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Abstract. The proliferation of generative models, combined with pre-
training on web-scale data, raises a timely question: what happens when
models are trained on their own generated outputs? Recent investiga-
tions into model-data feedback loops proposed that such loops would
lead to a phenomenon termed model collapse, under which performance
progressively degrades with each model-data feedback iteration until fit-
ted models become useless. However, those studies largely assumed that
new data replace old data over time, where an arguably more realistic as-
sumption is that data accumulate over time. In this paper, we ask: what
effect does accumulating data have on model collapse? We empirically
study this question by pretraining sequences of deep generative models
(language models, diffusion models, variational autoencoders) on differ-
ent tasks (causal language modeling, molecular conformation, image gen-
eration). After confirming that replacing the original real data by each
generation’s synthetic data does indeed tend towards model collapse, we
discover that accumulating the successive generations of synthetic data
alongside the original real data avoids model collapse. To understand
why accumulating data can avoid model collapse, we use an analytically
tractable framework of linear models introduced by prior work which
showed replacing causes the test error to diverge; we extend their anal-
ysis to prove that if data instead accumulate, the test error has a finite
upper bound independent of the number of iterations, meaning model
collapse no longer occurs. Our work provides consistent empirical and
theoretical evidence that not discarding real data avoids model collapse.
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Fig. 1: Two Settings to Study Model Collapse. Model collapse is a phenomenon
where sequences of generative models trained on their own outputs progressively de-
grade until the latest model becomes useless. Left: Many prior works studied model
collapse where data are replaced with each model-fitting iteration. Right: We study
model collapse where data accumulate with each iteration and demonstrate accumu-
lating data avoids model collapse.

1 Introduction

The advent of large-scale generative models such as GPT-4 (1), DALL-E (22)
and Stable Diffusion (24) has revolutionized the field of artificial intelligence.
These models, trained on vast web-scale datasets, exhibit remarkable capabilities
in generating text, images, and other media (6; 25). However, as these models
become more widely used, an increasing amount of generated data populates
the web. This raises a critical question: what are the consequences of training
generative models on datasets containing their own outputs?

Recent studies have investigated this question, revealing that training gen-
erative models on their own outputs can cause performance to progressively
degrade with each model-fitting iteration, eventually rendering newer models
useless (2; 4; 5; 9; 10; 12; 18; 19; 27) (see App. A for review and discussion of
prior work). This phenomenon was consequently labeled model collapse. Model
collapse warns that democratizing access to generative models runs the risk of
polluting the very data necessary to train future iterations of generative models.
To better understand this phenomenon, most prior works have assumed each
model’s generated data replaces previous data. However, deleting real data en
masse is uncommon, and models are often trained with increasing data over
time – e.g., 1.4 trillion tokens for Llama 1 (30), 2 trillion for Llama 2 (31), 15
trillion for Llama 3 – in which presumably both human-generated and machine-
generated data are accumulating in training sets scraped from the internet. It
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Fig. 2: Data Accumulation Avoids Model Collapse in Language Modeling.
Sequences of causal transformer-based language models are pretrained on TinyStories
(11). Cross-entropy validation loss increases when replacing data (left), but not when
accumulating data (right). Synthetic data was sampled with temperature = 1.0.

was noted in some of those works (2; 4; 10; 12; 18) that model collapse can be
either slowed down or negated by mixing real data in with generated data.

Motivated by this discrepancy, we study the effect of accumulating data on
model collapse. Our data-accumulating setting is, in some sense, maximally pes-
simistic: it considers a hypothetical future where synthetic data are dumped on
the internet to be scraped up for training future generative models. Nevertheless,
we find that model collapse is avoided when data accumulates.

We begin by studying model collapse experimentally with deep generative
models trained on realistic data: transformers on causal language modeling (Sec.
2.1), diffusion models on molecular conformation (Sec. 2.2) and variational au-
toencoders on images (Sec. 2.3). We confirm that replacing data at every itera-
tion indeed causes test error to increase with the number of iterations but that
accumulating synthetic data with real data avoids model collapse for all models
and for all data modalities we test. We then turn to an analytically tractable
framework of a sequence of linear models (9; 20) to demonstrate why replacing
data and accumulating data have different effects, Altogether, our work suggests
that data accumulation may be robust to model collapse and emphasizes the im-
portance of considering accumulating data and other real-world data dynamics
in the analysis of model collapse in generative models trained on web-scale data.

