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Abstract001

Large language models (LLMs) trained on next-002
token prediction (NTP) paradigm have demon-003
strated powerful capabilities. However, the004
existing NTP paradigm contains several lim-005
itations, particularly related to planned task006
complications and error propagation during in-007
ference. In our work, we extend the critique008
of NTP, highlighting its limitation also due to009
training with a narrow objective: the prediction010
of a sub-optimal one-hot distribution. Based011
on this insight, we introduce Next Distribution012
Prediction (NDP), which uses statistical distri-013
butions to replace the one-hot targets, enhanc-014
ing learning without extra online training time.015
We conducted experiments across translation,016
general task, language transfer, and medical do-017
main adaptation. Compared to NTP, NDP can018
achieve up to +2.97 COMET improvement in019
translation tasks, +0.61 average improvement020
in general tasks, and incredible +10.75 aver-021
age improvement in the vertical domain (e.g.,022
Medical Domain). This demonstrates the con-023
crete benefits of addressing the target narrow-024
ing problem, pointing to a new direction for025
future work on improving NTP.026

1 Introduction027

Large Language Models (LLMs) are predominantly028

trained using NTP paradigm. However, this ap-029

proach has been subject to criticism, primarily030

focusing on two key issues: (1) the inability to031

perform tasks requiring advanced planning, such032

as look-ahead tasks (Kambhampati et al., 2024b;033

Bachmann and Nagarajan, 2024), and (2) error034

propagation during inference. These critiques have035

prompted various improvements, including meth-036

ods to incorporate planning for future tokens during037

training or inference (Kambhampati et al., 2024a;038

Monea et al., 2023; Chen et al., 2023; Gloeckle039

et al., 2024; Cai et al., 2024).040

We argue that the NTP paradigm is constrained041

not only by its short-term focus in the temporal042

Figure 1: The “torture” of NTP’s learning dilemma.
Instead of learning two paths at the same time, they
repeatedly learn one path and forget the other paths.
Although this forgetting and learning objective may not
be fully achieved due to the nature of stochastic gradient
descent, this tendency also hinders the model’s learning.

dimension but also by its restrictive candidate se- 043

lection process. Specifically, during training, the 044

model is conditioned to treat the next token for a 045

given prefix as the sole correct target, effectively 046

striving to approximate a one-hot distribution. This 047

scenario is analogous to a student being “tormented” 048

by a capricious teacher who insists on learning dis- 049

tinct and unique correct answers at each step, as 050

illustrated in Figure 1. Such a rigid “tormenting” 051

learning process fails to fully leverage the exten- 052

sive learning capabilities of large models, which 053

are inherently capable of exploring multiple solu- 054

tion pathways simultaneously. 055

This observation raises an question: How can we 056

identify and utilize all possible paths for a model to 057

address a given problem effectively? Drawing in- 058

spiration from Huh et al. (2024), who proposed that 059

a model’s ultimate representation should function 060

as a statistical model of the underlying reality, we 061

propose that incorporating statistical methods can 062

lead to a more comprehensive learning objective 063

within the training dataset. By doing so, we aim 064

to overcome the limitations of the NTP paradigm, 065

enabling models to harness their full potential in 066

learning multiple pathways to solutions. 067

To this end, we introduce Next Distribution Pre- 068

diction (NDP), a method that improves the training 069

objective of LLMs with the help of statistical mod- 070
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els. This method analyzes the training corpus to071

