BEYOND A MILLION TOKENS: BENCHMARKING AND ENHANCING LONG-TERM MEMORY IN LLMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Evaluating the abilities of large language models (LLMs) for tasks that require long-term memory and thus long-context reasoning, for example in conversational settings, is hampered by the existing benchmarks, which often lack narrative coherence, cover narrow domains, and only test simple recall-oriented tasks. This paper introduces a comprehensive solution to these challenges. First, we present a novel framework for automatically generating long (up to 10M tokens), coherent, and topically diverse conversations, accompanied by probing questions targeting a wide range of memory abilities. From this, we construct BEAM, a new benchmark comprising 100 conversations and 2,000 validated questions. Second, to enhance model performance, we propose LIGHT-a framework inspired by human cognition that equips LLMs with three complementary memory systems: a long-term episodic memory, a short-term working memory, and a scratchpad for accumulating salient facts. Our experiments on BEAM reveal that even LLMs with 1M token context windows (with and without retrieval-augmentation) struggle as dialogues lengthen. In contrast, LIGHT consistently improves performance across various models, achieving an average improvement of 3.5%-12.69% over the strongest baselines, depending on the backbone LLM. An ablation study further confirms the contribution of each memory component.

1 Introduction

Large language models (LLMs) have been deployed across diverse applications, including opendomain conversational agents (Laban et al., 2025; Chen et al., 2025), retrieval-augmented generation (RAG) for open-domain question answering and fact checking (Lewis et al., 2020; Salemi et al., 2025; Salemi & Zamani, 2025; Kim et al., 2024b), long-document and code analysis (Li et al., 2025; Jelodar et al., 2025; Fang et al., 2024), and scientific or legal research (Rueda et al., 2025; Nguyen et al., 2025). Many of these tasks demand models capable of processing long inputs, motivating LLMs such as Gemini (DeepMind, 2025) with input windows of up to 1M tokens. Among these domains, conversational systems present an intuitive and critical need for extended context, as users often engage in protracted, multi-session dialogues that require consistent memory across lengthy interactions (Zhong et al., 2024; Xu et al., 2022; Du et al., 2024; Tan et al., 2025). This highlights the importance of evaluating how well LLMs can reason over and utilize long conversational histories.

While there are many prior efforts on studying and evaluating long-term memory of LLMs (Kim et al., 2024a; Xu et al., 2021; Maharana et al., 2024; Zhong et al., 2024; Xu et al., 2022; Du et al., 2024; Tan et al., 2025), existing benchmarks have fundamental limitations. Most extend conversation length by artificially concatenating short sessions of different users, producing dialogues with abrupt topic shifts and weak narrative coherence. Such a construction artificially simplifies evaluation because distinct segments are easily separable, reducing the need for true long-range reasoning. Furthermore, these datasets typically target narrow domains—often limited to personal-life scenarios—leaving many real-world application areas underrepresented. Finally, they emphasize simple context recall, overlooking other critical memory abilities such as contradiction resolution, recognizing evolving information, and instruction following.

To address these limitations, this paper presents a framework for automatically generating long coherent conversations between a user and an AI assistant—scaling up to 10M tokens on diverse domains—with a set of probing questions designed to evaluate diverse memory abilities of any LLM on the generated dialogues. An overview of the data generation framework is shown in Figure 1. This framework begins by defining a high-level conversation plan—a narrative for a particular domain and a simulated user with generated attributes—that outlines the overall flow of the dialogue.

This plan is recursively decomposed into finer sub-plans that specify the storyline and its progression. From these sub-plans we generate chronologically ordered user turns, which are then expanded with corresponding assistant responses. To increase realism, the system injects follow-up questions and clarifications from both sides. Finally, we automatically create a set of probing questions that target ten distinct memory dimensions, with a focus on complicated and multi-hop reasoning, which are then validated by human annotators to ensure high quality. Using this pipeline, we construct the BEAM dataset: 100 diverse conversations ranging from 100 K to 10 M tokens each, accompanied by 2000 probing questions to evaluate the memory capabilities of LLMs.

To improve LLM performance on probing questions, we introduce the LIGHT framework (Figure 2), which is applicable to both open-source and proprietary LLMs, inspired by research in human cognitive science and human's memorization and recall process (Sridhar et al., 2023; Binder & Desai, 2011). This framework integrates three complementary memories: (1) episodic memory, a long-term index of the full conversation used for retrieval; (2) working memory, capturing the most recent user—assistant turns; and (3) a scratchpad, where after each turn the model reasons over the dialogue and records salient facts for future use. At inference, the LLM draws jointly on retrieved episodic content, the working memory, and the accumulated scratchpad to generate accurate answers.

To evaluate LLM memory capabilities and the effectiveness of our method, we conduct experiments on the constructed dataset, BEAM, using both open-source and proprietary models. Results show that even LLMs with long context windows perform substantially worse as conversation length increases. Our method improves the LLM's performance in answering the probing questions by 3.5%–12.69% on average over the best-performing baseline, depending on the backbone model and conversation length. An ablation study further reveals the contribution of each LIGHT component on the performance. To support future work, we release all code, data, and evaluation scripts. \(^1\)

2 BEAM: BENCHMARKING MEMORY CAPABILITIES OF LLMS

2.1 PROBLEM FORMULATION

Let $\mathcal{D} = \{T_i\}_{i=1}^{|\mathcal{D}|}$ denote a collection of $|\mathcal{D}|$ conversations between users and a conversational agent π . Each conversation is represented as $\mathcal{T} = \{t_i\}_{i=1}^{|\mathcal{T}|}$, where $t_i \in \mathcal{T}$ corresponds to the

Figure 1: Overview of data generation.

 i^{th} utterance (turn) in the dialogue. The objective of this work is to systematically evaluate a predefined set of memory abilities \mathcal{M} exhibited by π across conversations. For each memory ability $m \in \mathcal{M}$, we construct a probing dataset of size N, denoted as $\mathcal{Q}_m = \{(x_i, y_i)\}_{i=1}^N$, where x_i is a probing question and y_i is the corresponding ground-truth answer set. Each probing question $(x,y) \in \mathcal{Q}_m$ is appended as the $(|\mathcal{T}|+1)^{\text{th}}$ turn in the dialogue, and the system generates a response $\hat{y} = \pi(x;\mathcal{T})$ based on the conversation. The generated response is then evaluated using an ability-specific scoring function μ_m , producing a performance score $s = \mu_m(x,y,\hat{y})$. The goal of this work is to quantify the performance of conversational systems on each memory ability in \mathcal{M} .

