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ABSTRACT

Adversarial training suffers from the issue of robust overfitting, which seriously
impairs its generalization performance. Data augmentation, which is effective
at preventing overfitting in standard training, has been observed by many pre-
vious works to be ineffective in mitigating overfitting in adversarial training.
This work proves that, contrary to previous findings, data augmentation alone
can significantly boost accuracy and robustness in adversarial training. We find
that the hardness and the diversity of data augmentation are important factors
in combating robust overfitting. In general, diversity can improve both accu-
racy and robustness, while hardness can boost robustness at the cost of accu-
racy within a certain limit and degrade them both over that limit. To miti-
gate robust overfitting, we first propose a new crop transformation, Cropshift,
which has improved diversity compared to the conventional one (Padcrop). We
then propose a new data augmentation scheme, based on Cropshift, with much
improved diversity and well-balanced hardness. Empirically, our augmentation
method achieves the state-of-the-art accuracy and robustness for data augmen-
tations in adversarial training. Furthermore, when combined with weight aver-
aging it matches, or even exceeds, the performance of the best contemporary
regularization methods for alleviating robust overfitting. Code is available at:
https://github.com/TreeLLi/DA-Alone-Improves-AT.

1 INTRODUCTION

Adversarial training, despite its effectiveness in defending against adversarial attack, is prone to
overfitting. Specifically, while performance on classifying training adversarial examples improves
during the later stages of training, test adversarial robustness degenerates. This phenomenon is
called robust overfitting (Rice et al., 2020). To alleviate overfitting, Rice et al. (2020) propose to
track the model’s robustness on a reserved validation data and select the checkpoint with the best
validation robustness instead of the one at the end of training. This simple technique, named early-
stopping (ES), matches the performance of contemporary state-of-the-art methods, suggesting that
overfitting in adversarial training impairs its performance significantly. Preventing robust overfitting
is, therefore, important for improving adversarial training.

Data augmentation is an effective technique to alleviate overfitting in standard training, but it seems
to not work well in adversarial training. Almost all previous attempts (Rice et al., 2020; Wu et al.,
2020; Gowal et al., 2021a; Rebuffi et al., 2021; Carmon et al., 2019) to prevent robust overfitting
by data augmentation have failed. Specifically, this previous work found that several advanced data
augmentation methods like Cutout (DeVries & Taylor, 2017), Mixup (Zhang et al., 2018) and Cut-
mix (Yun et al., 2019) failed to improve the robustness of adversarially-trained models to match that
of the simple augmentation Flip-Padcrop with ES, as shown in Fig. 1. Thus the method of using
ES with Flip-Padcrop has been widely accepted as the ”baseline” for combating robust overfitting.
Even with ES, Cutout still fails to improve the robustness over the baseline, while Mixup boosts
the robustness marginally (< 0.4%) (Rice et al., 2020; Wu et al., 2020). This contrasts with their
excellent performance in standard training. Recently, Tack et al. (2022) observed that AutoAugment
(Cubuk et al., 2019) can eliminate robust overfitting and boost robustness greatly. This, however,
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Figure 1: Our method is the only one that sig-
nificantly improves both accuracy and robust-
ness over the baseline (Flip-Padcrop with early-
stopping). Cutout and Cutmix fail to beat the
baseline regarding robustness. AutoAugment
achieves only a small improvement on robust-
ness over the baseline. Robustness is evaluated
against AutoAttack. See Section 5 for details of
training and evaluation settings.

contradicts the result of Gowal et al. (2021a); Carmon et al. (2019) where the baseline was found to
outperform AutoAugment in terms of robustness. Overall, to date, there has been no uncontrover-
sial evidence showing that robust generalization can be further improved over the baseline by data
augmentation alone, and no convincing explanation about this ineffectiveness.

This work focuses on improving the robust generalization ability of adversarial training by data
augmentation. We first demonstrate that the superior robustness of AutoAugment claimed by Tack
et al. (2022) is actually a false security since its robustness against the more reliable AutoAttack
(AA) (Croce & Hein, 2020) (48.71%) is just slightly higher than the baseline’s (48.21%) as shown
in Fig. 1 (see Appendix A for a detailed discussion). We then investigate the impact of the hardness
and diversity of data augmentation on the performance of adversarial training. It is found that, in
general, hard augmentation can alleviate robust overfitting and improve the robustness but at the
expense of clean accuracy within a certain limit of hardness. Over that limit, both robustness and
accuracy decline, even though robust overfitting is mitigated more with the increase in hardness.
On the other hand, diverse augmentation generally can alleviate robust overfitting and boost both
accuracy and robustness. These results give us the insight that the optimal data augmentation for
adversarial training should have as much diversity as possible and well-balanced hardness.

To improve robust generalization, we propose a new image transformation, Cropshift, a more di-
verse replacement for the conventional crop operation, Padcrop. Cropshift is used as a component in
a new data augmentation scheme that we call Improved Diversity and Balanced Hardness (IDBH).
Empirically, IDBH achieves the state-of-the-art robustness and accuracy among data augmentation
methods in adversarial training. It improves the end robustness to be significantly higher than the
robustness of the baseline augmentation with early-stopping (Fig. 1), which all previous attempts
failed to achieve. Furthermore, it matches the performance of the state-of-the-art regularization
methods for improving adversarial training and, when combined with weight averaging, consider-
ably outperforms almost all of them in terms of robustness.

2 RELATED WORKS

Robust overfitting can be successfully mitigated by smoothing labels, using Knowledge Distilla-
tion (KD) (Chen et al., 2021) and Temporal Ensembling (TE) (Dong et al., 2022), and/or smooth-
ing weights using Stochastic Weight Averaging (SWA) (Chen et al., 2021) and Adversarial Weight
Perturbation (AWP) (Wu et al., 2020). Moreover, Singla et al. (2021) found that using activation
functions with low curvature improved the generalization of both accuracy and robustness. Alterna-
tively, Yu et al. (2022) attributed robust overfitting to the training examples with small loss value,
and showed that enlarging the loss of those examples during training, called Minimum Loss Con-
strained Adversarial Training (MLCAT), can alleviate robust overfitting. Our work prevents robust
overfitting by data augmentation, and hence complements the above methods.

To date, it is still unclear if more training data benefits generalization in adversarial training. Schmidt
et al. (2018) showed that adversarial training requires more data, compared to its standard training
counterpart, to achieve the same level of generalization. In contrast, Min et al. (2021); Chen et al.
(2020) proved that more training data can hurt the generalization in some particular adversarial
training regimes on some simplified models and tasks. Empirically, a considerable improvement has
been observed in both clean and robust accuracy when the training set is dramatically expanded, in
a semi-supervised way, with unlabeled data (Carmon et al., 2019; Alayrac et al., 2019), e.g., using
Robust Self-Training (RST) (Carmon et al., 2019) or with synthetic data generated by a generative
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model (Gowal et al., 2021b). Although data augmentation alone doesn’t work well, it was observed
to improve robustness to a large degree when combined with SWA (Rebuffi et al., 2021) or Consis-
tency (CONS) regularization (Tack et al., 2022). In contrast, our work doesn’t require any additional
data or regularization: it improves robust generalization by data augmentation alone.

Common augmentations (He et al., 2016a) used in image classification tasks include Padcrop
(padding the image at each edge and then cropping back to the original size) and Horizontal Flip.
Many more complicated augmentations have been proposed to further boost generalization. Cutout
(DeVries & Taylor, 2017) and Random Erasing (Zhong et al., 2020) randomly drop a region in the
input space. Mixup (Zhang et al., 2018) and Cutmix (Yun et al., 2019) randomly interpolate two
images, as well as their labels, into a new one. AutoAugment (Cubuk et al., 2019) employs a combi-
nation of multiple basic image transformations like Color and Rotation and automatically searches
for the optimal composition of them. TrivialAugment (Müller & Hutter, 2021) matches the perfor-
mance of AutoAugment with a similar schedule yet without any explicit search, suggesting that this
computationally expensive process may be unnecessary. The method proposed here improves on the
above methods by specifically considering the diversity and hardness of the augmentations. The dif-
ference between data augmentation in standard and adversarial training is discussed in Appendix B.