identify the same prefixes and their corresponding072

successor tokens, and then converts the frequency073

of the successor tokens into a distribution, replac-074

ing the original one-hot distribution of the NTP.075

NDP can also leverage unsupervised data to further076

enhance the distribution, thereby achieving similar077

results without the need for continued pretraining078

on domain-specific data. This provides a potential079

solution for unifying continued pretraining and in-080

struction fine-tuning. In the analysis section, we081

provide two perspectives: by comparing the simi-082

larities in the distributions of NTP, NDP, and LLM,083

as well as the convergence endpoints of NTP and084

NDP, we further demonstrate the advantages of085

NDP over NTP as a training paradigm.086

Our extensive experiments across various mod-087

els, tasks, and evaluation metrics demonstrate sig-088

nificant performance improvements. Moreover,089

NDP enables the simultaneous use of supervised090

and unsupervised data for training, effectively091

allowing for continued pre-training during fine-092

tuning. This feature is particularly advantageous093

for domain adaptation and language transfer sce-094

narios. NDP outperforms NTP, showing improve-095

ments of up to 2.97 COMET points in translation096

tasks, an average gain of 0.61 points in general097

tasks, and a remarkable average increase of 10.75098

points in the medical domain.099

2 Related Work100

2.1 Calibration During Training101

Our work shares similarities with output probability102

calibration methods, as both aim to mitigate over-103

confidence and align output probabilities with true104

probabilities. Prominent calibration techniques dur-105

ing training include loss function modification (Ren106

et al., 2024; Li et al., 2020; Lin et al., 2018), label107

smoothing (Liang et al., 2024; Wei et al., 2022;108

Malagutti et al., 2024), Noise Injection(Sam and109

Kolter, 2023; Gao et al., 2019)110

Research on loss function modification often at-111

tributes the discrepancy between predicted and real-112

world probabilities to maximum likelihood estima-113

tion. This has led to efforts to replace cross-entropy114

(e.g., negative log-likelihood) with alternative loss115

functions, introducing significant computational116

overhead and sensitive parameters. In contrast,117

NDP can be easily integrated into existing training118

frameworks without incurring additional training119

costs, yielding substantial improvements.120

While NDP supports smoothing, its primary ad- 121

vantage stems from addressing the issue of nar- 122

row candidates rather than smoothing per se. NDP 123

guarantees a non-one-hot distribution, allowing for 124

multi-discrete value distributions rather than only 125

continuous ones. Given the expanding vocabulary 126

sizes in modern language models, the correct next 127

token candidates cannot span the entire vocabulary 128

range. For large language models requiring high- 129

precision alignment, introducing noise across the 130

entire vocabulary can result in downstream task 131

performance inferior to that achieved with one-hot 132

distributions from NTP. 133

2.2 Improvement on Next Token Prediction 134

Earlier criticisms of the NTP training paradigm 135

were all focused on the time dimension, which led 136

to many improvements. Monea et al. (2023) was in- 137

spired by Speculative Sampling (Chen et al., 2023), 138

using the LLMs itself as a draft model, thus allow- 139

ing the LLMs to output multiple tokens at once dur- 140

ing the inference stage, implicitly achieving long- 141

term planning and alleviating the short-term issues 142

to some extent. Gloeckle et al. (2024) achieved 143

consistent improvements in efficiency and perfor- 144

mance on code tasks by training shared model back- 145

bones and multiple independent output heads and 146

adopting speculative decoding with Medusa-like 147

tree attention (Cai et al., 2024) during inference, in- 148

dicating that this training paradigm has advantages 149

in large-scale models. 150

These studies are completely orthogonal to our 151

perspective. We primarily focus on the issues 152

brought by narrow candidates, with the hope of 153

jointly optimizing the NTP process. 154

2.3 Knowledge Distillation 155

We can further evaluate the effectiveness of NDP 156

compared to NTP from the perspective of knowl- 157

edge distillation. NDP can be seen as token- 158

level, while NTP is sentence-level (Kim and Rush, 159

2016). This perspective illuminates NTP’s limi- 160

tations. Yuan et al. (2023) demonstrated that in 161

knowledge distillation, student models more read- 162

ily assimilate soft labels compared to one-hot la- 163

bels. Wei et al. (2024) observed that the efficacy of 164

sentence-level versus token-level distillation corre- 165

lates with student model size, with larger models 166

benefiting more from token-level approaches. Em- 167

pirically, most research utilizing black-box Large 168

Language Models (LLMs), such as instruction data 169

synthesis (Xu et al., 2023), employs sentence-level 170
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Figure 2: Overall framework of simplified NDP. The numbers in the squares represent token. (a) Count the successor
words of the same prefix string in the training dataset to form a prefix table. (b) Convert each counter in the prefix
table into a probability distribution through normalization. (c) Replace the labels in the original dataset using the
probability distribution. Through these three steps, we convert the one-hot distribution NTP dataset into a statistical
distribution NDP dataset.

distillation. While effective, sentence-level distil-171

lation alone has not enabled open-source LLMs172

to match the performance of GPT-4-turbo/GPT-4173

(OpenAI et al., 2024) . Conversely, Gemma2-9B174

(Team et al., 2024) achieved performance compa-175

rable to LLaMA3-8B (Dubey et al., 2024) with176

only 9T pretraining tokens, attributable to its use177

of token-level distillation. These findings support178

NDP’s superior performance over NTP.179

It should be noted that there is an essential differ-180

ence between dataset-based knowledge distillation181

(NTP/NDP) and model-based knowledge distilla-182

tion. First, we cannot bypass the dataset-based183

distillation paradigm to obtain a pre-trained model;184

therefore, it can be said that model-based distilla-185

tion must be built upon the dataset-based distilla-186

tion paradigm. Model-based KD cannot replace187

NTP, but NDP can. Second, KD-based training188

methods require cooperating NTP to achieve good189

results such as Hybrid Distillation (Hinton et al.,190

2015; Romero et al., 2015), which also incurs sig-191

nificant training overhead. Typically, KD requires192

an additional teacher model, which has parameters193

that are more than ten times larger than the student194

model, leading to substantial memory usage and195

increased training time. In contrast, NDP does not196

need to be combined with NTP and does not incur197

additional training overhead.198

3 Next Distribution Prediction Paradigm 199

In this section, we will provide a detailed descrip- 200

tion of how our method, NDP, incorporates the 201

aforementioned statistical distribution concept into 202

the actual model training process. Meanwhile, we 203

provide a brief explanation in the Appendix B on 204

how the NTP paradigm processes training data into 205

distributions. 206

Almost all datasets can be categorized as ei- 207

ther unsupervised or supervised datasets. Let’s 208

take supervised datasets as an example, since 209

self-supervised datasets can be regarded as a spe- 210

cial case of supervised datasets where the instruc- 211

tion/input is empty. This process can be divided 212

into three sub-processes: First, learn the prefix ta- 213

ble through statistical analysis of the dataset (Fig- 214

ure 2(a)). Second, convert value counter from pre- 215

fix table to distribution (Figure 2(b)). And third, 216

replace the training targets in the original dataset 217

from one-hot distributions to non-one-hot distribu- 218

tions (Figure 2(c)). We will elaborate the details of 219

each sub-process in subsequent sections. We also 220

compared the storage/computation time overhead 221

of NDP and NTP in Appendix C. 222

3.1 Learning Prefix Tables 223

The specific process is illustrated in Figure 2(a). 224

Given a sentence, we use all its prefix sequences 225
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as keys and the corresponding successor tokens as226