2.2 BENCHMARK CREATION

Our goal is to evaluate how well LLMs can answer questions that depend on long-term conversational memory. We measure performance across ten complementary abilities, seven drawn from prior benchmarks and three newly introduced here—Instruction Following, Event Ordering, and Contradiction Resolution (see Table 2 in Appendix B.1). Abstention evaluates whether a model withholds answers when evidence is missing. Contradiction Resolution tests the capacity to detect and reconcile inconsistent statements across widely separated turns, maintaining global coherence. Event Ordering assesses whether a model can recognize and reconstruct the sequence of evolving information in the dialogue. Information Extraction measures recall of entities and factual details in long histories. Instruction Following examines sustained adherence to user-specified constraints over long contexts. Information Update evaluates revising stored facts as new ones appear. Multi-hop

¹Codes and data will be released upon acceptance.

Reasoning probes inference that integrates evidence across multiple, non-adjacent dialogue segments. Preference Following captures personalized responses that adapt to evolving preferences. Summarization assesses the ability to abstract and compress dialogue content, while Temporal Reasoning tests reasoning about explicit and implicit time relations. Together, these abilities evaluate a system's capacity to maintain, update, and manipulate information throughout extended conversations (see Appendix B.6 for examples of each ability). Given these abilities and the formulation in Section 2.1, the benchmark requires three components: 1) a user—assistant conversation, 2) probing questions targeting key memory abilities, and 3) an evaluation methodology to assess the model's responses. The overall statistics of the constructed benchmark are summarized in Table 3 in Appendix B.1. The rest of this section details the process used to construct these components.

Overview: The overview of our framework for creating conversations, probing questions, and the evaluation strategy is illustrated in Figure 1. The process begins by generating a simulated conversation between a user and an assistant. Structured conversation plans are first produced to guide the flow of the synthetic interactions. Each plan specifies sufficient information to generate both user and assistant turns, ensuring a coherent and natural conversational trajectory. While a typical exchange consists of a user question followed by an assistant response, realistic dialogues often involve follow-ups for clarification, elaboration, or related subtopics. To capture this, we incorporate two interaction-control modules. The question-detection module identifies whether an assistant response includes a query that requires a user reply; if triggered, the system generates the corresponding user response. The follow-up detection module determines when the user would naturally pose a clarifying or elaborative question; if triggered, it produces an additional user query for the assistant. Together, these mechanisms produce conversations that exhibit interactive, bidirectional behavior beyond simple turn-taking. After the conversation is generated, an automated procedure constructs a candidate set of probing questions, each tailored to the specific memory abilities in the benchmark. These candidates are then reviewed by a human evaluator, who selects valid questions and formulates the associated evaluation rubrics used for subsequent benchmarking. A case study and an example of the different generated components of a conversation is provided in Appendix E.

2.2.1 Conversation Plan Generation

A conversation plan serves as the scaffold for each dialogue, providing a coherent storyline that unfolds chronologically. Each plan is generated using an LLM based on seed information, including: the conversation domain; a title and theme; subtopics outlining specific topics; a set of narratives defining evolving aspects (e.g., career progression, goals); a user profile with attributes such as name, age, gender, location, profession, and personality traits sampled from the Myers–Briggs Type Indicator (MBTI); a relationship graph linking the user to family, friends, and acquaintances, constrained for realism (e.g., age gaps); and an explicit timeline specifying the span of the conversation. To generate candidate titles and themes, human annotators specify target domains, then GPT-4.1 (OpenAI, 2025a) generates candidate titles, themes, and subtopics using Listing 22. Human reviewers refine outputs for topical diversity. For each conversation, we generate 15-20 narratives using the open-source LLaMA-3.3 70B model (AI, 2024) with the prompt in Listing 23 (Appendix G). Given the conversation seed, this model produces narrative elements capturing the evolving storyline, forming the backbone of a coherent conversation.

Conversation plans consist of *N sub-plans*, each representing a distinct stage in the conversation. Each sub-plan contains *M bullet points*, defined by a *narrative*, a descriptive statement of its role in the storyline, and a *time anchor*. For conversations of 128K, 500K, and 1M tokens, a single plan is generated (line 4 in Algorithm 1, Appendix B.3.5) by conditioning the LLM on the conversation seed, profile, relationship graph, timeline, and specified counts of sub-plans, bullet points, and narratives (prompt in Listing 24, Appendix G). The number of sub-plans varies with domain and target length to meet the token requirement; e.g., coding domains generally require fewer turns than broader domains. For 10M-token conversations, one plan cannot capture the scope, so we create ten interlocking plans forming a coherent longer narrative. The process begins with a global seed defining the overall topic and theme, but a single seed is insufficient; instead, we derive ten distinct seeds—one per plan—so the narrative can evolve across stages. We propose two strategies:

• Sequential Expansion: The global seed defines the initial point in the conversation's chronology. Subsequent seeds represent successive events (e.g., a trip, job search, later milestones). Using the prompt in Listing 28 (Appendix G), each new seed is generated from the main seed, profile, and

timeline. Plans are then produced sequentially (line 12 in Algorithm 1, Appendix B.3.5), with each plan conditioned on its predecessor to maintain continuity. Core relationships (e.g., parents) remain fixed, while new acquaintances are gradually introduced to reflect the evolving context.

• Hierarchical Decomposition: The main seed is decomposed into ten sub-seeds, each representing a distinct topical and temporal segment. Together, these sub-seeds span the full storyline (e.g., an international trip: first three for preparation, next five for trip events, final two for reflections). Similar to sequential expansion, the user's core relationships remain constant, while new acquaintances are introduced to reflect the evolving context. These ten sub-seeds are generated using the prompt in Listing 29 (Appendix G), conditioned on the main seed, profile, and timeline.