2 Accumulating Data Avoids Model Collapse in Deep
Generative Models

2.1 Transformer-Based Causal Language Modeling

Experiments We first train causal transformers (32) on text data. Specifically,
we pretrain 9M parameter GPT-2 (21) and 12M, 42M and 125M parameter
Llama2 (31) language models for a single epoch on TinyStories (11), a 470M
token GPT-3.5/4-generated dataset of short stories at a kindergarten reading
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Fig. 3: Data Accumulation Avoids Model Collapse in Geometric Diffusion
Modeling. GeoDiff, a diffusion-based molecular conformation generation model, is
trained on a subset of Drugs data containing molecular structures found in drugs. Test
loss degrades when replacing data (left) but not when accumulating data (right).

level. For each model-fitting iteration n ≥ 2, we sample a new dataset of the
same size as TinyStories from the previous language model and then either
replace or concatenate the previous dataset with the newly generated dataset.
In each model-fitting iteration, we then pretrain a newly initialized model on the
replaced or concatenated dataset from the previous iteration. We experiment
with sampling the new datasets using temperatures 0.3 or 1.0. We chose this
combination of architectures, scales, dataset, and sampling as a good balance
between being representative, being diverse and being computationally feasible.

Results For all architectures, parameter counts, and sampling temperatures, as
the number of model-fitting iterations increased, replacing data led to an increase
in test cross entropy (Fig. 2 top). In contrast, for all architectures, parameter
counts, and sampling temperatures, as the number of model-fitting iterations
increased, accumulating data led to equal-or-lower test cross entropy (Fig. 2
bottom). See Appendices D and G for ablations.

2.2 Diffusion Models on Molecular Conformation Data

Experiments We train sequences of diffusion models on molecular conformation
data. Specifically, we train GeoDiff (35), a geometric diffusion model for molecu-
lar conformation generation, on the GEOM-Drugs (3) dataset. We down-sample
the training split of GEOM-Drugs to 40, 000 molecular conformations, which we
use as our initial training set, and perform 50 diffusion steps for each prediction.
For the loss, we use the standard loss used by GeoDiff: a weighted variational
lower bound to the conditional likelihood; for more details, see (35).

Results Over 8 model-fitting iterations, we find test loss increases when replacing
data, matching our language model experiments, and test loss remains relatively
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Fig. 4: Data Accumulation Avoids Model Collapse in Variational Autoen-
coders for Image Generation. Sequences of variational autoencoders (VAEs) are
trained on CelebA, a large-scale dataset of human faces. Test loss degrades when re-
placing data (left) but not when accumulating data (right).

Fig. 5: Sampled Images from Left: Replacing data with data generated by the
previous iteration’s newly trained VAE yields lower quality and eventually leads to
complete mode collapse. Middle: Accumulating data with data generated by the previ-
ous iteration’s newly trained VAE preserves the quality and diversity of generated data
across iterations. Right: Baseline samples after 100 training epochs on the dataset.

constant when accumulating data (Fig. 3). Unlike with language models, we
found that when replacing data, performance worsens significantly in the first
model-fitting iteration trained on synthetic data and does not degrade further.

2.3 Variational Autoencoders on Image Data

Experiments We lastly train sequences of variational autoencoders (VAEs) (14;
23) on CelebA (16), chosen as a balance between being a realistic dataset with
many samples, color images and resolution, and computational feasibility of
training multiple iterations of models on accumulating data. The loss is the
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standard VAE loss: reconstruction error plus the KL divergence between the en-
coder’s Gaussian and the isotropic Gaussian prior. See Appendix E for details.

Results We find that replacing data at each iteration again exhibits model col-
lapse: the test error rises with each additional iteration, and each iteration yields
lower quality and less diverse generated faces until all model generations rep-
resent a single mode (Figure 5 left). In contrast, accumulating data at each
iteration significantly slows model collapse: the test error increases significantly
slower with each additional iteration. We discuss further in Appendix E.

3 Accumulating Data Avoids Model Collapse in Linear
Models

To gain mathematical understanding, we employ an analytical framework intro-
duced in prior work (9; 20) which considers a sequence of linear models that
are fit to synthetic data sampled from previously fit linear models. See App. B
for details of the framework, our results and corresponding proofs. We will show
that the framework produces the same types of test error behaviors measured
empirically for these two data-use strategies. Within this framework, Dohmatob
et al. (9) proved that if data are replaced, the test error is given by:

EReplace
test (ŵn) =

σ2d

T − d− 1
× n (1)

where σ2 is the noise per dimension, d is the number of features and T is the
number of samples per iteration. Critically, when data are replaced, the test
error grows linearly with the number of iterations n. In contrast, when data
accumulate, we prove the test error is upper bounded regardless of the number
of iterations n:

EAccum
test (ŵn) ≤

σ2d

T − d− 1
× π2

6
(2)

To explain intuitively, when previous data are discarded, the model is more
strongly affected by the new noise that each iteration of generated data intro-
duces, and adds that to the effects experienced in earlier iterations. But when
data are accumulated, because iteration i contributes fraction 1/i to the training
dataset, the additional noise from the ith iteration is decreased overall. This sug-
gests that accumulating generated data with real data can indeed avoid model
collapse. We numerically simulate the the analytical results and find an almost
perfect match (App. Fig. 15).