values to form several key-value pairs. Across the227

entire training set, the key-value pairs formed by228

different sentences are merged based on the identi-229

cal key, and corresponding values will collectively230

form a frequency Counter.231

It is evident that the one-hot distribution derived232

from NTP is a specialized form of a prefix table.233

When keys do not overlap in the table generated234

from the entire dataset, the supervised distribution235

becomes identical to the NTP distribution. In prac-236

tice, we separately compile two prefix tables from237

the starting position of the question and the answer238

part, respectively referred to as the supervised ta-239

ble and the causal language modeling (CLM) table.240

In this way, we can separately extract supervised241

information and pretraining information from the242

dataset, making it easier for us to handle the two243

distributions more effectively in the following sec-244

tions. If we want to use NDP to replace the NTP245

pretraining, we only need to compute the CLM246

table.247

3.2 Converting Distributions from Prefix248

Table249

Figure 2(b) shows the process of converting each250

element in the value counter into a distribution on251

the model vocabulary dimension. For each counter,252

we create a tensor with a dimension of the vocabu-253

lary size, extracting the indices and corresponding254

counts from the frequency counter and setting the255

tensor accordingly. Then, we convert this tensor256

into a probability distribution via L1 norm or soft-257

max. In our preliminary analysis, using the softmax258

method yielded better results compared to the L1259

norm method. Therefore, we opted for the softmax260

method in our experiments. Instead of applying the261

softmax function directly to the entire frequency262

vector, we applied it to the counted parts and then263

placed the transformed values back into their orig-264

inal index within the distribution. This approach265

prevents the softmax from producing a uniform266

distribution over the large vocabulary vector.267

This process can form a non-one-hot distribu-268

tion, but it remains sparse. We also provide a novel269

frequency to probability method in Appendix D,270

which efficiently converts the frequency vector into271

a distribution while controlling the amount of intro-272

duced noise (i.e., the probability values assigned to273

parts that were originally zero).274

3.3 Replacing Origin One-hot Target 275

After properly handling the token-level distribu- 276

tion, we can simply traverse the original dataset 277

to replace the training targets. In Figure 2(c), we 278

provide an example with a sentence. First, we de- 279

compose a sentence into corresponding keys as in 280

Figure 2(a). Then, we use the keys to look up the 281

corresponding table and obtain the distribution that 282

we transformed in Figure 2(b). 283

We employ a simple linear weighted fusion as 284

Equation 1. 285

Dmix = αDsupervised + (1− α)DCLM (1) 286

where α is a hyperparameter constrained to the in- 287

terval [0, 1]. We substitute the original one-hot 288

label target with Dmix. Through ablation analy- 289

sis, we found that the best performance is achieved 290

when alpha is set to 0.8. This indicates that dur- 291

ing the instruction fine-tuning phase, the model is 292

primarily learning the mapping from problems to 293

answers in the problem space. It is important to 294

note that when encountering a blank distribution 295

in the fusion objects, we do not perform fusion 296

but instead retain the original distribution. In other 297

words, we consistently assign zero weight to blank 298

distributions during the fusion process. 299

At this point, we have completed the data pro- 300

cessing part. The next step in the training process 301

is the regular teacher-forcing as NTP. NDP has 302

another very interesting use: we can use a large 303

amount of unlabeled text to further enhance the 304

CLM table. This process essentially unifies pre- 305

training and fine-tuning. We will demonstrate this 306

later in Section 4.3 . 307

4 Experiments 308

4.1 General Tasks for Large Language 309

Models 310

In this subsection, we aim to explore the impact of 311

using NDP for instruction fine-tuning (IFT) on the 312

base model for general tasks. The specific experi- 313

mental setup is as follows. 314

Model & Baseline We conducted experiments 315

on Gemma-2B (Team et al., 2024) and LLaMA3- 316

8B (Dubey et al., 2024). We used LoRA (Hu et al., 317

2022) to train LLaMA3-8B. We mainly compare 318

NDP with NTP, label smoothing. 319

Dataset We selected a mixture of Alpaca-GPT4 320

(Peng et al., 2023), Math (Hendrycks et al., 2021b), 321
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GSM MMLU HE TruQA BBH ARC-C TriQA AE SCIQ WG IFeval Avg.
Gemma 19.56 42.12 23.78 33.05 35.94 40.36 47.38 27.20 94.30 65.67 14.42 40.34

+NTP 24.49 40.85 31.71 41.59 37.40 44.54 42.73 27.54 92.30 66.61 19.41 42.65
+LS 22.37 40.90 30.49 40.29 35.80 44.11 40.52 27.27 93.30 66.46 13.12 41.33
+NDP 23.81 41.34 35.98 42.84 37.77 44.88 42.57 28.65 91.90 66.38 19.78 43.26

LLaMA3 54.44 65.57 37.20 43.91 62.52 50.43 71.21 33.70 96.30 78.22 10.17 54.88
+NTP 53.30 62.37 37.80 44.04 60.13 51.28 63.64 33.38 96.60 77.82 14.97 54.12
+LS 50.80 58.23 35.37 43.73 51.14 51.02 57.69 33.51 96.50 78.22 17.19 52.13
+NDP 53.15 62.99 39.02 44.05 61.86 51.11 62.70 33.24 96.50 77.98 17.93 54.59

Table 1: Evaluation results on general tasks. The benchmark abbreviations in the table: GSM (GSM8k), MMLU
(Massive Multitask Language Understanding), HE (HumanEval), TruQA (TruthfulQA), BBH (Big-Bench Hard),
ARC-C (ARC-Challenge), TriQA (TriviaQA), AE (AgiEval), SCIQ (SCIQ), WG (WinoGrande), and IFeval (IFeval).
LS means Label Smoothing here.