Each conversation plan is assigned explicit topical and temporal boundaries—encoded in the seed—to avoid redundancy and ensure sub-themes appear in the right narrative stage. For coherence, the LLM conditions on summaries of prior plans and future seeds when producing a new plan, allowing anticipation of upcoming events (e.g., reserving tickets for travel dates). This procedure is implemented in line 20 of Algorithm 1 (Appendix B.3.5). Plans are generated using the prompt in Listing 31 (Appendix G), conditioned on the main seed, current sub-seed, number of sub-plans, narrative set, user profile, core and new relationships, preceding and subsequent sub-seeds, previous plan, a summary of earlier plans, current sub-seed index, and a binary flag for the first plan (triggering user introduction). Since initial plans may not sufficiently test three key memory abilities—contradiction resolution, information update, and instruction following—we apply a two-stage augmentation: first generate the base plan, then use GPT-4.1 (Listing 27) to augment each sub-plan with three targeted bullet points. Performing augmentation separately improves coverage and fidelity. The refinement follows the prompt in Listing 27 (Appendix G), which takes plan as input and outputs the revised version. The detailed process for plan generation is reported in Appendix B.3.2.

2.2.2 USER UTTERANCE GENERATION

Once conversation plans are constructed, user utterances are synthesized from the sub-plans. Each sub-plan contains M bullet points, which are divided sequentially into K contiguous batches of equal size. Batching narrows the LLM's focus, reducing repetition and low-quality outputs that can occur when conditioning on the entire sub-plan. For each batch, the LLM generates I user questions (line 6 in Algorithm 2 in Appendix B.3.5) using the prompt in Listing 32 (Appendix G), conditioned on the conversation seed, the current batch, preceding batches, and context from earlier sub-plans. Each generated user question constitutes a user turn in the dialogue, ensuring coherence and continuity across extended conversations. Values of K and I are manually specified based on domain and target conversation length to meet the token budget, with configurations reported in Table 6 (Appendix B). This provides fine-grained control over user interaction density, preventing undergeneration or redundancy. To balance quality and cost, question generation uses the open-source LLaMA-3.3 70B model (AI, 2024), which produces high-quality outputs efficiently as the backbone LLM. The details of this procedure for user utterance generation are provided in Appendix B.3.3.

2.2.3 ASSISTANT UTTERANCE GENERATION

Assistant-side responses are generated iteratively in a role-playing setup, where one LLM assumes the assistant role and another the user role. For each sub-plan, the assistant LLM is conditioned on the conversation seed (Section 2.2.1), prior sub-plans, a summary of the last M turns, and a compressed summary of earlier ones (using the prompt in Listing 37 in Appendix B); for 10Mtoken conversations, additional summaries of prior plans are provided. The assistant first generates a response to the user's most recent question (line 9 in Algorithm 3 in Appendix B.3.5), which is analyzed by a question-detection module (line 11 in Algorithm 3 in Appendix B.3.5, using the prompt in Listing 35 Appendix B) to determine the presence of a counter-question. If detected, the response is passed to the user LLM, which generates a contextually consistent reply based on the current and prior sub-plans, relevant history, and conversation summaries (using the prompt in Listing 38 in Appendix B, line 14 in Algorithm 3 in Appendix B.3.5). This loop continues until no further assistant questions are detected or the threshold $\delta_1 = 2$ is reached, balancing realism and avoiding infinite cycles. In addition, a follow-up detection module (line 21 in Algorithm 3 in Appendix B.3.5, using the prompt in Listing 36 in Appendix B) evaluates whether a clarifying or elaborative user followup is warranted, based on factors such as subject complexity, ambiguity, or incomplete responses. When required, the module generates a follow-up query conditioned on the seed, current and prior sub-plans, the most recent M turns, and earlier summaries (using the prompt in Listing 39 in Appendix B), which is then passed back to the assistant LLM. The number of follow-up exchanges is limited by a threshold $\delta_2=2$, analogous to δ_1 . Together, these modules yield dialogues with bidirectional dynamics, contextual referencing, and realistic clarifications, approximating human–AI interactions. The details of this procedure are provided in Appendix B.3.4.

2.3 Probing Questions Generation

After constructing conversations, we generate probing questions to evaluate memory abilities. The pipeline combines automated synthesis with human validation: an LLM first produces candidate probes, which annotators review to select valid ones. Probes are derived from both the conversation plan and chat to ensure each targets a specific ability, is grounded in dialogue turns, and includes explicit provenance. The process begins by passing the plan to GPT-4.1-mini (OpenAI, 2025b), which selects candidate bullet points conditioned on the ability under evaluation. For example, knowledge-update probes require bullet pairs encoding an initial fact and its later revision, while summarization and event-ordering probes span multiple bullets. Each bullet is linked to its corresponding user and assistant turns through indices introduced during user-assistant turn generation, enabling retrieval of the precise dialogue segments in which the content was created. Candidate bullet selection is performed using prompts 1–9, one per memory ability. For abstention, candidate selection is unnecessary; probes are created directly from the plan using the prompt shown in Listing 14 (Appendix G).

Given the selected bullet points and aligned dialogue snippets, GPT-4.1-mini generates the probing question, a candidate answer, and source identifiers citing the specific messages containing the answer. For 10M-token dialogues, candidate selection and synthesis are performed with a sliding window across the ten interlocking plans, processing a limited number at a time to preserve topical locality and scalability. Probe generation uses prompts 10–19 for each memory ability, mapping candidate bullet points and contexts into fully formed questions. Finally, a human evaluator reviews the generated candidates and selects those that are valid and consistent with the conversation. Samples of probing questions are provided in Appendix D, items 1–10.