4 Discussion

This work explored the phenomenon of model collapse, an important concern as
AI-generated content permeates the internet and future training datasets.
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A Summarization and Discussion of Prior and Related
Work

Prior Empirical Work A growing body of recent work has investigated the
phenomenon of iteratively training models on data generated by previous models,
e.g., (2; 4; 5; 9; 10; 12; 18; 19; 27) and (in a different context) (29). (12) and (19)
conducted experiments replacing real training data with generated data at each
iteration, assuming that the dataset size remains fixed over time. They found
that this iterative retraining procedure can lead to model degradation if the
proportion of synthetic data becomes too high. Similarly, (27) ran experiments
with Gaussian mixture models, VAEs, and language models in which the total
number of samples per iteration was held constant, and the samples always
originated with the previous model rather than aggregating over time. Building
on this work, (2) considered three treatments of data: fully replacing real data
with synthetic data, augmenting a fixed real dataset with additional synthetic
data, and mixing new real data with synthetic data at each iteration. In almost all
of their experiments, they drew a fixed size dataset from the most recent model
at each iteration, without accumulating data. (4) also assumed that dataset
size and mixing proportions are constant over time in their theoretical stability
analysis and empirical validation.

Prior Theoretical Work Over the last few years, there has been significant re-
search effort contributing to our theoretical understanding of model behavior
when synthetic data are integrated into training. The most closely related works
to ours are Dohmatob et al. (9) and (10); of course, the inspiration for the linear
regression model studied in this paper directly comes from Dohmatob et al. (9).
Dohmatob et al. (9) performs an in-depth analysis of high dimensional linear
and ridge regression when the training data used per iteration are generated
from the previous iteration’s fitted model. They are able to conclude that the
test error grows linearly with the iteration count in their setup, as well as derive
more interesting and more nuanced results using random matrix theory. They
also discuss how to mitigate model collapse through optimal regularization both
when the training data are noise-free and noisy versions of the previous model’s
synthetic outputs. A related noise-free setup was studied by (20) in the case of
self-distillation. Although (20) considers a more general setup with ridge regres-
sion as a special case, they use noiseless predictions from the previous model as
the training data for the next model, and show that eventually, the predictions
shrink to zero. Through this, they highlight that self-distillation induces regular-
ization in the function space, which initially is beneficial for reducing over-fitting,
but eventually over-regularization causes underfitting and hence performance de-
cay. (10) go beyond the linear model to study model collapse – they study the
tails of LLM outputs vs. real data and provide scaling laws that clearly identify
regimes of model degradation when synthetic data misses tails present in real
data. They identify an interesting phase transition in the test error scaling law
depending on the size of the real dataset size in comparison to (a functional of)
the chopped-off tail, and conclude that enough real data is able to mitigate model
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collapse. All these works consider the scenario where the amount of training data
available per iteration is fixed (and does not grow with the iteration count), and
it is certainly possible that with larger amount of synthetic data (from prediction
by the previous model), several of these scalings would improve significantly. For
example, in Equation (12) of (10), one obtains the linear scaling (with iteration
count) of test error simply because the amount of synthetic data generated per
iteration is the same. If one generated synthetic data with size proportional to
the iteration count, then at iteration n, the scaling would, instead of n, be like
n1−c/(1− c) for c < 1. When one does not increase the dataset size, (10) points
out that increasing the proportion of real data would help one to avoid model
collapse altogether. However, even if one did increase the amount of synthetic
data with iteration count, Theorem 3.2 coupled with Corollary 3.3 in (10) would
tell us that the amount of real data was all that mattered – if the amount of
real data is large, we overcome model collapse. If one only had synthetic data
(and no real data), no matter how large, it would be impossible to regain the
original real-data scaling laws. The scenario we study is highly inspired by these
pioneering works, but still, in our view, different. We consider the case when we
keep augmenting synthetic data (generated by the previous model trained on all
the previous data so far) as iterations progress, much akin to how – in our view
– the internet evolves. We observe that we can avoid model collapse in this set-
ting. The analysis of previous models in our case is more involved, since the data
used for training at iteration n is not homogeneous – different models from the
past impart different statistical aspects to different parts of the training data.
We also note a related augmentation model studied by (13) – they perform risk
minimization augmenting real data with synthetic data available from a poten-
tially different independent source. One of their messages is that augmentation
of (even) pure noise can be looked upon as adding a ridge penalty and hence, in
certain cases, can improve test error. Their setup, however, is different from ours,
since the synthetic data in their setup is not obtained by a learning algorithm
employed on the real data, and the process is not iterative. However, morally,
each iteration of ours involves risk minimization on data statistically composed
of an equal mixture of data generated from the previous models, and hence each
iteration of ours can be mapped to the general framework developed in (13),
although the dependencies among the various models trained in our setup intro-
duce theoretical complications that do not seem to be too easily addressed by
the theory developed in (13). Shortly after v1 of our manuscript was uploaded to
ArXiv, two other manuscripts appeared, dealing with the theoretical aspects in
a setting similar to ours. Theorem 1 of (17) obtains the same square summability
scaling of the variance as us. (26) studies collapse in language models in both
purely synthetic and partly synthetic regimes and obtains deviation bounds as
model iterations progress.