and Code (Zheng et al., 2024) as the instruction322

fine-tuning (IFT) dataset. This combination is sim-323

ilar to the typical mix of general text, code, and324

math used in pretraining, with a total dataset size325

of 220K instances. The evaluation comprised 11326

benchmarks that broadly cover the model’s general327

reasoning, knowledge Q&A, math, coding, fact,328

and instruction following capabilities. More de-329

tailed benchmark information can be found in Ap-330

pendix E.331

Evaluation framework Our evaluation process332

primarily leveraged the lm-evaluation-harness333

framework (Gao et al., 2023), with the exception334

of coding tasks, for which we utilized the evalua-335

tion scripts from the OpenAI/HumanEval reposi-336

tory. The evaluation setting closely follow those337

outlined in the LLaMA3 evaluation protocol1.338

Results The experimental results are summarized339

in Table 1. From the result, we observe some phe-340

nomena:341

• NDP has more advantages in complex342

tasks.. We observed that NDP consistently343

outperformed NTP on MMLU, HumanEval,344

TruthfulQA, BBH, and IFeval. These bench-345

marks focus on reasoning, coding, factual346

accuracy, and instruction-following capabili-347

ties. Meanwhile, NTP exhibited advantages348

on GSM8K and TriviaQA, suggesting that349

multiple solution pathways training might not350

be essential for elementary math tasks and351

knowledge-based Q&A, as answers are of-352

ten direct and reasoning paths are relatively353

1LLaMA3 evaluation protocol

straightforward. This observation can be cat- 354

egorized as NDP demonstrating more signifi- 355

cant advantages in complex tasks. 356

• Failure of Label Smoothing. Contrary to 357

expectations, the label smoothing technique 358

did not yield performance gains. In fact, it un- 359

derperforms relative to the NTP method. We 360

hypothesize that the meaningless noise dur- 361

ing the instruction fine-tuning phase may have 362

degraded the quality of the fine-tuning data. 363

This observation indicates that the critical im- 364

portance of data quality over quantity in the 365

instruction fine-tuning process. 366

4.2 Translation Task for Encoder-Decoder 367

Models 368

In this subsection, we aim to answer the following 369

questions: (1) Does our method work effectively 370

for models with smaller parameter sizes? (2) Can 371

our method benefit specific downstream tasks? Al- 372

though we have demonstrated that NDP can benefit 373

general, broad tasks, further discussion on adapta- 374

tion to specific task can still be argued. 375

Model & Baseline The T5 model (Raffel et al., 376

2023) is an excellent choice because we will select 377

a 400M decoder-only LLaMA in the latter exper- 378

iment. Using T5 would allow us to observe the 379

impact on encoder-decoder models as well. We 380

selected three sizes of the T5 1.1 version models: 381

small (77M), base (248M), and large (783M). Here 382

we only compare with NTP, since in preliminary 383

experiments, label smoothing has already shown a 384

similar drop in performance as general tasks. 385

Dataset & Metric We selected 200k bilingual 386

sentence pairs in the en-de direction from IWSLT17 387
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IWSLT17 WMT22 Avg. Avg. ∆

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

T5_small
NTP 11.51 55.49 7.39 48.43 9.45 51.96 +0.30 -0.18
NDP 11.56 55.39 7.93 48.16 9.75 51.78

T5_base
NTP 19.97 68.54 15.48 61.90 17.73 65.22 +0.91 +1.97
NDP 21.87 70.66 15.41 63.72 18.64 67.19

T5_large
NTP 23.63 76.42 17.49 71.26 20.56 73.84 +1.96 +1.17
NDP 25.70 77.29 19.34 72.72 22.52 75.01

Table 2: T5 series evaluated on IWSLT17 & WMT22 with BLEU and COMET22.

MedQA MedMCQA PubMedQA CareQA Avg. Avg. ∆ MMLU FLOPS
Qwen2 44.46 46.57 47.30 52.04 47.59 - 70.76 -

+CPT‡+NTP 46.58 45.76 24.30 56.48 43.28 -4.31 68.18 6.44× 1019

+NTP 47.60 50.11 42.60 60.47 50.19 +2.60 70.97 1.72× 1018

+NDP 49.49 50.68 42.10 59.95 50.83 +3.24 71.00 1.71× 1018

+NDP† 49.49 50.83 43.70 61.22 51.25 +3.66 70.99 1.71× 1018

LLaMA3 33.70 36.22 2.50 46.98 29.85 - 65.57 -
+CPT‡+NTP 25.29 37.25 10.00 48.76 30.33 +0.48 58.43 6.62× 1019

+NTP 31.26 33.09 13.40 39.25 29.25 -0.60 54.09 1.75× 1018

+NDP 20.27 27.40 53.7 22.99 31.09 +1.24 54.77 1.74× 1018

+NDP† 38.41 39.61 31.6 50.36 40.00 +10.15 58.58 1.74× 1018

Table 3: Results on domain adaptation task. Item marked with † represents enhancement using PubMed, while ‡
means Pubmed+Redpajama.

