker; 3) dynamically adjusting
of the importance weight of different modalities for better
discrimination between target and background. The frame-
by-frame quantitative results in terms of overlapping rate are
shown in Figure 3. It shows that the proposed tracker can
achieve a generally higher overlapping rate in these video
frames compared with other methods. This shows that the
proposed tracker can run more stably.

However, in some videos such as Pool, when the target
of small size encounters some full body occlusion, tracking
loss may be happen as shown in Frame 20 in Figure 4(a). In
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Fig. 4. Results in testing videos which are not excellent: (a) Pool (b) Running
(c) FastMotor.

addition, when the tracked target is in low resolution as shown
in the video FastMotor (e.g. Frame 66 in Figure 4(c)) and the
nearby object of similar size and shape exist as shown in video
Running (e.g. Frame 36 in Figure 4(b)), the tracker may not
be able to achieve excellent performance.
Running Speed: Since the proposed algorithm involves in
some iterative optimization, it can not run in real time, and
the running speed is about 2 frame per second.

VI. CONCLUSION

In this paper, we propose an new discriminative model
for RGB-infrared object tracking. A joint sparsity-regularized
multi-modality anchor graph learning model is developed to
learn the affinity matrix for constructing the multi-modality
anchor graph, and a multi-modality anchor graph-based label
prediction model is designed to efficiently propagate limited
number of labeled examples to predict the labels of target
candidates. Comparison experimental results with other 10
trackers on 20 videos demonstrate the effectiveness of the
proposed method.

Since the proposed tracker can not run in real time, one
of our future work is to improve the tracking by exploiting or
developing more advanced optimization algorithm. In addition,
since the similarity graph is constructed by some relaxation
with KNN algorithm under the similarity measurement with
Euclidean distance which may not be optimal, we will further
investigate an optimal way for the relaxation of the similarity
graph learning problem.
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