Considering Accumulating Data The two papers we found that partially consid-
ered accumulating data are (18) and (2). (2) did so in one-half of one experiment:
StyleGAN2 trained on FliqrFaces 128×128 (App. Fig. 6). The authors concluded
that accumulating data does not avoid model collapse, but merely slows it down.



12 M. Gerstgrasser et al.

However, we believe that a closer examination of their results (App. Fig. 6) re-
veals that accumulating data causes the test error to plateau to a relatively low
error with increasing numbers of model-fitting iterations. This result would sup-
port our conclusion that accumulating data avoids model collapse and does not
merely delay it. The results from (18) are harder to evaluate; model collapse
only seems to occur when the amount of synthetic data added per model-fitting
iteration is 2× the total amount of accumulated data, and the subsequent work
by the authors switched from accumulating data to replacing data (19). We
think understanding what conditions and why these discrepancies exist is an
interesting future direction.

Avoiding Model Collapse Several papers present methods for avoiding or slowing
model collapse. (4) shows in the replacing data setting that model collapse will
not occur if the initial generative models approximate the data distribution well
enough and the proportion of real data is sufficiently large with respect to the
synthetic data. (10) similarly demonstrates that in the replacing data setting,
carefully selecting real data to mix with synthetic data can avoid model col-
lapse. Other solutions may also be possible in various models and under various
assumptions. To our knowledge, no paper has claimed an “optimal" strategy to
avoid model collapse, and neither has ours.

Fig. 6: Clarification of Data Accumulation in (2). Figure 7 from (2) (above)
shows that linearly accumulating data (“Synthetic augmentation loop") causes poor
behavior to plateau with the number of model-fitting iterations. (2) write, “Our exper-
iments [...] support our main conclusion [that] fixed real training data only delays the
inevitable degradation of the quality or diversity of the generative models over genera-
tions." We believe is that our evidence and their evidence is more consistent with the
conclusion that accumulating data avoids model collapse and does not merely delay it.
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B Accumulating Data Avoids Model Collapse in Linear
Models

To gain mathematical understanding and intuition, we employ an analytical
framework introduced in prior work (9; 20) to understand the difference between
data accumulation and data replacement. We will show that it predicts the same
types of test error behaviors for these two data-use strategies that were measured
empirically. The framework considers a sequence of linear models that are fit
to the synthetic data sampled from the linear generative model model based
on the previously fit linear models. Within this framework, Dohmatob et al.
(9) showed that if data are replaced across model-fitting iterations, then the
test squared error increases linearly7 with the number of iterations n. Here, we
extend Dohmatob et al. (9)’s argument to show that if data instead accumulate
across model-fitting iterations, then the test squared error is upper bounded by
a relatively small constant, meaning model collapse is avoided8.

The content in this section relies heavily on the framework and pioneering
contributions of Dohmatob et al. (9). Our contribution is to study a different way
to use synthetic data in training, namely accumulate, which seems to better align
with certain real-world considerations. We show that our empirical results could
have been anticipated on theoretical grounds, by applying the same analysis
framework as in Dohmatob et al. (9), but instead to this specific training dataset
pattern. We use the same framework to analyze some other ways that synthetic
data might have be used, such as replace, again the theory aligns with many
empirical results.

7 To echo an earlier footnote, an approach ‘halfway’ between the ‘replace’ and ‘accu-
mulate’ approaches would replace the previous dataset with a pure synthetic dataset
of size iT at the i-th iteration. Analyzing this goes mostly in parallel, except the
1/i2 mentioned in running text now becomes 1/i for the ‘halfway’ approach. Conse-
quently, the MSE scaling becomes MSE ≍ O(log(n)); the ‘halfway’ approach with
pure synthetic data but more of it, again has test error growing unboundedly with
iterations. Thanks to Elvis Dohmatob, Yunzhen Feng and Julia Kempe for commu-
nicating this observation. See Appendix F for an extended discussion.

8 In this theoretical section, we identify the term model collapse with the situation
where test error diverges to infinity (at any rate) as iterations progress. Other authors
may employ similar terminology while identifying it with different properties of test
error. For example, (2) use the term MAD to refer to the situation where the distance
between the distribution of the original data and that of the subsequent generative
models grow farther apart, without necessarily diverging.
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B.1 Notation and Preliminaries

Original Data Distribution. We adapt notations from (9). Define the distribution
PΣ,w,σ2 on Rd × R given by (x, y) ∼ PΣ,w,σ2 iff :

(Input) x ∼ N (0, Σ),

(Noise) ϵ ∼ N (0, σ2), independent of x,
(Label) y = x · w∗ + ϵ.