(Cettolo et al., 2017) as the training set. Both388

IWSLT17 and WMT22 (Kocmi et al., 2022) were389

used as test sets, as IWSLT17 consists of TED390

talk utterance transcripts while WMT22 comprises391

news articles. We used WMT22 to observe the392

generalization performance on out-of-domain data.393

We use rule-based SacreBLEU (Post, 2018) and394

neural network based COMET22 (Rei et al., 2022)395

as evaluation metrics.396

Results The result of the translation experiments397

is shown in Table 2. Overall, NDP consistently398

outperformed NTP in both in-domain and out-of-399

domain performance except COMET on T5-small.400

This suggests that NDP also has considerable po-401

tential in small models and downstream-specific402

tasks.403

4.3 Unifying Continue Pre-training and404

Fine-tuning405

Post-training of large language models often in-406

cludes continued pertaining (CPT), IFT, and RLHF.407

Here, we focus on CPT and IFT since they involve408

NTP. Post-training is usually a delicate and com- 409

plex process because the goal is not only to adapt 410

to a specific domain or align with humans but also 411

to ensure that the knowledge learned during pre- 412

training is minimally disrupted. The NDP offers 413

an optional approach. We still use the dataset from 414

the IFT phase to generate the prefix table, but we 415

additionally use the dataset from the CPT phase 416

to enrich the CLM prefix table, making the re- 417

sulting CLM distribution incorporates information 418

from the CPT tasks and become more robust. Our 419

method has the following three potential benefits 420

in unifying CPT and IFT: 1) it avoids the cumber- 421

some hyperparameter selection during the contin- 422

ued pre-training phase, such as learning rate, decay, 423

and warmup. 2) by forgoing the continued pre- 424

training phase, the number of model update steps is 425

greatly reduced, which helps alleviate the problem 426

of model forgetting. 3) it saves a lot of training 427

resources since the model still computes only the 428

original instruction dataset. 429

We have selected two common scenarios: lan- 430

guage transfer and domain adaptation. 431
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Language Transfer We extracted 500k sen-432

tences from the monolingual German data in433

WMT23 (Kocmi et al., 2023) to supplement the434

CLM distribution. We use T5-xl and T5-Large as435

the models for this experiment. The COMET re-436

sult is shown in Figure 3, while BLEU result in437

Appendix F.
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Figure 3: Comparison of COMET22 scores for different
models on WMT22 and IWSLT2017 datasets

438
Our approach achieved a gain of +2.72 on T5-439

large model and +2.64 on the t5-XL model com-440

pared to NTP on average. The BLEU score in-441

creased even more, with a gain of +3.18 on the442

T5-large model and +2.68 on the T5-XL model,443

confirming the significant benefits of NDP in uni-444

fying CPT and IFT. For comparison, similar at-445

tempts have been made by NLLB (Team and oth-446

ers), which employed an encoder-decoder model447

with a Denoising Autoencoder (DAE) as the pre-448

training task. This task, akin to a cloze test, is449

simpler than CLM. Additionally, NLLB performs450

unifying at a step-wise granularity, alternating be-451

tween fully computing the DAE and the fine-tuning452

loss in separate steps. In contrast, ours integrates453

the losses from both the CLM task and the super-454

vised task at a loss-wise level within each iteration,455

providing a more fine-grained approach.456

Domain Adaptation Our methods also show457

strong performance in vertical domain. We choose458

PubMed_Abstract which sampled from pile (Gao459

et al., 2020) and Redpajama-1B as CPT dataset460

and Alpaca_GPT4+Medquad (Ben Abacha and461

Demner-Fushman, 2019) as IFT dataset. Test on462

following benchmarks: MedQA (Jin et al., 2021),463

MedMCQA (Pal et al., 2022), CareQA (Gururajan464

et al., 2024), MMLU (Hendrycks et al., 2021a), and465
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Figure 4: (a): Changes in the sharpness of model dis-
tributions with increasing model size. (b): Changes
in Simstatistic/Simntp with calibrated preformance in-
creases.

