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Abstract

This work addresses the fundamental linear inverse problem in compressive sensing
(CS) by introducing a new type of regularizing generative prior. Our proposed
method utilizes ideas from classical dictionary-based CS and, in particular, sparse
Bayesian learning (SBL), to integrate a strong regularization towards sparse solu-
tions. At the same time, by leveraging the notion of conditional Gaussianity, it also
incorporates the adaptability from generative models to training data. However,
unlike most state-of-the-art generative models, it is able to learn from a few com-
pressed and noisy data samples and requires no optimization algorithm for solving
the inverse problem. Additionally, similar to Dirichlet prior networks, our model
parameterizes a conjugate prior enabling its application for uncertainty quantifi-
cation. We support our approach theoretically through the concept of variational
inference and validate it empirically using different types of compressible signals.

1 Introduction

Research in CS has shown that it is possible to reduce the number of measurements far below the one
determined by the Nyquist sampling theorem while still being able to extract the information-carrying
signal from the acquired observations. The fundamental problem in CS is an ill-posed linear inverse
problem, i.e., the goal is to recover the signal x∗ ∈ RN of interest from an under-determined set of
measurements y ∈ RM with M ≪ N , related by

y = Ax∗ + n, (1)

where x∗ is compressed by the measurement matrix A and potentially corrupted by additive noise
n ∼ N (0, σ2

n I). Since the under-determined observation y does not carry enough information alone
to faithfully reconstruct x∗, additional prior (or model) knowledge about x∗ is required to make
the inverse problem “well-posed”. Classical CS algorithms such as Lasso regression or orthogonal
matching pursuit (OMP) address this problem by incorporating the model knowledge that x∗ is
sparse or compressible with respect to some dictionary [1]. Nowadays, modern deep learning (DL)-
based approaches such as unfolding algorithms, generative model-based CS and un-trained neural
networks (NNs) expand the possibilities by learning prior knowledge from a training set or designing
the network architecture to be biased towards a certain class of signals [2–7]. These approaches
typically require a (potentially large) training set of ground-truth data samples, or their architecture is
specifically biased towards natural images. However, in many applications, ground-truth training
data might not be easily accessible. In, e.g., electron microscopy, the amount of electron dose has to
be restricted to not induce damage on the probe resulting in low-contrast noisy data samples [8]. The
sensors in wearable electrocardiography (ECG) monitoring devices generally provide noisy signals
with artifacts [9], which limits the ability to learn from patient-specific data in real-world settings.
Another example is the wireless 5G communication standard, where mobile users receive compressed
and noisy so-called channel observations on a frequent basis (cf. [10]) while acquiring ground-truth
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channel information requires costly measurement campaigns. Thus, in many applications, it is either
impossible or prohibitively expensive to collect lots of ground-truth training data while corrupted
data is readily available. This highlights the necessity for methods that can learn from corrupted data
samples.

In this paper, we propose a new learnable prior for solving the inverse problem (1), which can learn
from only a few compressed and noisy data samples and, thus, requires no ground-truth information
in its training phase. Additionally, it applies to any type of signal, which is compressible with
respect to some dictionary. Our approach shares similarities with generative model-based CS [4, 11].
There, a generative model is first trained to capture the exact underlying prior distribution p(x) of
the signal x∗ of interest. It then serves as probabilistic prior to regularize the inverse problem (1).
Similarly, classical CS algorithms like Lasso regression also impose a probabilistic prior on the sparse
representation of x∗ with respect to some dictionary [12]. In contrast to modern generative models,
however, these priors do not have any generation capabilities but solely bias the inverse problem (1)
towards sparse solutions. This observation indicates that a probabilistic prior does not necessarily
need to capture the exact prior distribution p(x) to effectively regularize (1). The proposed model in
this work builds upon this insight and forms a trainable but simultaneously sparsity-inducing prior.
For that, we aim to combine the adaptability of generative models to training data with the property
of many types of signals x∗ to be compressible with respect to some dictionary. As a result, our
model learns statistical information in the signal’s sparse/compressible domain. Examples of signals
with a specific statistical structure in their compressible representation include piecewise smooth
functions and natural images, whose wavelet coefficients approximately build a connected sub-tree or
wireless channels, which are burst-sparse in their angular domain [13, 14].

Related Work. Early work on CS, which considers statistical structure in the wavelet domain of
images, is given in [15, 16]. Based on the theoretical foundation in [17] and the concept of SBL
[18, 19], these papers introduce a hierarchical Bayesian model, which is used to apply variational
inference and Markov chain Monte Carlo (MCMC) posterior sampling to solve (1). Training Gaussian
mixture models (GMMs), i.e., classical generative models, from compressed image patches of one
or a few images has been analyzed in [20–23]. In this line of research, however, the GMM is
fit directly in the pixel domain. Compressive dictionary learning represents a different line of
research aiming to learn the dictionary from solely compressed data [24–27], and strongly bases on
the dictionary learning method K-SVD [28]. More recently, variational autoencoders (VAEs) and
generative adversarial networks (GANs) have been studied in the context of CS [4, 11]. There, the
VAE/GAN is used to solve the inverse problem (1) by constraining the signal x∗ of interest to lie
in the range of the generative model instead of being sparse with respect to some dictionary. In this
context, AmbientGAN as well as CSGAN are extensions that loosen up the training set requirements
and can learn from corrupted data [29, 30]. Another related topic is the ability of some generative
models, i.e., diffusion models, VAEs and GMMs, to provide an approximation of the conditional
mean estimator (CME) [31–33]. In the case of the latter two, the CME is represented as a tractable
convex combination of linear minimum mean squared error (MSE) estimators by exploiting their
conditional Gaussianity on a latent space that determines these estimators’ means and covariances.

Our main contributions are as follows:

• We introduce a new type of sparsity-inducing generative prior for the inverse problem (1),
which differs from classical CS algorithms due to its ability to learn from data. On the other
hand, it also differs from other modern NN-based approaches due to its ability to promote
sparsity in the signal’s compressible domain. Moreover, it can learn from a few corrupted
data samples and, thus, requires no ground-truth information in its training phase.

• We theoretically underpin our approach by proving that its training maximizes a variational
lower bound of a sparsity-inducing log-evidence.

• Building on the notion of conditional Gaussianity, we introduce two specific implementa-
tions of the proposed type of prior based on VAEs and GMMs, which do not require an
optimization algorithm in their inference phase and come with computational benefits.

• By exploiting the shared property with Dirichlet prior networks to parameterize a conjugate
prior, we demonstrate how our approach can be applied for uncertainty quantification.

• We validate the performance on datasets containing different types of compressible signals.1

1Source code is available at https://github.com/beneboeck/sparse-bayesian-gen-mod.
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2 Background and Method

Notation. The operations b−1,
√
b and |b|2 denote the respective element-wise operation for the

vector b. Moreover, diag(B) represents the vectorized diagonal of the matrix B, while diag(b)
denotes the diagonal matrix with the vector b on its diagonal.

2.1 Problem Formulation

We consider the typical CS setup, in which we measure N -dimensional ground-truth samples xi

by a known measurement matrix A ∈ RM×N (or Ai ∈ RM×N ) with M ≪ N , where each
observation is potentially corrupted by noise ni drawn from additive white Gaussian noise (AWGN)
n ∼ N (0, σ2

n I). We assume all xi to be compressible with respect to a known dictionary matrix
D ∈ RN×S , i.e., yi = ADsi + ni with xi = Dsi and si ∈ RS being approximately sparse.
All si are assumed to be independent and identically distributed (i.i.d.), i.e., si ∼ p(s), where
p(s) is unknown with s exhibiting non-trivially dependent entries. Typical signals which fit into
this category are, e.g., natural images, piecewise smooth functions, and wireless channels (cf.
Section 1). Our approach in this work allows to either solely have access to corrupted training
observations Y = {yi}Nt

i=1 or training tuples with ground-truth information G = {(si,yi)}Nt
i=1 or

W = {(xi,yi)}Nt
i=1. We first train the proposed model using Y (or, alternatively, G orW) to serve as

an effective prior for (1). Our goal is then to estimate a ground-truth signal x∗ of a newly observed y.
We also define X = {xi}Nt

i=1 and S = {si}Nt
i=1.

