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ABSTRACT

Evaluating the abilities of large language models (LLMs) for tasks that require
long-term memory and thus long-context reasoning, for example in conversational
settings, is hampered by the existing benchmarks, which often lack narrative co-
herence, cover narrow domains, and only test simple recall-oriented tasks. This
paper introduces a comprehensive solution to these challenges. First, we present a
novel framework for automatically generating long (up to 10M tokens), coherent,
and topically diverse conversations, accompanied by probing questions targeting
a wide range of memory abilities. From this, we construct BEAM, a new bench-
mark comprising 100 conversations and 2,000 validated questions. Second, to
enhance model performance, we propose LIGHT-a framework inspired by hu-
man cognition that equips LLMs with three complementary memory systems: a
long-term episodic memory, a short-term working memory, and a scratchpad for
accumulating salient facts. Our experiments on BEAM reveal that even LLMs
with 1M token context windows (with and without retrieval-augmentation) strug-
gle as dialogues lengthen. In contrast, LIGHT consistently improves performance
across various models, achieving an average improvement of 3.5%—12.69% over
the strongest baselines, depending on the backbone LLM. An ablation study fur-
ther confirms the contribution of each memory component.

1 INTRODUCTION

Large language models (LLMs) have been deployed across diverse applications, including open-
domain conversational agents (Laban et al.| 2025} |Chen et al.,[2025)), retrieval-augmented generation
(RAG) for open-domain question answering and fact checking (Lewis et al.l [2020; [Salemi et al.,
20255 Salemi & Zamani, 2025; |Kim et al., 2024b), long-document and code analysis (L1 et al., 2025;
Jelodar et al.| 2025} [Fang et al.l [2024), and scientific or legal research (Rueda et al.| 2025 Nguyen
et al., |2025). Many of these tasks demand models capable of processing long inputs, motivating
LLMs such as Gemini (DeepMind, 2025) with input windows of up to 1M tokens. Among these
domains, conversational systems present an intuitive and critical need for extended context, as users
often engage in protracted, multi-session dialogues that require consistent memory across lengthy
interactions (Zhong et al.} 2024} Xu et al.,|2022;|Du et al., 2024; |Tan et al.||2025)). This highlights the
importance of evaluating how well LLMs can reason over and utilize long conversational histories.

While there are many prior efforts on studying and evaluating long-term memory of LLMs (Kim
et al., 2024a; |Xu et al., 2021; Maharana et al., 2024} [Zhong et al., [2024; Xu et al., [2022}; Du et al.,
2024; Tan et al} |2025), existing benchmarks have fundamental limitations. Most extend conversa-
tion length by artificially concatenating short sessions of different users, producing dialogues with
abrupt topic shifts and weak narrative coherence. Such a construction artificially simplifies eval-
uation because distinct segments are easily separable, reducing the need for true long-range rea-
soning. Furthermore, these datasets typically target narrow domains—often limited to personal-life
scenarios—Ileaving many real-world application areas underrepresented. Finally, they emphasize
simple context recall, overlooking other critical memory abilities such as contradiction resolution,
recognizing evolving information, and instruction following.

To address these limitations, this paper presents a framework for automatically generating long
coherent conversations between a user and an Al assistant—scaling up to 10M tokens on diverse
domains—with a set of probing questions designed to evaluate diverse memory abilities of any
LLM on the generated dialogues. An overview of the data generation framework is shown in Figure
[I] This framework begins by defining a high-level conversation plan—a narrative for a particular do-
main and a simulated user with generated attributes—that outlines the overall flow of the dialogue.
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Figure 1: Overview of BEAM generation process. In the first stage, conversation plans are created
for each chat seed. In the second stage, user utterances are generated from the conversation plans. In
the third stage, assistant responses are produced, followed by two controller modules: one responsi-
ble for checking whether the assistant has posed a question to the user, and the other for determining
whether a follow-up question from the user is needed. In the fourth stage, probing questions are
generated based on the targeted memory abilities and corresponding conversation plans, and their
answers are identified within the chat. In the final stage, invalid probing questions are filtered out,
and nuggets are created for the validated set.

This plan is recursively decomposed into finer sub-plans that specify the storyline and its progres-
sion. From these sub-plans we generate chronologically ordered user turns, which are then expanded
with corresponding assistant responses. To increase realism, the system injects follow-up questions
and clarifications from both sides. Finally, we automatically create a set of probing questions that
target ten distinct memory dimensions, with a focus on complicated and multi-hop reasoning, which
are then validated by human annotators to ensure high quality. Using this pipeline, we construct the
BEAM dataset: 100 diverse conversations ranging from 100 K to 10 M tokens each, accompanied
by 2000 probing questions to evaluate the memory capabilities of LLMs.

To improve LLM performance on probing questions, we introduce the LIGHT framework (Figure[2),
which is applicable to both open-source and proprietary LLMs, inspired by research in human cog-
nitive science and human’s memorization and recall process (Sridhar et al., 2023; Binder & Desail,
2011). This framework integrates three complementary memories: (1) episodic memory, a long-
term index of the full conversation used for retrieval; (2) working memory, capturing the most recent
user—assistant turns; and (3) a scratchpad, where after each turn the model reasons over the dialogue
and records salient facts for future use. At inference, the LLM draws jointly on retrieved episodic
content, the working memory, and the accumulated scratchpad to generate accurate answers.

To evaluate LLM memory capabilities and the effectiveness of our method, we conduct experiments
on the constructed dataset, BEAM, using both open-source and proprietary models. Results show
that even LLMs with long context windows perform substantially worse as conversation length
increases. Our method improves the LLM’s performance in answering the probing questions by
3.5%-12.69% on average over the best-performing baseline, depending on the backbone model and
conversation length. An ablation study further reveals the contribution of each LIGHT component
on the performance. To support future work, we release all code, data, and evaluation scripts

2 BEAM: BENCHMARKING MEMORY CAPABILITIES OF LLMS

2.1 PROBLEM FORMULATION

LetD = {T;} ‘2'1 denote a collection of |D| conversations between users and a conversational agent
7. Each conversation is represented as 7 = {t;} Z‘l where t; € T corresponds to the i utterance
(turn) in the dialogue. The objective of this work is to systematically evaluate a predefined set

of memory abilities M exhibited by 7 across conversations. For each memory ability m € M,

we construct a probing dataset of size N, denoted as Q,, = {(x;,y;)}\,, where z; is a probing

!Codes and data will be released upon acceptance.
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question and y; is the corresponding ground-truth answer set. Each probing question (z,y) € Q,,
is appended as the (|77 + 1)™ turn in the dialogue, and the system generates a response § = 7(z; T
based on the conversation. The generated response is then evaluated using an ability-specific scoring
function g,,,, producing a performance score s = i, (x,y, 7). The goal of this work is to quantify
the performance of conversational systems on each memory ability in M.

2.2 BENCHMARK CREATION

Our goal is to evaluate how well LLMs can answer questions that depend on long-term conversa-
tional memory. We measure performance across ten complementary abilities, seven drawn from
prior benchmarks and three newly introduced here—Instruction Following, Event Ordering, and
Contradiction Resolution (see Table 2] in Appendix [B.I). Abstention evaluates whether a model
withholds answers when evidence is missing. Contradiction Resolution tests the capacity to detect
and reconcile inconsistent statements across widely separated turns, maintaining global coherence.
Event Ordering assesses whether a model can recognize and reconstruct the sequence of evolving
information in the dialogue. Information Extraction measures recall of entities and factual details in
long histories. Instruction Following examines sustained adherence to user-specified constraints over
long contexts. Information Update evaluates revising stored facts as new ones appear. Multi-hop
Reasoning probes inference that integrates evidence across multiple, non-adjacent dialogue seg-
ments. Preference Following captures personalized responses that adapt to evolving preferences.
Summarization assesses the ability to abstract and compress dialogue content, while Temporal Rea-
soning tests reasoning about explicit and implicit time relations. Together, these abilities evaluate a
system’s capacity to maintain, update, and manipulate information throughout extended conversa-
tions (see Appendix [B.6] for examples of each ability). Given these abilities and the formulation in
Section [2.1] the benchmark requires three components: 1) a user—assistant conversation, 2) probing
questions targeting key memory abilities, and 3) an evaluation methodology to assess the model’s
responses. The overall statistics of the constructed benchmark are summarized in Table |3|in Ap-
pendix [B.T] The rest of this section details the process used to construct these components.

Overview: The overview of our framework for creating conversations, probing questions, and the
evaluation strategy is illustrated in Figure[I] The process begins by generating a simulated conver-
sation between a user and an assistant. Structured conversation plans are first produced to guide
the flow of the synthetic interactions. Each plan specifies sufficient information to generate both
user and assistant turns, ensuring a coherent and natural conversational trajectory. While a typical
exchange consists of a user question followed by an assistant response, realistic dialogues often
involve follow-ups for clarification, elaboration, or related subtopics. To capture this, we incorpo-
rate two interaction-control modules. The question-detection module identifies whether an assistant
response includes a query that requires a user reply; if triggered, the system generates the corre-
sponding user response. The follow-up detection module determines when the user would naturally
pose a clarifying or elaborative question; if triggered, it produces an additional user query for the
assistant. Together, these mechanisms produce conversations that exhibit interactive, bidirectional
behavior beyond simple turn-taking. After the conversation is generated, an automated procedure
constructs a candidate set of probing questions, each tailored to the specific memory abilities in the
benchmark. These candidates are then reviewed by a human evaluator, who selects valid questions
and formulates the associated evaluation rubrics used for subsequent benchmarking. A case study
and an example of the different generated components of a conversation is provided in Appendix [E]

2.2.1 CONVERSATION PLAN GENERATION

A conversation plan serves as the scaffold for each dialogue, providing a coherent storyline that
unfolds chronologically. Each plan is generated using an LLM conditioned on a structured seed that
specifies key elements of the conversation. The seed contains:

¢ Domain of the conversation,

Title and theme,

* Subtopics outlining specific topics,

» Narratives defining evolving aspects (e.g., career progression, goals),
 User profile (name, age, gender, location, profession, MBTI traits),
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* Relationship graph linking user to family, friends, and acquaintances,

* Timeline specifying temporal scope and key chronological anchors.

To generate candidate titles and themes, human annotators specify target domains, then GPT-4.1
(OpenAlL [20254) generates candidate titles, themes, and subtopics using Listing[22] Human review-
ers refine outputs for topical diversity. For each conversation, we generate 15-20 narratives using
the open-source LLaMA-3.3 70B model (Al 2024) with the prompt in Listing 23] (Appendix [H.
Given the conversation seed, this model produces narrative elements capturing the evolving story-
line, forming the backbone of a coherent conversation.

Conversation plans consist of IV sub-plans, each representing a distinct stage in the conversation.
Each sub-plan contains M bullet points, defined by a narrative, a descriptive statement of its role
in the storyline, and a time anchor. For conversations of 128K, 500K, and 1M tokens, a single plan
is generated (line [ in Algorithm [} Appendix by conditioning the LLM on the conversa-
tion seed, profile, relationship graph, timeline, and specified counts of sub-plans, bullet points, and
narratives (prompt in Listing [24] Appendix [H). The number of sub-plans varies with domain and
target length to meet the token requirement; e.g., coding domains generally require fewer turns than
broader domains. For 10M-token conversations, one plan cannot capture the scope, so we create
ten interlocking plans forming a coherent longer narrative. The process begins with a global seed
defining the overall topic and theme, but a single seed is insufficient; instead, we derive ten distinct
seeds—one per plan—so the narrative can evolve across stages. We propose two strategies:

* Sequential Expansion: The global seed defines the initial point in the conversation’s chronology.
Subsequent seeds represent successive events (e.g., a trip, job search, later milestones). Using the
prompt in Listing 28] (Appendix [H), each new seed is generated from the main seed, profile, and
timeline. Plans are then produced sequentially (line [I2]in Algorithm [T} Appendix [B.3.3), with
each plan conditioned on its predecessor to maintain continuity. Core relationships (e.g., parents)
remain fixed, while new acquaintances are gradually introduced to reflect the evolving context.

* Hierarchical Decomposition: The main seed is decomposed into ten sub-seeds, each represent-
ing a distinct topical and temporal segment. Together, these sub-seeds span the full storyline (e.g.,
an international trip: first three for preparation, next five for trip events, final two for reflections).
Similar to sequential expansion, the user’s core relationships remain constant, while new acquain-
tances are introduced to reflect the evolving context. These ten sub-seeds are generated using the
prompt in Listing [29] (Appendix [H), conditioned on the main seed, profile, and timeline.

Each conversation plan is assigned explicit topical and temporal boundaries—encoded in the
seed—to avoid redundancy and ensure sub-themes appear in the right narrative stage. For coher-
ence, the LLM conditions on summaries of prior plans and future seeds when producing a new
plan, allowing anticipation of upcoming events (e.g., reserving tickets for travel dates). This pro-
cedure is implemented in line [20] of Algorithm [T] (Appendix [B.3.3). Plans are generated using the
prompt in Listing [31] (Appendix [H), conditioned on the main seed, current sub-seed, number of sub-
plans, narrative set, user profile, core and new relationships, preceding and subsequent sub-seeds,
previous plan, a summary of earlier plans, current sub-seed index, and a binary flag for the first
plan (triggering user introduction). Since initial plans may not sufficiently test three key memory
abilities—contradiction resolution, information update, and instruction following—we apply a two-
stage augmentation: first generate the base plan, then use GPT-4.1 (Listing to augment each
sub-plan with three targeted bullet points. Performing augmentation separately improves coverage
and fidelity. The refinement follows the prompt in Listing [27] (Appendix [H), which takes plan as
input and outputs the revised version. This stage corresponds to the first module in Figure [I] which
forms the first step of the overall data-generation pipeline. The detailed process for plan generation

is reported in Appendix [B.3.2]

2.2.2 USER UTTERANCE GENERATION

Once conversation plans are constructed, user utterances are synthesized from the sub-plans. Each
sub-plan contains M bullet points, which are divided sequentially into K contiguous batches of
equal size. Batching narrows the LLM’s focus, reducing repetition and low-quality outputs that
can occur when conditioning on the entire sub-plan. For each batch, the LLM generates I user

questions (line [6]in Algorithm [2]in Appendix using the prompt in Listing [32] (Appendix [H)),
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conditioned on the conversation seed, the current batch, preceding batches, and context from earlier
sub-plans. Each generated user question constitutes a user turn in the dialogue, ensuring coherence
and continuity across extended conversations. Values of K and I are manually specified based on
domain and target conversation length to meet the token budget, with configurations reported in
Table [6] (Appendix [B). This provides fine-grained control over user interaction density, preventing
under-generation or redundancy. To balance quality and cost, question generation uses the open-
source LLaMA-3.3 70B model (Al [2024), which produces high-quality outputs efficiently as the
backbone LLM. This user-utterance construction aligns with the second stage in Figure The
details of this procedure for user utterance generation are provided in Appendix [B.3.3]

2.2.3 ASSISTANT UTTERANCE GENERATION

Assistant-side responses are generated iteratively in a role-playing setup, where one LLM assumes
the assistant role and another the user role. For each sub-plan, the assistant LLM is conditioned
on the conversation seed (Section @, prior sub-plans, a summary of the last M turns, and a
compressed summary of earlier ones (using the prompt in Listing [37] in Appendix [B); for 10M-
token conversations, additional summaries of prior plans are provided. The assistant first generates
a response to the user’s most recent question (line[9]in Algorithm [3|in Appendix[B.3.5), which is an-
alyzed by a question-detection module (line[T1]in Algorithm[3]in Appendix using the prompt
in Listing[35] Appendix [B) to determine the presence of a counter-question. If detected, the response
is passed to the user LLM, which generates a contextually consistent reply based on the current and
prior sub-plans, relevant history, and conversation summaries (using the prompt in Listing[38]in Ap-
pendix [B] line [14]in Algorithm [3]in Appendix [B.3.5). This loop continues until no further assistant
questions are detected or the threshold §; = 2 is reached, balancing realism and avoiding infinite
cycles. In addition, a follow-up detection module (line 21]in Algorithm [3]in Appendix using
the prompt in Listing [36]in Appendix [B) evaluates whether a clarifying or elaborative user follow-
up is warranted, based on factors such as subject complexity, ambiguity, or incomplete responses.
When required, the module generates a follow-up query conditioned on the seed, current and prior
sub-plans, the most recent A/ turns, and earlier summaries (using the prompt in Listing [39]in Ap-
pendix [B), which is then passed back to the assistant LLM. The number of follow-up exchanges is
limited by a threshold J> = 2, analogous to §;. Together, these modules yield dialogues with bidi-
rectional dynamics, contextual referencing, and realistic clarifications, approximating human—AlI
interactions. This assistant-side generation maps to the third module in Figure[I] The details of this
procedure are provided in Appendix [B.3.4]

2.3 PROBING QUESTIONS GENERATION

After constructing conversations, we generate probing questions to evaluate memory abilities. The
pipeline combines automated synthesis with human validation: an LLM first produces candidate
probes, which annotators review to select valid ones. Probes are derived from both the conversation
plan and chat to ensure each targets a specific ability, is grounded in dialogue turns, and includes
explicit provenance. The process begins by passing the plan to GPT-4.1-mini (OpenAlL 2025b),
which selects candidate bullet points conditioned on the ability under evaluation. For example,
knowledge-update probes require bullet pairs encoding an initial fact and its later revision, while
summarization and event-ordering probes span multiple bullets. Each bullet is linked to its corre-
sponding user and assistant turns through indices introduced during user-assistant turn generation,
enabling retrieval of the precise dialogue segments in which the content was created. Candidate
bullet selection is performed using prompts [TH9] one per memory ability. For abstention, candi-
date selection is unnecessary; probes are created directly from the plan using the prompt shown in

Listing[T4] (Appendix [H).