2.4 EVALUATION

We evaluate LLMs on the probing questions using nugget evaluation, a common approach for longform text assessment (Pradeep et al., 2024; 2025). Each probing question is manually validated: invalid or unsupported questions are discarded, and minor inconsistencies are corrected. From the validated set, two questions per memory ability are chosen for each conversation, yielding 20 probing questions per conversation. Rubric nuggets are then derived for each question. A nugget is an atomic, self-contained criterion that a system response must satisfy. Annotators decompose the ideal reference answer into minimal semantic units, ensuring each nugget is both atomic and self-contained. System responses are scored against these nuggets by an LLM judge (Listing 20, Appendix G), which assigns 0 (unsatisfied), 0.5 (partially satisfied), or 1 (fully satisfied). Scores are averaged across nuggets to produce ability-level metrics. This nugget-based procedure applies to nine memory abilities; the exception is event ordering, where quality depends on both recall and correct sequence. We evaluate event ordering using the Kendall tau-b coefficient (Kendall, 1945), which considers both order and presence. To apply this metric, an LLM equivalence detector (using the prompt in Listing 21 in Appendix G) aligns events in system responses with nuggets, outputting yes if two snippets denote the same event/topic and no otherwise. Kendall tau-b is then computed over the aligned sequences, capturing both recall and ordering fidelity. Examples of nugget construction for each memory ability are provided in Appendix D.

3 LIGHT: IMPROVING MEMORY CAPABILITIES OF LLMS

Inspired by research in human cognitive science (Sridhar et al., 2023; Binder & Desai, 2011), humans employ two primary mechanisms for remembering and using knowledge: *episodic memory*, the ability to recall specific personal experiences along with their context, and *working memory*, the capacity to retain and manipulate information about recent events over short periods. In addition, maintaining notes on a *scratchpad* provides an external record that supports long-term recall

and later retrieval. Since answering questions in long-context conversations similarly requires integrating past experiences and accumulated knowledge, we introduce a method that emulates these strategies by combining episodic recall, short-term working memory, and an external scratch-pad mechanism.

Overview: An overview of our method is shown in Figure 2. Given a question x about a conversation $\mathcal{T} = \{t_i\}_{i=1}^{|\mathcal{T}|}$, where $|\mathcal{T}|$ is the total number of turns, the framework first queries a retrieval model R to obtain k relevant segments from \mathcal{T} , simulating recall from episodic memory: $E = R(x, k, \mathcal{T})$. Next, the most recent z dialogue pairs of the conversation are selected to form the working memory, $W = \{t_{|\mathcal{T}|-i}\}_{i=0}^z$. In parallel, a pre-constructed scratchpad $S_{|\mathcal{T}|}$ contains up to m salient notes. A filtering function f retains only the items pertinent to x, yielding $S_x = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_$

Figure 2: Overview of the LIGHT framework.

 $f(S_{|\mathcal{T}|},x)$. Finally, the LLM π generates the answer by conditioning on the question and these three memory components, $y=\pi(x,E,W,S_x)$ using the prompt shown in Listing 44 in Appendix G. The remainder of this section details the construction and logic of each component in this pipeline.

3.1 Retrieval from the Conversation

Indexing the Conversation: After each user–assistant turn (Figure 2, top), we apply Qwen2.5-32B-AWQ (Team, 2024) with the prompt in Listing 40 (Appendix G) to extract key–value pairs and a summary of the interaction. Keys represent entities and values capture attributes or descriptive details, providing fine-grained, event-level indices analogous to hippocampal memory traces (Teyler & DiScenna, 1986). These key–value pairs and summaries are embedded using the BAAI/bge-small-en-v1.5 embedding model (of Artificial Intelligence, 2023) and stored in a vector database as keys, while the original dialogue segments are kept as values to ensure faithful grounding.

Retrieval from the Index: To retrieve information from the conversation as episodic memory, we embed the question x using the same embedding model and compare it against the stored keys in the index, and the original dialogue segments corresponding to the top k nearest neighbors are returned.

3.2 SCRATCHPAD FORMATION AND UTILIZATION

Construction: In addition to episodic memory (Figure 2, middle pathway), we build a higher-level representation that preserves information beyond individual dialogue events. It integrates semantic knowledge (facts and concepts), autobiographical details (life events), prospective memory (future intentions), and contextual metadata (time, place, acquisition context) (Binder & Desai, 2011). For each dialogue pair, we use Qwen2.5-32B-AWQ with the prompt in Listing 41 (Appendix G) to reason over the current and preceding turn and extract salient content. The resulting "scratchpad" is iteratively merged with earlier versions; once content exceeds a 30K-token threshold—substantially shorter than the raw conversation—it is compressed into a 15K-token summary by GPT-4.1-nano using the prompt in Listing 42. This process maintains efficiency and long-term coherence, analogous to the gradual abstraction of semantic memory in humans. Unlike the episodic index, the scratchpad is not stored in a retrieval database but is provided directly as contextual input during inference.

Filtering Scratchpad (function f): During inference, the scratchpad is selectively filtered with respect to the question. It is first divided into semantically coherent chunks using *semantic chunking*. ² Each chunk is evaluated by Qwen2.5-32B-AWQ with the prompt in Listing 43 (Appendix G),

²SemanticChunker in LangChain is used, which segments text into variable-length passages based on semantic rather than fixed token windows.

Table 1: Comparison of different LLMs and methods across conversation lengths and memory abilities using the created benchmark. Methods with the best performance per evaluation are bolded.