2.2 Sparse Bayesian Learning for Compressive Sensing

In SBL for CS, the idea for solving the inverse problem (1) is to assign a parameterized prior to s∗,
i.e., the compressible representation of the signal x∗ of interest with x∗ = Ds∗ [19]. It assumes

y|s∗ ∼ p(y|s∗) = N (y;ADs∗, σ2 I), s∗ ∼ pγ(s) = N (s;0, diag(γ)). (2)
Given a single observation y, the parameters γ (and sometimes σ2) are estimated by an expectation-
maximization (EM) algorithm maximizing the corresponding log-evidence log pγ(y) implicitly
defined by (2). After that, it is utilized that pγ(s) forms a conjugate prior of p(y|s∗) resulting
in a closed-form posterior pγ(x|y) providing all necessary information to estimate x∗. In [19], a
variational interpretation of SBL is given, addressing why this approach yields sparse results, even
though pγ(s) does not inherently promote sparsity. It is shown that there exists a C > 0 such that for
all γ > 0 and s

pγ(s) ≤ t(s) = C ·
N∏
i=1

1

|si|
. (3)

The function t(s), however, is a well-known improper but sparsity-inducing prior, used as a non-
informative prior for scale parameters [34]. Let another statistical model be given by p(y|s∗) (cf. (2))
and prior t(s) instead of pγ(s) with implicitly defined log-evidence log π(s)(y). Due to t(s) being
improper, the log-evidence log π(s)(y) forms a not normalized but valid log-likelihood. Moreover,
this model is sparsity-inducing due to the sparsity-promoting characteristics of t(s). Based on (3), it
holds that log π(s)(y) ≥ log pγ(y) and, thus, log pγ(y) can be embedded in variational inference,
forming a tractable variational lower bound of an intractable log-evidence log π(s)(y) of actual
interest. Moreover, applying the EM algorithm to (2) is “evidence maximization over the space of
variational approximations to a model (i.e., p(y|s∗) and t(s)), with a sparse, regularizing prior” [19].

2.3 Gaussian Mixture Models and Variational Autoencoders

GMMs and VAEs are generative models aiming to learn an unknown distribution p(x) from a training
set X . Both models represent p(x) as the marginalization with conditionally Gaussian p(x|·) and an
additional latent variable k (or z) [35–37], i.e.,

p(GMM)(x) =

K∑
k=1

p(k)p(x|k) =
K∑

k=1

ρkN (x;µk,Ck), (4)

p(VAE)(x) =

∫
p(z)pθ(x|z)dz =

∫
N (z;0, I)N (x;µθ(z),Cθ(z))dz. (5)
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The tunable parameters ({ρk,µk,Ck}Kk=1 for GMMs and θ for VAEs) are learned by optimizing
the model’s log-evidence

∑
i log p

(f)(xi) (f ∈ {GMM,VAE}) over X . In the case of GMMs,
this is typically done by an EM algorithm alternating between the so-called e- and m-step. The
e-step determines the closed-form posteriors pt(k|xi) (for all i) via the Bayes rule using the model’s
parameters in the tth iteration. The m-step then updates the model’s parameters by maximizing∑

i Ept(k|xi) [log p(xi, k)]. In case of VAEs, however, the posterior pθ(z|x) (and log p(VAE)(x)) are
intractable and the EM algorithm cannot be applied. Therefore, a tractable distribution qϕ(z|x) =
N (z;µϕ(x), diag(σ2

ϕ(x)) with variational parameters ϕ is introduced, which approximates pθ(z|x),
and µϕ(x) and σ2

ϕ(x) are generated by a NN encoder. Equivalently, µθ(z) and Cθ(z) are generally
realized by a NN decoder. The objective to be maximized is the evidence lower bound (ELBO)
L(θ,ϕ) serving as a tractable lower bound for the intractable log-evidence

∑
i log pθ(xi), i.e.,∑

xi∈X
log pθ(xi) ≥ L(θ,ϕ) =

∑
xi∈X

(log pθ(xi)−DKL(qϕ(z|xi)||pθ(z|xi))) (6)

with DKL(·) being the Kullback-Leibler (KL) divergence. Generally, the GMM’s and VAE’s training
critically depends on iteratively characterizing and updating their posteriors pt(k|xi) and qϕ(z|xi).

2.4 Proposed Method

The goal of this section is to derive a class of generative models, for which we can guarantee that, on
the one hand, it is sparsity-inducing, but on the other hand, it is trainable and can learn from solely
compressed and noisy observations Y resulting in an effective probabilistic prior for (1).

To incorporate the bias towards sparsity, we start with SBL discussed in Section 2.2 and combine it
with the VAE’s and GMM’s main principle for their adaptability to complicated distributions, i.e.,
introducing a latent variable z (or k) on which we condition with a parameterized Gaussian (cf. (4) and
(5)).2 More specifically, we exploit the Gaussianity of pγ(s) in (3) and modify it to a parameterized
Gaussian conditioned on some latent variable z with arbitrarily parameterized pδ(z) while explicitly
keeping its mean zero and its covariance matrix diagonal, i.e., pθ(s|z) = N (s;0, diag(γθ(z))). The
resulting set of statistical models referred to as sparse Bayesian generative models, is given by

y|s ∼ p(y|s) = N (y;ADs, σ2 I), s|z ∼ pθ(s|z) = N (s;0, diag(γθ(z))) , z ∼ pδ(z). (7)

Training principle. Our proposed training scheme is independent of specific realizations for γθ(z)
and pδ(z), which is why they are kept general in this section. Specific parameterizations are discussed
in Section 3.2 and 3.3. The training goal is to maximize the model’s log-evidence

∑
i log pδ,θ(yi)

implicitly defined by (7) over a training set of compressed and potentially noisy observations Y . For
that, we rely on the main training principles for statistical models including latent variables, i.e., the
EM algorithm and variational inference (cf. Section 2.3). A key requirement of these principles is the
ability to track and update the model’s posterior (i.e., pθ,δ(s, z|y) for (7)) or approximations of it
over the training iterations (cf. Section 2.3). In classical SBL, the prior distribution pγ(s) forms a
conjugate prior of p(y|s) (cf. (2)) and, thus, the posterior pγ(s|y) is tractable in closed form. We
utilize this property by observing that conditioned on some z, (7) coincides with the classical SBL
model. Consequently, s|z is a conditioned conjugate prior of y|s in (7) with tractable Gaussian
posterior pθ(s|z,y), whose closed-form covariance matrix and mean

C
s|y,z
θ (z) =

(
1

σ2
DTATAD + diag(γ−1

θ (z))

)−1

, µ
s|y,z
θ (z) =

1

σ2
C

s|y,z
θ (z)DTATy (8)

equal those in SBL [19]. The equivalent formulas for σ2 = 0 are given in Appendix C. By
considering the decomposition pθ,δ(s, z|y) = pθ(s|z,y)pθ,δ(z|y), we conclude that our proposed
set of statistical models in (7) exhibits posteriors, which are partially tractable in closed form
independent of any specifics of γθ(z) and pδ(z). The remaining pθ,δ(z|y) resembles the standard
GMM’s and VAE’s posterior, and we can either apply the EM algorithm or variational inference to
maximize the corresponding log-evidence. Both will be discussed in Section 3.2 and 3.3, respectively.

2For the sake of readability, we exclusively use z throughout the remainder of this section to denote the
continuous as well as the discrete and finite random variable, on which we condition.
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Estimation scheme. The goal after the training is to use the learned statistical model in (7) for
regularizing the inverse problem (1) and estimating x∗ from a newly observed y. Generally, the
CME E[x|y] is a desirable estimator due to its property of minimizing the MSE. We utilize insights
from [33, 23], which derive approximate closed forms of the CME using VAEs and GMMs. More
precisely, by using the law of total expectation, we approximate the CME by

E[x|y] = E
[
E
[
x|y, z

]
|y
]
= DE

[
E
[
s|y, z

]
|y
]
≈DEpθ,δ(z|y)

[
Epθ(s|z,y)

[
s|y, z

]
|y
]
. (9)

The inner expectation is given by the learned µ
s|y,z
θ (z) in (8), while, depending on its specific

characteristics, pθ,δ(z|y) also exhibits a closed form or a variational approximation has been learned
during training (cf. Section 3.2), with which we approximate the outer expectation by a Monte-
Carlo estimation. Based on the perception-distortion trade-off, the CME is not optimal from a
perceptual point [38], and deviating estimators from the CME approximation might be beneficial.
More detailed descriptions of the CME approximation as well as further estimators based on the
specific implementations in Section 3.2 and 3.3 are given in Appendix G.

3 Theoretical Analysis and Specific Parameterizations

3.1 Sparsity Guarantees

In Section 2.4, we motivate constraining pθ(s|z) to be a zero mean conditional Gaussian with
diagonal covariance matrix by SBL and its sparsity-inducing property. In the following, we rigorously
show that constraining pθ(s|z) in this manner is sufficient to maintain the sparsity-inducing property
for any statistical model following (7) despite the additionally included latent variable z. More
precisely, we show that any statistical model in (7) with some specified parameterized pδ(z) and
γθ(z) exhibits a log-evidence that is interpretable as a variational lower bound of a sparsity-inducing
log-evidence. For that, we establish the following theorem.

Theorem 3.1. Let pθ(s|z) = N (s;0, diag(γθ(z)) (i.e., it is defined according to (7)), let z be either
continuous or discrete and finite, and let γθ(z) > 0. Then, there exists a constant C > 0 such that
for all s,θ, δ with any arbitrary distribution pδ(z)

pθ,δ(s) =

∫
pδ(z)N (s;0, diag(γθ(z)))dz ≤ t(s) = C ·

N∏
i=1

1

|si|
. (10)

The integral corresponds to a summation for discrete and finite pδ(z).