Given the selected bullet points and aligned dialogue snippets, GPT-4.1-mini generates the prob-
ing question, a candidate answer, and source identifiers citing the specific messages containing the
answer. For 10M-token dialogues, candidate selection and synthesis are performed with a sliding
window across the ten interlocking plans, processing a limited number at a time to preserve topical
locality and scalability. Probe generation uses prompts for each memory ability, mapping
candidate bullet points and contexts into fully formed questions. Finally, a human evaluator re-
views the generated candidates and selects those that are valid and consistent with the conversation.
Samples of probing questions are provided in Appendix [D] items



Under review as a conference paper at ICLR 2026

User-assistant chat Key-Values Vector database
2 — —_— —_—
4
. o | STurn M1 Scratchpad Buffer Buffer
Last N - 1 N
pairs © + e — | ... —> -
2 , Add to
Last pair buffer If
Tum M total tokens > T
_
Scratchpad T
Keep

relevant

| t

Figure 2: Overview of the LIGHT framework. The system combines (i) episodic retrieval from
key—value indices, (ii) a scratchpad consolidating semantic, autobiographical, and contextual
knowledge, and (iii) a working memory buffer of the most recent dialogue pairs. At inference,
relevant items from the index and scratchpad, together with the full working memory, are integrated
to generate the final response.

2.4 EVALUATION

We evaluate LLMs on the probing questions using nugget evaluation, a common approach for long-
form text assessment (Pradeep et al., [2024; 2025). Each probing question is manually validated:
invalid or unsupported questions are discarded, and minor inconsistencies are corrected. From the
validated set, two questions per memory ability are chosen for each conversation, yielding 20 prob-
ing questions per conversation. Rubric nuggets are then derived for each question. A nugget is
an atomic, self-contained criterion that a system response must satisfy. Annotators decompose
the ideal reference answer into minimal semantic units, ensuring each nugget is both atomic and
self-contained. System responses are scored against these nuggets by an LLM judge (Listing 20]
Appendix , which assigns O (unsatisfied), 0.5 (partially satisfied), or 1 (fully satisfied). Scores
are averaged across nuggets to produce ability-level metrics. This nugget-based procedure applies
to nine memory abilities; the exception is event ordering, where quality depends on both recall and
correct sequence. We evaluate event ordering using the Kendall tau-b coefficient (Kendall, |1945)),
which considers both order and presence. To apply this metric, an LLM equivalence detector (using
the prompt in Listing [21]in Appendix [H) aligns events in system responses with nuggets, outputting
yes if two snippets denote the same event/topic and no otherwise. Kendall tau-b is then com-
puted over the aligned sequences, capturing both recall and ordering fidelity. Examples of nugget
construction for each memory ability are provided in Appendix

3 LIGHT: IMPROVING MEMORY CAPABILITIES OF LLMS

Inspired by research in human cognitive science (Sridhar et al., 2023} Binder & Desail, 2011]), hu-
mans employ two primary mechanisms for remembering and using knowledge: episodic memory,
the ability to recall specific personal experiences along with their context, and working memory,
the capacity to retain and manipulate information about recent events over short periods. In addi-
tion, maintaining notes on a scratchpad provides an external record that supports long-term recall
and later retrieval. Since answering questions in long-context conversations similarly requires in-
tegrating past experiences and accumulated knowledge, we introduce a method that emulates these
strategies by combining episodic recall, short-term working memory, and an external scratch-pad
mechanism.
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Overview: An overview of our method is shown in Figure 2| Given a question = about a con-

versation 7 = {ti}g, where |7 is the total number of turns, the framework first queries a re-
trieval model R to obtain k relevant segments from 7, simulating recall from episodic memory:
E = R(x,k, T). Next, the most recent z dialogue pairs of the conversation are selected to form the
working memory, W = {t|7|_;}7_,. In parallel, a pre-constructed scratchpad S| contains up to m
salient notes. A filtering function f retains only the items pertinent to x, yielding S, = f(Sjr, ).
Finally, the LLM 7 generates the answer by conditioning on the question and these three mem-
ory components, y = w(x, E, W, S,) using the prompt shown in Listing 44| in Appendix [H| The
remainder of this section details the construction and logic of each component in this pipeline.

3.1 RETRIEVAL FROM THE CONVERSATION

Indexing the Conversation: After each user—assistant turn (Figure 2} top), we apply Qwen2.5-
32B-AWQ (Teaml [2024) with the prompt in Listing [40] (Appendix [H) to extract key—value pairs and
a summary of the interaction. Keys represent entities and values capture attributes or descriptive
details, providing fine-grained, event-level indices analogous to hippocampal memory traces (Teyler
& DiScenna, [1986). These key—value pairs and summaries are embedded using the BAAI/bge-
small-en-v1.5 embedding model (of Artificial Intelligence} 2023) and stored in a vector database as
keys, while the original dialogue segments are kept as values to ensure faithful grounding.

Retrieval from the Index: To retrieve information from the conversation as episodic memory, we
embed the question z using the same embedding model and compare it against the stored keys in the
index, and the original dialogue segments corresponding to the top k nearest neighbors are returned.

3.2 SCRATCHPAD FORMATION AND UTILIZATION

Construction: In addition to episodic memory (Figure[2] middle pathway), we build a higher-level
representation that preserves information beyond individual dialogue events. It integrates semantic
knowledge (facts and concepts), autobiographical details (life events), prospective memory (future
intentions), and contextual metadata (time, place, acquisition context) (Binder & Desail 2011)). For
each dialogue pair, we use Qwen2.5-32B-AWQ with the prompt in Listing [41| (Appendix [H) to rea-
son over the current and preceding turn and extract salient content. The resulting “scratchpad” is
iteratively merged with earlier versions; once content exceeds a 30K-token threshold—substantially
shorter than the raw conversation—it is compressed into a 15K-token summary by GPT-4.1-nano us-
ing the prompt in Listing[2] This process maintains efficiency and long-term coherence, analogous
to the gradual abstraction of semantic memory in humans. Unlike the episodic index, the scratchpad
is not stored in a retrieval database but is provided directly as contextual input during inference.

Filtering Scratchpad (function f): During inference, the scratchpad is selectively filtered with
respect to the question. It is first divided into semantically coherent chunks using semantic chunking.
Each chunk is evaluated by Qwen2.5-32B-AWQ with the prompt in Listing 43| (Appendix
which assigns a binary relevance label (yes/no). Only the chunks judged relevant are retained,
producing a condensed representation of scratchpad that is passed to the response generator.

[l

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines: We evaluate our approach against two types of baselines: long-context LLMs and a
RAG method. For long-context LLMs, the entire conversation history is provided, followed by
the probing question. We include two proprietary LLMs (GPT-4.1-nano, Gemini-2.0-flash, both
IM context). and two open-source models (Qwen2.5-32B-AWQ, Llama-4-Maverick-fp8). For long-
context experiments, Qwen2.5-32B-AWQ is evaluated with a 128K context length, while for the
RAG baseline and our proposed method a 32K context length is used. At the 10M-token, since none
of the four models support this length, they are evaluated on the largest recent dialogue segment

’SemanticChunker in LangChain is used, which segments text into variable-length passages based on
semantic rather than fixed token windows.
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Table 1: Comparison of different LLMs and methods across conversation lengths and memory abil-
ities using the created benchmark. Methods with the best performance per evaluation are bolded.

Length Memory Qwen 2.5 Llama Maverick Gemini 2 Flash GPT-4.1-nano
Ability Vanilla RAG | Ours | Vanilla RAG | Ours | Vanilla. RAG Ours | Vanilla. RAG | Ours
Abstention 0.300 0.650 | 0475 | 0200 0.800 | 0.600 | 0.800 0.800 | 0.675 | 0.475 0.800 | 0.575
Contradiction Resolution | 0.031  0.025 | 0.037 | 0.025 0.031 | 0.031 | 0.006 0.050 | 0.018 | 0.012 0.018 | 0.031
Event Ordering 0.192 0201 | 0.205 | 0.190 0.162 | 0.166 | 0.181  0.191 | 0.166 | 0.181 0.169 | 0.177

Information Extraction 0425 0338 | 0479 | 0510 0.392 | 0.518 | 0.333  0.341 0.464 | 0.273 0.362 | 0.538
Instruction Following 0.400 0375 | 0362 | 0412 0375 | 0.412 | 0275 0287 | 0.362 | 0425 0.350 | 0.400
100K Knowledge Update 0437 0.275 | 0362 | 0300 0.350 | 0450 | 0.125 0325 | 0300 | 0275 0375 | 0.375
Multi-Hop Reasoning 0222 0.203 | 0.281 | 0.152 0.225 | 0.353 | 0.200 0.148 | 0.225 | 0.178 0.263 | 0.365
Preference Following 0.554 0379 | 0.566 | 0.450 0512 | 0.625 | 0.300 0416 | 0.462 | 0437 0.550 | 0.625

Summarization 0.128  0.074 | 0.232 | 0.065 0.111 | 0.238 | 0.018 0.093 | 0.139 | 0.028 0.083 | 0.202
Temporal Reasoning 0.112 0162 | 0.112 | 0.100 0.275 | 0.187 | 0.187 0.150 | 0.125 | 0.112 0.125 | 0.162
Average 0280 0269 | 0.311T | 0240 0.323 | 0.358 | 0242  0.280 | 0.294 | 0239 0.309 | 0.345
Abstention 0314 0.728 | 0.571 0.185 0.785 | 0.628 | 0.714 0.800 | 0.685 | 0.557 0.828 | 0.600
Contradiction Resolution | 0.053  0.017 | 0.017 | 0.035 0.028 | 0.042 | 0.010 0.021 | 0.021 | 0.017 0.025 | 0.035
Event Ordering 0.185 0.221 | 0.244 | 0.209 0.186 | 0.197 | 0.215 0.189 | 0.200 | 0.188 0.180 | 0.204

Information Extraction 0.166 0400 | 0.506 | 0.608 0.402 | 0.535 | 0469 0343 | 0478 | 0.142 0382 | 0.491
Instruction Following 0.304  0.350 | 0.295 | 0.403 0.447 | 0390 | 0.133 0334 | 0280 | 0.244 0.286 | 0.342
500K Knowledge Update 0.111 0226 | 0.278 | 0276  0.338 | 0.264 | 0.171 0.180 | 0.223 | 0.107 0.288 | 0.240
Multi-Hop Reasoning 0.125 0.187 | 0.214 | 0219 0.313 | 0350 | 0.198 0.135 | 0.157 | 0.070 0.233 | 0.266
Preference Following 0.567 0.477 | 0.571 | 0.560 0.525 | 0.623 | 0.379 0427 | 0.532 | 0450 0.577 | 0.684

Summarization 0.137  0.187 | 0.344 | 0266 0.197 | 0373 | 0.136  0.165 | 0.250 | 0.109 0.184 | 0.334
Temporal Reasoning 0.035 0.114 | 0.121 0.064 0.078 | 0.190 | 0.150 0.078 | 0.092 | 0.057 0.161 | 0.154
Average 0.200 0.291 | 0.316 | 0283 0.330 | 0.359 | 0257 0.267 | 0.292 ] 0.194 0314 | 0.335
Abstention 0342 0.650 | 0.500 | 0.221 0.742 | 0.435 | 0.642 0.750 | 0.735 | 0492 0.778 | 0.678
Contradiction Resolution | 0.035  0.035 | 0.021 0.046  0.028 | 0.042 | 0.010 0.028 | 0.007 | 0.050 0.028 | 0.021
Event Ordering 0.183  0.195 | 0.200 | 0.214 0.179 | 0.193 | 0.190 0.198 | 0.185 | 0.191 0.179 | 0.211

Information Extraction 0.138  0.407 | 0.366 | 0.489 0431 | 0474 | 0374 0.380 | 0.341 0.153 0399 | 0.410
Instruction Following 0383 0.300 | 0.419 | 0.440 0338 | 0.433 | 0.120 0290 | 0.380 | 0.226 0.271 | 0.394
IM Knowledge Update 0.064 0.378 | 0.357 | 0.164 0.342 | 0414 | 0.107 0278 | 0264 | 0.150 0.342 | 0.392
Multi-Hop Reasoning 0.102  0.163 | 0.209 | 0.174 0.245 | 0.270 | 0.083  0.134 | 0.147 | 0.091 0.293 | 0.278
Preference Following 0.486 0.491 | 0.551 | 0.535 0514 | 0.610 | 0.273 0470 | 0.472 | 0435 0.513 | 0.576

Summarization 0.122  0.157 | 0.316 | 0207 0.145 | 0.315 | 0.091 0.125 | 0.224 | 0.060 0.152 | 0.290
Temporal Reasoning 0.073 0.078 | 0.154 | 0.097 0.107 | 0176 | 0.104 0.057 | 0.085 | 0.061 0.064 | 0.107
Average 0.193 0285 [ 0.309 | 0259 0.307 | 0.336 | 0.199 0.271 | 0.284 | 0.191 0.302 | 0.336
Abstention 0.250  0.600 | 0.550 | 0.050 0.700 | 0.450 | 0.750 0.650 | 0.650 | 0.450 0.650 | 0.400
Contradiction Resolution | 0.050  0.000 | 0.012 | 0.025 0.000 | 0.000 | 0.000  0.025 | 0.000 | 0.000 0.012 | 0.025
Event Ordering 0.180  0.221 | 0.197 | 0.190 0.220 | 0.176 | 0220  0.266 | 0.193 | 0.215 0201 | 0.173

Information Extraction 0.100  0.350 | 0.350 | 0.075 0.375 | 0.300 | 0.075 0.275 | 0.150 | 0.050 0.300 | 0.350
Instruction Following 0.175 0200 | 0.350 | 0.250 0350 | 0.500 | 0.025 0.125 | 0.250 | 0.075 0.175 | 0.250
10M Knowledge Update 0.100  0.300 | 0.275 | 0.100 0.375 | 0.325 | 0.050  0.325 | 0.200 | 0.050 0.325 | 0.300
Multi-Hop Reasoning 0.125  0.050 | 0.125 | 0.000 0.075 | 0.125 | 0.000 0.125 | 0.125 | 0.012 0.091 | 0.135
Preference Following 0.241 0291 | 0.308 | 0.291 0316 | 0.483 | 0.075 0300 | 0.150 | 0.175 0.366 | 0.425

Summarization 0.114  0.106 | 0.220 | 0.065 0.053 | 0.277 | 0.000 0.045 | 0.136 | 0.020 0.063 | 0.179
Temporal Reasoning 0.000  0.000 | 0.000 | 0.000 0.025 | 0.025 | 0.025 0.025 | 0.075 | 0.050 0.000 | 0.025
Average 0.133 0211 | 0.238 | 0.104 0249 | 0.266 | 0.122 0.216 | 0.192 | 0.109 0.218 | 0.226

fitting their windowE] For RAG baselines, each user—assistant turn pair is treated as a document,
embedded and stored in a vector database. At inference, the top five most similar documents are
retrieved and passed to the LLM using the prompt in Listing [44] (Appendix [H).