PubMedQA (Jin et al., 2019). We retain MMLU 466

to observe its impact on the general domain indi- 467

rectly. We do full parameter tuning on Qwen2-7B 468

(Bai et al., 2023) and LLaMA3-8B. The result is 469

shown in Table 3, and we can observe that Qwen2 470

has undergone more adaptation in the medical field 471

compared to LLaMA3. The key findings are as 472

follows: 473

• For models that lack domain-specific pre- 474

training (such as LLaMA3), NTP leads to a 475

performance drop. In contrast, NDP maintains 476

a steady performance increase. 477

• The advantages of domain data augmenta- 478

tion are more evident in models without ex- 479

tra domain-specific pre-training. Specifically, 480

Qwen2 exhibits an improvement of +3.66, 481

while LLaMA3 shows a significant increase of 482

+10.15. This suggests that our method holds 483

substantial potential for enhancing the uni- 484

fied continued pretraining process. Moreover, 485

CPT benefits LLaMA3 but negatively impacts 486

Qwen2. 487

• Across all settings observed in the MMLU 488

benchmark, models trained with NDP not 489

only show superior domain adaptation but 490

also match the general capabilities of mod- 491

els trained with NTP. 492

More training details can be found in Appendix H. 493

5 Analysis 494

Similarity between Training Paradigm and 495

LLM We use LLM distributions as a proxy for 496

the ideal statistical distribution of the world data, 497

since LLM can be seen as an efficient compression 498

7



of world data (Deletang et al., 2024). By comparing499

the similarities between statistic distribution and500

one-hot distribution with LLM distribution on the501

same specific datasets, we demonstrate that statis-502

tic distribution serves as a superior learning target503

since it aligns more with LLM distribution.504

We observe the cosine similarity between statis-505

tical distributions, the one-hot distribution of NTP,506

and the distribution of LLM, thereby demonstrat-507

ing that statistical distributions are more efficient508

as learning targets than NTP distributions.509

Since both statistical distributions and LLM510

distributions have non-one-hot properties, readers511

might find it unsurprising that statistical distribu-512

tions are closer to LLM distributions. However,513

the smooth distribution of LLM is essentially a514

sharp distribution that is very similar to a one-hot515

distribution, as shown in Figure 4(a). It is easy to516

observe that the LLM distribution is not only close517

to a one-hot distribution, but also that the sharp-518

ness2 of the distribution increases further as the519

model size grows. To more intuitively show the520

result, we present the ratio of similarity between521

the statistical distribution and LLM Simstatistic,522

and the similarity between the NTP distribution523

and LLM SimNTP , as a function of model perfor-524

mance3 in Figure 4(b). We observed that as the525

model’s performance improves, the ratio of the526

statistical distribution to the NTP distribution also527

increases rapidly. This demonstrates that even as528

the model size grows, leading to sparser and more529

concentrated distributions, the statistical distribu-530

tion still exhibits an essence that is closer to the531

world data distribution modeled by the LLM.532

The Convergence Endpoints of NDP and NTP533

NDP demonstrates a notable advantage over NTP,534

however, the source of this superiority, whether535

from faster convergence or a superior convergence536

endpoint remains unclear. To investigate long-537

term convergence behavior, we extended training538

to 10,000 epochs.539

Drawing from scaling law principles (Kaplan540

et al., 2020), we use small-scale scenarios to infer541

large-scale behavior. We trained a randomly initial-542

ized 438M LLaMA-like model (Ren et al., 2024)543

on a custom dataset devoid of real-world semantics544

as shown in Figure 6. This approach eliminates545

2We employ two metrics: one is the proportion of elements
of the distribution to reach top-p. The other is kurtosis, which
we placed in Appendix A.2. show similar result

3We choose the average score list on the Hugging Face
Open LLM leaderboard as the performance metric

Figure 5: Analysis of model convergence with increas-
ing training epochs. The left figure shows the similarity
of the model’s output distribution on the target items.
The right figure shows the similarity with irrelevant
items.

pre-training knowledge effects, allowing pure com- 546

parison of NDP and NTP methods. The dataset 547

comprises target items, noise items sharing prefixes 548

with targets, and unrelated items. Noise items sim- 549

ulate real-world interference to target item, while 550

unrelated items help detect overfitting. 551

Results are presented using similarity between 552

target frequency distributions as a metric, which 553

correlates with loss. Figure 5 illustrates that NDP’s 554

improved fitting accuracy likely stems from a bet- 555

ter convergence endpoint, as NTP fails to close 556

the similarity gap after 10,000 epochs. Both meth- 557

ods achieve over 98% fitting accuracy on unrelated 558

items, with NDP showing faster initial convergence. 559

These findings suggest that NDP not only con- 560

verges more rapidly than NTP but also reaches 561

a superior convergence point. 562

6 Conclusion 563

Our work offers a novel critical perspective on 564

the NTP training paradigm, and this hypothesis 565

was validated through preliminary similarity ex- 566

periments. Based on addressing this issue, we 567

proposed a new training paradigm inspired from 568

statistic called NDP, which achieved good gains in 569

various tasks such as general capability baselines 570

for LLMs, translation, language adaptation, and 571

domain adaptation. Nevertheless, we believe that 572

NDP is merely a simple solution to the narrow can- 573

didate problem, and there remains a broad solution 574

space worth exploring to further mitigate this issue. 575

7 Limitations 576

Although theoretically, NDP could replace the 577

NTP-based pretraining from scratch and become 578

more powerful as the dataset size increases (be- 579

cause the statistical distribution becomes more ro- 580

8



bust), we lack the resources for practical verifica-581

tion. Therefore, our setup primarily focuses on582

the instruction fine-tuning process or comparisons583

with continued pretraining. As such, this remains584

an area worth exploring.585
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Dvorkovich, Christian Federmann, Mark Fishel,724
Thamme Gowda, Yvette Graham, Roman Grund-725
kiewicz, Barry Haddow, Rebecca Knowles, Philipp726
Koehn, Christof Monz, Makoto Morishita, Masaaki727
Nagata, Toshiaki Nakazawa, Michal Novák, Martin728
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A Supplementary of preliminary841

experiment842

A.1 Details843

A.1.1 Model & Dataset844

In our preliminary experiments, we selected open-845

source LLMs with varying parameter counts from846

several series, including: LLaMA, Qwen, Yi,847

Gemma, and Mistral. For our dataset, We uti-848

lized a combination of Alpaca-GPT4, MATH, and849

CodeFeedback-Filtered-Instruction, as this is a850

Figure 6: Dataset configuration. Numbers represent
tokens, and tilde represents a token that does not repeat
with other tokens. The items marked in red font indicate
that we will observe its fitting accuracy. are used to
represent the common prefix of the input, represent
the different suffixes of the input, the blue blocks rep-
resent the target to be predicted, and represent the
irrelevant tokens. n = 40 in our setting.
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Figure 7: An intuitive example of sharp and smooth
distributions.

commonly used instruction-tuning dataset combi- 851

nation in engineering (general capabilities + math- 852

ematics + code). From this composite dataset, we 853

proportionally sampled 10,000 examples to form 854

our experimental corpus. All data processing codes 855

used in this study are available in our repository for 856

direct access and replication. 857

A.1.2 Calculate similarity 858

A.2 Dive into sharpness 859

To illustrate the difference between sharp and 860

smooth distributions more intuitively, we provide 861

an example in Figure 7. This sharpness can be well 862

measured by two metrics, one is the percentage of 863

distribution elements required to achieve a specific 864

probability p as mentioned in the main text, and 865

the other is kurtosis. The previous metric is easy to 866

understand because a sharp distribution has more 867
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Figure 8: Change in model distribution kurtosis with
increasing model size.