The proof is given in Appendix A. Based on Theorem 3.1, it holds that(
log π(s)(y) ≥ log pθ,δ(y)

)
for all θ, δ (11)

with log π(s)(y) being the log-evidence of y|s ∼ p(y|s) and the improper but sparsity-promoting
prior t(s), whereas log pθ,δ(y) is implicitly defined by (7). Consequently, we can interpret the
maximization of log pθ,δ(y) over (θ, δ) as the evidence maximization over the space of variational
approximations to a model with a sparsity-inducing and regularizing prior. However, contrary to
classical SBL, we have the additional degree of freedom to choose the specifics of γθ(z) and pδ(z)
without any constraint while maintaining the connection to sparsity.

3.2 Compressive Sensing VAE

The integral version of pθ,δ(s) in (10) strongly resembles the VAE’s decomposition of p(x) in (5).
In fact, by constraining pδ(z) = p(z) = N (z;0, I), the distribution pθ,δ(s) = pθ(s) corresponds
to a subset of all possible distributions covered by the VAE decomposition in (5). This motivates to
choose pδ(z) in this exact manner and realize γθ(z) as the output of a NN decoder. Generally, we
aim to optimize the log-evidence

∑
i log pθ(yi) in (11) with respect to θ solely given compressed and

noisy observations Y . However, equivalent to VAEs, the log-evidence
∑

i log pθ(yi) is intractable
for p(z) = N (z;0, I), which is why a tractable lower bound has to be derived. A tractable lower
bound on the log-evidence of a statistical model with latent variables is obtained by subtracting the
KL divergence between the conditional distribution of the latent variables given the observations
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Figure 1: A schematic of the sparsity-inducing CSVAE.

and a tractable variational distribution from the log-evidence (cf. (6)). For the model in (7) and i.i.d.
training data, this results in∑

yi∈Y
log pθ(yi) ≥ L

(CSVAE)
(θ,ϕ) =

∑
yi∈Y

log pθ(yi)−DKL(qϕ(z, s|yi)||pθ(z, s|yi)) (12)

=
∑
yi∈Y

Eqϕ(z,s|yi)

[
log

p(yi|s)pθ(s|z)p(z)
qϕ(z, s|yi)

]
, (13)

where the derivation of (13) from (12) is given in Appendix B. Based on insights from the training
principle explained in Section 2.4, the variational posterior qϕ(z, s|yi) in (13) can be simplified
to qϕ(z, s|yi) = pθ(s|z,yi)qϕ(z|yi) with closed-form pθ(s|z,yi) and only requires variational
parameters ϕ for qϕ(z|yi) to be tractable. As a result, the adapted ELBO L

(CSVAE)
(θ,ϕ) equals∑

yi∈Y
Eqϕ(z,s|yi)

[
log

p(yi|s)pθ(s|z)p(z)
pθ(s|z,yi)qϕ(z|yi)

]
=
∑
yi∈Y

(
Eqϕ(z|yi)

[
Epθ(s|z,yi)

[
log pθ(yi|s)

]
−DKL(pθ(s|z,yi)||pθ(s|z))

]
−DKL(qϕ(z|yi)||p(z))

)
.

(14)

To ensure the training of standard VAEs to be tractable, Eqϕ(z|yi)[·] is generally approximated by a
single-sample Monte-Carlo estimation [37]. We build on the same strategy and approximate (14) by

L
(CSVAE)
(θ,ϕ) ≈

∑
yi∈Y

(
Epθ(s|z̃i,yi)[log p(yi|s)]−DKL(qϕ(z|yi)||p(z))−DKL(pθ(s|z̃i,yi)||pθ(s|z̃i))

)
(15)

with z̃i ∼ qϕ(z|yi) and Epθ(s|z̃i,yi)[log p(yi|s)] exhibiting a closed-form solution detailed in Ap-
pendix D. In addition, DKL(pθ(s|z̃i,yi)||pθ(s|z̃i)) is the tractable KL divergence of two multivariate
Gaussians, and DKL(qϕ(z|yi)||p(z)) matches the KL divergence from standard VAEs (cf. [37]).
Both are specified in Appendix E. The adapted ELBO in (15) resembles the classical ELBO of
ordinary VAEs with a modified reconstruction loss and an additional KL divergence. Equivalent to
ordinary VAEs, we model qϕ(z|yi) = N (z;µϕ(yi), diag(σ2

ϕ(yi))) and realize (µϕ(·),σ2
ϕ(·)) by

a NN encoder, and γθ(·) by a NN decoder. The adapted ELBO in (15) forms a differentiable and
variational approximation of the model’s log-evidence

∑
i log pθ(yi). Based on Theorem 3.1 and

(11), it holds that ∑
yi∈Y

log π(s)(yi) ≥
∑
yi∈Y

log pθ(yi) ≥ L
(CSVAE)
(θ,ϕ) for all θ,ϕ. (16)

Thus, L(CSVAE)
(θ,ϕ) serves as a variational lower bound of a sparsity-inducing log-evidence. We denote

the resulting VAE as Compressive Sensing VAE (CSVAE), and its schematic is presented in Fig. 1. It
resembles the vanilla VAE with the main difference that the encoder takes a compressed observation
y as input and the decoder solely outputs conditional variances γθ(z̃) of s|z. In case of varying
measurement matrices Ai for each training, validation and test sample, we use the least-squares
estimate x̂(LS)

i = AT
i (AiA

T
i )

−1yi instead of yi as encoder input. The CSVAE’s training with
ground-truth data and pseudo-code for training are outlined in Appendix H and N (cf. algorithm 1).

3.3 Compressive Sensing GMM

By considering discrete and finite pδ(z) in (7), i.e., pδ(z = k) = pδ(k) = ρk, we observe that the
resulting pθ,δ(s) strongly resembles the GMM’s decomposition of p(x) in (4). This motivates to
choose pδ(z) in exactly this manner and pθ(s|z) = p(s|k) = N (s;0, diag(γk)), i.e., s is modelled
as GMM with zero means and diagonal covariance matrices. Equivalent to CSVAEs in Section 3.2,
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the distribution p(s|k,y) contained in the model’s posterior p(k, s|y) = p(s|k,y)p(k|y) exhibits a
closed-form solution (cf. (8)). Moreover, due to the linear relation between y and s in (7) and the
assumption that s|k is Gaussian, y|k is also Gaussian with zero mean and covariance matrix

C
y|k
k = ADdiag(γk)D

TAT + σ2 I . (17)
and p(k|y) is computable in closed form by Bayes, i.e., p(k|y) = (p(y|k)p(k))/(

∑
k p(y|k)p(k)).

Thus, p(k, s|y) exhibits a closed form, and an EM algorithm can be applied, whose e-step coincides
with computing p(k, s|y). Based on the extended EM algorithm in [23], where the authors fit a vanilla
GMM (4) in the pixel domain using compressed image patches, we formulate an m-step tailored to
our model (7). We denote the resulting model as Compressive Sensing GMM (CSGMM). The m-step
aims to update the CSGMM’s parameters {ρk,γk} by optimizing

∑
i Ept(k,s|xi) [log p(xi, s, k)],

whose closed-form solution is given in the following lemma.
Lemma 3.2. Let the statistical model in (7) be given with discrete pδ(z = k) = p(k) = ρk and
γθ(z) = γk, and let Y contain i.i.d. noisy and compressed observations yi. Given pt(k|yi) and
pt(s|k,yi) = N (s;µ

s|yi,k
k,t ,C

s|yi,k
k,t ) in the tth iteration of an EM algorithm, the updates of {ρk,γk}

γk,(t+1) =

∑
yi∈Y pt(k|yi)(|µs|yi,k

k,t |2 + diag(Cs|yi,k
k,t ))∑

yi∈Y pt(k|yi)
, ρk,(t+1) =

∑
yi∈Y pt(k|yi)

|Y|
(18)

form a valid m-step and, thus, guarantee to improve the log-evidence in every iteration.

The proof of Lemma 3.2, the CSGMM’s training with ground-truth data S and pseudo-code are
outlined in Appendix F, H and N (cf. algorithm 4), respectively.

3.4 Discussion

From a broader perspective, our proposed algorithm represents two consecutive stages:

1) Choose a dictionary D, with respect to which a general signal set C of interest is compress-
ible (e.g. a wavelet basis for the set of natural images).

2) Learn the statistical characteristics of the specific signal subset S ⊂ C of interest in its
compressible domain (e.g. the subset of handwritten digits).

Due to the strong regularization of stage 1) constraining the search space in stage 2), our model can
learn from a few corrupted samples Y . To ensure the search space to be within the set of compressible
signals with respect to D, we enforce s|z in (7) and, thus, s to have zero mean (cf. Theorem 3.1).

Limitation. On the one hand, this restriction regularizes the problem at hand. On the other hand, it
generally introduces a bias, which potentially prevents perfectly learning the unknown distribution of
s as it is not always possible to decompose a distribution in this way. As a result, the proposed model
is biased towards capturing the sparsity-specific features from Y and being an effective prior for (1)
rather than learning a comprehensive representation of the true p(s).