Inference Setup: For inference, we use Nucleus (Holtzman et al., [2020) with temperature 0, ex-
cept for conversation plan, user-turn, and assistant-turn generation, where temperature is 0.1 to
encourage diversity. All open-source LLMs are served via VLLM for efficient inference. For
Llama3.3-70B, we set the maximum output length to 6K tokens during user-turn generation, while
for other LLMs we adopt their default maximum output length. For experiments involving both
the RAG baseline and our proposed method, we employ FAISS as the vector database (Douze et al.,
2024)). For dense retrieval, we use the embedding model BAAI/bge-small-en-v1.5 (Xiao et al.,[2023)).

4.2 EMPIRICAL FINDINGS

Main Results: Across all four conversation lengths (100K—10M tokens), our method consistently
outperforms both long-context LLMs and RAG baselines (Table [I). At shorter contexts (100K),
we observe strong gains, such as +49.1% for Llama-4-Maverick and +44.3% for GPT-4.1-nano
over long-context baselines, showing that structured memory helps even when full history can be
processed. The benefits grow with context length: at 1M tokens, improvements reach +75.9% for
GPT-4.1-nano and +60.1% for Qwen2.5-32B. At 10M tokens—where no baseline natively supports
the full context—our method achieves dramatic improvements, including +155.7% for Llama-4-
Maverick and +107.3% for GPT-4.1-nano. The only exception is Gemini-2.0-flash at 10M, where
our method surpasses the long-context baseline (+57.3%) but slightly trails RAG, likely due to

3 Among available models, only Liama-4-Scout supports 10M-token context windows; however, due to its
extreme computational requirements, we were unable to include it in our experiments.
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Figure 3: Ablation study illustrating the contribution of each component in LIGHT (retrieval,
scratchpad, working memory, and noise filtering) across different conversation lengths.
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model-specific retrieval behavior. Overall, these findings underscore the scalability and robustness
of our framework across diverse architectures and extreme context lengths.

When evaluated across the ten memory abilities, our method shows the largest relative gains in
summarization (+160.6%), multi-hop reasoning (+27.2%), and preference following (+76.5%).
Strong improvements are also observed in information extraction (+56.7%), instruction following
(+39.5%), and temporal reasoning (+56.3%). These results highlight that our method is particularly
effective for tasks requiring long-range recall and integration of dispersed information. In contrast,
all methods—including ours—perform strongest in abstention and weakest in contradiction resolu-
tion, indicating that contradiction detection remains a challenging open problem.

Ablation: We conduct an ablation to assess the role of each component—episodic memory,
scratchpad, working memory, and noise filtering—across conversation lengths (Figure[3). At 100K,
removing retrieval does not change performance and it remains steady, since the scratchpad alone
suffices, while removing scratchpad or noise filtering reduces performance (—1.1%, —2.2%). Work-
ing memory also degrades results here (—1.6%). At 500K, removing any component reduces per-
formance except working memory, where removal enhances performance very slightly. At 1M,
retrieval, scratchpad, and noise filtering remain beneficial, but removing working memory slightly
improves performance, again reflecting its limited usefulness when few questions depend on the
most recent turns. By 10M, all components are essential, with removals leading to large drops
(-8.5% for retrieval, —3.7% for scratchpad, —5.7% for working memory, —8.3% for noise filtering).
Overall, the ablations show that each module contributes increasingly as context length grows, and
the full architecture consistently achieves the best performance. Detailed results across all memory
abilities are provided in Table 8]

Effect of Retrieval Budget: We exam-
ine the effect of retrieval budget (K), test- 0350 ——
ing 5, 10, 15, and 20 documents (Fig- 0325 s
uref). Performance consistently improves
when increasing K from 5 to 15, with the
best results at K=15 (+7.39%, +10.75%,
+6.79%, and +6.3% at 100K, 500K, 1M,
and 10M). Increasing further to K=20

slightly degrades performance, likely due o2 7250
to noisy context. Results at K=10 are = o 3"
mixed—helpful at 100K, 500K and 1M o150 LL21M
but harmful at 10M—indicating additional ’ " Retrieval Budget (K) “
documents sometimes add noisy informa-
tion. Full results across memory abilities
are shown in Table [9l We also conducted
complementary experiments analyzing the
effect of retriever choice, where we ob-
served that at 100K, 500K, and 1M token
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Figure 4: Effect of varying retrieval budget (KX) on
performance. The plot shows how the number of re-
trieved documents shapes the balance between recall
and noise, highlighting different behaviors at short and
long conversation lengths.
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lengths, using a sparse retriever improves performance, whereas at 10M tokens, the dense retriever
achieves better results. The full results and discussion are provided in Appendix

Case Study A case study demonstrating the usefulness of the scratchpad is provided in Ap-
pendix [F

Human Evaluation: We conducted a human evaluation to assess the quality of the generated
conversations. Three dimensions were considered: Coherence and Flow, Realism, and Complexity
and Depth, each rated on a 5-point Likert scale (1 = lowest, 5 = highest). The average scores across
all conversations were 4.53, 4.57, and 4.64, respectively, indicating consistently high quality. The
evaluation rubric and detailed scores are provided in Appendix [B.2}

5 RELATED WORK

The detailed related work is provided in Appendix [A} here we present a concise summary.

Context windows of LLMs have expanded dramatically, from early limits of 512-2K tokens (GPT-
2/3; (Radford et al., 2019; Brown et al., [2020)) to 128K—1M (Claude-3, GPT-4-Turbo, Gemini 2.0;
(DeepMind, 2025} |Anthropic,, 2025} |OpenAlL |2025a)) and even 10M (Llama 4; (Meta-AlL 2025)).
This growth is driven by advances in efficient attention (sparse, linear, memory-optimized kernels;
(Beltagy et al.| 2020; |Wang et al., 2020; Dao et al.l[2022)), improved positional encodings (relative,
rotary with scaling, ALiBi; (Dai et al., 2019} [Peng et al., 2023b)), long-context training strategies
(continued-training, curriculum learning; (Xiong et al., 2023 Ding et al., 2024)), and inference
optimizations such as paged attention, KV-cache compression, and distributed attention (Kwon et al.,
2023} Zhang et al.| 2023} |L1 et al.| 2024; [Liu et al., 2023). Such capabilities are especially valuable
for applications involving conversational histories, the main focus of our work.

Beyond expanding context windows, models incorporate additional mechanisms for persistent mem-
ory. These include recurrence and compression (Transformer-XL, Compressive Transformer; (Dai
etal.,2019;|Rae et al.,2019)), state-space architectures (RWKYV, Mamba, Hyena; (Peng et al.,|2023a;
Gu & Daol 2023} Poli et al., [2023)), external memory modules (Memformer, RETRO, RMT; (Wu
et al.l 2020; Borgeaud et al., [2022; [Fan et al. |2024)), context summarization (AutoCompressor;
(Chevalier et al., 2023)), and retrieval-augmented generation (REALM, RAG, HippoRAG; (Guu
et al., [2020; |[Lewis et al., [2020; Jimenez Gutierrez et al., |2024)). These approaches complement
larger windows by enabling scalable and persistent long-term reasoning.

Existing benchmarks such as DialSim, MSC, LoCoMo, MemoryBank, DuL.eMon, PerLTQA, Long-
MemEval, and MemBench (Kim et al., [2024a; |Xu et al., 2021} |Maharana et al., 2024; Zhong et al.,
2024; Xu et al, |2022; Du et al., |2024; |Tan et al.l 2025) evaluate recall, temporal reasoning, and
multi-session reasoning, but typically span narrow domains, exhibit shallow dependencies, and con-
catenate separate user sessions to simulate long context, reducing realism. Recent work such as
MemoryCode (Rakotonirina et al.l 2025) generates multi-session dialogues from template-driven
instruction seeds to assess long-context reasoning, but focuses on a single domain. Our benchmark
instead scales to 10M tokens across diverse topics and introduces new tasks such as contradiction
resolution, event ordering, and instruction following, generating coherent, single-user conversations
that preserve narrative continuity for a more faithful assessment of long-term conversational mem-

ory.
6 CONCLUSION

This paper addresses the shortcomings of existing benchmarks for evaluating long-term memory in
conversational systems. We introduce a scalable framework to generate BEAM, a new benchmark
with long, coherent dialogues (up to 10M tokens) and diverse memory probes. To improve LLMs
performance, we develop LIGHT, a cognitive-inspired framework combining episodic, working,
and scratchpad memories. Our experiments show that while standard LLMs’ performance degrades
over long contexts, LIGHT provides substantial improvements, boosting memory performance by
an average of 3.5%-12.69%. By offering a more robust evaluation and an effective memory en-
hancement technique, this work helps the development of more reliable long-context conversational
systems.

10
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A DETAILED RELATED WORK

Long-Context Large Language Models. The context window of LLMs has expanded from
512-2,048 tokens in early models (GPT-1/2/3, BERT, T5; (Radford et al.|[2018; 2019} Brown et al.,
2020; Devlin et al., [2019; [Raffel et al., 2020)) to 128K—1M tokens in recent systems (Claude-3,
GPT-4-Turbo, Gemini 1.5 Pro, Gemini 2.0 Flash, Claude-4, GPT-4.1; (Anthropic, 2024} |Achiam!
et al.l 2023} [Team et al. 2024} |DeepMind, |2025}; |Anthropic, [2025; |OpenAlL [2025a)), with some
reaching 10M tokens (Llama 4 Scout; (Meta-Al, |2025)). This growth has been enabled by inno-
vations that address the quadratic cost of self-attention, including sparse mechanisms (Longformer,
BigBird; (Beltagy et al.| 2020} Zaheer et al.l[2020)), linear approximations (Linformer, Performer;
(Wang et al., [2020; |Choromanski et al.,[2020)) and memory-efficient kernels (FlashAttention; (Dao
et al., 2022)). Advances in positional encoding, such as relative encodings (Transformer-XL; (Dai
et al.| [2019)), rotary embeddings (RoPE; (Su et al) [2024)) with scaling methods (YaRN, NTK;
(Peng et al., 2023b)), and linear biases (ALiBi; (Press et al., [2021))), have extended usable context
lengths. Training strategies like continued pre-training and curriculum learning (e.g., LLaMA-2-
Long (Xiong et al., |2023), LongRoPE (Ding et al.l [2024)) further expand capabilities, while in-
ference optimizations such as PagedAttention (Kwon et al.| [2023)), KV-cache compression (H20,
SnapKV; (Zhang et al., 2023} |L1 et al.l |2024)) and distributed approaches (Ring Attention; (Liu
et al.| 2023)) enable practical deployment at scale.

Long-Term Memory Methods. Researchers have developed approaches to enhance long-
term memory beyond simply extending context windows. Architectural modifications include
Transformer-XL (Dai et al., 2019), which introduced segment-level recurrence, and Compressive
Transformer (Rae et al., 2019), which stored both recent states and compressed older information.
State-space models such as RWKV (Peng et al.| [2023a), Mamba (Gu & Dao, [2023)), and Hyena
(Poli et al.l |2023)) replace attention with recurrent dynamics, allowing linear scaling and theoreti-
cally unbounded memory. Memory-augmented transformers such as Memformer (Wu et al.,|2020),
RETRO (Borgeaud et al.||2022) and RMT (Fan et al.,[2024) add external memory slots for explicit
storage and recall. Context compression offers an orthogonal strategy by summarizing past infor-
mation rather than storing it verbatim, as in AutoCompressor (Chevalier et al., 2023), which learns
compact, information-preserving representations to reduce token usage. Retrieval-augmented gen-
eration (RAG) scales further by maintaining external knowledge stores: REALM (Guu et al., [2020)
and RAG (Lewis et al., 2020) pioneered dense retrieval, RETRO (Borgeaud et al., [2022) integrated
retrieval into transformers, and HippoRAG (Jimenez Gutierrez et al.,2024) incorporated structured
knowledge graphs.

Building on these foundations, we propose a novel retrieval-augmented method that shows substan-
tial improvements over baselines in long-memory evaluation.

Long-Term Memory Benchmarks. Several benchmarks have emerged to evaluate long-term mem-
ory capabilities in LLMs. DialSim (Kim et al., 2024a)) derives evaluation data from multiparty
television scripts, producing dialogues extending to 350K tokens with naturalistic patterns but lim-
ited topical diversity. MSC (Xu et al.}2021) introduces multisession human-assistant conversations
testing memory across session boundaries, though with brief sessions and shallow dependencies.
LoCoMo (Maharana et al., [2024) presents 50 conversations averaging 9K tokens in 35 sessions,
while MemoryBank (Zhong et al.| 2024)) provides 300 sessions with 194 probing questions evaluat-
ing recall and temporal reasoning. DuLLeMon (Xu et al., 2022) focuses on dialogue-level memory
and forgetting curves, PerLTQA (Du et al.| [2024) targets memory classification and retrieval, and
LongMemEval (Wu et al., 2024) constructs multisession evaluations with 500 questions testing in-
formation extraction and temporal reasoning. More recently, MemBench (Tan et al.| 2025) evaluates
the memory of LLM-based agents by assessing their performance on information extraction, multi-
hop reasoning, knowledge updating, preference following, and temporal reasoning. Recent work
such as MemoryCode (Rakotonirina et al.| 2025) generates multi-session dialogues from template-
driven instruction seeds to assess long-context reasoning, but focuses on a single domain.

As summarized in Table[2] the existing benchmarks are largely based on concatenated short sessions
with limited coherence, narrow personal and casual domains, and few memory abilities. They also
lack realistic bidirectional interactivity. In contrast, our benchmark spans diverse domains, scales up
to 10M tokens, and introduces three additional dimensions—contradiction resolution, event order-
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Table 2: Comparison of our benchmark with existing long-term memory benchmarks. Memory
abilities: IE = Information Extraction, MR = Multi-hop Reasoning, KU = Knowledge Update, TR =
Temporal Reasoning, ABS = Abstention, CR = Contradiction Resolution, EO = Event Ordering, IF
= Instruction Following, PF = Preference Following, SUM = Summarization.

Benchmark Domain Chat Length Memory Abilities
IE MR KU TR ABS CR EO IF PF SUM
MSC (Xu et al.|[2021) Casual ~1K X X X X X X X X X X
DuLeMon (Xu et al.|[2022) Casual ~1K X X X X X X X X X
MemoryBank (Zhong et al.|[2024)  Personal life ~5K v X X v X X X X X X
PerLTQA (Du et al.}[2024) Personal life N/A o X X x 7/ X Xx x X X
LoCoMo (Maharana et al.|[2024) Personal life ~10K v v X v/ v X X X X v
DialSim (Kim et al.|[2024a) TV/Film scripts ~350K o /X /S /XXX XX
LongMemEval (Wu et al.| 2024) Personal life 115K, M v v V V X X x Vv X
MemBench (Tan et al.|[2025) Personal life ~100K v v v v X X X x Vv X
Multi-domain:
. Coding, Math, 128K, 500K,
BEAM (This work) Health, Finance, 1M, 10M v v Vv v Vv v v v v /

Personal life, ...

ing, and instruction following—yielding a more comprehensive framework for evaluating long-term
memory in conversational systems.

B BENCHMARK DESIGN

B.1 DATASET STATISTICS

Table [3| summarizes the statistics of the generated dataset, including averages of user messages,
assistant messages, assistant and user follow-up questions, and dialogue turns across different chat
sizes.

Table 3: Statistics of the dataset. Reported values are averages per chat in each chat size. # User
Messages and # Assistant Messages denote the average number of utterances from the user and
assistant, respectively. # Answer Assistant Questions is the number of times the assistant posed a
question that the user answered. # Followup Questions is the number of follow-up questions asked
by the user. # Turns refers to the total number of dialogue turns.

Chat Size | # User Messages | # Assistant Messages # Answer Assmtant # FOHO.WUP # turns
Questions Questions
128K 144 144 27 216 107
500K 544 544 79 51 416
IM 1067 1067 105 120 842
10M 10435 10435 1151 1528 7757

B.2 BENCHMARK QUALITY EVALUATION

To evaluate the quality of the generated conversations, we conducted human assessment across all
conversations. Two annotators rated each conversation on three dimensions using a 5-point Likert
scale (1 = lowest, 5 = highest): Coherence and Flow, Dialogue Realism, and Complexity and Depth.

* Coherence and Flow: Conversation continuity (each turn follows naturally from the pre-
vious one), smooth transitions across topics and responses, and thread consistency without
abrupt or jarring shifts.