The positive integer d is the input-dimension, the matrix Σ ∈ Rd×d is the true
covariance structure of the input x, the vector w∗ is the true linear relationship
used to generate the original data and the scalar σ is the level of label noise.
We start at iteration n = 1 with T initial independent data points (xi, yi) each
following PΣ,w∗,σ2 , that is, yi = xi · w∗ + ϵi for each i = 1, 2, · · · , T . We form
the design matrix X ∈T×d with x⊤

1 , · · · , x⊤
T as rows. We also form the vectors Y

and E with i-th coordinate yi and ϵi respectively. In whatever follows, we will
assume that X has full column rank, i.e., T ≥ d, X⊤X is invertible and the
model is underparameterized.

Synthetic Data Generation Process. We generate synthetic data from the fol-
lowing sequence of distributions

PΣ,w∗,σ2 → PΣ,ŵ1,σ2 → . . . → PΣ,ŵn,σ2 ,

where n ∈ N is the number of iterations. The scheme is outlined as follows.

– For n = 1:
• Accumulating Covariates/Features: X̃1X

• Accumulating Targets: Ỹ1Ŷ1Xw∗ + E1, where E1E ∼ N (0, σ2IT )

• Fit linear model: ŵ1 = X̃†
1 Ỹ1

• Sample synthetic data for the next iteration: Ŷ2Xŵ1 + E2, where E2 ∼
N (0, σ2IT )

– For n ≥ 2:
• Accumulating Covariates/Features: X̃⊤

n = [X̃⊤
n−1;X

⊤] ∈ Rd×nT

• Accumulating Targets: Ỹ ⊤
n = [Ỹ ⊤

n−1; Ŷ
⊤
n ] ∈ R1×nT

• Fit linear model: ŵnX̃
†
nỸn

• Sample synthetic data for the next iteration: Ŷn+1Xŵn + En+1, where
En+1 ∼ N (0, σ2IT )

Here, for a matrix A with full column rank, A† = (A⊤A)−1A⊤ is the Moore-
Penrose pseudo-inverse of A. The noise terms E1, E2, . . . , En are independent of
each other and of the covariates/features. Since X has full column rank, so does
X̃n for every n ≥ 1.
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Test Error. We are interested in the dynamics of the test error Etest(ŵn) of
this sequence of linear model ŵ1, ŵ2, .... Note that evaluation of the model is
done on the true distribution PΣ,w∗,σ2 , even though the model is trained on
the accumulated synthetic data. For any linear estimator ŵ computed from the
training data, we measure test error in the standard way:

Etest(w)E
[
(xT

testw − ytest)
2
]
− σ2 = [∥w − w∗∥2Σ ] (3)

where the expectation is taken over the training data and (xtest, ytest) ∼ PΣ,w∗,σ2

independent of the training data.

A Note on Extensions to Ridge Regression and Kernel Methods. To reiterate
a comment made previously by Dohmatob et al. (9), although we present our
results in the context of ordinary linear regression in Rd, our analysis can be
readily extended to ridge regression and the kernel setting (7; 8; 28; 33). We
focus here on a simple useful model for studying model collapse.
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Fig. 7: Accumulating Data Avoids Model Collapse in Linear Regression. We
consider sequences of linear models recurrently fit to generated targets by previous
iterations of models. Top: If each linear model is fit to the generated targets of only
the preceding linear model, i.e., data are replaced, then the test error grows linearly
with the number of iterations n. Bottom: If each linear model is instead fit to the
generate targets of all the preceding linear models, i.e., data accumulate, then the test
error has a finite upper bound independent of the number of iterations. This suggests
that data accumulation might be a robust solution for mitigating model collapse. For
log test error and higher iterations, see Appendix Fig. 15.
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B.2 Precise Test Error Characterization Under Accumulating Data

Our goal is to establish an analytic formula for the test error of the nth model
in the data accumulation setting. We begin by characterizing the relationship
between the fitted linear parameters ŵn and the true parameters w∗. We remind
the reader that we assume that X has full column rank, i.e., X⊤X is invertible.
Proofs are deferred to App. C.

Theorem 1. In the data accumulation setting, ∀n ≥ 1, the fitted linear param-
eters ŵn can be expressed as:

ŵn = w∗ + (X⊤X)−1X⊤

(
n∑

i=1

Ei

i

)
(4)

where, recall, w∗ is the true parameter, X is the original design matrix, and Ei

is the extra noise added at the i’th iteration.

Theorem 2. For an n-fold synthetic data generation process with T ≥ d + 2
samples per iteration and isotropic features (ΣId), the test error for the ridgeless
linear predictor ŵn learned on the accumulated data up to iteration n is given
by:

EAccum
test (ŵn) =

σ2d

T − d− 1

(
n∑

i=1

1

i2

)
≤ σ2d

T − d− 1
× π2

6
(5)

where, recall, σ2 is the noise variance of the fake data generation process, d is
the input dimension, and T is the number of samples (i.e., data points) added
per iteration.