Distinction from generative model-based CS. Generative model-based CS builds on a generator
Gθ : z 7→ x = Gθ(z) (e.g., a GAN or VAE) with z ∈ RF , x ∈ RN and F ≪ N [4]. Arguably,
the notion of compressibility is still included in this setup, since it assumes that every x can be
perfectly encoded by only a few F values. Moreover, these models typically assign a simplistic fixed
distribution, e.g. p(z) = N (z;0, I), to their compressible domain. Consequently, while generative
model-based CS replaces the dictionary with a learnable mapping Gθ and constrains the compressible
domain by forcing it to be representable by, e.g., N (0, I), our approach does the exact opposite. We
keep the mapping from the compressible into the original domain fixed by a dictionary D and learn a
non-trivial statistical model pθ,δ(s) in the compressible domain.

Connection to uncertainty quantification. While coming from different motivations, our approach
shares similarities with methods from uncertainty quantification, namely so-called prior networks
[39]. There, the general idea is to let the NN output the parameters of a conditioned conjugate prior
(conditioned on the NN input) instead of directly the quantities of interest (cf. [40, 41]). As a result,
one can use entropy and mutual information measures to quantify different types of uncertainty.
Equivalently, our proposed models output the parameters γθ(z) of a conditioned conjugated prior
pθ(s|z), which is why they enable to quantify their uncertainty by the same measures.
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Computational complexity. It is noteworthy that our algorithm’s inference after training requires
no optimization algorithm but only consists of, e.g., a feed-forward operation through a comparably
small VAE. Thus, our proposed method’s signal reconstruction comes with computational benefits
and differs in this context from other approaches. On the downside, naively implementing the
training requires computing and storing the posterior covariance matrices in (8), which can lead to a
non-negligible computational and memory-related overhead for very high dimensions. To overcome
this issue, we derive equivalent reformulations of the CSVAE’s and CSGMM’s update steps for
training that circumvent the explicit computation of these matrices. More precisely, the reformulated
update steps solely require the explicit storing and inversion of the observations’ covariance matrices
(cf. (17)), which are typically much lower dimensional. The reformulations are given in Appendix I.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate the performance on four datasets. We use the MNIST dataset (N = 784)
for evaluation [42, (CC-BY-SA 3.0 license)]. Moreover, we use an artificial 1D dataset of piecewise
smooth functions of dimension N = 256. For that, we combine HeaviSine functions with polynomials
of quadratic degree and randomly placed discontinuities, which are frequently used for CS and
compressible in the wavelet domain [43, 17]. The generation and examples are outlined in Appendix
J. We also use a dataset of 64× 64 cropped celebA images (N = 3 · 642 = 12288) [44]3 and evaluate
on the FashionMNIST dataset (N = 784) in Appendix L [45, (MIT license)].

Measurement matrix & evaluation metric. For the simulations on piecewise smooth functions,
we use a separate measurement matrix Ai for each training, validation and test sample, where all Ai

contain i.i.d. Gaussian entries Ai,kl ∼ N (0, 1
M ). For all remaining simulations, we use one fixed

measurement matrix A each with equally distributed i.i.d. Gaussian entries for the whole dataset. We
evaluate the distortion performance by a normalized MSE nMSE = 1/Ntest

∑Ntest
i=1 (∥x̂i − xi∥22/N )

with x̂i being the estimation of xi and the SSIM [46] with Ntest being set to 5000 in any simulation.

Baselines & hyperparameters. As non-learnable baselines, we use Lasso [12] and SBL [19], where
we either adjust Lasso’s shrinkage parameter on a ground-truth dataset or use the configurations from
[4]. As baselines, which can learn from compressed data, we use CSGAN [30] and CKSVD [24] with
OMP, sparsity level 4 and 288 learnable dictionary atoms. We solely evaluate CKSVD on piecewise
smooth functions due to its requirement of varying measurement matrices for observing the training
samples. For CSGAN on MNIST, we use the configuration specified in [30].4 In any simulation, we
use K = 32 components for the proposed CSGMM and the proposed CSVAE’s en- and decoders
contain two fully-connected layers with ReLU activation and one following linear layer, respectively.
We utilize Adam for optimization [47], and only consider the CME approximation of the estimators
(cf. Section 2.4) since we did not observe notable differences to the alternative estimators in Appendix
G. We utilize an overcomplete Daubechies db4 dictionary [48] in all estimators with fixed dictionaries.
For all estimators except CSGAN, all images and estimates are normalized and clipped between 0
and 1, respectively. For CSGAN, images are normalized between −1 and 1 following [4, 30], and for
evaluation, test images and their estimations are then re-normalized between 0 and 1. For a more
detailed overview of hyperparameter configurations, see Appendix K.

4.2 Results

Reconstruction. In Fig. 2 and 3, the reconstruction performance of all estimators for MNIST, the
piecewise smooth functions, and celebA is shown. All trainable models are trained on compressed
training samples Y of dimension M without any ground-truth information during training (cf. Section
2.1). The models are then used to estimate test signals xi from observations of the same dimension
M (cf. (1)) for evaluation. In the case of the piecewise smooth functions, we also add noise of a
10dB signal-to-noise ratio (SNR) for training and testing, i.e., σ2

n = E[∥Ax∥22]/(M · 10) in (1).
3The celebA dataset is released under a custom license for non-commercial research use.
4The original work of CSGAN [30] does not provide results for varying measurement matrices as well as for

celebA trained on solely compressed data. We also did not find a working hyperparameter configuration, so we
leave out CSGAN for the piecewise smooth functions and the celebA dataset.
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Figure 2: a) and b) nMSE and SSIM over M (Nt = 20000, MNIST), c) and d) nMSE and SSIM
over Nt (M = 160, MNIST), e) exemplary reconstructed MNIST images (M = 200, Nt = 20000),
f) nMSE over M (SNRdB = 10dB, Nt = 10000, piece-wise smooth fct.), g) nMSE over Nt

(SNRdB = 10dB, M = 100, piece-wise smooth fct.), h) exemplary reconstructed piece-wise smooth
fct. (M = 100, Nt = 1000), i) nMSE comparison of dictionaries (MNIST, M = 160, Nt = 20000).

In Fig. 2 a)-d), the nMSE and SSIM on MNIST is shown for a) and b) varying observation
dimensions M and the fixed number Nt = 20000 of training samples, and c) and d) vice versa
with fixed M = 160. The error bars represent standard deviations. In terms of both distortion
metrics nMSE and SSIM, CSVAE and CSGMM perform overall the best. In Fig. 2 c), exemplary
reconstructed MNIST images for M = 200 and Nt = 20000 are shown. Perceptually, CSGAN
emphasizes different reconstruction aspects than the proposed CSVAE and CSGMM. While CSVAE
and CSGMM successfully recover details of the MNIST images, CSGAN prioritizes the similarity in
contrast between bright and dark areas. This can be explained by their different estimation strategies.
The estimation of CSGANs is restricted to lie on the learned manifold, which has been adjusted based
on the training dataset. In consequence, when the test sample x∗ contains details that cannot be found
in the training dataset, CSGANs cannot reconstruct these but rather output a similar but realistic
representative from the manifold. On the contrary, our proposed estimation scheme in Section 2.4 is
not restricted to a manifold but rather infers conditional distributions (cf. (8)) over the whole linear
space. Moreover, Fig. 2 c) and d) demonstrate that the proposed model can effectively learn from only
a few hundred compressed and noisy samples. In Fig. 2 i), CSVAE and CSGMM are compared using
different dictionaries types. The overall nMSE performance remains good for different dictionaries
except for applying the models directly in the pixel domain.

In Fig. 2 f), g) and h), the nMSE over varying M (see f)), varying Nt (see g)) and exemplary
reconstructed samples (see h)) are shown for the set of piecewise smooth functions. Here, we only
evaluated the proposed CSVAE.5 Compared to the baselines Lasso, SBL, and CKSVD, the CSVAE
performs the best in distortion (see f) and g)) as well as perception (see h)). In Fig. 3 a)-e), the same
plots are shown for the celebA dataset. Despite the significantly larger dimension, the results are
consistent with those for MNIST and the set of piecewise smooth functions.

5We leave out the CSGMM due to the need to compute separate posterior covariance matrices for all training
samples by using varying measurement matrices (cf. (8)), which leads to a computational overhead.
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Figure 3: a) and b) nMSE and SSIM over M (Nt = 5000), c) and d) nMSE and SSIM over Nt

(M = 1800), e) exemplary reconstructed celebA images (M = 2700, Nt = 5000), f) histogram
of h(z|y) for compressed test MNIST images of digits 0,1 and 7, where the CSVAE is trained on
compressed zeros, g) training and reconstruction time for MNIST (M = 200, Nt = 20000).

Uncertainty quantification. One possibility to determine the model’s uncertainty is to determine
the differential entropy h(z|y) of the CSVAE’s encoder distribution qϕ(z|y). Since qϕ(z|y) is a
Gaussian with diagonal covariance matrix (cf. Section 3.2), h(z|y) can be calculated efficiently in
closed form. In Fig. 3 f), a histogram is shown with values of h(z|y). The CSVAE is trained on
solely compressed MNIST zeros. We then forward compressed zeros, ones and sevens and evaluate
h(z|y). It can be seen that the CSVAE’s encoder identifies the observations that are distinct to the
training dataset by providing larger entropy values on average for the compressed ones and sevens.