probability concentrated in a small number of el-868

ements, so there will be fewer elements required869

to achieve a specific probability. Therefore, the870

smaller the value, the sparser the distribution. Kur-871

tosis is a commonly used metric in mathematics,872

used to measure the proportion of probability as-873

signed to the "peaks" in a distribution. We present874

the changes in kurtosis of different large models875

as the number of parameters increases in Figure876

8. It is easy to observe that for various series of877

models, kurtosis also increases with the increase of878

model size, indicating a sharpening of the output879

distribution of the model.880

Although it’s somewhat off-topic, what does in-881

creased sharpness mean for a model? This actually882

indicates an overconfidence in the model. Overcon-883

fidence can cause the model to hallucinate, produc-884

ing answers even for questions it’s uncertain about.885

It also exacerbates the phenomenon of error propa-886

gation. If the model displays high confidence even887

for uncertain information, it may lead to further888

spread of misinformation. It reduces the model’s889

interpretability and credibility. Overly confident890

models struggle to provide reasonable uncertainty891

estimates, which decreases the interpretability of892

their outputs and users’ trust in the model. It affects893

the reliability of decision-making. If the model894

shows high confidence even in incorrect answers,895

relying on these confidence estimates for decision-896

making becomes unreliable (Xiong et al., 2024).897

The increase in large language model sharpness898

is likely attributable to the enhanced memorization899

capacity that accompanies the growth in model900

parameters. Consequently, these models can effort-901

lessly retain one-hot features extracted from the902

dataset by the training paradigm.903

Figure 9: We tokenize the RAW text and observe its true
learning objective under the NTP paradigm.However,
during implementation, different learning objectives can
obtain their corresponding losses through a single for-
ward computation by attention mechanism.

B Distribution from Training Paradigm 904

The notion of deriving distributions from datasets 905

using training paradigms may be somewhat confus- 906

ing to readers. In reality, training paradigms can 907

transform each prefix of every instance in a dataset 908

into a distribution. This process can be represented 909

as Figure 9. We can further formalize this process 910

as Equation 4. 911

p(xi(j+1)|xi[0:j]) = 1 (2) 912

Where xi means the i-th instance in dataset, xi[0:j] 913

means {xi0, xi1..xij}. The model’s training pro- 914

cess on the dataset is equivalent to knowledge dis- 915

tillation from the distribution derived by the NTP 916

training paradigm to the model. In this case, the 917

loss function is simply the Kullback-Leibler (KL) 918

divergence between the NTP distribution and the 919

LLM (Large Language Model) distribution. From 920

this perspective, the NTP training paradigm ap- 921

pears capable of becoming a language model (LM) 922

through the use of a dataset. However, they are not 923

entirely equivalent. This distinction arises when 924

prefixes in the dataset overlap. For instance, when 925

xkl = xml, it becomes unclear whether the distri- 926

bution should be derived from xk(l+1) or xm(l+1). 927

Understanding the fundamental nature of how NTP 928

derives distributions from datasets allows us to dis- 929

tinguish clearly between NTP-derived distributions 930

and those generated by LLMs. 931

C Computing and Storage Resources 932

between NTP and NDP 933

Our implementation is a hybrid of both approaches 934

to achieve a good engineering trade-off. Before 935

training, we precompute a prefix tree for the train- 936

ing set and save a successor word counter of size 937

N , where N is the number of tokens in the training 938

set. During training, we dynamically convert the 939

counter into a discrete distribution. 940

• Regarding storage: When constructing the 941

prefix tree, we observed that the number of 942
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overlapping prefix tokens is relatively small,943