How does test error with accumulating data compare against test error with
replacing data? Under otherwise identical assumptions, Dohmatob et al. (9)
proved in the data-replacing setting that the test error is given by9:

EReplace
test (ŵn) =

σ2d

T − d− 1
× n (6)

When data are replaced, the test error grows linearly with the number of
iterations n (Fig 7 top), with the rate of growth determined by a noise-to-signal
ratio: the amount of noise per dimension σ2 times the number of dimensions d,
adjusted by the (per-iteration) sample size T . In contrast, when data accumulate,
Theorem 2 shows the test error is upper bounded regardless of the number of
iterations n:

EAccum
test (ŵn) ≤

σ2d

T − d− 1
× π2

6

This striking difference can be intuitively explained by the differences in the
way data are handled across iterations. In the data replacement setting, because
9 For notational simplicity, we assume that Dohmatob et al. (9)’s T0T and σ0σ.
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previous data were discarded, the model is more strongly affected by the new
noise that each iteration of generated data introduces, and adds that to the
effects experienced in earlier iterations. But in the data accumulation setting,
because iteration i contributes fraction 1/i to the training dataset, the additional
noise from the ith iteration of synthetic data has its effect on the model MSE
shrunken proportional to 1/i2 (due to squared error). The summability of 1/i2
prevents the test error from growing indefinitely. This suggests that accumulating
generated data with real data can indeed avoid model collapse.

C Proofs of Mathematical Results

We point out a lemma useful to prove Theorem 2.

Lemma 1. Let T and d be positive integers with T ≥ d+ 2, and let X ∈ RT×d

be a random matrix with i.i.d. rows from N (0, Σ) with Σ positive definite. Then,
X has full rank a.s. Moreover, it holds that:

EX [(X⊤X)−1] =
1

T − d− 1
Σ−1. (7)

Proof. See Dohmatob et al. (9).

Assuming Lemma 1 and Theorem 1, we present the proof of Theorem 2.

Proof (Proof of Theorem 2). From Theorem 1, we have:

ŵn = w∗ + (X⊤X)−1X⊤

(
n∑

i=1

Ei

i

)
(8)

where w∗ is the true parameter, X is the original data matrix, and Ei are the
noise terms at each iteration, with Ei ∼ N (0, σ2IT ). The test error is given by:

Etest(ŵn) = E[||ŵn − w∗||2Σ ] (9)

where the expectation is taken over all random quantities involved.
Substituting ŵn into the test error expression and using the fact that ΣId,

we get:

Etest(ŵn) = E

( n∑
i=1

Ei

i

)⊤

X(X⊤X)−2X⊤

(
n∑

i=1

Ei

i

)
= E

[
n∑

i=1

σ2

i2
tr(X(X⊤X)−2X⊤)

]

=
n∑

i=1

σ2

i2
E
[
tr((X⊤X)−1)

]
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Using Lemma 1, we have:

EX

[
tr((X⊤X)−1)

]
=

d

T − d− 1
(10)

Therefore, the test error for ridgeless regression with isotropic features in the
data accumulation setting is:

Etest(ŵn) =

n∑
i=1

σ2

i2
· d

T − d− 1
<

σ2d

T − d− 1

(
π2

6

)

as
∑n

i=1 i
−2 <

∑∞
i=1 i

−2 = π2/6.

Finally, we prove Theorem 1.

Proof (Proof of Theorem 1).
We prove this theorem by induction.
Base case: For n = 1, we have:

ŵ1 = X̃†
1 Ỹ1 = (X⊤X)−1X⊤(Xw∗ + E1) = w∗ + (X⊤X)−1X⊤E1

which satisfies the lemma.
Inductive step: Assume that for some n ≥ 1, we have:

ŵn = w∗ + (X⊤X)−1X⊤

(
n∑

i=1

Ei

i

)

Now, consider ŵn+1:

ŵn+1 = X̃†
n+1Ỹn+1

= (X̃⊤
n+1X̃n+1)

−1X̃⊤
n+1Ỹn+1

=
1

n+ 1
(X⊤X)−1

n+1∑
i=1

X⊤Ŷi

Recalling that Ŷi:

Ŷi =

{
Xw∗ + E1, i = 1

Xŵi−1 + Ei, 2 ≤ i ≤ n+ 1
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Substituting this back into the expression for ŵn+1:

ŵn+1 =
1

n+ 1
(X⊤X)−1

(
X⊤(Xw∗ + E1) +

n+1∑
i=2

X⊤(Xŵi−1 + Ei)

)

=
1

n+ 1
(X⊤X)−1

(
X⊤Xw∗ +X⊤E1 +

n+1∑
i=2

(X⊤Xŵi−1 +X⊤Ei)

)

=
1

n+ 1
(X⊤X)−1

(
X⊤Xw∗ +X⊤E1 +

n∑
i=1

(X⊤Xŵi +X⊤Ei+1)

)

=
1

n+ 1
(X⊤X)−1

(
X⊤Xw∗ +

n∑
i=1

X⊤Xŵi +

n+1∑
i=1

X⊤Ei

)
Now, using the induction hypothesis:

ŵn+1 =
1

n+ 1
(X⊤X)−1

X⊤Xw∗ +

n∑
i=1

X⊤X

w∗ + (X⊤X)−1X⊤
i∑

j=1

Ej

j

+

n+1∑
i=1

X⊤Ei


=

1

n+ 1
(X⊤X)−1

(n+ 1)X⊤Xw∗ +

n∑
i=1

X⊤X(X⊤X)−1X⊤
i∑

j=1

Ej

j
+

n+1∑
i=1

X⊤Ei


= w∗ +

1

n+ 1
(X⊤X)−1

 n∑
i=1

X⊤
i∑

j=1

Ej

j
+

n+1∑
i=1

X⊤Ei


= w∗ +

1

n+ 1
(X⊤X)−1X⊤

 n∑
i=1

i∑
j=1

Ej

j
+

n+1∑
i=1

Ei


Now, we need to simplify the term

∑n
i=1

∑i
j=1

Ej

j +
∑n+1

i=1 Ei. We can do
this by counting the number of times each Ei appears in the double sum: E1

appears n times in the double sum and once in the single sum, so its coefficient
is n+1

1 . E2 appears n− 1 times in the double sum and once in the single sum, so
its coefficient is n

2 . This continues along till we reach En, which appears once in
the double sum and once in the single sum, so its coefficient is 2

n . En+1 appears
only once in the single sum, so its coefficient is 1

n+1 . Therefore,

n∑
i=1

i∑
j=1

Ej

j
+

n+1∑
i=1

Ei =

n+1∑
i=1

n+ 2− i

i
Ei = (n+ 1)

n+1∑
i=1

Ei

i

Substituting this back into the expression for ŵn+1:

ŵn+1 = w∗ +
1

n+ 1
(X⊤X)−1X⊤

(
(n+ 1)

n+1∑
i=1

Ei

i

)

= w∗ + (X⊤X)−1X⊤
n+1∑
i=1

Ei

i
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Therefore, by mathematical induction, the lemma holds for all n ≥ 1.
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D Additional Details and Ablations on Language Model
Experiments

Implementation Details

Model training was implemented using Huggingface Transformers (34). Dataset
generation was implemented using vllm (15).

Additional Plots

In addition to Figure ?? in the main text, Figures 8-11 show learning curves in
larger print, with x-axes showing either epochs or gradient steps, and with axes
shown in linear-linear or log-log scale, respectively.

Ablations

In addition to the experiments shown in the main paper, we conducted several
ablation studies.

Controlling for dataset size. One possible concern is that when accumulating
data, the train dataset size will grow at each model-fitting iteration, meaning sub-
sequent models will be trained on more aggregate data than their counterparts
in the replacement regime. To control for this, we run experiments controlling
for this. In this “replace-multiple” regime, we create a fully synthetic dataset at
the end of each model-fitting iteration, but grow the size of this dataset to match
that of the accumulated data in the accumulation regime. Table 1 rightmost col-
umn shows that in this regime, evaluation loss still increases over model-fitting
iterations.

Generation temperature. Most of our language model experiments were run with
sampling temperature 1.0 during generation of new datasets. To ensure that this
choice is not critical, we also run one experiment with temperature 0.3, and see
that this shows similar results (with even larger increases in validation loss in
the replacement regime than temperature 1.0), as shown in Table 1, row 2, and
Figure 12.

Dataset size and training epochs. We similarly vary the size of the initial (and
subsequent) training datasets and number of training epochs, and see that this
has no qualitative effect on the results (Table 1, rows 3 & 4 show training on
1/5th of the TinyStories dataset for 1 & 3 epochs, respectively).

Model quality after first model-fitting iteration. Finally, we control specifically
for model (and thus synthetic dataset) quality after the first iteration, to rule
out an undue influence of a “bad” first synthetic dataset on subsequent training.
Figure 13 shows performance in subsequent iterations for different amounts of
training in the first iteration, showing no qualitative differences.
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to more gradient steps for accumulate than replace because the number of training
data grows for accumulate.
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Learning curves for individual model-fitting iterations when repeatedly replacing data
(left), and when accumulating data (right).
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Model t=1 t=4 (acc) t=4 (repl) t=10 (repl) t=4 (*)
GPT-2 (9M) 1.82 1.74 (-0.07) 2.39 (+0.58) 2.91 (+1.09) 2.18 (+0.36)

GPT-2 (9M) (temp=0.3) 1.82 1.75 (-0.06) 5.82 (+4.00) 9.85 (+8.04) n/a
GPT-2 (9M) (small dataset) 2.56 2.28 (-0.28) 3.21 (+0.65) 3.72 (+1.16) 2.91 (+0.35)

ibid (+ 3 epochs) 1.99 1.87 (-0.12) 2.62 (+0.63) n/a n/a
Llama-2 (12M) 2.06 1.94 (-0.12) 2.72 (+0.66) n/a n/a
Llama-2 (42M) 1.90 1.76 (-0.14) 2.52 (+0.62) n/a n/a
Llama-2 (126M) 1.71 1.59 (-0.12) 2.23 (+0.53) n/a n/a