3 HOW DATA AUGMENTATION ALLEVIATES ROBUST OVERFITTING

This section describes an investigation into how the hardness and the diversity of data augmentation
effects overfitting in adversarial training. During training, the model’s robustness was tracked at
each epoch using PGD10 applied to the test set. The checkpoint with the highest robustness was
selected as the ”best” checkpoint. Best (end) robustness/accuracy refers to the robustness/accuracy
of the best (last) checkpoint. In this section, the terms accuracy and robustness refer to the end
accuracy and robustness unless specified otherwise. The severity of robust overfitting was measured
using the best robustness minus the end robustness. Hence, the more positive this gap in robustness
the more severe the robust overfitting. The training setup is described in Appendix C.

3.1 HARDNESS

Hardness was measured by the Affinity metric (Gontijo-Lopes et al., 2021) adapted from standard
training:

hardness =
Robustness(M,Dtest)

Robustness(M,D′
test)

(1)

where M is an arbitrary model adversarially trained on the unaugmented training data. Dtest refers
to the original test data set and D′

test is Dtest with the augmentation (to be evaluated) applied.
Robustness(M,D) is the robust accuracy of M evaluated using PGD50 on D. Hardness is a
model-specific measure. It increases as the augmentation causes the data to become easier to attack,
i.e., as the perturbed, augmented, data becomes more difficult to be correctly classified.

We found that moderate levels hardness can alleviate robust overfitting and improve the robustness
but at the price of accuracy. Further increasing hardness causes both accuracy and robustness to
decline, even though robust overfitting is alleviated further. The value of hardness where this occurs
is very sensitive to the capacity of the model. Therefore, to maximize robustness, hardness should be
carefully balanced, for each model, between alleviating robust overfitting and impairing accuracy.

Experimental design. We investigated the effects of hardness in adversarial training for individual
and composed augmentations. For the individual augmentations the following 12 image transforma-
tions were choosen: ShearX, ShearY, TranslateX, TranslateY, Rotate, Color, Sharpness, Brightness,
Contrast, Solarize, Cutout and Cropshift (a variant of Padcrop introduced in Section 4). For each
Eq. (1) was used to calibrate the strength of the augmentation (e.g. angle for Rotation) onto one of
7 levels of hardness (see Appendix C.2 for specific values), except for Color and Sharpness which
were applied at 3 strengths. For simplicity, the integers 1 to 7 are used to represent these 7 degrees
of hardness. Standard Cutout is allowed to cut partially outside the image, and thus the hardness is
not always directly related to the nominal size of the cut-out region (strength). To ensure alignment
between strength and hardness, we force Cutout to cut only inside the image and refer this variant as
Cutout-i. To control for diversity, each augmentation was applied with one degree of diversity. As a
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Figure 2: The performance of models trained with different individual transformations (top row) and
composed augmentations (bottom row). None refers to no data augmentation applied. Robustness
is evaluated against PGD50.

result the effects of applying Cutout and Cropshift with a certain hardness is deterministic through-
out training. Specifically, Cutout always cuts at the fixed location (sampled once at the beginning
of training). Similarly, CropShift crops a fixed region and shifts it to the fixed location (both sam-
pled once at the beginning of training). We name these two variants as Cutout-i-1 and CropShift-1
respectively. Models were trained with each transformation at each hardness.

To investigate composed augmentations, models were trained with various multi-layered
data augmentations: Flip-Padcrop (FP), FP-Cutout[Weak] (CW), FP-Cutout[Strong] (CS), FP-
AutoAugment-Cutout (AuA) and FP-TrivialAugment-Cutout (TA). All of them shared the same
parameters for Flip and Padcrop. CW and CS used 8x8 and 10x10 Cutout respectively. AuA and TA
used 16x16 Cutout as in their original settings (Cubuk et al., 2019; Müller & Hutter, 2021). Different
from the default experimental setting, augmentations here were always applied during training, and
robustness was evaluated against AA since AuA was observed to fool the PGD attack (Appendix A).

Hardness increases from FP to TA as more layers stack up and/or the strength of individual compo-
nents increases. Hence, this experiment can, as for the experiments with individual augmentations,
be seen as an investigation into the effects of increasing hardness. Here, we are not controlling for
diversity, which also roughly increases from FP to TA. However, this does not affect our conclusions
as diversity boosts accuracy and robustness (see Section 3.2), and hence, the decrease in these values
that we observe with increased hardness cannot be explained by the effects of increased diversity.

Observations. It can be seen that the gap between best and end robustness drops, i.e., robust
overfitting turns milder with the increase in hardness in Figs. 2a and 2d. The gap of robustness for
AuA is negative in Fig. 2d because the PGD10 attack was fooled to select a vulnerable checkpoint
as the best: see Appendix A for more discussion. For accuracy and robustness, there are roughly
three phases. First, both accuracy (Fig. 2b) and robustness (Fig. 2c) increase with hardness. This
is only observed for some transformations like Cropshift at hardness 1 and 2. In this stage, the
underlying model has sufficient capacity to fit the augmented data so it benefits from the growth of
data complexity.

Second, accuracy (Fig. 2b) starts to drop while robustness (Fig. 2c) continuously increases. As the
intensity of the transformation increases, the distribution of the transformed data generally deviates
more from the distribution of the original data causing the mixture of them to be harder to fit for
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Figure 3: Performance of the models trained using augmentations with different type diversity (top
row), spatial diversity (middle row) and strength diversity (bottom row). Spatial diversity rises from
the restricted variant (solid lines) to the unrestricted variant (dashed lines) for the same transforma-
tion (line color) in Figs. 3d, 3e and 3f. Robustness is evaluated against PGD50.

standard training. Adversarial training can be considered as standard training plus gradient regular-
ization (Li & Spratling, 2022). Roughly speaking, accuracy drops in this stage because the model’s
capacity is insufficient to fit the increasingly hard examples for the optimization of the clean loss
(standard training) under the constraint of gradient regularization. Nevertheless, robustness could
still increase due to the benefit of increasing robust generalization, i.e., smaller adversarial vulner-
ability. Third, accuracy (Fig. 2e) and robustness (Fig. 2f) drop together. Accuracy continues to
decline due to the severer (standard) underfitting. Meanwhile, the harm of decreasing accuracy now
outweighs the benefit of reduced robust overfitting, which results in the degeneration of robustness.

The graphs of Color, TranslateX and TranslateY are omitted from Figs. 2a, 2b and 2c because
they exhibit exceptional behavior at some values of hardness. Nevertheless, these results generally
show that robust overfitting is reduced and robustness is improved. These results are presented and
discussed in Appendix D.1. Appendix D.2 provides a figure showing best accuracy as a function of
hardness for individual augmentations. A more obvious downward trend with increasing hardness
can be seen in this graph compared to the graph for end accuracy shown in Fig. 2b

3.2 DIVERSITY

To investigate the effects of augmentation diversity, variation in the augmentations was produced in
three ways: (1) using varied types of transformations (”type diversity”); (2) varying the spatial area
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to augment (”spatial diversity”); and (3) increasing the variance of the strength while keeping the
mean strength constant (”strength diversity”).