even less than 1%. We store successor to-944

ken counters only for the overlapping parts,945

while other parts store a single successor token946

as in NTP. In Python, a Counter object with947

10 items occupies approximately 300 bytes.948

Thus, the storage size can be estimated as:949

4N + 0.01N × 300 ≈ 7N (3)950

For NTP, storing the original text requires sav-951

ing it in character form. As noted in this work,952

the Llama3 tokenizer achieves a compression953

ratio of about 4.61 for English, meaning the954

character count is approximately 4.61N , lead-955

ing to a storage size of 4.61N bytes.956

• Regarding training time overhead: Our957

model’s forward pass speed/FLOPS is identi-958

cal to that of the NTP model. The only addi-959

tional step is converting each token’s counter960

into a distribution. This step is computation-961

ally efficient and can be effectively masked962

by leveraging a multi-threaded dataloader963

(num_workers=16) and dataset prefetching964

(prefetch_factor=3).965

• Regarding CPU memory NDP utilized a Trie966

structure for constructing the prefix table, stor-967

ing a Token (int32) for non-overlapping parts968

and a Counter for overlapping parts. The over-969

lapping sections accounted for roughly 1%,970

resulting in a memory overhead of approxi-971

mately 4N bytes (original text) + 0.01N×300972

bytes (overlapping counters) ≈ 7N bytes.973

Each Trie node contains a dict for efficient974

traversal, which adds an estimated 200 bytes.975

However, overlapping prefixes share a com-976

mon path in the Trie, leading to some mem-977

ory savings. The theoretical upper bound978

for memory overhead is approximately 207N979

bytes.980

• Potential Directions for Memory Improve-981

ment. We also find suffix-array based meth-982

ods, such as those in (Liu et al., 2024), which983

claim to process 1.4T tokens with 10TB of984

memory. Our method can adapt to such sta-985

tistical techniques, which could be explored986

further in the future.987

D Convert Frequency to Probability on 988

vocabulary tensor 989

It is important to note that the vocabulary’s dimen- 990

sion is typically much larger than the number of 991

items in the Counter, for instance, 256k vs. 10. If 992

we directly form a probability distribution on such 993

a frequency vector, it would result in a uniform 994

distribution, diluting the information derived from 995

the dataset. We solve this problem by controlling 996

the probability allocated to the zero regions of the 997

tensor. 998

Without loss of generality, we rearrange a vo- 999

cab tensor v = [a1, a2...a|V |] with |V | elements 1000

into two contiguous regions based on whether the 1001

elements are zero or non-zero. This rearrange- 1002

ment results in v′ = [a′1...a
′
k, a

′
k+1...a

′
|V |], where 1003

[a′1...a
′
k] represents the non-zero elements region, 1004

and [a′k+1...a
′
|V |] represents the zero elements re- 1005

gion. Therefore, the softmax process on v′ can be 1006

described as Equation 4. 1007

Softmax(v′) =

∑k
i=1 e

a′i∑|V |
j=1 e

a′j
+

∑|V |
i=k+1 e

a′i∑|V |
j=1 e

a′j
(4) 1008

where the second item in Equation 4 is the prob- 1009

ability value allocated to the entire zero elements 1010

region. To control its value and make it equal to 1011

our preset probability p, we introduce a tempera- 1012

ture coefficient t, transforming it to solve Equation 1013

5. 1014

f(t) =

∑|V |
i=k+1 e

a′i/t∑|V |
j=1 e

a′j/t
= p (5) 1015

Obtaining an exact solution for Equation 2 is quite 1016

challenging; however, we can easily obtain its ap- 1017

proximate solution through numerical computa- 1018

tion methods. For instance, the root-finding meth- 1019

ods provided in scipy4, or the simpler bisection 1020

method, can efficiently locate t within the [0, 100] 1021

interval, with the error easily controlled within 1e- 1022

6s. Our method is quite different from those com- 1023

monly used in n-gram language models. The latter 1024

can also lead to frequency vectors becoming uni- 1025

form distributions. For example, the +1 smoothing 1026

method could distribute probability values that far 1027

exceed the original frequency vector’s quantities in 1028

a vocabulary of 128k tokens. 1029

4https://docs.scipy.org/doc/scipy/tutorial/optimize.html#root-
finding
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E Settings for General Tasks1030

E.1 Benchmark Info:1031

A more detailed description about task type in Ta-1032

ble 4:1033

MC1 (Single-true): Given a question and 4-51034

answer choices, select the only correct answer. The1035

model’s selection is the answer choice to which it1036

assigns the highest log-probability of completion1037

following the question, independent of the other1038

answer choices. The score is the simple accuracy1039

across all questions.1040

MC2 (Multi-true): Given a question and multi-1041

ple true / false reference answers, the score is the1042

normalized total probability assigned to the set of1043

true answers.1044

Generate: Given a question where the answer is1045

a text snippet, such as code, formulas, or a multiple-1046

choice question that uses Chain of Thought (CoT)1047

for assisted reasoning.1048

E.2 Train Dataset1049

As shown in Table 5,We mix them together and1050

shuffle them randomly to create a complete train-1051

ing set. The main reason for choosing these three1052

datasets is that they represent broadly applicable1053

general instructions and highly specialized instruc-1054

tions for mathematics and coding, respectively.1055

This division also reflects the categorization typi-1056

cally found in pre-training processes.1057

E.3 Training hyperparemeter1058

Details are listed in Table 6.1059

F BLEU Score of Language Transfer1060

Task1061

Result is shown in Figure 10. Although our im-1062

provement on this metric is more significant, we1063

have placed it in the appendix, primarily consider-1064

ing that machine translation researchers currently1065

favor using neural network-based evaluation meth-1066

ods to assess translation quality, as rule-based meth-1067

ods might underestimate the performance of large1068

models.1069

G Drop of LLaMA3 Models.1070

NTP and NDP Both show a slight decline com-1071

pared to the LLaMA3-base model. We believe1072

the possible reasons for this are: the pre-training1073

data of LLaMA3-8b amounts to an astonishing 15T1074

tokens, and despite some deduplication, there is1075

WMT22 IWSLT17 Avg.
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Figure 10: Comparison of BLEU scores for different
models on WMT22 and IWSLT2017 datasets

still a significant possibility of data leakage in the 1076

benchmark. The same phenomenon also appeared 1077

in the work of (Xu et al., 2024), which listed re- 1078

sults where fine-tuning with various mainstream 1079

instruction data caused a decline in benchmark per- 1080

formance. 1081

H Training Details in Domain 1082

Adaptation Task 1083

Basically, we used shared hyperparameter settings 1084

for NTP and NDP as in Table 7. 1085
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Dataset name HF identifier Type COT n Samples

MMLU cais/mmlu MC1 5 14000
GSM8K openai/gsm8k Generate ✓ 8 1320
HumanEval openai/openai_humaneval Generate 164
TruthfulQA truthfulqa/truthful_qa MC1(MC12) 817
BBH lukaemon/bbh Generate ✓ 3 6510
ARC-Challenge allenai/ai2_arc MC1 1170
TriviaQA mandarjoshi/trivia_qa MC1 17200
AGIEval RUCAIBox/agieval MC1 8238
SCIQ allenai/sciq MC1 1000
Winogrande allenai/winogrande MC1 1767
IFEval HuggingFaceH4/ifeval Generate 1080

Table 4: Benchmark used in general task evaluation. n represents instances used for few-shot prompting.

Dataset name HF identifier Samples

Alpaca-GPT4 vicgalle/alpaca-gpt4 52000
Math lighteval/MATH 12500
Code m-a-p/CodeFeedback-Filtered-Instruction 157000

Table 5: Train dataset used in general task.

Experiment Hyperparameter name Setting

NTP

scheduler type linear
learning rate 5e-5
epoch 3
batch size 512

LS label smoothing 0.1

NDP
mix ratio 0.8
n-gram 5

Table 6: Hyperparameter in general task. LS and NDP
share the same hyperparameter used in NTP.

Hyperparameter name Setting

scheduler type cosine
learning rate 2e-5
CPT epoch 1
IFT epoch 2
batch size 256
cutoff len 8192
warmup ratio 0.05
mix ratio 0.8
n-gram 1

Table 7: Hyperparameter in domain adaption task.
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