Table 1: Evaluation cross-entropy loss for different models at model-fitting iterations
1, 4 and 10 for replacement and accumulation regimes. (*) indicates a replacement
regime with growing dataset size to ablate for total train set size.
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E Additional Details on VAE Experiments

Experiment Details. As pre-processing, we crop and down-sample the images to
64x64 pixels. We use a standard convolutional architecture for the VAE model
consisting of 5 convolutional layers with 32, 64, 128, 256, and 512 channels,
respectively, and a similar convolutional decoder structure. The latent space is
128-dimensional isotropic Gaussian, represented by 2 MLP layers. Each data
iteration consists of 100 training epochs, after which we generate 163K new
training images by sampling latents from the Gaussian prior and the passing
them through the generator model.

Analysis of Reconstructions. Figure 14 shows reconstructions after replacing
(left) and accumulating (center) data, compared to baseline (right). Analyzing
the reconstruction of test set images also reveals interesting findings - the model
trained only on data from the prior iteration has indeed collapsed and cannot
represent any other classes besides the single mode it generates. Interestingly,
the model trained on aggregated data still maintains it’s capabilities and gen-
erates accurate reconstructions, including smaller details such as glasses and
hats. We hypothesize that this model maintains it’s generative capabilities, but
these details become a more minor sub-manifold in the latent space, which is
realigned with the newly-generated data, hence why they appear less often in
the generated images, which use samples from the prior.

Fig. 14: Data Accumulation Maintains Model Capabilities. Image reconstruc-
tions from the test set. Left: Training on prior iterations collapses the model’s ca-
pability, and subsequently, it can only represent a single mode. Middle: training on
aggregated data preserves model capabilities and leads to little to no degradation in
the reconstructed images. Right: Baseline reconstructions after 100 training epochs on
the dataset.
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F Linear Regression: Replacing Data with Increasing
Sample Size

In the framework of (20) and Dohmatob et al. (9), we consider sequences of lin-
ear models fit to the previous model’s synthetic outputs. Within this framework,
Dohmatob et al. (9) proved that if data are replaced with each model fitting iter-
ation and the training data cardinality remains constant, then the test squared
error scales linearly with the number of model fitting iterations n:

EReplace
test (ŵn) =

σ2d

T − d− 1
× n (11)

In this work, we lightly adapt the argument of Dohmatob et al. (9) to study
the effects if data accumulate with each model fitting iteration. We specifically
considered the case where the training data cardinality increases by a constant T
with each model-fitting iteration i.e. the ith model is fit using T × i data, where
T data are “real" and then each subsequently fit model contributes its own T
synthetic data to the accumulating data. In this setting, the test squared error
is upper bounded independent of the number of iterations.

EAccumulate
test (ŵn) =

σ2d

T − d− 1
×

n∑
k=1

1

k2
≤ σ2d

T − d− 1
× π2

6
(12)

In the main text, we focus on the replace and accumulate data settings be-
cause prior work focused on replacing data and we wished to study how accu-
mulating data affects model collapse. However, a much richer landscape of out-
comes is possible. For instance, and as pointed out in personal correspondence
with Dohmatob et al. (9), one can consider what we term the “Replace-Multiple"
setting, in which one fits the i-th linear model using T × i data sampled from
the (i− 1)-th linear model. Replace-Multiple is a useful baseline for Accumulate
because it matches the amount of training data at each model fitting iteration.
Under Replace-Multiple, the test squared error grows logarithmically:

EReplace-Multiple
test (ŵn) =

σ2d

T − d− 1
×

n∑
k=1

1

k
≈ σ2d

T − d− 1
× log(n) (13)

Replace-Multiple has the drawback of not matching the total amount of
compute of Accumulate since each iteration of Replace-Multiple draws T × i
samples from the most recent model, whereas Accumulate draws T samples from
the most recent model. Other baselines are also possible, but we leave these to
future work. We focus on accumulating data as we feel real and synthetic data
are likely to accumulate in the real world as time progresses.
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G Additional Linear Regression Numerical Results
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Fig. 15: Accumulating data across iterations avoids model collapse in linear
regression. We consider sequences of linear models recurrently fit to generated targets
by previous iterations of models. Replace (Top): If each linear model is fit to the
generated targets of only the preceding linear model i.e. data are replaced, then the
test squared error grows linearly with the number of model-fitting iterations iterations
n. Replace-Multiple (Middle): If each linear model is fit to T×i samples from the (i−1)-
th model (i.e. the same amount of data as Accumulate), then the test squared error
grows logarithmically with the number of model-fitting iterations; see Appendix F for
more details. Accumulate (Bottom): If each linear model is instead fit to the generate
targets of all the preceding linear models i.e. data accumulate, then the test squared
error has a finite upper bound, independent of the number of iterations. This suggests
that data accumulation might be a robust solution for mitigating model collapse. This
figure is similar to Figure 7 but displaying log test squared error and more model-fitting
iterations for additional clarity.
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