 Dialogue Realism: Naturalness of user queries (messages sound authentic), realistic pro-
gression of topics over time, human-like interactions (appropriate clarifications, follow-ups,
etc.), and believability of scenarios.
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* Complexity and Depth: Handling of multi-layered, interconnected topics, progressive

increase in difficulty, and demonstration of domain expertise when required.

The aggregated results are reported in Table [

Table 4: Conversations quality human evaluation results (1-5 scale). Higher is better.

Chat Size | Coherence and Flow | Dialogue Realism | Complexity and Depth
128K 4.4 4.55 4.35
500K 4.49 44 4.63
IM 4.66 4.54 4.6
10M 4.6 4.8 5
Average 4.53 4.57 4.64

B.3 BENCHMARK CREATION DETAILS

B.3.1 DOMAIN COVERAGE OF THE DATASET

To ensure broad coverage and realism, our dataset spans a diverse set of domains. The collection
includes both technical and non-technical conversations, ranging from specialized domains such as
coding, mathematics, financial investment and health to personal and social domains such as therapy,
lifestyle, and trip planning. In total, we designed 100 multi-turn chats distributed across 19 domains,
each represented by a set of distinct titles that capture the thematic scope of the dialogues. The full
list of domains and their associated chat titles is provided in Table [5]

Table 5: Domains and associated chat titles in our dataset (100 total chats).

Chat Titles

Designing a Large-Scale Retrieval-Augmented Generation (RAG) Sys-
tem for Enterprise Search e Creating a Self-Driving Car Simulation En-
vironment e Developing a Multi-Agent Al Research Platform e Build-
ing a Multi-Language Al Chatbot with Contextual Memory e Develop-
ing a Personalized News Aggregator with Al Summarization e Creating
an Autonomous Stock Trading Bot e Implementing a Custom Image
Captioning Model e Building a Multiplayer Online Game with Real-
Time Physics e Building a Real-Time Chat Application with Node.js
and Socket.io e Creating an Al-Powered Resume Analyzer with Python
and NLP e Developing a Computer Vision App for Real-Time Ob-
ject Detection e Creating a Restaurant Recommendation System e Au-
tomating Social Media Posts with Python e Building a Personal Budget
Tracker Web App in Python and Flask e Creating a Command-Line
To-Do List Manager in Go e Developing a Weather Forecast App in
JavaScript with OpenWeather API e Training a Spam Email Classi-
fier Using Python and Scikit-learn e Building a Portfolio Website with
HTML, CSS, and Bootstrap

Partial Differential Equations (PDEs) in Depth e Functional Analysis
and Infinite-Dimensional Spaces e Solving Ordinary Differential Equa-
tions (ODEs) e Deep Dive into Number Theory e Advanced Probability
and Combinatorics e Exploring Non-Euclidean Geometry e Studying
Multivariable Calculus e Diving into Analytic Geometry ® Developing
Skills in Mathematical Induction e Exploring Conic Sections in Depth
e Understanding Sequences and Series ® Mastering Basic Differential
Calculus e Exploring the Geometry of Triangles e Understanding the
Basics of Probability e Mastering Algebraic Equations for Everyday
Problem Solving e Learning the Foundations of Trigonometry e Mas-
tering Fractions, Decimals, and Percentages

Domain

Coding

Math
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Domain

Chat Titles

Writing Assistant &
Learning

Building a Portfolio-Ready Resume that Passes Any Applicant Track-
ing System e Mastering the Art of Persuasive Academic Essay Writing
e Crafting a Standout Cover Letter for Competitive Job Markets o De-
signing a Multi-Purpose Personal Statement for Global Opportunities o
Developing a Self-Editing System for Lifelong Writing Improvement

Therapy & Emo-
tional Support

Recovering from Workplace Burnout and Chronic Stress  Healing Af-
ter the Loss of a Loved One e Overcoming Childhood Trauma and Re-
building Self-Trust e Coping with Post-Breakup Emotional Pain and
Relationship Trauma

Career & Profes-
sional Development

Advancing from Mid-Level to Senior Leadership Roles e Building a
Powerful Professional Network from Scratch e Landing Your Next Job:
From Resume to Job Offer e Designing a 5-Year Career Growth Plan e
Positioning Yourself for a Promotion

Financial Investment

Building a Long-Term Stock Market Investment Strategy e Getting
Started in Real Estate Investing e Navigating the World of Cryptocur-
rency e Creating a Balanced Investment Portfolio

Health & Wellness

Creating a Personalized Nutrition and Meal Planning System e Design-
ing a Sustainable Fitness Routine ® Improving Sleep Quality for Better
Health e Understanding and Managing Chronic Illness e Recognizing
Symptoms and Seeking Medical Help Early

Relationship & Fam-
ily

Strengthening Communication in Romantic Relationships e Parenting
Through Different Life Stages e Navigating In-Law and Extended Fam-
ily Relationships e Rebuilding Relationships After Trust Has Been Bro-
ken

Education & Learn-
ing

Learning to Play a Musical Instrument from Scratch e Mastering a New
Language for Real-World Communication ¢ Becoming a Skilled Pho-
tographer e Exploring Performing Arts: Acting, Theater, and Dance

Buying Your First Home with Confidence e Renting a Home or Apart-
ment Without Stress o Selling Your Home for Maximum Value e DIY
Home Improvement and Repairs ¢ Making Your Home More Comfort-
able and Functional

Designing a Daily Routine That Boosts Productivity and Well-Being e
Building Healthy and Sustainable Lifestyle Habits e Balancing Social
Life and Personal Time

Mastering Quick and Healthy Weeknight Dinners e Baking Like a Pro
at Home e Exploring Global Cuisines from Your Kitchen e Cooking for
Special Diets and Allergies ¢ Meal Prepping for the Week Ahead

Starting a Business from Scratch e Growing and Scaling Your Small
Business o Building a Successful Startup

Preparing for a Week-Long Hiking and Camping Adventure in Patago-
nia e Organizing a Cross-Country USA Road Trip e Planning a Cultural
Immersion Trip to Japan e Planning a Budget Backpacking Trip Across
Southeast Asia  Arranging a Luxury Honeymoon in the Maldives

Home & Real Estate
Lifestyle

Cooking

Business &  En-
trepreneurship

Trip Planning

Sport

Soccer — Playing, Watching, and Supporting the World’s Most Popular
Game e Basketball — From Street Courts to the NBA e Volleyball —
Indoor, Beach, and Competitive Play @ Hockey — Ice, Field, and Global
Competitions @ Tennis — From Local Courts to Grand Slams
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Domain Chat Titles

Event Planning Planning a Surprise 30th Birthday Party for a Close Friend e Coordinat-
ing a Destination Beach Wedding for 100 Guests ® Organizing a Week-
end Community Food and Music Festival e Planning a Cozy Christmas
Eve Dinner for Extended Family

Asking Recommen- Finding the Perfect Smartphone for Photography and Gaming e Choos-

dation ing a Lightweight Laptop for Work, Travel, and Entertainment e Select-
ing a Must-Read Fiction Series for Winter Evenings e Finding the Best
Streaming Movies for a Family Weekend e Choosing Comfortable and
Stylish Sneakers for Daily Wear

Legal & Administra- Filing for a Marriage-Based Green Card in the United States e Creating
tive a Legally Valid Will and Estate Plan e Applying for a Patent to Protect
a New Invention

Philosophical & Eth- Deciding Whether to Use Al to Automate Hiring in My Company e
ical Discussion Considering Whether to Believe in and Live by the Idea of Free Will

B.3.2 CONVERSATION PLAN GENERATION

A conversation plan serves as the central scaffold of each conversation, providing a coherent story-
line that evolves chronologically. The process of constructing conversation plans is anchored by a
seed that specifies the domain of the dialogue (e.g., sports, finance, programming, mathematics), a
title representing the high-level topic, and a theme that provides a more detailed instantiation of the
title. The seed also includes a set of subtopics, which enumerate finer-grained subtopics and details
to ensure topical diversity. However, a title, theme, and subtopics alone are insufficient to support
detailed and information-rich conversations. To enrich the narrative, we introduce narratives set that
define the evolving aspects of a conversation (e.g., career progression, goals, relationships). Each
narrative is paired with descriptive details that specify its scope and trajectory.

In addition to the seed and narrative set, each conversation incorporates a user profile, a relationship
graph, and an explicit timeline. The user profile includes attributes such as name, age, gender,
location, profession, and personality traits. To avoid redundancy, personality traits are grounded in
the Myers—Briggs Type Indicator (MBTI). Specifically, we randomly select six MBTI types, provide
their descriptions, and instruct an LLM to synthesize a composite trait profile, enabling the creation
of 8,008 unique user profiles. Relationship graphs are then constructed, linking the main user to
family members (parents, partner, children), friends, and acquaintances, subject to constraints (e.g.,
plausible age gaps) to preserve realism. The timeline specifies the temporal span of the conversation,
defining the range between its beginning and end.

In order to generate titles and themes of the chats, target domains are first specified by human.
Given these domains, GPT-4.1 (OpenAll [2025a) is prompted using the prompt shown in Listing [22]
in Appendix [H] to produce candidate titles, themes, and subtopics. These candidates are refined by
human to ensure topical diversity by removing the similar chat titles and selecting diverse chat titles.
Finally, for each conversation, we generate 15-20 narratives using open-source LLaMA-3.3 70B
(AT, [2024) with the prompt shown in Listing[23]to save cost. In this prompt, given the conversation
seed as input, the LLM produces narratives that capture evolving aspects of the storyline, providing
the backbone for constructing coherent conversation plans.

Conversation plans are structured as a sequence of N sub-plans, where each sub-plan corresponds to
a distinct stage of the conversation. Each sub-plan contains a fixed number of M bullet-points, and
each bullet-point is defined by a narrative and a descriptive statement specifying how that narrative
unfolds in the storyline. To maintain temporal coherence, each sub-plan also includes a time anchor
specifying a concrete date or period.

For conversations of sizes 128K, 500K, and 1M tokens, a single conversation plan is generated, as
shown in line ] of Algorithm [I]in Appendix [B.3.5] The plan is produced by conditioning the LLM
on the conversation seed, user profile, relationship graph, timeline, the number of sub-plans, the
number of bullet points within each sub-plan and narrative set, using the prompt shown in Listing [24]
in Appendix |H} The number of sub-plans is not fixed but varies with both the domain and the target

20



Under review as a conference paper at ICLR 2026

conversation length, in order to adhere to the length budget. For instance, domains such as coding
typically require fewer dialogue turns to reach the same token budget compared to more general
domains.

For 10M-token conversations, a single plan cannot adequately capture the scope and continuity
required at this scale. To address this, we construct ten distinct yet interlocking conversation plans
that together produce a coherent long-term narrative. While the process begins with a main seed that
defines the global topic and theme of the conversation, a single seed is insufficient for producing
ten plans. Instead, we generate ten distinct conversation seeds—one for each plan—so that the
narrative can unfold across multiple stages. The procedure for deriving these seeds—and the plans
that follow—differs depending on the strategy. We propose two strategies for constructing them:

* Sequential Expansion: The conversation seed is used as the first seed in the sequence. The
remaining seeds are generated to represent successive stages of the user’s life, extending the sto-
ryline chronologically. For instance, if the main seed concerns an international trip, the first plan
covers the trip itself, the second covers the period after returning (e.g., job search), and subse-
quent seeds correspond to later milestones. We generate these seeds using the prompt shown in
Listing which conditions on the main seed, user profile, and timeline to produce a sequence
of temporally aligned seeds. Each conversation plan is then generated sequentially, with every
plan conditioned on its predecessor to maintain continuity, as specified in line [I2] of Algorithm [I]
in Appendix B.3.5] The plans are generated using the prompt shown in Listing yielding a
temporally ordered series of interconnected narrative arcs. To maintain realism, the user’s core
relationships (e.g., parents, children, partner) remain fixed across plans, while new acquaintances
are gradually introduced.

* Hierarchical Decomposition: Instead of extending the seed chronologically, the main seed is
decomposed into ten sub-seeds, each corresponding to a distinct topical or temporal slice of the
overall storyline. Together, these seeds span the full narrative. For example, if the main seed
concerns an international trip, the first three seeds may cover preparation steps (e.g., reservations,
document gathering), the next five capture events during the trip, and the final two represent
post-trip activities (e.g., reflections, recounting experiences). Like in Sequential Expansion, the
user’s core relationships (e.g., parents, children, partner) remain fixed across plans, while new
acquaintances are gradually introduced. We generate these ten sub-seeds using the prompt shown
in Listing[29] which takes the main seed, user profile, and timeline, and outputs ten derived seeds.

Each plan is assigned explicit topical and temporal boundaries to prevent redundancy or thematic
overlap, ensuring that sub-themes unfold in the correct stage of the narrative. These boundaries are
encoded in the conversation seed itself. For coherence, summaries of all prior plans are provided
to the LLM when generating a new plan, allowing contextual references to past events. Moreover,
when generating each plan, future seeds are also supplied, encoding their own topical and temporal
boundaries. This design allows earlier plans to anticipate upcoming events with consistent references
(e.g., booking tickets for the correct travel dates before the trip actually occurs). This strategy
is implemented in line 20] of Algorithm [I] in Appendix Conversation plans are generated
using the prompt shown in Listing [31] which takes as input the main seed, the current sub-seed, the
number of sub-plans, the narrative set, the user profile, core and newly introduced relationships, the
preceding and subsequent sub-seeds, the previous plan, the summary of all previous plans, the index
of the current sub-seed, and a binary indicator specifying whether the plan is the first in the sequence
(in which case the introduction of the user is included). The output is a fully specified conversation
plan.

After the conversation plan is constructed, it is expanded into user-turn questions and subsequently
assistant responses, yielding complete dialogues that can be used to evaluate memory abilities. How-
ever, in its initial form, the plan may not include sufficient information to evaluate three critical mem-
ory abilities: contradiction resolution, knowledge update, and instruction following. To address this,
after the initial plan generation, we pass the plan to GPT-4.1 to generate high-quality plans and aug-
ment each sub-plan with additional bullet points specifically designed to enable evaluation of these
abilities. Importantly, this augmentation is performed in a second stage rather than during the initial
plan generation, since incorporating such information directly in a single-pass generation leads to
lower quality and less reliable coverage of these abilities. The augmentation is implemented using
the prompt shown in Listing which takes an existing conversation plan as input and outputs a
revised version where each sub-plan includes three additional bullet points targeting these abilities.
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B.3.3 USER UTTERANCE GENERATION

Once conversation plans are constructed, user turns are synthesized directly from them. Each sub-
plan within a conversation plan consists of M bullet-points, which are partitioned into K contiguous
batches of equal size. Partitioning is performed sequentially, such that each batch corresponds to
a consecutive segment of the sub-plan. Partitioning is necessary because conditioning the LLM
on an entire sub-plan at once tends to yield repetitive or low-quality questions; batching mitigates
this by narrowing the focus of generation. For each batch, the LLM produces I user questions
(line [6] of Algorithm 2]in Appendix [B.3.3) using the prompt presented in Listing [32] The model is
conditioned on the conversation seed, the current batch specification, preceding batches within the
same sub-plan, and contextual information from earlier sub-plans. This setup ensures that generated
questions remain grounded in prior context, yielding conversations that are coherent and continuous
over extended spans.

The values of K and I vary depending on the domain and the target conversation length, in order
to adhere to the overall length budget. We specify the values for K and I manually. The specific
configurations of K and I across domains and conversation sizes are reported in Table [6] This
provides fine-grained control over the density of user interactions and helps prevent both under-
generation and excessive redundancy. Additonally, to better capture domain-specific conversational
patterns, we incorporate domain-specific features during question generation:

* Programming: To reflect realistic developer—assistant interactions, we incorporate questions that
involve sharing code snippets. These include (i) buggy code requiring debugging assistance, (ii)
correct code seeking optimization, and (iii) natural language descriptions of desired functionality
for which code is requested. We use the prompt shown in Listing[33]to generate questions specific
to the programming domain.

e Mathematics. To capture authentic problem-solving dynamics, we incorporate questions that
involve sharing mathematical work, requesting corrections, asking for the next logical step in a
solution, or introducing problems to be solved. We use the prompt shown in Listing[34]to generate
questions specific to the mathematics domain.

To reduce computational cost while maintaining generation quality, question generation is per-
formed using the open-source LLaMA-3.3 70B model (Al 2024), which produces high-quality
questions.