Type diversity. We uniformly drew M transformations, with fixed and roughly equivalent hard-
ness, from the same pool of transformations as the individual experiment in Section 3.1 but excluding
Cutout and Cropshift. During training, one of these M transformations was randomly sampled, with
uniform probability, to be applied to each sample separately in a batch. Diversity increases as M
increases from 0 (no augmentation applied) to 10 (one augmentation from a pool of 10 applied). The
experiments were repeated for three levels of hardness {1, 2, 3}. For all levels of hardness, the gap
of robustness (Fig. 3a) reduces, and the end robustness (Fig. 3b) and accuracy (Fig. 3c) increases, as
M increases. These trends are more pronounced for higher hardness levels.

Spatial diversity. Transformations like Cutout and Cropshift (described in Section 4) have large
inherent diversity due to the large number of possible crop and/or shift operations that can be per-
formed on the same image. For example, there are 28x28 possible 4x4 pixel cutouts that could be
taken from a 32x32 pixel image, all with the same strength of 4x4. In contrast, transformations
like Shear and Rotation have only one, or if sign is counted, two variations at the same strength,
and hence, have a much lower inherent diversity. To investigate the impact of this rich spatial di-
versity, we run the experiments to compare the performance of Cutout-i-1 with Cutout-i, and to
compare Cropshift-1 and Cropshift, at various levels of hardness. In both cases the former variant
of the augmentation method is less diverse than the latter. We observed that the rich spatial diversity
in Cutout-i and Cropshift helps dramatically shrink the gap between the best and end robustness
(Fig. 3d), and boost the end robustness (Fig. 3e) and accuracy (Fig. 3f) at virtually all hardness.

Strength diversity. Diversity in the strength was generated by defining four ranges of hardness:
{4}, {3, 4, 5}, {2, 3, 4, 5, 6} and {1, 2, 3, 4, 5, 6, 7}. During training each image was augmented
using a strength uniformly sampled at random from the given range. Hence, for each range the hard-
ness of the augmentation, on average, was the same, but the diversity of the augmentations increased
with increasing length of the hardness range. Models trained with differing diversity were trained
with each of the individual transformations defined in Section 3.1 excluding Color and Sharpness.
Strength diversity for Cutout-1, Cropshift-1 and Rotate can be seen to significantly mitigate robust
overfitting (Fig. 3g) and boost robustness (Fig. 3h), whereas for the other transformations it seems
have no significant impact on these two metrics. Nevertheless, a clear increase in accuracy (Fig. 3i)
is observed when increasing strength diversity for almost all transformations.

4 DIVERSE AND HARDNESS-BALANCED DATA AUGMENTATION

This section first describes Cropshift, our proposed version of Padcrop with enhanced diversity and
disentangled hardness. Cropshift (Fig. 4; Algorithm 1) first randomly crops a region in the image
and then shifts it around to a random location in the input space. The cropped region can be either
square or rectangular. The strength of Cropshift is parameterized by the total number, N , of cropped
rows and columns. For example, with strength 8, Cropshift removes l, r, t, b lines from the left, right,
top and bottom borders respectively, such that l + r + t+ b = 8. Cropshift significantly diversifies
the augmented data in terms of both the content being cropped and the localization of the cropped
content in the final input space. Furthermore, Cropshift offers a more fine-grained control on the
hardness. In contrast, for Padcrop hardness is not directly related to the size of the padding, as for
example, using 4 pixel padding can results in cropped images with a variety of total image content
that is trimmed (from 4 rows and 4 columns trimmed, to no rows and no columns trimmed).

To mitigate robust overfitting, we propose a new data augmentation scheme with Improved Diver-
sity and Balanced Hardness (IDBH). Inspired by Müller & Hutter (2021), we design the high-level
framework of our augmentation as a 4-layer sequence: flip, crop, color/shape and dropout. Each
has distinct semantic meaning and is applied with its own probability. Specifically, we implement
flip using Horizontal Flip, crop using Cropshift, dropout using Random Erasing, and color/shape
using a set of Color, Sharpness, Brightness, Contrast, Autocontrast, Equalize, Shear (X and Y) and
Rotate. The color/shape layer, when applied to augment an image, first samples a transformation ac-
cording to a probability distribution and then samples a strength from the transformation’s strength
range. This distribution and the strength range of each component transformation are all theoret-
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Figure 4: Illustration Cropshift (top) and Pad-
crop (bottom) with equivalent hardness.

Algorithm 1. Pseudo code of Cropshift.
Note: randi(N) uniformly samples an integer be-
tween [0, N).

w, h = get image size(img)
// crop region of orig. image
cropx, cropy = randi(N), N − cropx
topx, topy = randi(cropx), randi(cropy)
w′, h′ = w − cropx, h− cropy
cropped = crop(img, topx, topy, w′, h′)
// shift the cropped region
x, y = randi(cropx), randi(cropy)
aug = zeros like(img)
aug[x : x+ w′, y : y + h′] = cropped

ically available to optimize. Pseudo-code for the proposed augmentation procedure can be found
in Appendix E.

The probability and the strength of each layer was jointly optimized by a heuristic search to max-
imize the robustness. It is important to optimize all layers together, rather than individually. First,
this enables a more extensive and more fine-grained search for hardness so that a potentially better
hardness balance can be attained. Moreover, it allows a certain hardness to be achieved with greater
diversity. For example, raising hardness through Cropshift also improves diversity, while doing so
through the color/shape layer hardly increases diversity. However, optimizing the parameters of all
layers jointly adds significantly to the computational burden. To tackle this issue, the search space
was reduced based on insights gained from the preliminary experiments and other work, and grid
search was performed only over this smaller search space. Full details are given in Appendix E. A
better augmentation schedule might be possible if, like AuA, a more advanced automatic search was
applied. However, automatically searching data augmentation in adversarial training is extremely
expensive, and was beyond the resources available to us.

IDBH improves diversity through the probabilistic multi-layered structure which results in a very
diverse mixture of augmentations including individual transformations and their compositions. We
further diversify our augmentation by replacing the conventional crop and dropout methods, Padcrop
and Cutout, in AuA and TA with their diversity-enhanced variants Cropshift and Random Erasing
respectively. IDBH enables balanced hardness, as the structure design and optimization strategy
produce a much larger search space of hardness, so that we are able to find an augmentation that
achieves a better trade-off between accuracy and robustness.

5 RESULTS

We adopt the following setup for training and evaluation (fuller details in Appendix C). The model
architectures used were Wide ResNet34 with widening factor of 1 (WRN34-1), its 10x widened
version WRN34-10 (Zagoruyko & Komodakis, 2016) and PreAct ResNet18 (PRN18) (He et al.,
2016b). For PRN18, we report the result of two variants, weak and strong, of our method with
slightly different parameters (hardness), because we observed a considerable degradation of best
robustness on the strong variant when combined with SWA.

5.1 STATE-OF-THE-ART DATA AUGMENTATION FOR ADVERSARIAL TRAINING

From Tab. 1 it can be seen that our method, IDBH, achieves the state-of-the-art best and end robust-
ness for data augmentations, and its improvement over the previous best method is significant. The
robust performance is further boosted when combined with SWA. Moreover, our method is the only
one on WRN34-1 that successfully improves the end robustness to be higher than the best robustness
achieved by the baseline. On PRN18, IDBH[strong] improves the end robustness over the baseline’s
best robustness by +1.78%, which is much larger than the existing best record (+0.5%) achieved by
AuA. This suggests that data augmentation alone, contrary to the previous failed attempts, can sig-
nificantly beat the baseline augmentation with ES. More importantly, our method also presents the
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Table 1: Performance of various data augmentation methods (w.o. SWA) and their weight-averaged
variants (w. SWA) for WRN34-1 and PRN18 on CIFAR10. The best record is highlighted for each
metric in each block. All methods were trained in the same way, except that Cutmix was trained
longer for convergence as in Rebuffi et al. (2021). Robustness is evaluated against AA.