Runtime. Fig. 3 g) shows our measured training time as well as average reconstruction time of the
MAP-based estimators (cf. Section G) for MNIST, M = 200, Nt = 20000. CSGMM and CSVAE
are considerably faster than the baselines validating the corresponding discussion in Section 3.4.

Additional results. The results in Fig. 2 and 3 display the performance for CSGAN and the
proposed CSVAE and CSGMM trained on solely compressed data. However, all three models can
also learn from ground-truth data (cf. Appendix H). In Appendix L, we include this comparison
for MNIST, provide results on FashionMNIST, analyze the estimators’ robustness, and plot further
reconstructions for all datasets. Moreover, in Appendix M, we analyze the runtime for training and
reconstruction in more detail and give an overview of the used compute resources.

5 Conclusion

In this work, we introduced a new type of learnable prior for regularizing ill-conditioned inverse
problems denoted by sparse Bayesian generative modeling. Our approach shares the property of
classical CS methods of utilizing compressibility, but at the same time, it incorporates the adaptability
to training data. Due to its strong regularization towards sparsity, it can learn from a few corrupted data
samples. It applies to any type of compressible signal and can be used for uncertainty quantification.
While this work focused on setting up the sparse Bayesian generative modeling framework, extensions
to learnable dictionaries, circumventing the inversion of the observations’ covariance matrices during
training, and perception-emphasizing estimators are part of future work.
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A Proof of Theorem 3.1

To prove Theorem 3.1, we restate (3), i.e., there exists a C > 0 such that for all γ > 0 and s

N (s;0, diag(γ)) ≤ t(s) = C ·
N∏
i=1

1

|si|
. (19)

Based on (19), there exists a C > 0 such that for all θ, s, z with γθ(z) > 0

pθ(s|z) = N (s;0, diag(γθ(z))) ≤ t(s) = C ·
N∏
i=1

1

|si|
. (20)

By multiplying both sides in (20) with pδ(z) and integrating over z, we conclude that there exists a
C > 0 such that for all θ, s, δ with γθ(z) > 0

pθ,δ(s) =

∫
pδ(z)pθ(s|z)dz ≤

∫
pδ(z)t(s)dz = t(s) (21)

independent of the particular choice of pδ(z). In case of discrete and finite pδ(z) the integral
corresponds to a summation.

B Derivation of the adapted ELBO for CSVAEs

We write out the KL divergence and utilize that pθ(y) is independent of the expectation, i.e.,

L
(CSVAE)
(θ,ϕ) =

∑
yi∈Y

log pθ(yi)−DKL(qϕ(z, s|yi)||pθ(z, s|yi)) (22)

=
∑
yi∈Y

Eqϕ(z,s|yi)

[
log

pθ(yi)pθ(z, s|yi)

qϕ(z, s|yi)

]
=
∑
yi∈Y

Eqϕ(z,s|yi)

[
log

p(yi|s)pθ(s|z)p(z)
qϕ(z, s|yi)

]
.

(23)

C Conditional Posterior in the Noise-Free Case

In the noise-free case, the closed-form covariance matrix and mean of pθ(s|z,y) are given by

C
s|y,z
θ (z) =

(
I−diag(

√
γθ(z))

(
ADdiag(

√
γθ(z))

)†
AD

)
diag(γθ(z)) (24)

µ
s|y,z
θ (z) = diag(

√
γθ(z))

(
ADdiag(

√
γθ(z))

)†
y. (25)

with (·)† being the Moore-Penrose inverse [19].

D Closed-Form Solution of the CSVAE Reconstruction Loss

Epθ(s|z̃i,yi)[log p(yi|s)] = Epθ(s|z̃i,yi)

[
−1

2

(
M log(2πσ2) +

1

σ2
∥yi −ADs∥22

)]
(26)

= −1

2

(
M log(2πσ2) +

1

σ2
Epθ(s|z̃i,yi)

[
∥yi∥22 − yT

i ADs (27)

−sTDTATyi + tr(ADssTDTAT)
])

= −1

2

(
M log(2πσ2) +

1

σ2

(
∥yi∥22 − yT

i ADµ
s|yi,z̃i

θ (z̃i)− µ
s|yi,z̃i

θ (z̃i)
TDTATyi (28)

+ tr(AD
(
C

s|yi,z̃i

θ (z̃i) + µ
s|yi,z̃i

θ (z̃i)µ
s|yi,z̃i

θ (z̃i)
T
)
DTAT)

))
= −1

2

(
M log(2πσ2) +

1

σ2

(
∥yi −ADµ

s|yi,z̃i

θ (z̃i)∥22 + tr(ADC
s|yi,z̃i

θ (z̃i)D
TAT)

))
(29)

where µ
s|yi,z̃i

θ (z̃i) and C
s|yi,z̃i

θ (z̃i) are the mean and covariance matrix of pθ(s|z̃i,yi).
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E Closed-Form Solution of the CSVAE KL Divergences

By inserting the closed form of the KL divergence between two Gaussians (cf. [49]), we get

DKL(pθ(s|z̃i,yi)||pθ(s|z̃i)) =
1

2

(
log det (diag(γθ(z̃i)))− log det

(
C

s|yi,z̃i

θ (z̃i)
)
− S

+tr
(

diag
(
(γθ(z̃i)

−1
)
C

s|yi,z̃i

θ (z̃i)
)
+ µ

s|yi,z̃i

θ (z̃i)
Tdiag

(
γθ(z̃i)

−1
)
µ

s|yi,z̃i

θ (z̃i)
) (30)

where µ
s|yi,z̃i

θ (z̃i) and C
s|yi,z̃i

θ (z̃i) are the mean and covariance matrix of pθ(s|z̃i,yi). Moreover
[47],

DKL(qϕ(z|yi)||p(z)) = −
1

2

NL∑
j=1

(1 + log σ2
j,ϕ(yi))− µj,ϕ(yi)− σ2

j,ϕ(yi)) (31)

with qϕ(z|yi) = N (z;µϕ(yi), diag(σ2
ϕ(yi))) and µj,ϕ(yi) and σ2

j,ϕ(yi)) being the jth entry of
µϕ(yi) and σ2

ϕ(yi), respectively. Additionally, NL denotes the CSVAE’s latent dimension.

F Proof of Lemma 3.2

The optimization problem we aim to solve is given by

{ρk,(t+1),γk,(t+1)} = argmax
{ρk,γk}

∑
yi∈Y

Ept(k,s|yi) [log p(yi, s, k)] s.t.
∑
k

ρk = 1. (32)

First, we reformulate the objective as∑
yi∈Y

Ept(k,s|yi) [log p(yi, s, k)] =
∑
yi∈Y

Ept(k,s|yi) [log p(yi|s) + log p(s|k) + log p(k)] , (33)

Moreover, we observe that log p(yi|s) does not depend on {ρk,γk} and we can leave it out from the
optimization problem. Additionally, ∑

yi∈Y
Ept(k|yi)

[
Ept(s|yi,k) [log p(s|k) + log p(k)]

]

=
∑
yi∈Y

K∑
k=1

pt(k|yi)

−1

2

S log 2π +

S∑
j=1

log γk,j +

S∑
j=1

Ept(s|yi,k)

[
|sj |2

]
γk,j

+ log ρk

 .

(34)

where we inserted p(s|k) = N (s;0, diag(γk)) (cf. (7)) and γk,j denotes the jth entry of γk. In the
next step, let Ept(s|yi,k)

[
|sj |2

]
= |µs|yi,k

k,j |2 + C
s|yi,k
k,j,j , where µ

s|yi,k
k,j and C

s|yi,k
k,j,j denote the jth

entry of µs|yi,k
k,t and the diagonal of Cs|yi,k

k,t in the tth iteration, respectively. Thus, our optimization
problem of interest can be restated as

argmax
{ρk,γk}

∑
yi∈Y

K∑
k=1

pt(k|yi)

−1

2

S log 2π +

S∑
j=1

(
log γk,j +

|µs|yi,k
k,j |2 +C

s|yi,k
k,j,j

γk,j

)+ log ρk


s.t.

∑
k

ρk = 1

(35)
with Lagrangian

L =
∑
yi∈Y

K∑
k=1

pt(k|yi)
(
− 1

2

(
S log 2π +

S∑
j=1

(
log γk,j +

|µs|yi,k
k,j |2 +C

s|yi,k
k,j,j

γk,j

))
+

log ρk

)
+ ν(1−

∑
k

ρk)

(36)
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and Lagrangian multiplier ν. Taking the derivative of L with respect to γm,q and ρm and setting it to
zero leads to

∂

∂γm,q
L = −1

2

∑
yi∈Y

pt(m|yi)

(
1

γm,q
− |µ

s|yi,k
m,q |2 +C

s|yi,k
m,q,q

γ2
m,q

)
= 0 (37)

∂

∂ρm
L =

∑
yi∈Y

pt(m|yi)

ρm
− ν = 0 (38)

and, thus,

γm,q,(t+1) =

∑
yi∈Y pt(m|yi)

(
|µs|yi,k

m,q |2 +C
s|yi,k
m,q,q

)
∑

yi∈Y pt(m|yi)
(39)

ρm,(t+1) =

∑
yi∈Y pt(m|yi)

ν
(40)

ν = |Y| (41)

where (41) comes from the normalization of
∑

k ρk = 1.