B.3.4 ASSISTANT UTTERANCE GENERATION

After generating user-side questions, assistant-side responses are generated in an iterative, role-
playing framework where one LLM assumes the assistant role and another assumes the user role.
For each sub-plan, the assistant LLM is conditioned on the seed as explained in Section [2.2.1]
prior sub-plans of the conversation plan, a summary of the most recent M dialogue turns, and a
compressed summary of older turns (generated using the prompt shown in Listing [37). For 10M-
token conversations, additional summaries of prior plans are also provided.

The response generation process unfolds as an iterative interaction between the assistant and user
roles. First, the assistant LLM produces an answer to the user’s most recent question (line[9). This
output is then analyzed by a question-detection module, which determines whether the assistant’s
response contains a counter-question directed at the user (line[TT]), using the prompt shown in List-
ing [33] that takes the assistant response as input and outputs yes if a question is present and no
otherwise. If such a counter-question is detected, the response—together with the current and pre-
vious sub-plans, relevant past context, and conversation summaries—is passed to the user LLM,
which generates a realistic reply that reflects the storyline and contextual details using the prompt
shown in Listing[38](line[T4). This new user reply is subsequently passed back to the assistant LLM,
continuing the conversation. This loop repeats until no further assistant questions are detected or the
predefined threshold d; (which is set to two) is reached, preventing infinite cycles. For §; we tested
values 2, 3 and 5 which we selected 2 as it produces more realistic dialogues.

Beyond direct question—answer exchanges, a follow-up detection module (line evaluates
whether, in a realistic setting, the user would naturally ask a clarifying or elaborative follow-up.
The need for a follow-up is determined using the prompt shown in Listing [36] which takes as input
the seed, dialogue history, and the assistant’s most recent response, and outputs yes or no. This
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decision is guided by factors such as subject complexity, ambiguity in the assistant’s answer, or in-
completeness of the response. When a follow-up is required, the module conditions on the seed, the
current and prior sub-plans, the most recent M turns, and summaries of earlier turns to generate the
follow-up query using the prompt shown in Listing [39] The generated query is then passed back to
the assistant LLM for resolution. As with the assistant-question loop, a strict threshold J5 (which is
set to two like &) limits the number of follow-up exchanges, preventing unbounded cycles.

Through the interaction of these two threshold-controlled modules, the system produces conversa-
tions that exhibit naturalistic bidirectional dynamics, rich contextual references, and realistic clarifi-
cation behaviors characteristic of human—AlI dialogues.

B.3.5 ALGORITHMS

Algorithm 1 Conversation plan generation.

Input: domain c, length budget L, title 6, theme 7, subtopics X, user profile u, user relationships p,
timeline I', number of conversation sub-plans N, number of bullet-points in each conversation
sub-plan M, generator G

Qutput: Conversation plan set p

1. S+ (c,0,7,%) > Initialize seed
2 if I € {128K, 500K, 1M} then
3: A+~ G(9) > Generate narratives using Listing
4: P+ G(S,u,p,I', N,M, ) > Generate a single conversation plan with Listing
5: else if L = 10M then
6: P+ {} > Initialize set of plans
7: if o = Sequential Expansion then
8: S’ Gieeas(S,T) > Generate sequential sub-seeds with Listing
9: for each s, € S" do
10 A — G(s) > Generate narratives for sub-seed
11: b+ 1[i =0] > Binary indicator: 1 if first plan, else O
12: P, + G(s,Ti, N, Aj,u, p, P,_1,i,b) > Generate plan with Listing
13: P+ PU{P}
14: end for
15: else if 0 = Hierarchical Decomposition then
16: 5" <= Glaecompose (S, T') > Decompose seed with Listing
17: for each s, € S’ do
18: A — G(s) > Generate narratives for sub-seed
19: b+ 1[i = 0]
20: P, G(S,S8, s, Ty, N,Aj,u,p, Pi_1, P, i—1,%,b) > Generate plan with
Listing
21: P+ PU{P}
22: end for
23: end if
24: end if
25: return P
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Algorithm 2 User questions generation.

Input: seed S, conversation plan p, number of questions per iteration I, generator G
Output: Question set ()

N

S0 ®3

p<+ {p1,...,oN} > Conversation plan with N sub-plans
Q<+ {} > Initialize empty question set
for each p; € P do
bi = {pila o 7sz}
for each p;; € p; do
Qij + G(S,pij, Apit, - PiGj—1) 1> P15 - - Pic1 1) > Generate I questions using
Listing [32]
Q<+ QuU{Qi} > Append generated questions to the question set
end for
end for
return @)

Algorithm 3 Answer generation.

Input: question set Q@ = {Q1,...,@n}, seed S, conversation plan set P, thresholds 41, da,

assistant-question detector ¢, follow-up detector ), generator G

Qutput: conversation list 7’

10:
11:

12:
13:

14:

15:
16:
17:
18:
19:
20:
21:

22:
23:
24

25:
26:

27:
28:
29:
30:
31:
32:
33:
34:

R A A S ol

T+ {} > Initialize empty conversation list
for each Q; € @ do
Q:={q,...,qs} > Questions in sub-plan ¢
for each ¢; € Q; do
t+ {} > Initialize turn sequence
Ht(M) < recent-M turn window at turn ¢
H; <+ summary of turns prior to Ht(M)
?Kp) <+ summaries of conversation plans preceding p
aij < Gassistant (S5 P1:(i—1), Ht(M) JHy, ﬁ(q))) > Generate assistant response with
Listing
t < tU{a;;} > Add assistant’s response to current dialogues turn
isQ + ¢(asj, Ht(M) ,H;) > Checks if assistant response contains question from user
with Listing
count < 0
while isQ and count < §; do
wij  Guser(S, Pi, D1 i,l),?(@), Ht(M),ﬁt, aij) > Generate user’s response to

assistant question with Listing

t—tU{u;;} > Add user’s response to current dialogues turn
= (< .

aij + Gassistant (S, P1:(i—1), Ht(M)7 Hy, P( p)) > Generate assistant’s response

t+—tU{ai;} > Add assistant’s response to current dialogues turn

count < count 41
ZSQ < (f)(d,j, Ht(M),Ft)
end while -
needFU < ¢(a;;, H t(M), H;,S) © Checks if user need to ask followup question with
Listing
fu_count < 0
while need FU and fu_count < d5 do
Uij < Guser(S, Dis P1:(i=1)> P(<p)7 Ht(M), Hyi,a;5) > Generate user’s followup
question with Listing
t+—tu {u”}
(M) w5 H(<p) . s
aij + Gassistant (S, P1:(i—1), Hy ', Hy, P ) > Generate assistant’s response to
user’s followup question
t+—tuy {aij}
fu_count < fu_count + 1
needFU < (as;, H™ Hy, S)
end while
T+ T U{t}
end for 24
end for
return 7'




Under review as a conference paper at ICLR 2026

B.4 USER UTTERANCE GENERATION HYPERPARAMETERS

Table 6: Batching configuration by chat size and domain category for user-turn question generation.
NUM_SUBPLANS denotes the number of conversation sub-plans, K the number of batches per

sub-plan, and I the number of questions generated per batch.

Chat Size | Category | NUM_SUBPLANS | K | I
General 5 10| 2

128K Coding 3 2311
Math 3 2511

General 10 10 | 4

500K Coding 10 103
Math 10 10 [ 4

General 10 109

M Coding 10 10| 6
Math 10 106

General 10 109

10M Coding 10 106
Math 10 10| 6

B.5 CREATED PROBING QUESTIONS DISTRIBUTION

We measure which parts of the dialogue contain the information required to answer the probing
questions. To this end, each conversation is divided into ten equal segments, and we record the seg-
ment(s) where the supporting evidence for each probing question resides. The detailed methodology
for aligning probing questions with dialogue segments is described in Section[2.3] The resulting dis-
tributions across conversation lengths are reported in Table

Table 7: Percentage distribution of created probing questions across ten equal chat segments
(deciles) for different chat sizes. Each row corresponds to a segment of the dialogue, moving from
the beginning (Segment 1) to the end (Segment 10).

Chat Segment (Decile) 100K 500K 1M 10M
1 0.00% 0.65% 0.19% 0.00%
2 11.05% 23.70% 21.60% 10.24%
3 14.83% 15.91% 20.11% 16.27%
4 12.79% 14.45% 15.83% 15.06%
5 13.08% 7.95% 9.50% 14.46%
6 13.37% 9.09% 8.01% 9.64%
7 11.92% 6.33% 5.96% 10.24%
8 8.14% 5.52% 5.21% 13.25%
9 9.59% 4.55% 4.47% 8.43%
10 5.23% 11.85% 9.12% 2.41%

B.6 MEMORY ABILITIES EXAMPLES

To illustrate how our benchmark evaluates different aspects of long-term conversational memory,
we provide representative probing questions and their ideal answers for each of the ten memory

abilities. These examples demonstrate how each ability is operationalized in practice.

1. Abstention (withholding answers when information is missing)
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Probing Question: What specific advice did Manuel give about property management
companies during the March 5 Investors Meetup?

Ideal Answer: Based on the provided chat, there is no information related to the specific
advice Manuel gave about property management companies.

2. Contradiction Resolution (detecting and reconciling inconsistencies)

Probing Question: Have I ever attended any real estate webinars or investor meetups?
Ideal Answer: I notice you've mentioned contradictory information about this. You
said you have never attended any real estate webinars or investor meetups, but you also
mentioned attending a webinar about Turkey’s rising demand for multi-family rentals.
Which statement is correct?

3. Event Ordering (reasoning about chronological sequence)

Probing Question: How did my focus on different aspects of property investment and
management develop throughout our conversations in order? Mention ONLY and ONLY
ten items.

Ideal Answer: Your focus developed in this sequence: 1) Agent interaction and prepara-
tion, 2) Financial evaluation, 3) Financing and mortgage, 4) Contractor management, 5)
Zoning and permits, 6) Renovation planning, 7) Viewing preparation, 8) Negotiation and
cash flow, 9) Renovation completion, 10) Commercial property considerations.

4. Information Extraction (recalling factual details)

Probing Question: What amount did I say I had set aside as my initial capital for invest-
ing?
Ideal Answer: You said you had set aside $50,000 as your initial capital.

5. Instruction Following (adhering to explicit user constraints)

Probing Question: How should I allocate my funds for the upcoming quarter?

Ideal Answer: The response should include an itemized list of costs, category-by-
category breakdown, and detailed cost analysis, reflecting the instruction to always pro-
vide detailed financial breakdowns when budgeting.

6. Information Update (revising prior facts when updated)

Probing Question: How much initial capital have I allocated for real estate investing?
Ideal Answer: $60,000

7. Multi-hop Reasoning (integrating evidence across turns)

Probing Question: How many different banks did I consider for my mortgage options
across my conversations?
Ideal Answer: Two banks: Halkbank and Ziraat Bank.

8. Preference Following (adapting to evolving user preferences)

Probing Question: I'm looking at several properties and want to understand how to
approach comparing them effectively. What steps would you suggest I take?

Ideal Answer: A structured, step-by-step process that emphasizes data collection and
analysis, breaking comparisons into measurable factors, reflecting the user’s preference
for methodical, data-driven decisions.
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9. Summarization (abstraction and compression of content)

Probing Question: Can you give me a comprehensive summary of my journey and
decision-making process around investing in rental properties, including how my budget,
property choices, management considerations, and financing plans have developed over
time?

Ideal Answer: Your journey began with an initial capital of $50,000, followed by ex-
ploration of market conditions, renovation planning, property type tradeoffs, financing
through Halkbank and Ziraat Bank, and a structured plan for purchase and management.

10. Temporal Reasoning (reasoning about durations and timelines)

Probing Question: How many days are there between my first property viewing with
Mehmet Yilmaz and the last one I scheduled?

Ideal Answer: There are 2 days between the first property viewing on March 25 and the
last one on March 27.
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C DETAILED EXPERIMENTS

C.1 ABLATION STUDY

In this section, we present the complete results of our ablation experiments. We evaluate the contri-
bution of individual components in our proposed module as shown in table[§]

Table 8: Ablation study showing the impact of removing key memory components (retrieval,
scratchpad, working memory, and noise filtering) on performance across various conversation
lengths (100K-10M).

Length Memory Ability Base | w/o Retrieval from Index | w/o Scratchpad | w/o Working Memory | w/o Noise Filtering
Abstention 0.475 0.725 0.600 0.575 0.700
Contradiction Resolution | 0.037 0.043 0.012 0.043 0.018
Event Ordering 0.205 0.190 0.194 0.220 0.200
Information Extraction | 0.479 0.329 0.510 0.451 0.485
Instruction Following 0.362 0.375 0.287 0.387 0.312
100K Knowledge Update 0.362 0.237 0.350 0.362 0.312
Multi-Hop Reasoning 0.281 0.201 0.248 0.303 0.181
Preference Following 0.566 0.675 0.533 0.579 0.491
Summarization 0.232 0.232 0.143 0.223 0.103
Temporal Reasoning 0.112 0.075 0.125 0.125 0.087
Average 0.311 0.311 0.300 0.327 0.289
Abstention 0.571 0.571 0.585 0.657 0.585
Contradiction Resolution | 0.017 0.007 0.014 0.017 0.014
Event Ordering 0.244 0.222 0.266 0.262 0.229
Information Extraction | 0.506 0.254 0.466 0.485 0.464
Instruction Following 0.295 0.307 0.316 0.334 0.286
500K Knowledge Update 0.278 0.192 0.285 0.235 0.314
Multi-Hop Reasoning 0.214 0.104 0.227 0.192 0.247
Preference Following 0.571 0.553 0.450 0.547 0.465
Summarization 0.344 0.312 0.225 0.353 0.203
Temporal Reasoning 0.121 0.042 0.116 0.114 0.130
Average 0.316 0.256 0.295 0.320 0.294
Abstention 0.500 0.664 0.600 0.557 0.507
Contradiction Resolution | 0.021 0.021 0.035 0.042 0.032
Event Ordering 0.200 0.215 0.221 0.227 0.199
Information Extraction | 0.366 0.246 0.391 0.397 0.366
Instruction Following 0.419 0.427 0.335 0.384 0.351
M Knowledge Update 0.357 0.185 0.321 0.400 0.285
Multi-Hop Reasoning 0.209 0.129 0.227 0.221 0.169
Preference Following 0.551 0.602 0.536 0.597 0.540
Summarization 0.316 0.310 0.169 0.330 0.128
Temporal Reasoning 0.154 0.050 0.111 0.121 0.111
Average 0.309 0.285 0.295 0.328 0.269
Abstention 0.550 0.800 0.650 0.650 0.600
Contradiction Resolution | 0.012 0.000 0.012 0.000 0.000
Event Ordering 0.197 0.199 0.199 0.209 0.181
Information Extraction | 0.350 0.000 0.200 0.150 0.200
Instruction Following 0.350 0.175 0.175 0.175 0.050
10M Knowledge Update 0.275 0.050 0.300 0.150 0.225
Multi-Hop Reasoning 0.125 0.000 0.125 0.125 0.075
Preference Following 0.308 0.191 0.241 0.200 0.175
Summarization 0.220 0.119 0.068 0.008 0.050
Temporal Reasoning 0.000 0.000 0.050 0.075 0.000
Average 0.238 0.153 0.202 0.181 0.155

C.2 RETRIEVAL BUDGET

We investigate the impact of the retrieval budget through two sets of experiments: (i) varying the
retrieval depth by setting the number of retrieved documents K € {5, 10, 15, 20}, and (ii) comparing
a dense retriever against a sparse retriever (SPLADE).

The full results examining the effect of different retrieval depths (number of retrieved documents)
are presented in Table 9]
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Table 9: Effect of retrieval depth on performance across conversation lengths (100K-10M)
and memory abilities. Results are shown for different numbers of retrieved documents (K &
{5,10,15,20}).