Length	Memory		Qwen 2.5	5		ma Mave	rick		emini 2 Fla	ash		T-4.1-na	ino
Length	Ability	Vanilla	RAG	Ours	Vanilla	RAG	Ours	Vanilla	RAG	Ours	Vanilla	RAG	Ours
	Abstention	0.300	0.650	0.475	0.200	0.800	0.600	0.800	0.800	0.675	0.475	0.800	0.575
	Contradiction Resolution	0.031	0.025	0.037	0.025	0.031	0.031	0.006	0.050	0.018	0.012	0.018	0.031
	Event Ordering	0.192	0.201	0.205	0.190	0.162	0.166	0.181	0.191	0.166	0.181	0.169	0.177
	Information Extraction	0.425	0.338	0.479	0.510	0.392	0.518	0.333	0.341	0.464	0.273	0.362	0.538
	Instruction Following	0.400	0.375	0.362	0.412	0.375	0.412	0.275	0.287	0.362	0.425	0.350	0.400
100K	Knowledge Update	0.437	0.275	0.362	0.300	0.350	0.450	0.125	0.325	0.300	0.275	0.375	0.375
	Multi-Hop Reasoning	0.222	0.203	0.281	0.152	0.225	0.353	0.200	0.148	0.225	0.178	0.263	0.365
	Preference Following	0.554	0.379	0.566	0.450	0.512	0.625	0.300	0.416	0.462	0.437	0.550	0.625
	Summarization	0.128	0.074	0.232	0.065	0.111	0.238	0.018	0.093	0.139	0.028	0.083	0.202
	Temporal Reasoning	0.112	0.162	0.112	0.100	0.275	0.187	0.187	0.150	0.125	0.112	0.125	0.162
	Average	0.280	0.269	0.311	0.240	0.323	0.358	0.242	0.280	0.294	0.239	0.309	0.345
	Abstention	0.314	0.728	0.571	0.185	0.785	0.628	0.714	0.800	0.685	0.557	0.828	0.600
	Contradiction Resolution	0.053	0.017	0.017	0.035	0.028	0.042	0.010	0.021	0.021	0.017	0.025	0.035
	Event Ordering	0.185	0.221	0.244	0.209	0.186	0.197	0.215	0.189	0.200	0.188	0.180	0.204
	Information Extraction	0.166	0.400	0.506	0.608	0.402	0.535	0.469	0.343	0.478	0.142	0.382	0.491
	Instruction Following	0.304	0.350	0.295	0.403	0.447	0.390	0.133	0.334	0.280	0.244	0.286	0.342
500K	Knowledge Update	0.111	0.226	0.278	0.276	0.338	0.264	0.171	0.180	0.223	0.107	0.288	0.240
	Multi-Hop Reasoning	0.125	0.187	0.214	0.219	0.313	0.350	0.198	0.135	0.157	0.070	0.233	0.266
	Preference Following	0.567	0.477	0.571	0.560	0.525	0.623	0.379	0.427	0.532	0.450	0.577	0.684
	Summarization	0.137	0.187	0.344	0.266	0.197	0.373	0.136	0.165	0.250	0.109	0.184	0.334
	Temporal Reasoning	0.035	0.114	0.121	0.064	0.078	0.190	0.150	0.078	0.092	0.057	0.161	0.154
	Average	0.200	0.291	0.316	0.283	0.330	0.359	0.257	0.267	0.292	0.194	0.314	0.335
	Abstention	0.342	0.650	0.500	0.221	0.742	0.435	0.642	0.750	0.735	0.492	0.778	0.678
	Contradiction Resolution	0.035	0.035	0.021	0.046	0.028	0.042	0.010	0.028	0.007	0.050	0.028	0.021
	Event Ordering	0.183	0.195	0.200	0.214	0.179	0.193	0.190	0.198	0.185	0.191	0.179	0.211
	Information Extraction	0.138	0.407	0.366	0.489	0.431	0.474	0.374	0.380	0.341	0.153	0.399	0.410
	Instruction Following	0.383	0.300	0.419	0.440	0.338	0.433	0.120	0.290	0.380	0.226	0.271	0.394
1M	Knowledge Update	0.064	0.378	0.357	0.164	0.342	0.414	0.107	0.278	0.264	0.150	0.342	0.392
	Multi-Hop Reasoning	0.102	0.163	0.209	0.174	0.245	0.270	0.083	0.134	0.147	0.091	0.293	0.278
	Preference Following	0.486	0.491	0.551	0.535	0.514	0.610	0.273	0.470	0.472	0.435	0.513	0.576
	Summarization	0.122	0.157	0.316	0.207	0.145	0.315	0.091	0.125	0.224	0.060	0.152	0.290
	Temporal Reasoning	0.073	0.078	0.154	0.097	0.107	0.176	0.104	0.057	0.085	0.061	0.064	0.107
	Average	0.193	0.285	0.309	0.259	0.307	0.336	0.199	0.271	0.284	0.191	0.302	0.336
	Abstention	0.250	0.600	0.550	0.050	0.700	0.450	0.750	0.650	0.650	0.450	0.650	0.400
	Contradiction Resolution	0.050	0.000	0.012	0.025	0.000	0.000	0.000	0.025	0.000	0.000	0.012	0.025
	Event Ordering	0.180	0.221	0.197	0.190	0.220	0.176	0.220	0.266	0.193	0.215	0.201	0.173
	Information Extraction	0.100	0.350	0.350	0.075	0.375	0.300	0.075	0.275	0.150	0.050	0.300	0.350
	Instruction Following	0.175	0.200	0.350	0.250	0.350	0.500	0.025	0.125	0.250	0.075	0.175	0.250
10M	Knowledge Update	0.100	0.300	0.275	0.100	0.375	0.325	0.050	0.325	0.200	0.050	0.325	0.300
	Multi-Hop Reasoning	0.125	0.050	0.125	0.000	0.075	0.125	0.000	0.125	0.125	0.012	0.091	0.135
	Preference Following	0.241	0.291	0.308	0.291	0.316	0.483	0.075	0.300	0.150	0.175	0.366	0.425
	Summarization	0.114	0.106	0.220	0.065	0.053	0.277	0.000	0.045	0.136	0.020	0.063	0.179
	Temporal Reasoning	0.000	0.000	0.000	0.000	0.025	0.025	0.025	0.025	0.075	0.050	0.000	0.025
	Average	0.133	0.211	0.238	0.104	0.249	0.266	0.122	0.216	0.192	0.109	0.218	0.226

which assigns a binary relevance label (yes/no). Only the chunks judged relevant are retained, producing a condensed representation of scratchpad that is passed to the response generator.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines: We evaluate our approach against two types of baselines: long-context LLMs and a RAG method. For long-context LLMs, the entire conversation history is provided, followed by the probing question. We include two proprietary LLMs (*GPT-4.1-nano*, *Gemini-2.0-flash*, both 1M context). and two open-source models (*Qwen2.5-32B-AWQ*, *Llama-4-Maverick-fp8*). For long-context experiments, *Qwen2.5-32B-AWQ* is evaluated with a 128K context length, while for the RAG baseline and our proposed method a 32K context length is used. At the 10M-token, since none of the four models support this length, they are evaluated on the largest recent dialogue segment fitting their window.³ For RAG baselines, each user–assistant turn pair is treated as a document, embedded and stored in a vector database. At inference, the top five most similar documents are retrieved and passed to the LLM using the prompt in Listing 44 (Appendix G).