G Estimators Based on the CSVAE and CSGMM

CSVAE. The CME approximation in (9) with the proposed CSVAE in Section 3.2 is given by

x̂∗
CSVAE,CME =

D

|Z|
∑
z̃i∈Z

Epθ(s|z̃i,y)

[
s|y, z̃i

]
(42)

with Z containing samples z̃i ∼ qϕ(z|y). Alternatively, one can estimate x∗ based on a newly
observed y in the following way. We use the mean µϕ(y) as maximum a posteriori (MAP) estimate
based on qϕ(z|y) and, then, estimate x∗ by

x̂∗
CSVAE,MAP = DEpθ(s|µϕ(y),y)

[
s|y,µϕ(y)

]
= Dµ

s|y,µϕ(y)
θ (µϕ(y)). (43)

This method is applied in [33] to reduce computational complexity, but also deviates from the CME
approximation and potentially improves the perceptual quality of the reconstruction.

CSGMM. In case of the proposed CSGMM in Section 3.3 the CME approximation in (9) exhibits
a closed form, i.e.,

x̂∗
CSGMM,CME = D

∑
k

p(k|y)Ep(s|k,y)[s|k,y]. (44)

An alternative estimator of x∗ is given by

x̂∗
CSGMM,MAP = DEp(s|k̂MAP,y)

[s|k̂MAP,y] (45)

with k̂MAP = argmax p(k|y) [23]. A pseudo-code for all estimators is provided in Appendix N (cf.
algorithm 2-6).

H CSVAE and CSGMM Training on Ground-Truth Data

The CSGMM as well as the CSVAE can both be trained given ground-truth datasets. For training the
CSGMM, this dataset either contains the compressible ground-truth signals si, i.e., S , or the signals
xi themself, i.e., X . On the other hand, for training the CSVAE, both datasets must also contain their
corresponding observations yi. Thus, the training dataset must be G orW (cf. Section 2.1).

CSGMM. To train the CSGMM, the training goal is to maximize the log-evidence of the training
dataset. In case of having access to S, the vanilla EM algorithm is employed with the modification
of enforcing the GMM’s means to be zero and covariance matrices to be diagonal in every update
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step. More precisely, after computing the posteriors pt(k|si) by the Bayes rule in the tth iteration,
the m-step is given by

γk,(t+1) =

∑
si∈S pt(k|si)|si|2∑

si∈S pt(k|si)
, ρk,(t+1) =

∑
si∈S pt(k|si)
|S|

. (46)

In case of having access to X , the same modified EM algorithm from Section 3.3 is employed by
exchanging AD with D and setting the noise variance σ2 to some small value.

CSVAE. To train the CSVAE using the dataset G, we also aim optimize the log-evidence of the
training dataset ∑

(si,yi)∈G

log pθ(si,yi) =
∑

(si,yi)∈G

log pθ(yi|si) + log pθ(si) (47)

By considering that log pθ(yi|si) does not depend on the CSVAE’s parameters (see (7)), introducing
additional variational parameters ϕ and approximating pθ(z|y, s) with qϕ(z|y), we apply the
standard reformulations of VAEs, which ends up in an ELBO resembling the standard ELBO in (6),
given by

L̃(θ,ϕ) =
∑

(si,yi)∈G

log pθ(si|z̃i)−DKL(qϕ(z|yi)||p(z)) (48)

with z̃i ∼ qϕ(z|yi) and pθ(si) being defined in (10) with p(z) = N (z;0, I). In the case of training
the CSVAE withW , the same training procedure from Section 3.2 is applied, resulting in the modified
ELBO L̃(θ,ϕ) approximated by∑

(xi,yi)∈W

(
Epθ(s|z̃i,xi)[log p(xi|s)]−DKL(qϕ(z|yi)||p(z))−DKL(pθ(s|z̃i,xi)||pθ(s|z̃i))

)
(49)

where we set the variational distribution qϕ(s, z|xi,yi) of the latent variables given the observations
to qϕ(z|yi)pθ(s|z,xi). Consequently, instead of computing the posterior pθ(s|z,yi), we use
pθ(s|z,xi), which is given by (8) with D instead of AD and setting the noise variance σ2 to some
small value. Additionally, to compute Epθ(s|z̃i,xi)[log p(xi|s)] we replace yi, M and AD in (29)
with xi, N and D, respectively.

I Implementation Aspects for Reducing the Computational Overhead

In a first step towards a computationally more efficient implementation for training the CSVAE
and CSGMM, we reformulate the expressions of the conditional mean µ

s|y,z
θ (z) and conditional

covariance matrix C
s|y,z
θ (z) from [18, 19] in (8). To do so, we observe that conditioned on z, s and

y in (7) are jointly Gaussian. In consequence, we can alternatively apply the standard formulas for
computing the moments of a conditional distribution for a jointly Gaussian setup [50], i.e.,

µ
s|y,z
θ (z) = C

s,y|z
θ (z)

(
C

y|z
θ (z)

)−1

y (50)

C
s|y,z
θ (z) = diag(γθ(z))−C

s,y|z
θ (z)

(
C

y|z
θ (z)

)−1

C
s,y|z
θ (z)T (51)

with
C

y|z
θ (z) = ADdiag(γθ(z))D

TAT + σ2 I (52)

and C
s,y|z
θ (z) = diag(γθ(z))D

TAT. Importantly, we do not need to explicitly compute C
s|y,z
θ (z)

according to (51). The subsequent reformulations differ between CSGMM and CSVAE.

CSGMM. For the CSGMM, only the diagonal entries of Cs|y,z
θ (z) must be explicitly computed,

i.e.,

diag
(
C

s|y,z
θ (z)

)
= γθ(z)− diag

(
C

s,y|z
θ (z)

(
C

y|z
θ (z)

)−1

C
s,y|z
θ (z)T

)
. (53)
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The matrix C
s,y|z
θ (z)

(
C

y|z
θ (z)

)−1

(i.e., Cs,y|k
k

(
C

y|k
k

)−1
6) has been precomputed for the con-

ditional mean in (50) and subsequently determining diag
(
C

s,y|k
k

(
C

y|k
k

)−1 (
C

s,y|k
k

)T)
only

requires O(SM) operations. Moreover,
(
C

y|k
k

)−1

has already been determined for evaluating the
posterior distributions p(k|y) in the preceding e-step (cf. Section 3.3). The closed-form m-step
in (18) only takes diag

(
C

s|y,k
k

)
for which we can directly use (53). In this way, we circumvent

explicitly computing the full posterior covariance matrices in (8), rendering training the CSGMM
more efficient.

CSVAE. The objective for training the CSVAE is given in (15), which consists of the modified
reconstruction loss in (29) as well as the KL divergences in (30) and (31). While µ

s|y,z
θ (z) in (29)

can be directly computed using (50), we reformulate the trace-term in (29) to circumvent the explicit
computation of Cs|y,z

θ (z). To do so, we apply the following steps

tr(ADC
s|yi,z̃i

θ (z̃i)D
TAT) = tr

(
C

s|yi,z̃i

θ (z̃i)D
TATAD

)
=

(54)

σ2 tr
(
C

s|yi,z̃i

θ (z̃i)

((
C

s|yi,z̃i

θ (z̃i)
)−1

− diag(γ−1
θ (z̃i))

))
= σ2

S −
S∑

j=1

C
s|yi,z̃i

θ,j,j (z̃i)

γθ,j(z̃i)


(55)

with C
s|yi,z̃i

θ,j,j (z̃i) being the jth diagonal entry of C
s|yi,z̃i

θ (z̃i) and γθ,j(z̃i) being the jth entry

of γθ(z̃i). For the derivation, we mainly apply the formula of Cs|yi,z̃i

θ (z̃i) in (8). By observing
that the σ2 in (55) cancels out with the 1/σ2 in (29), the trace-term in (29) cancels out with −S +

tr
(

diag
(
(γθ(z̃i)

−1
)
C

s|yi,z̃i

θ (z̃i)
)

in (30). We also reformulate log det
(
C

s|yi,z̃i

θ (z̃i)
)

in (30),

rendering the explicit computation of Cs|yi,z̃i

θ (z̃i) obsolete, i.e.,

log det
(
C

s|yi,z̃i

θ (z̃i)
)
= − log det

(
1

σ2
DTATAD + diag(γ−1

θ (z̃i))

)
= (56)

− log det

((
1

σ2
DTATAD + diag(γ−1

θ (z̃i))

)
diag(γθ(z̃i))diag(γ−1

θ (z̃i))

)
= (57)

− log det

((
1

σ2
DTATAD + diag(γ−1

θ (z̃i))

)
diag(γθ(z̃i))

)
+ log det(diag(γθ(z̃i))) = (58)

− log det

(
1

σ2
DTATADdiag(γθ(z̃i)) + I

)
+ log det(diag(γθ(z̃i))) = (59)

− log det

(
1

σ2
ADdiag(γθ(z̃i))D

TAT + I

)
+ log det(diag(γθ(z̃i))) = (60)

− log det(
1

σ2
I)− log detC

y|z̃i

θ (z̃i) + log det(diag(γθ(z̃i))) = (61)

M log σ2 − log detC
y|z̃i

θ (z̃i) + log det(diag(γθ(z̃i))) (62)

where we use the formula of Cs|yi,z̃i

θ (z̃i) in (8), Cy|z̃i

θ (z̃i) = ADdiag(γθ(z̃i))D
TAT + σ2 I as

well as Sylvester’s determinant theorem for the reformulation from (59) to (60).