Length Memory Ability K=5 | K=10 | K=15 | K=20
Abstention 0.475 | 0.500 | 0.625 | 0.625

Contradiction Resolution | 0.037 | 0.025 | 0.025 | 0.031

Event Ordering 0.205 | 0.191 | 0.218 | 0.210

Information Extraction | 0.479 | 0.450 | 0.412 | 0.391
Instruction Following 0.362 | 0.362 | 0.475 | 0.462
100K Knowledge Update 0.362 | 0.375 | 0.350 | 0.300
Multi-Hop Reasoning 0.281 | 0.322 | 0.321 | 0.309
Preference Following 0.566 | 0.591 | 0.562 | 0.575

Summarization 0.232 | 0.231 | 0.218 | 0.213
Temporal Reasoning 0.112 | 0.162 | 0.137 | 0.137
Average 0.311 | 0.321 | 0.334 | 0.325
Abstention 0.571 | 0.514 | 0.614 | 0.642
Contradiction Resolution | 0.017 | 0.021 | 0.071 | 0.071
Event Ordering 0.244 | 0.229 | 0.238 | 0.247

Information Extraction | 0.506 | 0.531 | 0.503 | 0.507
Instruction Following 0.295 | 0.341 | 0.390 | 0.373
500K Knowledge Update 0.278 | 0.307 | 0.326 | 0.326
Multi-Hop Reasoning 0.214 | 0.188 | 0.234 | 0.213
Preference Following 0.571 | 0.597 | 0.628 | 0.607

Summarization 0.344 | 0.354 | 0.375 | 0.376
Temporal Reasoning 0.121 | 0.128 | 0.121 | 0.135
Average 0.316 | 0.321 | 0.350 | 0.350
Abstention 0.500 | 0.521 | 0.600 | 0.585
Contradiction Resolution | 0.021 | 0.021 | 0.057 | 0.053
Event Ordering 0.200 | 0.224 | 0.240 | 0.242

Information Extraction | 0.366 | 0.398 | 0.377 | 0.391
Instruction Following 0.419 | 0.476 | 0.439 | 0.446
M Knowledge Update 0.357 | 0.350 | 0.400 | 0.407
Multi-Hop Reasoning 0.209 | 0.189 | 0.209 | 0.190
Preference Following 0.551 | 0.596 | 0.535 | 0.514

Summarization 0.316 | 0.317 | 0.325 | 0.351
Temporal Reasoning 0.154 | 0.154 | 0.119 | 0.199
Average 0.309 | 0.325 | 0.330 | 0.330
Abstention 0.550 | 0.600 | 0.650 | 0.600
Contradiction Resolution | 0.012 | 0.012 | 0.025 | 0.025
Event Ordering 0.197 | 0.210 | 0.213 | 0.236

Information Extraction | 0.350 | 0.150 | 0.300 | 0.300
Instruction Following 0.350 | 0.150 | 0.450 | 0.400
10M Knowledge Update 0.275 | 0.200 | 0.300 | 0.300
Multi-Hop Reasoning 0.125 | 0.100 | 0.125 | 0.150
Preference Following 0.308 | 0.175 | 0.275 | 0.275

Summarization 0.220 | 0.089 | 0.196 | 0.164
Temporal Reasoning 0.000 | 0.025 | 0.000 | 0.000
Average 0.238 | 0.171 | 0.253 | 0.245

In a complementary experiment, we analyzed the impact of retriever choice. Our base architecture
employs a dense retriever, which we compare against the sparse SPLADE-V2 retriever (Formal
et al},[2022). As shown in Figure [5]in Appendix SPLADE yields performance gains of 1.7%
at 100K tokens, 0.7% at 500K, and 0.8% at 1M, but results in a slight performance drop of 0.7% at
10M. On average, the sparse retriever provides a modest improvement across conversation lengths.
Complete results comparing the dense retriever with SPLADE are presented in Table
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Figure 5: Performance comparison between dense retrieval and sparse retrieval (SPLADE) in
LIGHT.
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Table 10: Comparison of dense and sparse retrieval strategies across conversation lengths
(100K-10M) and ten memory abilities. The table reports performance when using the default dense
retriever versus a sparse retriever (SPLADE).

Length Memory Ability Base (Dense retriever) | Sparse retriever (SPLADE)
Abstention 0.475 0.525
Contradiction Resolution 0.037 0.43
Event Ordering 0.205 0.181
Information Extraction 0.479 0.596
Instruction Following 0.362 0.400
100K Knowledge Update 0.362 0.350
Multi-Hop Reasoning 0.281 0.267
Preference Following 0.566 0.562
Summarization 0.232 0.230
Temporal Reasoning 0.112 0.125
Average 0.311 0.328
Abstention 0.571 0.557
Contradiction Resolution 0.017 0.025
Event Ordering 0.244 0.226
Information Extraction 0.506 0.559
Instruction Following 0.295 0.345
500K Knowledge Update 0.278 0.307
Multi-Hop Reasoning 0.214 0.212
Preference Following 0.571 0.565
Summarization 0.344 0.330
Temporal Reasoning 0.121 0.107
Average 0.316 0.323
Abstention 0.500 0.564
Contradiction Resolution 0.021 0.028
Event Ordering 0.200 0.196
Information Extraction 0.366 0.392
Instruction Following 0.419 0.401
M Knowledge Update 0.357 0.371
Multi-Hop Reasoning 0.209 0.193
Preference Following 0.551 0.595
Summarization 0.316 0.300
Temporal Reasoning 0.154 0.133
Average 0.309 0.317
Abstention 0.550 0.700
Contradiction Resolution 0.012 0.000
Event Ordering 0.197 0.202
Information Extraction 0.350 0.350
Instruction Following 0.350 0.250
10M Knowledge Update 0.275 0.375
Multi-Hop Reasoning 0.125 0.125
Preference Following 0.308 0.200
Summarization 300.220 0.090
Temporal Reasoning 0.000 0.025
Average 0.238 0.231
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C.3 EFFECT OF EMBEDDING MODEL CHOICE

We also examined how the choice of embedding model affects the performance of both the RAG
baseline and the episodic memory component of LIGHT. In the primary experiments, we used the
BAAI/bge-small-en-vi.5 embedding model. To assess robustness, we re-ran all experiments using
the larger BAAI/bge-large-en-vi1.5 model while keeping the LLM reader fixed to GPT-4.1-nano.
As shown in Table LIGHT consistently outperforms the RAG baseline under both embedding
configurations. Moreover, LIGHT exhibits larger gains when switching to the higher-capacity em-
bedding model, achieving an additional 2.08% improvement at the 1M-token setting and 16.37% at
the 10M-token setting. These results indicate that LIGHT is robust to changes in embedding quality
and can effectively leverage stronger embedding models to enhance long-term memory abilities.

Table 11: Effect of the embedding model on performance across conversation lengths (100K—10M)
and ten memory abilities. Results are shown for the RAG baseline and LIGHT using two different
embedding models.

Length Memory Ability RAG (bge-small) | Ours (bge-small) | RAG (bge-large) | Ours (bge-large)
Abstention 0.800 0.575 0.825 0.600
Contradiction Resolution 0.018 0.031 0.012 0.031
Event Ordering 0.169 0.177 0.185 0.171
Information Extraction 0.362 0.538 0.404 0.562
Instruction Following 0.350 0.400 0.337 0.462
100K Knowledge Update 0.375 0.375 0.325 0.375
Multi-Hop Reasoning 0.263 0.365 0.224 0.341
Preference Following 0.550 0.625 0.537 0.562
Summarization 0.083 0.202 0.089 0.148
Temporal Reasoning 0.125 0.162 0.112 0.162
Average 0.309 0.345 0.305 0.341
Abstention 0.828 0.600 0.814 0.571
Contradiction Resolution 0.025 0.035 0.028 0.032
Event Ordering 0.180 0.204 0.178 0.202
Information Extraction 0.382 0.491 0.345 0.454
Instruction Following 0.286 0.342 0.303 0.363
500K Knowledge Update 0.288 0.240 0.380 0.321
Multi-Hop Reasoning 0.233 0.266 0.272 0.282
Preference Following 0.577 0.684 0.571 0.650
Summarization 0.184 0.334 0.153 0.316
Temporal Reasoning 0.161 0.154 0.126 0.126
Average 0.314 0.335 0.317 0.331
Abstention 0.778 0.678 0.771 0.657
Contradiction Resolution 0.028 0.021 0.021 0.025
Event Ordering 0.179 0.211 0.194 0.211
Information Extraction 0.399 0.410 0.360 0.439
Instruction Following 0.271 0.394 0.269 0.421
IM Knowledge Update 0.342 0.392 0.371 0.378
Multi-Hop Reasoning 0.293 0.278 0.204 0.254
Preference Following 0.513 0.576 0.497 0.598
Summarization 0.152 0.290 0.116 0.296
Temporal Reasoning 0.064 0.107 0.119 0.150
Average 0.302 0.336 0.292 0.343
Abstention 0.650 0.400 0.800 0.550
Contradiction Resolution 0.012 0.025 0.025 0.037
Event Ordering 0.201 0.173 0.203 0.171
Information Extraction 0.300 0.350 0.300 0.450
Instruction Following 0.175 0.250 0.175 0.275
10M Knowledge Update 0.325 0.300 0.325 0.300
Multi-Hop Reasoning 0.091 0.135 0.066 0.075
Preference Following 0.366 0.425 0.316 0.525
Summarization 0.063 0.179 0.100 0.224
Temporal Reasoning 0.000 0.025 0.000 0.025
Average 0.218 0.226 0.231 0.263
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C.4 EFFECT OF INDEXING SETUP

We also investigated the effect of the vector database indexing setup on the performance of LIGHT.
In the primary experiments, we used IndexFlatIP, and in the experiments below, we examined the
effect of switching the indexing setup to IndexHNSWFlat. The results are shown in Table [12]

Table 12: Effect of vector database indexing setup on performance across conversation lengths
(100K-10M) and ten memory abilities. Results are reported for LIGHT under two different indexing
configurations.

Length Memory Ability Ours (IndexFlatIP) | Ours (IndexHNSWFlat)
Abstention 0.575 0.600
Contradiction Resolution 0.031 0.031
Event Ordering 0.177 0.173
Information Extraction 0.538 0.565
Instruction Following 0.400 0.375
100K Knowledge Update 0.375 0.400
Multi-Hop Reasoning 0.365 0.285
Preference Following 0.625 0.662
Summarization 0.202 0.217
Temporal Reasoning 0.162 0.162
Average 0.345 0.347
Abstention 0.600 0.528
Contradiction Resolution 0.035 0.032
Event Ordering 0.204 0.207
Information Extraction 0.491 0.503
Instruction Following 0.342 0.332
500K Knowledge Update 0.240 0.226
Multi-Hop Reasoning 0.266 0.269
Preference Following 0.684 0.666
Summarization 0.334 0.317
Temporal Reasoning 0.154 0.176
Average 0.335 0.325
Abstention 0.678 0.578
Contradiction Resolution 0.021 0.025
Event Ordering 0.211 0.211
Information Extraction 0.410 0.420
Instruction Following 0.394 0.386
M Knowledge Update 0.392 0.385
Multi-Hop Reasoning 0.278 0.278
Preference Following 0.576 0.567
Summarization 0.290 0.257
Temporal Reasoning 0.107 0.128
Average 0.336 0.324
Abstention 0.400 0.600
Contradiction Resolution 0.025 0.025
Event Ordering 0.173 0.168
Information Extraction 0.350 0.350
Instruction Following 0.250 0.300
10M Knowledge Update 0.300 0.225
Multi-Hop Reasoning 0.135 0.075
Preference Following 0.425 0.433
Summarization 0.179 0.194
Temporal Reasoning 0.025 0.000
Average 0.226 0.237
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C.5 SUPPLEMENTARY BASELINE EVALUATION

Alongside long-context LLMs and RAG, we also evaluated ReadAgent (Lee et al., 2024)), another
method designed to enhance long-term memory in LLMs, on BEAM and compared it with LIGHT.
The results demonstrate that LIGHT consistently outperforms ReadAgent across all four conversa-
tion lengths (100K, 500K, 1M, and 10M). The full results are shown in Table

Table 13: Comparing LIGHT with ReadAgent across conversation lengths (100K-10M) and ten
memory abilities.

Length Memory Ability ReadAgent | Ours (LIGHT)

Abstention 0.850 0.475

Contradiction Resolution 0.000 0.037

Event Ordering 0.200 0.205

Information Extraction 0.066 0.479
Instruction Following 0.237 0.362

100K Knowledge Update 0.150 0.362
Multi-Hop Reasoning 0.095 0.281
Preference Following 0.425 0.566
Summarization 0.045 0.232

Temporal Reasoning 0.000 0.112

Average 0.206 0.311

Abstention 0.928 0.571

Contradiction Resolution 0.007 0.017

Event Ordering 0.237 0.244

Information Extraction 0.047 0.506
Instruction Following 0.166 0.295

500K Knowledge Update 0.014 0.278
Multi-Hop Reasoning 0.022 0.214
Preference Following 0.386 0.571
Summarization 0.069 0.344

Temporal Reasoning 0.028 0.121
Average 0.191 0.316

Abstention 0.792 0.500

Contradiction Resolution 0.003 0.021

Event Ordering 0.211 0.200

Information Extraction 0.106 0.366
Instruction Following 0.166 0.419

M Knowledge Update 0.014 0.357
Multi-Hop Reasoning 0.105 0.209
Preference Following 0.391 0.551
Summarization 0.041 0.316

Temporal Reasoning 0.033 0.154
Average 0.186 0.309

Abstention 0.750 0.550

Contradiction Resolution 0.000 0.012

Event Ordering 0.205 0.197

Information Extraction 0.000 0.350
Instruction Following 0.300 0.350

10M Knowledge Update 0.000 0.275
Multi-Hop Reasoning 0.000 0.125
Preference Following 0.166 0.308
Summarization 0.061 0.220

Temporal Reasoning 0.000 0.000
Average 0.148 0.238
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D NUGGET DESIGN

In this section, we provide illustrative examples for each memory ability, demonstrating how nuggets
are derived from the corresponding probing questions.

1. Abstention

Objective: The correct behavior is to acknowledge that the requested information is not
present in the provided conversation.

Rubric pattern: Each atomic unit should be in this format: States that, based on the
provided chat, there is no information about <target topic>

Example JSON:
{
"question": "What specific advice did Manuel give about property management
companies during the March 5 Investors Meetup?",
"ideal_response": "Based on the provided chat, there is no information related
to the specific advice Manuel gave about property management companies.",
"source_chat_ids": {},
"rubric": [

"Based on the provided chat, there is no information related to the specific
advice Manuel gave about property management companies."

2. Contradiction Resolution

Objective: Correct behavior is that the LLM should detect the contradiction and state
both contradictory information while requesting clarification.
Rubric pattern:

* States there is contradictory information.

* Mentions claim <A>

* Mentions claim <B>

* Requests clarification about which statement is correct

Example JSON:
{
"question": "Have I ever attended any real estate webinars or investor meetups?"
’
"ideal_answer": "I notice you’ve mentioned contradictory information about this.

You said you have never attended any real estate webinars or investor
meetups, but you also mentioned attending a webinar about Turkey’s rising
demand for multi-family rentals. Which statement is correct?",

"source_chat_ids": {
"first_statement": [
1y
"second_statement": [
]
I
Ugulomilels [
"LLM response should state: there is contradictory information",
"LLM response should mention: You said you have never attended any real
estate webinars or investor meetups"
"LLM response should mention: you also mentioned attending a webinar about
Turkey\u2019s rising demand for multi-family rentals",
"LLM response should mention: which statement is correct?"