Augmentation
w.o. SWA w. SWA

Accuracy (%) Robustness (%) Accuracy (%) Robustness (%)

best end diff. best end diff. best end diff. best end diff.

Wide ResNet34-1

baseline 78.37 78.96 -0.58 45.11 43.84 1.26 77.76 79.47 -1.71 45.71 44.69 1.02
Cutout 77.65 78.41 -0.76 45.22 44.43 0.78 76.86 79.09 -2.23 45.74 45.37 0.37
Cutmix 74.12 75.52 -1.40 45.10 44.49 0.61 77.95 78.06 -0.11 45.27 45.32 -0.05
AuA 74.59 74.93 -0.34 42.62 43.28 -0.66 75.30 75.36 -0.06 43.44 43.52 -0.08
TA 73.19 73.37 -0.18 42.06 41.92 0.14 73.41 73.53 -0.12 42.79 42.74 0.06
IDBH (ours) 79.07 79.20 -0.13 46.15 45.65 0.50 77.82 79.83 -2.01 46.70 46.26 0.44

PreAct ResNet18

baseline 82.50 83.99 -1.49 48.21 42.46 5.74 79.22 84.67 -5.45 49.18 42.93 6.25
Cutout 83.35 84.14 -0.79 49.18 47.75 1.43 81.98 84.37 -2.39 50.18 48.76 1.42
Cutmix 82.47 81.51 0.96 49.73 48.09 1.65 84.09 85.70 -1.62 50.57 47.50 3.07
AuA 83.41 84.04 -0.62 49.15 48.71 0.44 82.08 84.20 -2.12 49.53 49.59 -0.07
TA 81.68 82.26 -0.58 48.83 48.62 0.21 81.63 82.73 -1.11 49.25 49.42 -0.17
IDBH[weak] (ours) 84.98 85.82 -0.84 50.34 48.94 1.40 84.18 86.45 -2.27 51.73 49.88 1.85
IDBH[strong] (ours) 83.96 84.92 -0.97 50.74 49.99 0.75 82.98 85.49 -2.51 51.49 50.77 0.72

highest best and end accuracy on these architectures, both w. and w.o. SWA, except for WRN34-1
with SWA where our method is very close to the best. Overall, our method improves both accuracy
and robustness achieving a much better trade-off between them.

Data augmentation was found to be sensitive to the capacity of the underlying model. As shown
in Tab. 1, augmentations such as baseline, AuA and TA perform dramatically different on two ar-
chitectures because they use the same configuration across the architectures. Meanwhile, augmen-
tations like Cutout and ours achieve relatively better performance on both architectures but with
different settings for hardness. For example, the optimal strength of Cutout is 8x8 on WRN34-1, but
20x20 on PRN18. Therefore, it is vital for augmentation design to allow optimization with a wide
enough range of hardness in order to generalize across models with different capacity. A further
discussion about generalization to alternative architectures like transformers is in Appendix F.1.

5.2 BENCHMARKING STATE-OF-THE-ART ROBUSTNESS WITHOUT EXTRA DATA

Tab. 2 shows the robustness of recent robust training and regularization approaches. IDBH matches
the best robustness achieved by these methods on PRN18, and outperforms them considerably in
terms of best robustness on WRN34-10. This is despite IDBH not being optimised for WRN34-10.
In addition, our method also produces an end accuracy comparable to the best achieved by others
suggesting a better trade-off between accuracy and robustness. More importantly, the robustness can
be further improved by combining SWA and/or AWP with IDBH. This suggests that IDBH improves
adversarial robustness in a way complementary to other regularization techniques. We highlight that
our method when combined with both AWP and SWA achieves state-of-the-art robustness without
extra data. We compare our method with those relying on extra data in Appendix D.3.

5.3 GENERALIZATION TO OTHER DATASETS

Our augmentation generalizes well to other datasets like SVHN and TIN (Tab. 3). It greatly reduces
the severity of robust overfitting and improves both accuracy and robustness over the baseline aug-
mentation on both datasets. The robustness on SVHN has been dramatically improved by +7.12%
for best and +13.23% for end. The robustness improvement on TIN is less significant than that on
the other datasets because we simply use the augmentation schedule of CIFAR10 without further
optimization. A detailed comparison with those regularization methods on these two datasets can be
found in Appendix D.4. Please refer to Appendix F.2 for generalization analysis to larger datasets
like ImageNet (Deng et al., 2009) and Appendix C for the training and evaluation settings.
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Table 2: Performance of methods for alleviating robust overfitting for PRN18 and WRN34-10 on
CIFAR10. Robustness is evaluated against AA.

Method
PreAct ResNet18 Wide ResNet34-10

Accuracy (%) Robustness (%) Accuracy (%) Robustness (%)

best end diff. best end diff. best end diff. best end diff.

AT (Madry et al., 2018) 82.50 83.99 -1.49 48.21 42.46 5.75 85.90 86.63 -0.74 53.42 48.22 5.20
TRADE (Zhang et al., 2019) 81.19 82.48 -1.29 49.03 46.80 2.23 84.65 - - 53.08 - -
Pretraining (Hendrycks et al., 2019) - - - - - - 87.89 - - 54.92 - -
AWP (Wu et al., 2020) 83.33 84.39 -1.06 50.57 49.95 0.62 85.57 - - 54.04 - -
MLCAT (Yu et al., 2022) 84.10 84.77 -0.67 50.70 50.32 0.38 - - - 54.65 54.56 0.09
CONS (Tack et al., 2022) 85.25 86.45 -1.20 49.05 48.57 0.48 89.93 89.82 0.11 54.08 52.36 1.72
KD (Chen et al., 2021) 84.51 85.40 -0.89 49.87 49.72 0.15 86.81 87.06 -0.25 55.50∗ 55.34∗ 0.16
TE (Dong et al., 2022) 82.35 82.79 -0.44 50.59 49.62 0.97 - - - - - -
IDBH[strong] (ours) 83.96 84.92 -0.97 50.74 49.99 0.75 88.61 89.12 -0.52 55.83 54.01 1.82
IDBH[weak]+SWA (ours) 84.18 86.45 -2.27 51.73 49.88 1.85 89.04 89.93 -0.89 57.70 54.10 3.61
IDBH[weak]+AWP (ours) 82.98 83.03 -0.05 52.27 52.21 0.06 88.47 88.94 -0.47 57.88 57.68 0.20
IDBH[weak]+AWP+SWA (ours) 83.42 83.45 -0.03 52.46 52.52 -0.06 89.00 89.08 -0.08 58.16 58.13 0.04
The source of the results in this table are described in Appendix C. Results marked ∗ are evaluated

against PGD20 so the AA robustness is expected to be lower.

Table 3: Performance of our method for PRN18
on SVHN and TIN. Robustness is evaluated by
AA (AutoPGD) for SVHN (TIN).

Data Augmentation Accuracy (%) Robustness (%)

best end best end

SVHN baseline 90.55 90.18 47.48 40.86
IDBH (ours) 93.70 93.92 54.56 54.09

TIN baseline 46.94 46.60 20.19 13.82
IDBH (ours) 50.91 51.21 21.29 19.22

Table 4: Performance of variants of IDBH for
PRN18 on CIFAR10. Robustness is evaluated
by AA.

SWA Variant Accuracy (%) Robustness (%)

best end best end

w.o. padcrop 83.74 84.82 50.15 49.25
cropshift 83.96 84.92 50.74 49.99

w. padcrop 83.11 85.21 51.14 49.40
cropshift 84.18 86.45 51.73 49.88

5.4 ABLATION TEST

We find that Cropshift outperforms Padcrop in our augmentation framework. To compare them, we
replaced Cropshift with Padcrop in IDBH and kept the remaining layers unchanged. The strength
of Padcrop was then optimized for the best robustness separately for w. and w.o. SWA. As shown
in Tab. 4, changing Cropshift to Padcrop in our augmentation observably degrades both accuracy
and robustness both w. and w.o. SWA.