Inference Setup: For inference, we use Nucleus (Holtzman et al., 2020) with temperature 0, except for conversation plan, user-turn, and assistant-turn generation, where temperature is 0.1 to encourage diversity. All open-source LLMs are served via VLLM for efficient inference. For Llama3.3-70B, we set the maximum output length to 6K tokens during user-turn generation, while

³Among available models, only *Llama-4-Scout* supports 10M-token context windows; however, due to its extreme computational requirements, we were unable to include it in our experiments.

Figure 3: Ablation study of the effect of different components in LIGHT.

for other LLMs we adopt their default maximum output length. For experiments involving both the RAG baseline and our proposed method, we employ FAISS as the vector database (Douze et al., 2024). For dense retrieval, we use the embedding model *BAAI/bge-small-en-v1.5* (Xiao et al., 2023).

4.2 EMPIRICAL FINDINGS

Main Results: Across all four conversation lengths (100K–10M tokens), our method consistently outperforms both long-context LLMs and RAG baselines (Table 1). At shorter contexts (100K), we observe strong gains, such as +49.1% for Llama-4-Maverick and +44.3% for GPT-4.1-nano over long-context baselines, showing that structured memory helps even when full history can be processed. The benefits grow with context length: at 1M tokens, improvements reach +75.9% for GPT-4.1-nano and +60.1% for Qwen2.5-32B. At 10M tokens—where no baseline natively supports the full context—our method achieves dramatic improvements, including +155.7% for Llama-4-Maverick and +107.3% for GPT-4.1-nano. The only exception is Gemini-2.0-flash at 10M, where our method surpasses the long-context baseline (+57.3%) but slightly trails RAG, likely due to model-specific retrieval behavior. Overall, these findings underscore the scalability and robustness of our framework across diverse architectures and extreme context lengths.

When evaluated across the ten memory abilities, our method shows the largest relative gains in summarization (+160.6%), multi-hop reasoning (+27.2%), and preference following (+76.5%). Strong improvements are also observed in information extraction (+56.7%), instruction following (+39.5%), and temporal reasoning (+56.3%). These results highlight that our method is particularly effective for tasks requiring long-range recall and integration of dispersed information. In contrast, all methods—including ours—perform strongest in abstention and weakest in contradiction resolution, indicating that contradiction detection remains a challenging open problem.

Ablation: We conduct an ablation to assess the role of each component—*episodic memory*, *scratchpad*, *working memory*, and *noise filtering*—across conversation lengths (Figure 3). At 100K, retrieval slightly hurts performance (+0.28% when removed), since the scratchpad alone suffices and extra retrieval introduces noise, while removing scratchpad or noise filtering reduces performance (-0.08%, -1.89%). Working memory also degrades results here (-1.89%), consistent with the low proportion of probing questions targeting recent turns (Table 7). At 500K, removing any component reduces performance, confirming their utility at this scale. At 1M, retrieval, scratchpad, and noise filtering remain beneficial, but removing working memory slightly improves performance, again reflecting its limited usefulness when few questions depend on the most recent turns. By 10M, all components are essential, with removals leading to large drops (-8.5% for retrieval, -3.7% for scratchpad, -5.7% for working memory, -8.3% for noise filtering). Overall, the ablations show that each module contributes increasingly as context length grows, and the full architecture consistently achieves the best performance. Detailed results across all memory abilities are provided in Table 8.

Effect of Retrieval Budget: We examine the effect of retrieval budget (K), testing 5, 10, 15, and 20 documents (Figure 4). Performance consistently improves when increasing K from 5 to 15, with the best results at K=15 (+8.5%, +7.3%, +6.6%, and +6.1% at 100K, 500K, 1M, and 10M). Increasing further to K=20 slightly degrades performance, likely due to noisy context. Results at K=10 are mixed—helpful at 100K and 1M but harmful at 500K and 10M—indicating additional documents sometimes

Figure 4: Effect of varying retrieval budget (K) on the performance.

add noisy information. Full results across memory abilities are shown in Table 9. We also conducted complementary experiments analyzing the effect of retriever choice, where we did not observe a considerable difference between sparse and dense retrieval. The full results and discussion are provided in Appendix C.2.

Case Study A case study demonstrating the usefulness of the scratchpad is provided in Appendix F.

Human Evaluation: We conducted a human evaluation to assess the quality of the generated conversations. Three dimensions were considered: *Coherence and Flow, Realism*, and *Complexity and Depth*, each rated on a 5-point Likert scale (1 = lowest, 5 = highest). The average scores across all conversations were 4.53, 4.57, and 4.64, respectively, indicating consistently high quality. The evaluation rubric and detailed scores are provided in Appendix B.2.

5 RELATED WORK

The detailed related work is provided in Appendix A; here we present a concise summary.

Context windows of LLMs have expanded dramatically, from early limits of 512–2K tokens (GPT-2/3; (Radford et al., 2019; Brown et al., 2020)) to 128K–1M (Claude-3, GPT-4-Turbo, Gemini 2.0; (DeepMind, 2025; Anthropic, 2025; OpenAI, 2025a)) and even 10M (Llama 4; (Meta-AI, 2025)). This growth is driven by advances in efficient attention (sparse, linear, memory-optimized kernels; (Beltagy et al., 2020; Wang et al., 2020; Dao et al., 2022)), improved positional encodings (relative, rotary with scaling, ALiBi; (Dai et al., 2019; Peng et al., 2023b)), long-context training strategies (continued-training, curriculum learning; (Xiong et al., 2023; Ding et al., 2024)), and inference optimizations such as paged attention, KV-cache compression, and distributed attention (Kwon et al., 2023; Zhang et al., 2023; Li et al., 2024; Liu et al., 2023). Such capabilities are especially valuable for applications involving conversational histories, the main focus of our work.