3. Event Ordering

Objective: Correct behavior is the model lists a sequence of events/topics in the correct
chronological order.
Rubric pattern:

e LLM response should mention: <event 1>
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e LLM response should mention: <event N>
Example JSON:

{

"question": "How did my focus on different aspects of property investment and
management develop throughout our conversations in order? Mention ONLY and
ONLY ten items.",

"answer": "Your focus on property investment and management developed in this
sequence: 1) Initial engagement with the local agent and preparation for
property viewings, 2) Evaluation of property financials including ROI and
rental income potential, 3) Exploration of financing options and mortgage
concerns, 4) Handling contractor performance and repair negotiations, 5)
Understanding zoning regulations and permit requirements for property
conversions, 6) Planning and prioritizing renovations and investment risks
for multi-family properties, 7) Detailed preparation for property viewings
involving both agent and contractor, 8) Negotiation strategies and cash
flow implications related to repair costs, 9) Final renovation project
completion steps and portfolio diversification strategies, 10)
Consideration of commercial property types and location factors for long-
term investment.",

"ordering_tested": [

"lst: Agent interaction and viewing preparation",

"2nd: Property financial evaluation",

"3rd: Financing and mortgage concerns",

"4th: Contractor management",

"S5th: Zoning and permits",

"6th: Renovation planning and investment risks",

"7th: Viewing preparation with agent and contractor"

"8th: Repair cost negotiation and cash flow",

"9th: Renovation completion and portfolio diversification",
"10th: Commercial property and location considerations"

1,

"source_chat_ids": [],

"rubric": [

"LLM response should mention: Agent interaction and viewing preparation",
"LLM response should mention: Property financial evaluation",

"LLM response should mention: Financing and mortgage concerns",

"LLM response should mention: Contractor management",

"LLM response should mention: Zoning and permits",

"LLM response should mention: Renovation planning and investment risks",
"LLM response should mention: Viewing preparation with agent and contractor"

’

"LLM response should mention: Repair cost negotiation and cash flow",

"LLM response should mention: Renovation completion and portfolio
diversification",

"LLM response should mention: Commercial property and location
considerations",

"Presents the events in the correct chronological order"

4. Information Extraction

Objective: LLM should answer the questioned facts correctly.
Rubric pattern:
* Instantiate one criterion per fact directly from the ideal answer, using the stem
“LLM response should state/mention:”
Example JSON:

{

"question": "What amount did I say I had set aside as my initial capital for
investing?",

"ideal_answer": "You said you had set aside $50,000 as your initial capital.",

"source_chat_ids": [],

"rubric": [

"LLM response should state: $50,000"

5. Instruction Following
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Objective: LLM should adhere to format and/or content priorities stated in the conver-
sation.
Rubric pattern:
e Use instruction_being_tested (the explicit instruction) and decompose
expected_compliance into atomic criteria

Example JSON:
{
"question": "How should I allocate my funds for the upcoming quarter?"
"instruction_being_tested": "Always provide detailed financial breakdowns when I
ask about budgeting decisions.",
"expected_compliance": "Response should include itemized costs, specific amounts

for different categories, and detailed breakdown rather than just a total
estimate",
"source_chat_ids": [],
Ugulomilels [
"LLM response should contain: itemized list of costs",
"LLM response should contain: category-by-category breakdown",
"LLM response should contain: detailed cost analysis"

6. Knowledge Update

Objective: LLM must reflect updated values when prior values have changed over time.
Rubric pattern:
* Derive criteria from the ideal answer, using the stem “LLM response should
state/mention:” for the updated value(s).
Example JSON:

{
"question": "How much initial capital have I allocated for real estate investing
2"y
"answer": "$60,000",
"source_chat_ids": {
"original_ info": [

1,

"updated_info": [

]
I
"rubric": [

"LLM response should state: $60,000"
]

7. Multi-hop Reasoning

Objective: LLM must aggregate or compare information spanning multiple sessions.
Rubric pattern:
* Instantiate criteria from the ideal answer for each required intermediate or ag-
gregated fact.
Example JSON:

{

"question": "How many different banks did I consider for my mortgage options
across my conversations?",

"answer": "Two banks: Halkbank and Ziraat Bank.",

"source_chat_ids": [],

"rubric": [
"LLM response should state: Two banks",
"LLM response should state: Halkbank",
"LLM response should state: Ziraat Bank"

8. Preference Following
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Objective: LLM must generate content consistent with user-specified preferences.
Rubric pattern:

* Use preference_being_tested (the user’s stated preference) and decom-
pose expected_compliance into atomic criteria.

Example JSON:

{

"question": "I'm looking at several properties and want to understand how to
approach comparing them effectively. What steps would you suggest I take?",
"preference_being_tested": "I prefer methodical, data-driven decisions over
impulsive purchases, reflecting my analytical nature.",
"expected_compliance": "Response should outline a structured, step-by-step
approach that involves gathering and analyzing relevant data before making
a choice, rather than suggesting quick or impulsive actions.",
"source_chat_ids": [],
"rubric": [
"LLM response should contain: provides a clear, logical process",
"LLM response should contain: emphasizes data collection and analysis",

"LLM response should contain: breaks down comparison into measurable factors
"

9. Summarization

Objective: LLM must provide a comprehensive summary covering required content el-
ements.
Rubric pattern:

* Decompose ideal_summary into atomic content units; use the stem “LLM
response should contain:”.

Example JSON:

{

"question": "Can you give me a comprehensive summary of my journey and decision-
making process around investing in rental properties, including how my
budget, property choices, management considerations, and financing plans
have developed over time?"

"ideal_summary": "Your journey toward investing in rental properties began with
an initial capital of $50,000, which you questioned as potentially
insufficient for purchasing a property within 12 months. Early discussions
highlighted the need to research local market conditions, down payment
requirements, and additional costs like closing fees and renovations,
revealing that typical investments might exceed your initial capital. You
explored identifying good fixer-upper properties by learning to recognize
signs such as structural issues and outdated features, emphasizing the
importance of cost-benefit analysis for renovations. As your plans
progressed, you weighed the pros and cons of investing close to your
location versus elsewhere, balancing ease of management against market
diversity and growth potential. You also considered the choice between
single-family homes and multi-family units, analyzing factors like rental
yield, management complexity, and investment scale, with examples showing
similar yields but differing capital needs. Financing options were
carefully compared, particularly between Halkbank and Ziraat Bank mortgages
, focusing on interest rates, fees, and service quality to optimize costs.
Throughout, you developed a step-by-step plan for purchasing your first
rental property, including market research, budgeting, inspections,
financing, and tenant management, with timelines to reduce anxiety and
ensure readiness. This comprehensive process reflects a thoughtful
evolution from initial capital concerns to detailed investment strategies,
property evaluation, financing decisions, and management planning, all
aimed at making informed, balanced real estate investment choices.",

"source_chat_ids": [],

"rubric": [

"LLM response should contain: investing in rental properties began with an
initial capital of $50,000",

"LLM response should contain: Early discussions highlighted the need to
research local market conditions, down payment requirements, and
additional costs like closing fees",

"LLM response should contain: You explored identifying good fixer-upper
properties by learning to recognize signs such as structural issues and

outdated features",
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10.

"LLM response should contain: you weighed the pros and cons of investing
close to your location versus elsewhere, balancing ease of management

against market diversity and growth potential",

"LLM response should contain: You also considered the choice between single-
family homes and multi-family units, analyzing factors like rental

yield, management complexity, and investment scale",

"LLM response should contain: Financing options were carefully compared,
particularly between Halkbank and Ziraat Bank mortgages, focusing on
interest rates, fees, and service quality to optimize costs",

"LLM response should contain: you developed a step-by-step plan for
purchasing your first rental property, including market research,

budgeting, inspections, financing, and tenant management"

Temporal Reasoning

Objective: LLM must compute or restate durations and timeline relations correctly.

Rubric pattern:

* Derive criteria from the ideal answer, using the stem “LLM response should

state:”.
Example JSON:
{
"question": "How many days are there between my first property viewing with
Mehmet Yilmaz and the last one I scheduled?",
"answer": "There are 2 days between the first property viewing on March 25 and
the last one on March 27.",
"calculation_required": "March 27 - March 25 = 2 days",
"source_chat_ids": {
"first_event": [],
"second_event": []
by
"rubric": [

"LLM response should state: 2 days",
"LLM response should state: from March 25, 2024 till March 27,

2024"

38




Under review as a conference paper at ICLR 2026

E EXAMPLES FROM DIFFERENT COMPONENTS OF BEAM

In this section, we provide illustrative examples of generating a chat in the coding domain. Specif-
ically, we include a representative chat seed with its domain, title, theme, and subtopics, followed
by the corresponding narratives, where only a truncated set is shown for brevity. We then present
the user profile and the user’s social relationships. Next, we provide excerpts from the conversation
plans, showing only a subset of bullet points from each sub-plan while preserving their full descrip-
tions to maintain clarity. Finally, we provide samples of the generated chat, highlighting exchanges
where the user shares or requests code, and including follow-up turns to demonstrate the natural-
istic back-and-forth flow. Together, these examples illustrate how different components of BEAM
interact to form coherent, long-context dialogues.

Chat Seed

Domain: Coding

Title: Automating Social Media Posts with Python

Theme: Scheduling and posting content across multiple platforms
Subtopics:

» Twitter APl integration - Facebook Graph APlusage - Instagram automation tools
 Scheduling with cron jobs / APScheduler

* Image and caption management; hashtag generation

¢ Error handling for failed posts; tracking engagement metrics

Narratives (Truncated)

Technical Problem-Solving: Debugging Twitter OAuth/403/429; fixing hashtag validation;
profiling scheduler bottlenecks.

Learning & Knowledge: API docs comprehension (Twitter v2, Facebook Graph v12-15);
best practices for Instagram automation; mastering cron/APScheduler.

Progress & Development: Setting up Twitter/Facebook integrations; building Instagram
tools; designing scheduling algorithms.

Implementation: Feature implementation and refactoring for efficiency; async migration;
retry and backoff strategies.

Framework & Technology: Python libraries (Tweepy, facebook-sdk, requests); APSched-
uler/cron; Redis; asyncio.

Testing & QA: Unit/integration/E2E tests (pytest, Selenium); TDD for schedulers and hash-
tag rules.

DevOps & Deployment: CI/CD (GitHub Actions), containerization (Docker), EC2 deploy-
ment, blue—green releases.

Data: PostgreSQL schemas, indices, ETL for engagement metrics, Redis caching.
Integration & APIs: Webhooks, message queues (RabbitMQ), API Gateway, SNS/Lambda.
Performance: Caching, load balancing (HAProxy), CPU/memory targets, throughput goals.
Security/Compliance: OAuth, token rotation, TLS, GDPR.

PM & Workflow: Sprints, reviews, documentation standards.

User Profile

Name: John Brooks Age: 52 Gender: Male
Location: Port Charles, Luxembourg Profession: Secretary/Administrator

Personality: He is a pillar of his community, always ready to lend a helping hand and offer
guidance when needed. With a strong sense of tradition and order, he values honesty and
dedication, often taking on a mentorship role to help others. His diligent and efficient ap-
proach to planning and organization makes him a reliable asset to those around him. He has a
warm and welcoming demeanor, always willing to open his heart and home to friends, loved
ones, and neighbors. Despite his strong convictions, he believes in the power of hospitality
and good manners, often going out of his way to make others feel supported and cared for.
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With a dry sense of humor and a quick wit, he can be entertaining to be around, but he’s
not afraid to speak his mind and challenge the status quo when necessary. His practical and
responsible nature makes him a respected member of his community, and his ability to stay
grounded and logical in stressful situations is a valuable asset to those around him.

Parents: Elizabeth (74), Robert (76)

Partner: Shannon (48)

Close Friends: Taylor (51), Teresa (62), Thomas (44), Charles (56), Patricia (46)
Acquaintances/Colleagues: Wesley (26), Jason (59), Claudia (15), Janice (13), Dana (55)

Subplan 1 — March 1, 2024

Project Initialization: I’m setting up a Python 3.10 environment with Tweepy v4.10.1
and Facebook SDK v3.1.0 for API integrations.

Security & Compliance Labels: Authentication for Twitter API Integra-
tion: Implemented OAuth 1.0a with environment variables TWITTER_API_KEY and
TWITTER_API_SECRET securely stored.

Database & Data Management Labels: Database Design for Social Media Posting:
Designed PostgreSQL 14 schema with tables for posts, platforms, and scheduling meta-
data.

User Instruction: Always include exact API version numbers when I ask about integration
details.

Logical Contradiction: I have never registered a Twitter Developer account or created
any Twitter app.

Subplan 2 — March 20, 2024

Technical Problem-Solving Labels: Debugging Twitter API Integration: Fixed “403
Forbidden” error caused by missing media upload step before tweet creation.

Implementation & Development Labels: Code Refactoring for Performance: Refac-
tored twitter_post.py to async functions using asyncio, improved throughput by
30%.

Security & Compliance Labels: Authorization for Facebook Graph API: Implemented
OAuth 2.0 flow with refresh tokens stored encrypted using Fernet symmetric encryption.

Information Update: The Instagram automation prototype sprint deadline was adjusted
to April 5, 2024, to allow additional testing of media upload features.

Subplan 3 — April 5, 2024

Implementation & Development Labels: Implementing Error Handling: Added retry
logic with exponential backoff for Instagram API 429 Too Many Requests errors.

Performance & Optimization Labels: Caching Strategies for Image and Caption
Management: Implemented Redis caching for resized images, reducing image processing
time from 800ms to 200ms.

Debugging & Troubleshooting Labels: Incident Response for Social Media Automa-
tion: Responded to March 30, 2024, outage caused by expired Instagram tokens, imple-
mented alerting via Slack webhook.

Subplan 4 — April 20, 2024

Implementation & Development Labels: Algorithm Optimization for Scheduling:
Rewrote scheduling algorithm to use async priority queues, reducing average job dispatch
latency from 500ms to 150ms.
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* Framework & Technology Labels: Integrating Twitter API with Python: Upgraded
Tweepy from v4.10.1 to v4.12.1 to leverage new media upload endpoints.

e Security & Compliance Labels: Authentication for Twitter API Integration: Rotated
Twitter API keys on April 15, 2024, updated environment variables TWITTER_API_KEY
and TWITTER_API_SECRET.

Subplan 5 — May 5, 2024

* Progress & Development Labels: Building Hashtag Generation Tools: Developed
hashtag generator supporting dynamic keyword extraction using spaCy v3.5.0 NLP library.

* Database & Data Management Labels: Data Warehousing for Engagement Metrics:
Designed PostgreSQL 14 schema for engagement_metrics with partitioning by month for
scalability.

* Debugging & Troubleshooting Labels: Log Analysis for Facebook Graph API: De-
tected “OAuthException: Error validating access token” on May 1, 2024, resolved by
token refresh automation.

Subplan 6 — May 20, 2024

¢ Implementation & Development Labels: Implementing Error Handling: Added cen-
tralized error handler middleware in posting API, logging errors with Sentry v1.12.0.

* Debugging & Troubleshooting Labels: Error Diagnosis for Twitter API Integration:
Fixed intermittent “ConnectionResetError” during media upload by adding retry with jitter.

* DevOps & Deployment Labels: Containerization for Instagram Automation: Updated
Dockerfile to use multi-stage builds, reduced image size from 120MB to 85MB.

Subplan 7 — June 5, 2024

* DevOps & Deployment Labels: Deploying Social Media Automation Tools: Deployed
v1.0.0 release on AWS EC2 t3.medium with 99.9% uptime SLA.

* Integration & API Labels: Event-Driven Architecture for Social Media Automation:
Implemented AWS SNS topics for post status updates, integrated with Lambda v3.2.1
functions.

» User Experience & Interface Labels: Mobile App Design for Social Media Automa-
tion: Released beta version of React Native app on Android with basic scheduling and
metrics display.

Subplan 8 — June 20, 2024

* Progress & Development Labels: Developing Instagram Automation Tools: Imple-
mented batch media uploads for Instagram, supporting up to 10 images per carousel post.

¢ User Experience & Interface Labels: Responsive Design for Scheduling: Enhanced
React 18.2 dashboard for scheduling with drag-and-drop post reordering, tested on Chrome
and Safari.

¢ Security & Compliance Labels: Encryption for Instagram Automation: Migrated to-
ken storage to AWS KMS encrypted S3 bucket, access controlled via [AM roles.

Subplan 9 — July 5, 2024

* Security & Compliance Labels: Authentication for Twitter API Integration: Imple-
mented OAuth 2.0 PKCE flow for enhanced security, tested with Postman v10.15.0.

* Performance & Optimization Labels: Code Optimization for Twitter API Integra-
tion: Reduced memory usage by 20% by optimizing data serialization and connection
pooling.

¢ Debugging & Troubleshooting Labels: Error Diagnosis for Twitter API Integration:
Fixed “TimeoutError” during high load by increasing HTTP client timeout from 10s to
30s.
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Subplan 10 — July 20, 2024

* DevOps & Deployment Labels: Deploying Social Media Automation Tools: Com-
pleted production rollout on July 18, 2024, with zero downtime and 99.95% uptime in first
48 hours.

* Integration & API Labels: Event-Driven Architecture for Social Media Automation:
Fully implemented AWS SNS event bus with Lambda v3.2.1 for asynchronous post status
updates.

¢ Testing & Quality Assurance Labels: End-to-End Testing for Instagram Automation:
Verified Instagram automation stability with 1000+ posts over 7 days, no failures reported.

Turn 1 (Mar 1, 2024)

User: I'm trying to set up a Python 3.10 environment for automating social media posts, and
I’ve chosen Tweepy v4.10.1 and Facebook SDK v3.1.0 for API integrations, but I'm not sure
how to structure my project for better outreach. Can you help me plan this out in terms of
scheduling and deadlines?

Assistant:

Certainly! Setting up an automated posting system with Tweepy and Facebook SDK is a
great start.