In general, equivalent reformulations can also be applied when the CSVAE and CSGMM are trained
on ground-truth data (cf. Appendix H) by replacing C

s|yi,z̃i

θ (z̃i) with C
s|xi,z̃i

θ (z̃i).

6For the CSGMM we use the notation from Section 3.3
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Figure 4: Exemplary signals within the 1D dataset of piecewise smooth functions.
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Figure 5: Wavelet Transforms of the exemplary signals in Fig. 4.

J Implementation of the 1D Dataset of Piecewise Smooth Functions

The artificial 1D dataset of piecewise smooth functions is generated in the following way:

xi(t) =


∑2

j=0 h
(j)
1,i t

j + a
(1)
i sin(4πt+ η

(1)
i ), t ∈ [0, g1)∑2

j=0 h
(j)
2,i t

j + a
(2)
i sin(4πt+ η

(2)
i ), t ∈ [g1, g2)∑2

j=0 h
(j)
3,i t

j + a
(2)
i sin(4πt+ η

(3)
i ), t ∈ [g2, 4)

(63)

where h
(j)
m,i ∼ Bernoulli(0.5) and either takes −0.4 or 0.4, a(m)

i ∼ N (0, 0.12), η(m)
i ∼ U(0, 2π),

g1 ∼ U(0, 2) and g2 ∼ U(2, 4). After generation, each xi(t) is sampled equidistantly N = 256
times, and its samples are stored in vectors xi, which then constitute the ground-truth dataset X .
Exemplary signals and their wavelet decomposition are given in Fig. 4 and 5, respectively.

K Detailed Overview of Hyperparameter Configurations

MNIST & FashionMNIST. The non-learnable baselines for the simulations on MNIST are Lasso
as well SBL. We apply Lasso directly in the pixel domain with its shrinkage parameter λ set to 0.1
in line with [4]. For SBL, we use an overcomplete db4 dictionary with symmetric extension [48].
Moreover, although we do not include noise in the simulations for MNIST, we set σ2 in (2) to an
increment corresponding to 40dB SNR to be able to apply the computationally efficient reformulations
from Appendix I. For CSGAN, we use the exact hyperparameter configurations specified in [30]. For
CSGMM, we set the number K of components to 32 and iterate until the increments of the training
dataset’s log-evidence reach the tolerance parameter of 10−3, a standard stopping criterion for GMMs
[51]. The CSVAE encoders and decoders contain two fully connected layers with ReLU activation
and one following linear layer, respectively. The widths of the layers are set in a way such that for
the first two layers, the width increases linearly from the input dimension to 256, while the final
linear layer maps from 256 to the desired dimension (i.e., either S for the decoder or twice the latent
dimension for the encoder). The latent dimension is set to 16, the learning rate is set to 2 · 10−5, and
the batch size is set to 64. We use the Adam optimizer for optimization [47]. We once reduce the
learning rate by a factor of 2 during training and stop the training, when the modified ELBO in (15)
for a validation set of 5000 samples does not increase. For CSGMM as well as CSVAE we set σ2

in (7) to an increment corresponding to 40dB SNR to be able to apply the training reformulation
from Appendix I. We also use the same overcomplete db4 dictionary as for SBL. Moreover, we use
Ns = 64 samples to approximate the outer expectation in (9).

Piecewise smooth function. For the simulations on the set of piecewise smooth functions, we
adjust the shrinkage parameter of Lasso based on a ground-truth validation dataset of 5000 samples
once for every M . Moreover, we also use the overcomplete db4 dictionary for Lasso as for all other
dictionary-based estimators. Instead of choosing 256, we choose 128 as the maximum width of the
en- and decoder layers. Otherwise, the hyperparameters remain the same as for the simulations on
MNIST.

CelebA. For the simulations on celebA, we set the shrinkage parameter λ of Lasso to 0.00001
(cf. [4]). As celebA contains colored images, we choose a block-diagonal dictionary with the
overcomplete db4 dictionary three times along the diagonal and zero matrices in all off-diagonals.
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Figure 6: a) and b) nMSE and SSIM comparison over number Ns of estimations per observation
(MNIST, M = 200,Nt = 20000), c)-f) nMSE and SSIM performance of models trained on
compressed data (solid curves) as well as models trained on ground-truth data (dashed curves)
W and X over c) and d) M (Nt = 20000, MNIST), and e) and f) Nt (M = 160, MNIST), g) and h)
performance comparison on FashionMNIST.

Each block corresponds to one color channel. We use this dictionary for all estimators on celebA.
The batch size to set to 32. Otherwise, all hyperparameters are chosen in the same way as for MNIST.

Generally, we did no detailed network architecture search for the proposed CSVAE since we observed
no considerable change in performance by testing out different architectures.

L Additional Results

Robustness comparison. The proposed CSVAE relies on approximating the outer expectation
in (9) by Monte-Carlo sampling. Similar to this approximation, the baseline CSGAN also applies
several random restarts, i.e., it estimates the ground-truth sample several times for a single observation
and chooses the best-performing estimation by comparing their tractable measurement errors [30, 4].
In this way, both methods can be compared in terms of the number Ns of repeated estimations they
perform for a single observation. In Fig. 6 a) and b), we compare the nMSE and the SSIM for
both with respect to Ns. We evaluate their performance on the MNIST dataset with M = 200 and
Nt = 20000. It can be seen that the proposed CSVAE achieves already good performance for a single
Monte-Carlo sample, i.e., Ns = 1, while CSGAN is significantly worse when only using one restart
(i.e., Ns = 1) compared to having many restarts.

MNIST with training on ground-truth data. In Fig. 6 c)-f), the results from Fig. 2 a)-d) are
extended with the performance of the corresponding models trained on ground-truth data, which are
represented by the dashed curves. It should be noted that ground-truth information here refers to the
MNIST images xi themself. In consequence, CSGAN as well as the proposed CSGMM are trained
on X , while CSVAE is trained onW (cf. Section 2.1 and Appendix H). For the sake of readability,
we leave out the error bars in these plots. Generally, the CSGAN, as well as the proposed CSVAE and
CSGMM, benefit from the additional information during training in terms of the distortion metrics
nMSE and SSIM. For the nMSE, the overall performance comparison remains the same, while for
SSIM CSGAN trained on X outperforms CSVAE and CSGMM trained onW and X , respectively.
In Fig. 7, additional exemplary reconstructed MNIST images are shown for all models trained on
compressed as well as ground-truth data X in case of the CSGAN and CSGMM andW in case of the
CSVAE. It can be seen that perceptually, the CSGAN significantly benefits from the ground-truth
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Figure 7: Exemplary reconstructed MNIST images for M = 200, Nt = 20000 from a) models,
which are solely trained on compressed data (with observations of dimension M ), and b) models,
which are trained on ground truth data.

information during training, while the proposed CSVAE and CSGMM perform similarly in perception
for a training set of compressed or ground-truth samples. This highlights their effective regularization
effect explained in Section 3.4.

FashionMNIST. In Fig. 6 g) and h), the performance of SBL, CSGAN, and the proposed CSVAE
and CSGMM for varying observation dimensions M and fixed number Nt = 20000 of training
samples is shown. While for small M , CSGAN outperforms the proposed CSVAE and CSGMM,
its performance saturates for increasing M , and it performs worse than CSVAE and CSGMM. In
this case, CSGAN’s regularization to enforce the reconstruction to be in the generator’s domain is
beneficial for strongly compressed observations (i.e., for small M ). In Fig. 8, exemplary reconstructed
FashionMNIST images are shown.

Additional exemplary reconstructions. In Fig. 9, 10 and 11, additional exemplary reconstructions
for the piecewise smooth functions, MNIST as well as celebA are shown.

M Overview of Compute Resources

All models have been simulated on an NVIDIA A40 GPU except for the proposed CSGMM, whose
experiments have been conducted on an Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz. We report
the number of learnable parameters, the time used for training as well as the average reconstruction
time after training for simulations with piecewise smooth functions, MNIST and celebA in Table 1, 2
and 3, respectively. The average reconstruction time of estimating x∗ from a newly observed y has
been measured for the MAP-based estimators in Appendix G. While the reported numbers give an
overview of the comparison between the different tested models, it is important to note that we did
not aim to fully optimize our simulations for computational efficiency.