6 CONCLUSION

This work has investigated data augmentation as a solution to robust overfitting. We found that
improving robust generalization for adversarial training requires data augmentation to be as diverse
as possible while having appropriate hardness for the task and network architecture. The optimal
hardness of data augmentation is very sensitive to the capacity of the model. To mitigate robust
overfitting, we propose a new image transformation Cropshift and a new data augmentation scheme
IDBH incorporating Cropshift. Cropshift significantly boosts the diversity and improves both accu-
racy and robustness compared to the conventional crop transformation. IDBH improves the diver-
sity and allows the hardness to be better balanced compared to alternative augmentation methods.
Empirically, IDBH achieves the state-of-the-art accuracy and robustness for data augmentations in
adversarial training. This proves that, contrary to previous findings, data augmentation alone can
significantly improve robustness and beat the robustness achieved with baseline augmentation and
early-stopping. The limit of our work is that we did not have sufficient computational resources to
perform more advanced, and more expensive, automatic augmentation search like AutoAugment,
which implies that the final augmentation schedule we have described may be suboptimal. Never-
theless, the proposed augmentation method still significantly improves both accuracy and robustness
compared to the previous best practice. We discuss the potential plans to improve in Appendix F.3.
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(a) PreAct ResNet18

(b) Wide ResNet34-1

Figure 5: The test robustness measured using PGD (blue lines) and AA (red lines) every 10 epochs
during training. Results are shown, with solid lines, for PreAct ResNet18 (top) and Wide ResNet34-
1 (bottom) trained with AutoAugment (AuA). The dashed lines represent the best robustness of the
same models trained with the baseline data augmentation method, Flip-Padcrop, rather than AuA.

A RECONCILING THE CONTRADICTORY RESULTS FOR AUTOAUGMENT

Experimental Setting. AutoAugment was implemented as in the original paper (Cubuk et al.,
2019): Horizontal Flip in half chance, Padcrop with 4 pixels padding, Color/shape layer searched
for CIFAR10, 16x16 Cutout. We adopted the implementation of the color/shape layer from PyTorch
(Paszke et al., 2019). The model architectures were Wide ResNet34-1 and PreAct ResNet18. We
trained the models using the same settings as Tack et al. (2022), which is actually our default training
setting in Section 5. Robustness was evaluated against both Projected Gradient Descent (PGD)
(Madry et al., 2018) with 10 steps and AutoAttack (AA) (Croce & Hein, 2020).

We observe, similar to Tack et al. (2022), that the PGD robustness of AuA-trained models increases
over the baseline PGD robustness at the later stage of training for both network architectures (see
Fig. 5. In contrast, the AA robustness is similar to (Fig. 5a), or is worse than (Fig. 5b), the baseline’s.
AA has been widely recognized as a more advanced attack that is better able to estimate adversarial
robustness reliably (Croce & Hein, 2020). Therefore, we conclude that AuA fails to significantly
boost the end robustness over the baseline, and the impressive improvement regarding PGD robust-
ness is misleading. The misalignment between PGD robustness and AA robustness is more explicit
in Fig. 5b, where the ”best” checkpoint detected by PGD robustness is different from that of AA
robustness. That’s why the severity of robust overfitting is observed to be negative in Section 3.1
and Section 5.1.

Our results, and those of Tack et al. (2022), for AutoAugment on PreAct ResNet18 are inconsistent
with previous work that found that the end robustness (Carmon et al., 2019), and even the best ro-
bustness (Gowal et al., 2021a), of AutoAugment is lower than the best robustness of the baseline
augmentation. We suspect that these contradictory results may be partially due to inconsistent use
of the term AutoAugment. Tack et al. (2022) explicitly state their AutoAugment includes Hori-
zontal Flip, Padcrop and Cutout as in the original work (Cubuk et al., 2019). In contrast, Carmon
et al. (2019); Gowal et al. (2021a) seem to refer AutoAugment as only the color/shape layer and
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the remaining three component augmentations may or may not have been included. Specifically,
Carmon et al. (2019) state AutoAugment is used in addition to Padcrop and Horizontal Flip, and
Gowal et al. (2021a) state AutoAugment is used with the original setting, but no specific implemen-
tation information is given. Another possible account is that they used different training settings,
and particularly a different capacity model, which has an important impact on the performance of
data augmentations in adversarial training as shown in Secs. 3.1 and 5.1.

B DIFFERENCES BETWEEN DATA AUGMENTATION IN STANDARD AND
ADVERSARIAL TRAINING

The idea of jointly handling hardness and diversity has been studied before in standard training
(Gontijo-Lopes et al., 2021; Wang et al., 2021). However, the impact of hardness and diversity of
data augmentation on adversarial training has never been researched before. This topic is particularly
important because many previous attempts (discussed in Section 1) to solve robust overfitting using
data augmentation methods from standard training failed and the cause of this failure is unclear.
Our analysis provides some insight on why directly transferring data augmentation methods from
standard training to adversarial training does not work.

More importantly, we find that the impact of hardness on adversarial training is very different from
that on standard training. Gontijo-Lopes et al. (2021) and Wang et al. (2021) both claim that increas-
ing both diversity and hardness will produce better data augmentation, which is in contrast to our
finding that too hard data augmentation hurts both accuracy and robustness (we all share the same
conclusion on diversity). This suggests that these two training paradigms, standard training and
adversarial training, may require fundamentally different data augmentations. Therefore, we pro-
pose IDBH to maximize the diversity and balance the hardness according to the underlying model
architecture, whereas Gontijo-Lopes et al. (2021); Wang et al. (2021) propose to maximize them
both.

C EXPERIMENTAL SETTINGS

C.1 TRAINING SETUP

Section 3. The experiments in this section were based on the following settings unless otherwise
specified. The model’s architecture was Wide ResNet34-1 (widening factor of 1) (Zagoruyko &
Komodakis, 2016). The dataset was CIFAR10 (Krizhevsky, 2009). Data augmentation, if specified,
was applied with 50% chance, i.e., half the time augmentation was applied and half the time it was
not applied. Models were trained by stochastic gradient descent for 200 epochs with initial learning
rate 0.1, divided by 10 at the epochs 100 and 150. The momentum was 0.9, the weight decay was
5e-4 and the batch size was 128. CrossEntropy loss was used. For both adversarial training and
evaluation, we used the same attack, l∞ projected gradient descent (Madry et al., 2018), with a
perturbation budget, ϵ, of 8/255 and a step size of 2/255. The number of steps was 10 and 50 for
training and evaluation respectively. Result were averaged over 5 runs. Experiments were run on
Tesla V100 and A100 GPUs.

Section 5. The experimental settings were identical to those used in Section 3 unless specified
below. The training method was PGD10 adversarial training (Madry et al., 2018). SWA was imple-
mented as in Rebuffi et al. (2021). Robustness was evaluated against AA using the implementation
of Kim (2021). In contrast to Section 3, data augmentation, if used, was always applied. We ad-
ditionally evaluated on the datasets SVHN (Netzer et al., 2011) and Tiny ImageNet (TIN) (Le &
Yang, 2015). As in previous work Yu et al. (2022), the baseline augmentation for SVHN was no
data augmentation. The baseline data augmentation for TIN was the same as used for CIFAR10 i.e.,
Horizontal Flip (applied at half chance) and Padcrop with 4 pixel padding. Adversarial training was
applied when training with TIN in exactly the same way it was as when training on CIFAR10. The
reported results are averages over three runs, and the standard deviation is reported in Appendix D.5.