Beyond expanding context windows, models incorporate additional mechanisms for persistent memory. These include recurrence and compression (Transformer-XL, Compressive Transformer; (Dai et al., 2019; Rae et al., 2019)), state-space architectures (RWKV, Mamba, Hyena; (Peng et al., 2023a; Gu & Dao, 2023; Poli et al., 2023)), external memory modules (Memformer, RETRO, RMT; (Wu et al., 2020; Borgeaud et al., 2022; Fan et al., 2024)), context summarization (AutoCompressor; (Chevalier et al., 2023)), and retrieval-augmented generation (REALM, RAG, HippoRAG; (Guu et al., 2020; Lewis et al., 2020; Jimenez Gutierrez et al., 2024)). These approaches complement larger windows by enabling scalable and persistent long-term reasoning.

Existing benchmarks such as DialSim, MSC, LoCoMo, MemoryBank, DuLeMon, PerLTQA, Long-MemEval, and MemBench (Kim et al., 2024a; Xu et al., 2021; Maharana et al., 2024; Zhong et al., 2024; Xu et al., 2022; Du et al., 2024; Tan et al., 2025) evaluate recall, temporal reasoning, and multi-session reasoning, but typically span narrow domains, exhibit shallow dependencies, and concatenate separate user sessions to simulate long context, reducing realism. Our benchmark instead scales to 10M tokens across diverse topics and introduces new tasks such as contradiction resolution, event ordering, and instruction following, generating coherent, single-user conversations that preserve narrative continuity for a more faithful assessment of long-term conversational memory.

6 Conclusion

This paper addresses the shortcomings of existing benchmarks for evaluating long-term memory in conversational systems. We introduce a scalable framework to generate BEAM, a new benchmark with long, coherent dialogues (up to 10M tokens) and diverse memory probes. To improve LLMs performance, we develop LIGHT, a cognitive-inspired framework combining episodic, working, and scratchpad memories. Our experiments show that while standard LLMs' performance degrades over long contexts, LIGHT provides substantial improvements, boosting memory performance by an average of 3.5%-12.69%. By offering a more robust evaluation and an effective memory enhancement technique, this work helps the development of more reliable long-context conversational systems.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Meta AI. Llama 3.3 model cards and prompt formats. https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/, 2024.
- Anthropic. Claude 3 model card. Technical report, Anthropic PBC, 2024. URL https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.
 - Anthropic. Claude 4 model card (claude opus 4 & sonnet 4). Technical report, Anthropic PBC, May 2025.
 - Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. *arXiv preprint arXiv:2004.05150*, 2020.
 - Jeffrey R Binder and Rutvik H Desai. The neurobiology of semantic memory. *Trends in cognitive sciences*, 15(11):527–536, 2011.
 - Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving language models by retrieving from trillions of tokens. In *International conference on machine learning*, pp. 2206–2240. PMLR, 2022.
 - Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
 - Zhiliang Chen, Xinyuan Niu, Chuan-Sheng Foo, and Bryan Kian Hsiang Low. Broaden your SCOPE! efficient multi-turn conversation planning for LLMs with semantic space. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=3cgMU3TyyE.
 - Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to compress contexts. *arXiv preprint arXiv:2305.14788*, 2023.
 - Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers. *arXiv preprint arXiv:2009.14794*, 2020.
 - Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. *arXiv preprint arXiv:1901.02860*, 2019.
 - Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness. *Advances in neural information processing systems*, 35:16344–16359, 2022.
 - Google DeepMind. Gemini 2.0 flash: A multimodal model with 1 million token context window. https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash, 2025.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
 - Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. *arXiv* preprint arXiv:2402.13753, 2024.

- Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. *arXiv* preprint arXiv:2401.08281, 2024.
 - Yiming Du, Hongru Wang, Zhengyi Zhao, Bin Liang, Baojun Wang, Wanjun Zhong, Zezhong Wang, and Kam-Fai Wong. Perltqa: A personal long-term memory dataset for memory classification, retrieval, and fusion in question answering. In *Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)*, pp. 152–164, 2024.
 - Qihang Fan, Huaibo Huang, Mingrui Chen, Hongmin Liu, and Ran He. Rmt: Retentive networks meet vision transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5641–5651, 2024.
 - Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang, Ruijie Fang, Asmita, Ryan Tsang, Najmeh Nazari, Han Wang, and Houman Homayoun. Large language models for code analysis: do llms really do their job? In *Proceedings of the 33rd USENIX Conference on Security Symposium*, SEC '24, USA, 2024. USENIX Association. ISBN 978-1-939133-44-1.
 - Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. Splade v2: Sparse lexical and expansion model for information retrieval. In *Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 127–137, 2022.
 - Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv* preprint arXiv:2312.00752, 2023.
 - Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented language model pre-training. In *International conference on machine learning*, pp. 3929–3938. PMLR, 2020.
 - Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=rygGQyrFvH.
 - Hamed Jelodar, Mohammad Meymani, and Roozbeh Razavi-Far. Large language models (llms) for source code analysis: applications, models and datasets, 2025. URL https://arxiv.org/abs/2503.17502.
 - Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobiologically inspired long-term memory for large language models. *Advances in Neural Information Processing Systems*, 37:59532–59569, 2024.
 - Maurice G Kendall. The treatment of ties in ranking problems. *Biometrika*, 33(3):239–251, 1945.
 - Jiho Kim, Woosog Chay, Hyeonji Hwang, Daeun Kyung, Hyunseung Chung, Eunbyeol Cho, Yohan Jo, and Edward Choi. Dialsim: A real-time simulator for evaluating long-term dialogue understanding of conversational agents. *arXiv e-prints*, pp. arXiv–2406, 2024a.
 - To Eun Kim, Alireza Salemi, Andrew Drozdov, Fernando Diaz, and Hamed Zamani. Retrieval-enhanced machine learning: Synthesis and opportunities, 2024b. URL https://arxiv.org/abs/2407.12982.
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pp. 611–626, 2023.
 - Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn conversation, 2025. URL https://arxiv.org/abs/2505.06120.
 - Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33: 9459–9474, 2020.