N Pseudo-Code for the Training and Inference of the CSVAE and CSGMM

Algorithm 1 summarizes one iteration of the training procedure for the CSVAE. Algorithm 4 does the
same for the CSGMM. In algorithm 2 and 3, the pseudo-code of the CME approximation and the
MAP-based estimator using the CSVAE is presented, respectively (cf. (42) and (43)). In algorithm 5
and 6, the same is given for the CSGMM (cf. (44) and (45))
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Figure 8: Exemplary reconstructed FashionMNIST images (M = 200, Nt = 20000, Fig. 6) g), h))

O
ri

gi
na

l
L

as
so

SB
L

C
K

SV
D

C
SV

A
E

(o
ur

s)

Figure 9: Exemplary reconstructed piece-wise smooth functions (M = 140, Nt = 10000, Fig. 2 f))
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Figure 10: Exemplary reconstructed MNIST images (M = 160, Nt = 20000, Fig. 2 a))
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Figure 11: Exemplary reconstructed celebA images (M = 2700, Nt = 5000, Fig. 3 a))
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Table 1: Resources for simulations on piecewise smooth fct. (M = 120, Nt = 20000, Fig. 2 f)).

Model # Parameters Training time (hours) Avg reconstruction time in ms

SBL - - 137.23
CKSVD - 0.43 2.38

CSVAE (ours) 109376 0.24 1.47

Table 2: Resources for simulations on MNIST (M = 200, Nt = 20000, Fig. 2 a)).

Model # Parameters Training time (hours) Avg reconstruction time in ms

SBL - - 294.17
CSGAN 208817 24.68 480.81

CSGMM (ours) 46208 0.75 2.64
CSVAE (ours) 566467 1.48 2.02

Table 3: Resources for simulations on celebA (M = 1800, Nt = 5000, Fig. 3 a)).

Model # Parameters Training time (hours) Avg reconstruction time in ms

SBL - - 6067.70
CSGMM (ours) 555104 5.33 329.34
CSVAE (ours) 5063138 17.88 62.59

Algorithm 1 Update Step in the Training Phase of the CSVAE
Input: parameters in the tth iteration θ(t) (i.e., the decoder) and ϕ(t) (i.e., the encoder), batch Ybatch, meas.
matrix A (or corresponding batch meas. matrices {Ai}i), dict. D, noise σ2, optimizer Adamt in the tth
iteration, learning rate λ

Output: parameters in the (t+ 1)th iteration θ(t+1), ϕ(t+1)

for i = 1 to |Ybatch| do
1) µϕ(t)(yi), σϕ(t)(yi)

Encoder←−−−− yi

2) draw z̃i ∼ qϕ(t)(z|yi) = N (z;µϕ(t)(yi),σϕ(t)(yi)) (via reparameterization trick [37])

3) γθ(t)(z̃i)
Decoder←−−−− z̃i

4)
(
C

y|z̃i

θ(t) (z̃i),µ
s|yi,z̃i

θ(t) (z̃i)
)

(52),(50)←−−−−
(
γθ(t)(z̃i),A,D, σ2,yi

)
5) Ep

θ(t) (s|z̃i,yi)[log p(yi|s)]
Appendix D,I←−−−−−−

(
µ

s|yi,z̃i

θ(t) (z̃i),A,D, σ2,yi

)
6) DKL(qϕ(t)(z|yi)||p(z))

Appendix E←−−−−−
(
µϕ(t)(yi),σϕ(t)(yi)

)
7) DKL(pθ(t)(s|z̃i,yi)||pθ(t)(s|z̃i))

Appendix E,I←−−−−−−
(
C

y|z̃i

θ(t) (z̃i),µ
s|yi,z̃i

θ(t) (z̃i),γθ(t)(z̃i)
)

end for
L

(CSVAE)
(θ(t),ϕ(t))

(15)←−− {5), 6), 7)}|Ybatch|
i=1(

θ(t+1),ϕ(t+1)
)
← Adamt(L

(CSVAE)
(θ(t),ϕ(t))

, λ,θ(t),ϕ(t))

Algorithm 2 CME Approximation with the CSVAE in the Inference Phase (cf. (42))
Input: observation y, encoder (µϕ(·),σϕ(·)), decoder γθ(·), meas. matrix A, dict. D, noise σ2, cardinality
|Z| in (42)
Output: CME approximation x̂∗

CME

1) µϕ(y), σϕ(y)
Encoder←−−−− y

for i = 1 to |Z| do
2) draw z̃i ∼ qϕ(z|y) = N (z;µϕ(y),σϕ(y))

3) γθ(z̃i)
Decoder←−−−− z̃i

4) µs|y,z̃i
θ (z̃i)

(50)←−−
(
γθ(z̃i),A,D, σ2,y

)
end for
5) x̂∗

CME = D/|Z|
∑|Z|

i=1 µ
s|y,z̃i
θ (z̃i)
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Algorithm 3 MAP-based Estimator with the CSVAE in the Inference Phase (cf. (43))
Input: observation y, encoder (µϕ(·),σϕ(·)), decoder γθ(·), meas. matrix A, dict. D, noise σ2

Output: MAP-based estimator x̂∗
MAP

1) µϕ(y)
Encoder←−−−− y

3) γθ(µϕ(y))
Decoder←−−−− µϕ(y)

4) µ
s|y,µϕ(y)

θ (µϕ(y))
(50)←−−

(
γθ(µϕ(y)),A,D, σ2,y

)
5) x̂∗

MAP = Dµ
s|y,µϕ(y)

θ (µϕ(y))

Algorithm 4 One EM Step in the Training Phase of the CSGMM with one fixed A

Input: parameters in the tth iteration {γ(t)
k , ρ

(t)
k }Kk=1, training set Y , meas. matrix A, dict. D,

noise σ2

Output: parameters in the (t+ 1)th iteration {γ(t+1)
k , ρ

(t+1)
k }Kk=1

for k = 1 to K do
1) Cy|k

k,t

(17)←−−
(
γ
(t)
k ,D,A, σ2

)
2) diag

(
C

s|y,k
k,t

)
(53)←−−

(
γ
(t)
k ,D,A, σ2

)
for i = 1 to |Y| do

3) pt(k|yi)
(Bayes)←−−−−

(
C

y|k
k,t , ρ

(t)
k

)
4) µs|yi,k

k,t

(50)←−−
(
C

y|k
k,t ,D,A, σ2,yi

)
end for
5)
(
γ
(t+1)
k , ρ

(t+1)
k

)
Lemma (3.2)←−−−−−−

({
pt(k|yi),µ

s|yi,k
k,t

}|Y|

i=1
, diag

(
C

s|y,k
k,t

))
end for

Algorithm 5 CME Approximation with the CSGMM in the Inference Phase (cf. (44))
Input: observation y, GMM {ρk,γk}Kk=1, meas. matrix A, dict. D, noise σ2

Output: CME approximation x̂∗
CME

for k = 1 to K do
1) Cy|k

k

(17)←−−
(
γk,D,A, σ2

)
2) p(k|y) (Bayes)←−−−

(
C

y|k
k , ρk

)
3) µs|y,k

k

(50)←−−
(
C

y|k
k ,D,A, σ2,y

)
end for
4) x̂∗

CME = D
∑K

k=1 p(k|y)µ
s|y,k
k

Algorithm 6 MAP-based Estimator with the CSGMM in the Inference Phase (cf. (45))
Input: observation y, GMM {ρk,γk}Kk=1, meas. matrix A, dict. D, noise σ2

Output: MAP-based estimation x̂∗
MAP

for k = 1 to K do
1) Cy|k

k

(17)←−−
(
γk,D,A, σ2

)
2) p(k|y) (Bayes)←−−−−

(
C

y|k
k , ρk

)
end for
3) k̂MAP = argmax p(k|y)
4) µs|y,k̂MAP

k̂MAP

(50)←−−
(
C

y|k̂MAP
k ,D,A,y, σ2

)
5) x̂∗

MAP = Dµ
s|y,k̂MAP

k̂MAP
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims made in the abstract and introduction are discussed in Section 2.4,
3.1, 3.2 ,3.3 and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 3.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Assumptions of Theorem 3.1 and Lemma 3.2 are stated in the theorem and
lemma themself, while rigorous proofs of Theorem 3.1 and Lemma 3.2 are provided in
Appendix A and F, respectively.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All necessary information to reproduce the results is stated in Section 4.1 and
Appendix K. Appendix N provides additional pseudo-code to facilitate the reproduction.
Moreover, a link to a GitHub repository with our source code is provided in Section 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Three of the four used datasets (MNIST, FashionMNIST, celebA) are freely
accessible, while a detailed description of generating the fourth dataset (piecewise smooth
functions) is given in Appendix J. Moreover, a link to our GitHub repository containing the
source code is provided in Section 1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All necessary information is stated in Section 4.1. Moreover, we refer to the
link to a GitHub repository with source code in Section 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We used a reasonable high number of test samples, see Section 4.1. Addition-
ally, we provide error bars representing the results’ standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources are provided in Appendix M.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully read the NeurIPS Code of Ethics and confirm that our
research conforms with it in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There are no potential societal impacts of our work, which we think must be
specifically highlighted.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not see any potential risk for misuse of our proposed model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite and explicitly state the licenses and terms of use of all used datasets in
Section 4.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All details are outlined in Section 4 and N.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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