To train on SVHN, the initial learning rate was 0.01, the step size was 1/255 and the perturbation
budget, ϵ, was increased from 0 to 8/255 linearly in the first five epochs and then kept constants for
the remaining epochs in order to stabilize the training, as suggested by Andriushchenko & Flam-
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Table 5: The strength of individual transformations corresponding to the 7 degrees of hardness.

Hardness

1 2 3 4 5 6 7

Robustness(%)

45 40 35 30 25 20 15

Transform Strength

ShearX 0.1 0.24 0.33 0.4 0.45 0.55 0.7
ShearY 0.1 0.2 0.3 0.37 0.45 0.55 0.7
TranslateX 1 3 4 6 7 9 11
TranslateY 1 3 4 6 7 9 10
Rotate 3 7 12 15 19 23 31
Contrast 0.92 0.82 0.73 0.67 0.62 0.56 0.5
Brightness 0.92 0.82 0.75 0.7 0.65 0.6 0.56
Color 0.7 0.3 0.1 - - - -
Sharpness 0.7 0.3 0.01 - - - -
Solarize 253 240 224 210 195 185 172
Cropshift 1 4 7 9 12 15 18
Cutout-i 3 6 9 11 13 15 18

marion (2020), otherwise, the same set-up was used as when training on CIFAR10. For adversarial
evaluation, robustness on TIN was evaluated against AutoPGD (Croce & Hein, 2020) with 50 itera-
tions and 5 restarts since we did not have access to sufficient computational resources to run AA for
TIN on a PreAct ResNet18.

We re-optimized the strength of Cutout and Cutmix per model architecture. AuA was parameterized
as in Cubuk et al. (2019) since we didn’t have sufficient resource to optimize. TA is parameter-free
so no tuning was needed. The size of cut-out area for Cutout was searched for within the range of
{4x4, 6x6, 8x8, ..., 28x28}. The optimal size we found was 8x8 when useing Wide ResNet34-1 and
20x20 when using PreAct ResNet18. Following the procedure used in Yun et al. (2019), for Cutmix
the value of the hyper-parameter α was searched for over the range {0.1, 0.25, 0.5, 1.0, 2.0, 4.0}.
The optimal α we found was 0.1 on Wide ResNet34-1 and 0.25 on PreAct ResNet18. Cutout and
Cutmix were applied with the default (baseline) augmentations in the order of Flip-Padcrop-Cutout
and -Cutmix respectively. Similarly, for AuA (and TA) augmentions were applied in the order of
Flip-Padcrop-AuA (TA)-Cutout as in Cubuk et al. (2019) (Müller & Hutter (2021)).

The source of the result being compared in Tab. 2 is as follows. For PreAct ResNet18, the result of
AT, AWP and KD were determined by us. The result of TRADE is from Dong et al. (2022). For
Wide ResNet34-10, the result of AT was determined by us. The result of TRADE, Pre-training and
AWP is from Wu et al. (2020). Otherwise, the results are copied directly from the original work. All
methods use the same training setting, except KD and Pre-training.

C.2 STRENGTH AND HARDNESS OF INDIVIDUAL TRANSFORMATIONS

The 7 degrees of hardness used were: {1.04, 1.17, 1.34, 1.56, 1.87, 2.34, 3.12}. This cor-
responds to the denominator in Eq. (1), i.e., Robustness(M,D′

test), having values of
{45, 40, 35, 30, 25, 20, 15}% as the PGD50 robustness of the model on the original test data (no data
augmentation applied), i.e., Robustness(M,Dtest), was 46.93%. The search range was constrained
to be between 0 and 1 for the transformations Color, Sharpness, Brightness and Contrast. The corre-
sponding strength of each individual transformation is described in Tab. 5. Note that the correspon-
dence between strength and hardness is approximate because the real Robustness(M,D′

test) is not
exactly equal to the nominal value given above, e.g., the Robustness(M,D′

test) of ShearX with
strength 0.1 is only close to, instead of strictly equal to, 45%. Nevertheless, the variation between
the real and the nominal Robustness(M,D′

test) for all transformations is small so this should not
effect our analysis.
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(a) (b) (c)

(d) (e) (f)

Figure 6: The comparison of the exceptional transformations Color, TranslateX and TranslateY (top
row) and the others (bottom row) regarding the effect of hardness on the performance of adversarial
training. The results at the bottom row also appear in Fig. 2 and are re-produced here to aid compar-
ison. Robustness is evaluated against PGD50.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 EXCEPTIONAL TRANSFORMATIONS IN HARDNESS EXPERIMENTS

The figures of Translate (X and Y) and Color present exceptional patterns, as shown in Fig. 6. First,
robust overfitting and end robustness jumps abruptly, at hardness 3, to the same level of performance
as training without augmentation (the gray dashed line). This suggests that training with any of them
at this particular hardness does not provide a benefit, and can even impair, the robust generalization
and end robustness. This is in contrast to the results produced with other values of hardness for these
specific transformations, as well as the results for other augmentations. Hence, at some strengths
these augmentation don’t make the training data harder to fit although they, recalling how we mea-
sure the hardness, do make the test data more vulnerable to adversarial attacks. For Color, this
may be due to a reduction in diversity as at hardness 3 (strength 0.1) this augmentation transforms
colorful images into gray images (Fig. 7).

Second, ignoring the behavior at hardness 3 discussed above, for Translate, changing hardness does
not produce the same clear trends in the three metrics that are seen with increasing hardness for the
other transformations. This suggests that the complexity of data augmented by Translate doesn’t
increase consistently, at least within the evaluated range, with the increase in strength. A possible
explanation for this is that the foreground object lies in the center of the image in most CIFAR10
samples and, therefore, translating the image will typically only remove background pixels, and
introduce a black block at one border. A black block at the border is rare in the natural images, so
adding this pattern to the data should increase the complexity. However, increasing the strength of
Translate may have little further impact on the data complexity, because it only increases the size
of the black regions while remove a few additional informative pixels from the opposite edge of the
image. This contrasts with the other investigated transformations, like Shear, in which increased
strength leads to increased distortion or, like Cropshift, which introduce more new patterns to the
data (adding black blocks at more borders), with increasing strength. Hence, applying (versus not
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Figure 7: Illustration of the effect of Color transformation with hardness 3 (strength 0.1) on selected
CIFAR10 images. The original images are in the top row, while the augmented images are in the
bottom row.

(a) (b)

Figure 8: The effect of hardness of data augmentation on (a) best accuracy, and (b) end accuracy.
The results for end accuracy also appear in Fig. 2b and are re-produced here to aid comparison.

applying) Translate effects the three metrics observably, but increasing the strength of Translate has
little effect. Overall, these exceptions reflect a defect in measure of hardness, Eq. (1), and we leave
the work of improving it to the future.

D.2 FIGURES OF BEST ACCURACY FOR HARDNESS EXPERIMENTS

Fig. 8a shows the best accuracy with respect to the hardness for transformations excluding Trans-
late and Color. It shows a more obvious downward trend for accuracy with increasing hardness,
compared to the equivalent results for end accuracy Fig. 8b.

D.3 COMPARISON WITH METHODS USING EXTRA DATA

Although our method fails to beat the robustness achieved by RST and PORT, it closes the gap
between the performance of approaches that do not use additional training data with those that
do use such additional data, as shown in Tab. 6. Our method doesn’t require any additional data,
whereas RST and PORT relies on a tremendous amount (0.5 and 10 millions) of unlabeled and
synthetic data respectively. The acquisition of this volume of extra data is very expensive (Sehwag
et al., 2022) and may be infeasible in some particular domains. Moreover, both RST and PORT mix
the original and extra data in equal proportions in each mini-batch so that their actual batch size,
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Table 6: Performance of the methods for improving adversarial training with and without extra data
for Wide ResNet34-10 on CIFAR10. Robustness is evaluated against AA. Accuracy and Robustness
are evaluated on the ”best” checkpoint. The result of RST is copied from Wu et al. (2020).