Project Structure:

1. Project Setup (Mar 1-7) [Truncated ...]

2. Content Creation (Mar 8—14) [Truncated ...]

3. Automation Development (Mar 15-21) [Truncated ...]

4. Deployment and Monitoring (Mar 22-28) [Truncated ...]

User (Follow-up)

That sounds like a great plan! One thing though—could we add a step for testing posts on a
smaller scale before full deployment? Just to make sure everything looks good and functions
as expected.

Assistant

Absolutely, adding a step for testing the posts on a smaller scale is a great idea to ensure
everything looks good and functions as expected before full deployment. Here’s how you
can incorporate that into the existing plan:

Updated Project Structure

1. **Project Setup [Truncated ...]

4. **Testing Phase (March 22 - March 24, 2024)**- **Days 22-23:** Conduct a small-scale
test.- Post a few test messages to a limited audience or a test account.- Verify that the posts
look good and function as expected.- **Day 24:** Review the test results.- Address any
issues found during the test phase.- Make final adjustments to the automation script and
content.[ Truncated ...]

User (Mid-turn) —> Code Sharing

I’'m trying to implement a feature to collect engagement metrics for Instagram posts, but
I’'m not sure how to integrate it with the existing PostgreSQL schema. I've designed a table
for instagram_posts with foreign key to posts table, but I'm not sure how to handle the data
migration. Can you help me with that? Here’s my code:

import psycopg2

conn = psycopg2.connect (dbname=\"engagement_metrics\", user=\"username\"
password=\"password\",

host=\"localhost\",

port=\"5432\")

cur = conn.cursor ()

cur.execute (\"\"\"

CREATE TABLE instagram posts (id SERIAL PRIMARY KEY, post_id INTEGER REFERENCES
posts (id), engagement_metrics JSONB) ;
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\"\"\")\n\nconn.commit ()
cur.close ()
conn.close ()

Assistant —> Code Review
Your approach is good! Consider adding NOT NULL, timestamps, and indexes for perfor-
mance ...

CREATE TABLE IF NOT EXISTS instagram_posts (
id SERIAL PRIMARY KEY,
post_id INTEGER NOT NULL REFERENCES posts (id)
engagement_metrics JSONB,
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
)i
CREATE INDEX IF NOT EXISTS idx_instagram_posts_post_id
ON instagram_posts (post_id);

[Truncated ...] plus safe migration with INSERT SELECT to backfill existing posts.

User —> Deployment

I’'m trying to deploy my updated posting services to an AWS EC2 t3.medium instance with 2
vCPUs and 4GB RAM, but I'm running into some issues with the deployment process. Can
you help me figure out how to properly deploy my application to this instance, considering
the DevOps and deployment aspects? I've been using Docker to containerize my application,
and I’'m not sure what changes I need to make to ensure a smooth deployment. Here’s a
snippet of my current Dockerfile:

FROM python:3.10-slim

WORKDIR /app

COPY requirements.txt .

RUN pip install -r requirements.txt

COPY .
CMD ["python", "app.py"l]

Assistant —> Deployment Guidance

Install Docker on EC2, push image to registry, pull with pinned tag, and run with
—-restart=always [Truncated ...] add healthchecks and a minimal systemd unit
[Truncated ...]

User (Follow-up)
hmm, what’s the best way to automate the pulling and running of the Docker container?

Assistant —> CI/CD Automation
Use GitHub Actions with SSH deploy step [Truncated ...]

name: Deploy

on: { push: { branches: [main] } }
jobs:
deploy:
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v4
- run: |
ssh -i id_rsa ec2-user@EC2_DNS \
"docker stop socauto || true && docker rm socauto || true &&
docker pull username/your-app:sha-${GITHUB_SHA} &&
docker run -d --restart=always -p 80:80 username/your—app:sha-${GITHUB_SHA}"

User (Follow-up)
hmm, what’s the best way to handle environment variables for different stages like dev and
prod?

Assistant —> Env Vars

Use separate .env.dev / .env.prod files locally. In production, prefer AWS SSM Pa-
rameter Store or Secrets Manager [Truncated ...] inject via ——env—-file or systemd
environment exports.
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F CASE STUDY

The scratchpad serves as a persistent, iteratively compressed semantic layer that (i) consolidates
scattered entities and facts (improving Information Extraction), (ii) preserves user-level meta-
instructions alongside task context (improving Instruction Following), (iii) records state changes and
overrides (improving Information Update), and (iv) normalizes timeline cues into explicit anchors
(improving Temporal Reasoning). Out of the ten memory abilities in our benchmark, we present
case studies from these four; however, the scratchpad provides similar benefits for the remaining six
abilities as well. Below we contrast “LIGHT with all components” versus “LIGHT w/o scratchpad”
on representative probes, and show the exact scratchpad cue that enabled the correct answer.

Information Extraction

(1) Question: Which versions of the tools did I say I was using to start my project?

Correct Answer: Python 3.10, spaCy v3.5, Flask 2.2, PyMuPDF 1.22.0

LIGHT with all components: Python 3.10, spaCy v3.5, Flask 2.2, PyMuPDF 1.22.0

LIGHT wo scratchpad: Based solely on the provided context, there is no direct answer to this question
Scratchpad cue (excerpt):

**KEY ENTITIES & RELATIONSHIPS:**

...... [trunecated]

- Technologies: Python 3.10, spaCy v3.5, Flask 2.2/2.2.3, PyMuPDF 1.22.0, scikit-learn v1.2.2, Redis,
RabbitMQ, Docker

...... [trunecated]

(2) Question: Can you remind me of the city and country I said I live in, along with my age?

Correct Answer: New Gary, Saint Helena; 26

LIGHT with all components: New Gary, Saint Helena; 26

LIGHT wo scratchpad: No information provided about your city, country, or age in the given context
Scratchpad cue (excerpt):

**KEY ENTITIES & RELATIONSHIPS:**

- **Primary individuals:** User and partner Wendy (both turning 26 on March 3, 2024)

- **Friends and collaborators:** Joe (writer, 35), Stacy ...... [trunecated]

- **Locations:** New Gary, Saint Helena; Island Art Gallery; Saint Helena Book Fair; Saint Helena
Community Center; GreenLeaf Nursery; Island Finds thrift store; Saint Helena Charity; The Light-
house Bistro

Instruction Following

Question: Can you tell me about the mentoring activities I've been involved in recently?

User instruction: Always provide the number of team members involved when I ask about mentoring
activities.

Correct Answer: Mentions number of team members

LIGHT with all components: Mentoring 3 junior editors

LIGHT wo scratchpad: No recent mentoring activities noted in the provided context

Scratchpad cue (excerpt):

...... [trunecated]

The user requested to always include the number of team members when discussing mentoring activi-
ties.

...... [trunecated]

*Mentoring & Crisis Management:*

- Mentoring 3 junior editors; balancing mentoring with crisis management.

...... [trunecated]

Knowledge Update

(1) Question: What is the typical memory usage per session for batch resume processing?

Correct Answer: Around 140MB per session

LIGHT with all components: “140MB

LIGHT wo scratchpad: The typical memory usage per session for batch resume processing can vary
widely depending on the complexity of the resumes and the system’s available memory, but optimizing
with batch sizes and efficient data handling can keep it under 100MB per resume.

Scratchpad cue (excerpt):
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...... [trunecated]

- Memory optimization:

- Reduce peak memory usage from 250MB to 140MB per batch.
...... [trunecated]

(2) Question: What is the deadline for completing the Instagram automation prototype sprint?
Correct Answer: April 5, 2024

LIGHT with all components: April 5, 2024

LIGHT wo scratchpad: April 1, 2024

Scratchpad cue (excerpt):

**PROCESSES & WORKFLOWS:*#*

1. **Project Planning & Sprint Management:**

...... [trunecated]

- Instagram automation sprint extended to April 5, 2024.

(1) Question: How many days passed between when I met my mom at home and when I completed
my first successful batch of Miche’s sourdough?

Correct Answer: Jan 6 —Jan 1 = 5 days

LIGHT with all components: 5 days

LIGHT wo scratchpad: 37 days

Scratchpad cue (excerpt):

**IMPORTANT DATES:**

- **January 1, 2024:** Met mother Brittney at home.

- **January 5-6, 2024:** Completed first batch of Michele’s sourdough.

...... [trunecated]

(2) Question: How many days do I have between finalizing my survey plans at Café Soleil and attend-
ing the Raymondburgh Startup Meetup to prepare effectively?

Correct Answer: Mar 28 — Mar 10 = 18 days

LIGHT with all components: 18 days

LIGHT wo scratchpad: 28 days

Scratchpad cue (excerpt):

**IMPORTANT DATES: **

- #*March 10, 2024**: Paper-based customer survey at Cafe Soleil.

- *¥*March 28, 2024**: Raymondburgh Startup Meetup.

...... [trunecated]

Takeaways. Across abilities, removing the scratchpad consistently causes failures that the full
model avoids. In Information Extraction, the scratchpad aggregates dispersed entity/version men-
tions so the model can recover exact tool versions and bios (city/age). For Instruction Following, it
retains user meta-preferences (e.g., “always include team count”), ensuring style/format compliance
even many turns later. For Knowledge Update, it encodes overrides (e.g., extended deadline; reduced
memory), preventing stale answers. For Temporal Reasoning, it surfaces normalized date anchors,
enabling simple, correct day-difference calculations. These examples show that the scratchpad pro-
vides a high-utility semantic scaffold that complements working (recency) and episodic (retrieval)
memory, yielding robust long-context behavior.
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G QUALITATIVE ERROR ANALYSIS

We conduct a qualitative analysis of failure cases across the ten memory abilities in our benchmark
to better characterize the limitations of LIGHT and identify systematic patterns. For each ability, we
manually inspected probing questions that LIGHT answered incorrectly and analyzed the underlying
reasons. Below, we summarize the dominant error modes observed for each ability.

Abstention In this ability, the LLM should abstain from answering because the answer to the
probing question is not present in the conversation. Therefore, the context that LIGHT provides
to the LLM does not contain the required information. One failure mode occurs when the context
contains nothing relevant to the question, yet the LLM hallucinates and generates an answer. This is
because these LLMs are usually trained to always provide an answer, regardless of actually having
this knowledge (Kalai et al.,[2025). Another hallucination pattern occurs when the LLM produces
an answer entirely unrelated to the question, which stems from the long-context nature of the task
and the inability of the LLM to understand the context correctly. The main failure mode, however,
arises when the context contains information about entities, dates, or concepts that are similar to,
but not the same as, the information requested by the question. In these cases, the LLM uses these
similar details and generates an answer instead of abstaining. This pattern is the primary failure
mode for abstention.

Contradiction Resolution For this ability, the LLM should identify the contradiction, state both
sides, and request clarification. One common failure mode occurs when the context contains only
one side of the contradiction, leading the LLM to answer based solely on that information. Since
the model does not have access to the other side of the story, it cannot detect the conflict. Another
common failure occurs when both sides of the contradiction are present in the context, but the LLM
still overweighs one side of the contradiction due to position and frequency bias for that side in the
context.

Event Ordering In this ability, the LLM should recognize and reconstruct the sequence of evolv-
ing information in the conversation. A common failure occurs when the context contains items from
the sequence but the LLM does not include them in the response. Another failure mode occurs
when the model includes the items but presents them in the wrong order. This happens because
the retrieval model retrieves based on similarity, which does not necessarily preserve temporal or-
der, leaving the LLM without clues about the correct sequence of events. Also, in many cases, the
retriever does not retrieve all the events related to the question.

Information Extraction In this ability, one failure mode arises when the context does not contain
the answer to the question; thus, the LLM cannot extract the answer from the retrieved context.
Another occurs when the answer is present, but the LLM produces an incorrect answer because it
becomes confused by details in the context that are similar to the answer. A third failure happens
when the answer is present but the LLM provides an incomplete answer.

Instruction Following For this ability, the LLM should adhere to user-specified instructions. Fail-
ures occur either when the user instruction is present in the context, but the LLM does not follow
it, or when the instruction is missing from the context, and the LLM cannot answer the question
without it.

Knowledge Update Here, the LLM should answer the question using the updated version of the
facts. One failure mode occurs when the context contains only the old value and does not include the
updated value, causing the LLM to respond using outdated information, because the retrieval model
retrieves based on similarity, which does not necessarily preserve temporal order. A more common
failure mode occurs when the context contains both the old and updated values, but the LLM still
bases its answer on the old value, because the retrieved documents are not necessarily presented in
the correct temporal order, again due to the retriever.

Multi-Hop Reasoning For this ability, the LLM often fails when the context contains the neces-
sary pieces of information but the model does not use them to answer the question. Another failure
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occurs when the context is missing some components required for the multi-hop reasoning chain,
making it impossible for the LLM to answer correctly.

Preference Following In this ability, the LLM should incorporate user-stated preferences into
its answer. Failures occur when the context does not contain the user’s preference and the model
therefore answers without considering it, or when the preference is present but the LLM does not
use it when generating the response.

Summarization For this ability, one failure mode occurs when the context contains some compo-
nents of the correct answer but the LLM fails to include them in the summary. Another failure arises
when the context is missing some parts of the answer, which leads the LLM to omit those details as
well.

Temporal Reasoning In this ability, the LLM should reason about explicit and implicit temporal
relations. A common failure mode occurs when the context contains the required dates, but the
LLM becomes confused by another date (or dates) in the context and answers incorrectly. Another
failure occurs when the context contains both dates but the LLM performs the arithmetic incorrectly,
producing an answer with a numerical error. A third failure mode occurs when the context does not
contain one of the necessary dates, causing the LLM to incorrectly substitute another date when
answering.
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H PROMPTS

Here we provide the prompts used in different stages of our framework.

Listing 1: Candidate selection information extraction prompt




2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
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Listing 2: Candidate selection multi-hop reasoning prompt

Listing 3: Candidate selection knowledge update prompt
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Listing 4: Candidate selection temporal reasoning prompt




2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
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2713
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2715
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2727
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2730
2731
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2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
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Listing 5: Candidate selection preference following prompt

Listing 6: Candidate selection event ordering prompt
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Listing 7: Candidate selection contradiction resolution prompt
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Listing 8: Candidate selection summarization prompt
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Listing 9: Candidate selection instruction following prompt
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Listing 10: Information extraction probing question generation prompt
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Listing 11: Multi-hop reasoning probing question generation prompt




Under review as a conference paper at ICLR 2026

Listing 12: Knowledge update probing question generation prompt
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Listing 13: Temporal reasoning probing question generation prompt




3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
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3156
3157
3158
3159
3160
3161
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3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
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Listing 14: Abstention probing question generation prompt

Listing 15: Preference following probing question generation prompt
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Listing 16: Event ordering probing question generation prompt
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Listing 17: Contradiction resolution probing question generation prompt




3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
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Listing 18: Summarization probing question generation prompt

Listing 19: Instruction following probing question generation prompt
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Listing 20: Rubric scoring for nugget satisfaction prompt




3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
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Second snippet: {second_paragraph}
Listing 21: Fact equivalence detection prompt

Listing 22: Chat titles generation prompt

Listing 23: Narrative generation prompt
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Listing 24: General domain conversation plan generation prompt
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Listing 25: Coding domain conversation plan generation prompt
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Listing 26: Math domain conversation plan generation prompt
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Listing 27: Adding special bulletpoints to conversation plan prompt
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Listing 28: Ten million sequential seed generation prompt
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Listing 29: Ten million hierarchical seed generation prompt
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Listing 30: Ten million sequential conversation plan generation prompt




Under review as a conference paper at ICLR 2026

Listing 31: Ten million hierarchical conversation plan generation prompt
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Listing 32: Question generation general domain prompt
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Listing 33: Question generation coding domain prompt
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Listing 34: Question generation math domain prompt




4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
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Output exactly #xVESxx or xxNOxx, nothing else.
Listing 35: Check assistant’s response include question prompt

Listing 36: Check need for followup prompt

Listing 37: Assistant LLM answer generation prompt
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Listing 38: User LLM answer generation prompt




4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
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Listing 39: User LLM ask followup question prompt

Listing 40: Key-value extraction prompt




4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
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Listing 41: Scratchpad creation prompt

Listing 42: Scratchpad summarization prompt

I provide you with a user query and a text chunk.
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4547
4548
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4551
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4562
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Listing 43: Scratchpad noise filtering prompt

Listing 44: Answer generation with RAG prompt

I LLM USAGE

We used ChatGPTEl as a writing assistant. Specifically, we first drafted the paper and then employed
ChatGPT to refine the text/assist with rephrasing and grammar. The suggestions were manually
reviewed and edited before inclusion in the final version.

*https://chatgpt.com
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