Method Extra Data (Million) Accuracy (%) Robustness (%)

AT (Madry et al., 2018) - 85.90 53.42
RST (Carmon et al., 2019) 0.5 89.69 59.53
PORT (Sehwag et al., 2022) 10 87.00 60.60
IDBH[strong] (ours) - 88.61 55.83
IDBH[weak]+SWA (ours) - 89.04 57.70
IDBH[weak]+AWP (ours) - 88.47 57.88
IDBH[weak]+AWP+SWA (ours) - 89.00 58.16

Table 7: Performance of the methods for alleviating robust overfitting for PreAct ResNet18 on
SVHN and TIN. Robustness is evaluated against AA for SVHN and and PGD20 for TIN. The results
for the regularization methods are copied from the original works. Note that the original training
set-up for TE (on SVHN) and KD (on TIN) is slightly different from ours.

Dataset Augmentation Accuracy (%) Robustness (%)

best end diff. best end diff.

SVHN

baseline 90.55 90.18 0.37 47.48 40.86 6.62
MLCAT - - - 51.90 49.76 2.14
TE 90.09 90.91 -0.82 51.44 50.61 0.83
ours 93.70 93.92 -0.22 54.56 54.09 0.47

TIN

baseline 46.94 46.60 0.34 23.05 14.41 8.64
CONS 49.46 50.15 0.69 23.31 21.33 1.98
KD 50.57 51.38 -0.81 21.84 21.45 0.39
ours 50.91 51.21 -0.30 24.12 21.08 3.04

and hence computational cost, is twice that of methods, such as ours, that do not use additional data.
The above drawbacks seriously limit the application of RST and PORT.

D.4 COMPARISON WITH REGULARIZATION METHODS ON SVHN AND TIN

As shown in Tab. 7, IDBH achieves dramatic improvement of accuracy and robustness over those
strong baselines on SVHN. Regarding TIN, IDBH, despite not being optimized for this particular
dataset, achieves higher accuracy and robustness compared to KD and CONS.

D.5 STANDARD DEVIATION DATA

Tabs. 8 and 9 provide the standard deviation data for the experimental result reported in Tab. 1,
Tab. 2 and Tab. 3 respectively. Overall, the standard deviation of the robustness, both best and end,
is no greater than 0.7.

E AUGMENTATION SCHEDULE AND OPTIMIZATION

Tab. 10 shows the reduced search space used to optimize hyperparameters for our proposed IDBH
augmentation method (see Algorithm 2). The flip layer was fixed to Horizontal Flip at half chance
following convention. For the crop layer, we searched over 8 combinations, where each had a
different strength range (defined by a changed upper bound) and probability of applying the trans-
formation. For Random Erasing, we considered two strength ranges, (0.02, 0.33) and (0.02, 0.5),
and two probabilities of application, 0.5 and 1.0. In this case strength denotes the proportion of the
image erased. The aspect ratio of the erased area was always uniformly sampled between 0.3 and
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Table 8: Standard deviation of the experimental results in Tab. 1 and Tab. 2.

Augmentation
w.o. SWA w. SWA

Accuracy (%) Robustness (%) Accuracy (%) Robustness (%)

best end best end best end best end

Wide ResNet 34-1

baseline 0.51 0.55 0.15 0.55 0.28 0.09 0.12 0.17
Cutout 0.18 0.43 0.11 0.31 0.11 0.15 0.09 0.15
Cutmix 1.57 1.28 0.29 0.32 0.15 0.08 0.11 0.20
AuA 1.35 0.52 0.28 0.12 0.41 0.30 0.49 0.36
TA 0.33 0.64 0.54 0.28 0.25 0.29 0.11 0.23
IDBH (ours) 0.35 0.39 0.06 0.12 0.22 0.18 0.10 0.04

PreAct ResNet 18

baseline 0.31 0.53 0.57 0.23 0.22 0.13 0.11 0.16
Cutout 0.17 0.40 0.11 0.54 0.13 0.11 0.09 0.12
Cutmix 0.46 0.36 0.33 1.10 0.39 0.09 0.21 0.03
AuA 0.43 0.51 0.38 0.22 1.43 0.06 0.24 0.16
TA 0.31 0.20 0.32 0.40 1.83 0.16 0.39 0.26
IDBH[weak] (ours) 0.21 0.12 0.15 0.15 0.35 0.08 0.16 0.24
IDBH[strong] (ours) 0.42 0.04 0.06 0.25 0.13 0.23 0.25 0.22
IDBH[weak]+AWP (ours) 0.34 0.48 0.26 0.28 0.11 0.07 0.06 0.08

Wide ResNet34-10

baseline 0.57 0.04 0.59 0.17 0.16 0.04 0.01 0.34
IDBH[weak] (ours) 1.58 0.33 0.70 0.50 0.08 0.16 0.11 0.18
IDBH[strong] (ours) 0.32 0.27 0.22 0.27 0.12 0.14 0.13 0.11
IDBH[weak]+AWP (ours) 0.45 0.27 0.23 0.25 0.14 0.11 0.30 0.20

Table 9: Standard deviation of the experimental results in Tab. 3.

Dataset Augmentation Accuracy (%) Robustness (%)

best end best end

SVHN baseline 0.60 0.10 0.59 0.28
ours 0.12 0.14 0.29 0.07

TIN baseline 0.17 0.69 0.18 0.14
ours 0.38 0.03 0.17 0.08
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Table 10: The reduced search space used for each component of IDBH. Strength ”1-X” means
to uniformly sample a value between 1 and X, inclusive. Note that the strength of Cropshift is
discrete so ”1-5” is {1, 2, 3, 4, 5}. The strength of other component augmentations is continuous
unless specified otherwise. ”prob.” denotes the probability of applying the transformation with the
specified strength. For color/shape the strength is defined by a set of individual transformations as
specified in Tab. 11.

Horizontal Flip Cropshift Color/shape Random Erasing

no. strength prob. no. strength prob. no. strength prob. no. strength prob.

1 - 0.5 1 1-5 0.833 (=5/6) 1 ColorBiased 1 1 - 0
2 1-6 0.857 (=6/7) 2 ShapeBiased 1 2 0.02-0.33 0.5
3 1-7 0.875 (=7/8) 3 0.02-0.5 0.5
4 1-8 0.889 (=8/9) 4 0.02-0.33 1
5 1-9 0.900 (=9/10) 5 0.02-0.5 1
6 1-10 0.909 (=10/11)
7 1-11 0.917 (=11/12)
8 1-12 0.923 (=12/13)

3.3. Apart from these 4 combinations (2×2), we add one more case where Random Erasing is never
applied, i.e. where the probability is zero.

Regarding the color/shape layer, two versions were implemented: a color transformations biased
(ColorBiased) version, and a shape transformations biased (ShapeBiased) version, as defined in
Tab. 11. These two realizations reflect the prior expectation that different datasets prefer essentially
different types of transformation in standard training (Cubuk et al., 2019). The strength range of
Color/Brightness/Contrast/Sharpness partially follows (Cubuk et al., 2019), but the lower bound of
Brightness/Contrast is raised to 0.5 to be exempt from extremely hard (distorted) augmentations.
Based on the results of the preliminary experiments, the strength range of Shear and Rotate was se-
lected to have a relatively small average strength for the ColorBiased version, and a modest strength
in the ShapeBiased version. The color (shape) transformations in the ColorBiased (ShapeBiased)
instances are assigned a greater probability of being applied. The overall strength of this layer is
relatively weak so that we can have more space to fine tune the strength of other layers particularly
Cropshift which can boost the diversity alongside the hardness. We realize that there are many more
possible implementations of the color/shape layer, considering additional implementations would
greatly increase the computational burden of optimising the augmentation hyperparamters. Never-
theless, these two implementations reflect our intuition as to reasonable hyperparameters to search,
and our results show that they are adequate to produce a large boost in accuracy and robustness.
Overall, the total search space contains 80 (8× 2× 5) possible augmentation schedules.

We performed the grid search over the reduced search space for each model architecture on each
dataset separately. The exception was we did not optimize our augmentation on TIN and Wide
ResNet34-10 due to a lack of computational resources and simply used the same parameters as
for PreAct ResNet18 on CIFAR10. The optimal schedules found are described in Tab. 12. We
highlight that it is necessary to optimize the parameters for different architectures since our analysis
(Section 3.1), as well as our search results (Tab. 12), suggests that the optimal data augmentation is
very sensitive to the model architecture. We therefore expect that the results for Wide ResNet34-10
could be further improved if we optimize IDBH for it. The search procedure can be sped-up by
being deployed on multiple GPUs in parallel. The efficiency can be further boosted by filtering out
schedules that are likely to be worse based on the feedback of already evaluated schedules. For
example, if a schedule appears to be overwhelmingly hard, degrading the accuracy and robustness,
it is unnecessary to evaluate schedules that are harder.
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Table 11: ColorBiased and ShapeBiased realizations of the color/shape layer. The strength and
”prob.” have the same interpretation as Tab. 10. ±[0.05-0.15] means a range of 0.05-0.15 with a
randomly chosen sign. The strength value of Rotate was discrete. The probabilities of all component
transformations in both realizations sums up to 1.

Transformation ColorBiased ShapeBiased

strength prob. strength prob.

Color 0.1-1.9 0.125 0.1-1.9 0.08
Brightness 0.5-1.9 0.125 0.5-1.9 0.08
Contrast 0.5-1.9 0.125 0.5-1.9 0.04
Sharpness 0.1-1.9 0.125 0.1-1.9 0.08
AutoContrast - 0.125 - 0.04
Equalize - 0.125 - 0.08
ShearX ±[0.05-0.15] 0.0625 0.05-0.35 0.15
ShearY ±[0.05-0.15] 0.0625 0.05-0.35 0.15
Rotate ±[1-10] 0.125 1-30 0.3

Table 12: The optimal augmentation schedules found for our method on various datasets and models.

Data Model Variant Horizontal Flip Cropshift Color/shape Random Erasing

strength prob. strength prob. strength prob. strength prob.

CIFAR10 Wide ResNet34-1 - - 0.5 1-5 0.833 ColorBiased 1 - 0
CIFAR10 PreAct ResNet18 weak - 0.5 1-10 0.909 ColorBiased 1 0.02-0.33 0.5
CIFAR10 PreAct ResNet18 strong - 0.5 1-10 0.909 ColorBiased 1 0.02-0.33 1
SVHN PreAct ResNet18 - - 0 1-8 0.889 ShapeBiased 1 0.02-0.5 1

Algorithm 2. Pseudo-code for IDBH. Px is the probability of applying the transformation x. Sy is the
strength range of the transformation y. rand() uniformly samples a floating-point number between 0
(inclusive) and 1 (exclusive).

Function IDBH(img):
if rand() < Pflip then

img = horizontal flip(img)
end

if rand() < Pcrop then
s = uniform sample(Scrop)
img = cropshift(img, s)

end

if rand() < Pcolor/shape then
/* taking an example of ColorBiased color/shape layer. */
transform, Stransform = sample transform(ColorBiased)
s = uniform sample(Stransform)
img = transform(img, s)

end

if rand() < Pdropout then
s = uniform sample(Sdropout)
img = erase(img, s)

end

return img
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F ADDITIONAL DISCUSSION

F.1 GENERALIZATION TO OTHER MODEL ARCHITECTURES

Vision transformer (ViT) (Han et al., 2023) is an emerging model architecture in the computer vision
community. The latest ViT work (Zhai et al., 2022) achieved state-of-the-art clean accuracy on the
ImageNet recognition challenge (Russakovsky et al., 2015). It is therefore naturally attractive to
test if ViT could also excel regarding adversarial robustness. (Shao et al., 2023) observed that ViTs
exhibited higher adversarial robustness compared to contemporary CNNs with standard training set-
tings. (Mo et al., 2022) found that adversarial training was still necessary for ViTs to attain decent
adversarial robustness. (Mo et al., 2022) then conducted extensive experiments to evaluate various
adversarial training techniques for adversarial robustness. In one of the experiments, they found that
CutMix (Yun et al., 2019) and Mixup (Zhang et al., 2018) were beneficial for adversarially-trained
ViTs to obtain higher adversarial robustness, while RandAugment (Cubuk et al., 2020) impaired
robustness instead. This is consistent to our observation that data augmentation methods like Ran-
dAugment designed for standard training can be too hard for adversarial training. In fact, (Mo et al.,
2022) attributes the failure of RandAugment to the same cause: ”RandAugment is too difficult for
adversarial training of ViTs”. Therefore, we believe that our method of balancing hardness for data
augmentation should also improve the adversarial robustness of ViTs.

F.2 GENERALIZATION TO LARGER DATASETS

We argue that Cropshift and IDBH can still be effective on larger datasets like ImageNet (Deng
et al., 2009). The crop-based transformation RandomResizedCrop (RRC) has been widely used be-
fore in adversarial training on ImageNet (Wong et al., 2020; Shafahi et al., 2019). Although RRC
is different from Cropshift’s backbone crop transformation Padcrop, it is easy to adapt the idea of
Cropshift to RRC to augment its diversity. For example, one can treat the outcome of RRC pipeline
as the input image to the Cropshift pipeline. On the one hand, the way Cropshift augments data is
unseen in RRC-augmented data so it creates effective new data instead of something duplicated. On
the other hand, Cropshift retains most of the semantic information in the input images at normal
strength, so the distribution shift caused by Cropshift can be controlled to be benign, i.e., learnable
and beneficial. Regarding IDBH, it inherits component transformations and multi-layered structure
from the precedent works AutoAugment (Cubuk et al., 2019) and TrivialAugment (Müller & Hut-
ter, 2021), and optimizes the strength (hardness) of transformations for adversarial training. Given
the superior performance of AutoAugment and TrivialAugment on ImageNet, we expect IDBH to
improve adversarial training on ImageNet once appropriately optimized. Therefore, we believe that
Cropshift and IDBH can benefit adversarial training on ImageNet. However, unfortunately, conduct-
ing adversarial training on ImageNet is beyond our computational resources so we can not provide
empirical verification of our argument at this time.

F.3 FUTURE WORKS FOR EFFICIENCY AND EFFECTIVENESS IMPROVEMENT

Low-efficiency heuristic search is a considerable drawback of our work that prevents it from scal-
ing to larger datasets and being applied easily to new datasets. We believe that automatic search
methods like FasterAA (Hataya et al., 2020) and DDAS (Liu et al., 2021) could provide a feasi-
ble and promising solution to this issue in the future. In general, they parameterize the underlying
data augmentation sampler for gradient computation and then integrate it into the backpropagation
pipeline so that the parameters of data augmentations can be optimized towards some predefined
objectives, e.g., maximizing clean accuracy (Cubuk et al., 2019). Some automation techniques can
be incorporated into the normal training pipeline to allow continuous, online, updating of the data
augmentation strategy. This is in contrast to the offline data augmentation method adopted by our
method where the data augmentation strategy is constant throughout training. Online data augmen-
tation, ideally, should outperform the offline one, since it theoretically adapts data augmentation for
models at every stage in training.
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