- Minghan Li, Miyang Luo, Tianrui Lv, Yishuai Zhang, Siqi Zhao, Ercong Nie, and Guodong Zhou. A survey of long-document retrieval in the plm and llm era, 2025. URL https://arxiv.org/abs/2509.07759.
 - Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation. *Advances in Neural Information Processing Systems*, 37:22947–22970, 2024.
 - Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-infinite context. *arXiv preprint arXiv:2310.01889*, 2023.
 - Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei Fang. Evaluating very long-term conversational memory of llm agents. *arXiv preprint arXiv:2402.17753*, 2024.
 - Meta-AI. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. Meta AI Blog, April 2025. URL https://ai.meta.com/blog/llama-4-multimodal-intelligence/.
 - Ha Thanh Nguyen, Wachara Fungwacharakorn, May Myo Zin, Randy Goebel, Francesca Toni, Kostas Stathis, and Ken Satoh. Llms for legal reasoning: A unified framework and future perspectives. *Computer Law Security Review*, 58:106165, 2025. ISSN 2212-473X. doi: https://doi.org/10.1016/j.clsr.2025.106165. URL https://www.sciencedirect.com/science/article/pii/S2212473X25000380.
 - Beijing Academy of Artificial Intelligence. Baai/bge-small-en-v1.5. Hugging Face model, 2023. URL https://huggingface.co/BAAI/bge-small-en-v1.5. MIT License; embedding model.
 - OpenAI. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, 2025a.
 - OpenAI. Gpt-4.1-mini model card. https://platform.openai.com/docs/models#gpt-4-1-mini, 2025b. Accessed: 2025-09-11.
 - Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer era. *arXiv preprint arXiv:2305.13048*, 2023a.
 - Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window extension of large language models. *arXiv preprint arXiv:2309.00071*, 2023b.
 - Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models. In *International Conference on Machine Learning*, pp. 28043–28078. PMLR, 2023.
 - Ronak Pradeep, Nandan Thakur, Shivani Upadhyay, Daniel Campos, Nick Craswell, and Jimmy Lin. Initial nugget evaluation results for the trec 2024 rag track with the autonuggetizer framework. *arXiv* preprint arXiv:2411.09607, 2024.
 - Ronak Pradeep, Nandan Thakur, Shivani Upadhyay, Daniel Campos, Nick Craswell, Ian Soboroff, Hoa Trang Dang, and Jimmy Lin. The great nugget recall: Automating fact extraction and rag evaluation with large language models. In *Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 180–190, 2025.
- Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input length extrapolation. *arXiv preprint arXiv:2108.12409*, 2021.
 - Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. 2018.
 - Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

- Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive transformers for long-range sequence modelling. *arXiv preprint arXiv:1911.05507*, 2019.
 - Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
 - Alice Rueda, Mohammed S. Hassan, Argyrios Perivolaris, Bazen G. Teferra, Reza Samavi, Sirisha Rambhatla, Yuqi Wu, Yanbo Zhang, Bo Cao, Divya Sharma, Sridhar Krishnan, and Venkat Bhat. Understanding Ilm scientific reasoning through promptings and model's explanation on the answers, 2025. URL https://arxiv.org/abs/2505.01482.
 - Alireza Salemi and Hamed Zamani. Learning to rank for multiple retrieval-augmented models through iterative utility maximization. In *Proceedings of the 2025 International ACM SI-GIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR)*, ICTIR '25, pp. 183–193, New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400718618. doi: 10.1145/3731120.3744584. URL https://doi.org/10.1145/3731120.3744584.
 - Alireza Salemi, Chris Samarinas, and Hamed Zamani. Plan-and-refine: Diverse and comprehensive retrieval-augmented generation, 2025. URL https://arxiv.org/abs/2504.07794.
 - Sruthi Sridhar, Abdulrahman Khamaj, and Manish Kumar Asthana. Cognitive neuroscience perspective on memory: overview and summary. *Frontiers in human neuroscience*, 17:1217093, 2023.
 - Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 - Haoran Tan, Zeyu Zhang, Chen Ma, Xu Chen, Quanyu Dai, and Zhenhua Dong. Membench: Towards more comprehensive evaluation on the memory of llm-based agents. *arXiv preprint arXiv:2506.21605*, 2025.
 - Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
 - Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.github.io/blog/qwen2.5/.
 - Timothy J Teyler and Pascal DiScenna. The hippocampal memory indexing theory. *Behavioral neuroscience*, 100(2):147, 1986.
 - Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear complexity. *arXiv preprint arXiv:2006.04768*, 2020.
 - Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval: Benchmarking chat assistants on long-term interactive memory. *arXiv preprint arXiv:2410.10813*, 2024.
 - Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Alborz Geramifard, and Zhou Yu. Memformer: A memory-augmented transformer for sequence modeling. *arXiv preprint arXiv:2010.06891*, 2020.
 - Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to advance general chinese embedding, 2023.
 - Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling of foundation models. *arXiv preprint arXiv:2309.16039*, 2023.
 - Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain conversation. *arXiv preprint arXiv:2107.07567*, 2021.

- Xinchao Xu, Zhibin Gou, Wenquan Wu, Zheng-Yu Niu, Hua Wu, Haifeng Wang, and Shihang Wang. Long time no see! open-domain conversation with long-term persona memory. *arXiv* preprint arXiv:2203.05797, 2022.
- Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences. *Advances in neural information processing systems*, 33:17283–17297, 2020.
- Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient generative inference of large language models. *Advances in Neural Information Processing Systems*, 36:34661–34710, 2023.
- Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large language models with long-term memory. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 19724–19731, 2024.

A DETAILED RELATED WORK

> Long-Context Large Language Models. The context window of LLMs has expanded from 512-2,048 tokens in early models (GPT-1/2/3, BERT, T5; (Radford et al., 2018; 2019; Brown et al., 2020; Devlin et al., 2019; Raffel et al., 2020)) to 128K-1M tokens in recent systems (Claude-3, GPT-4-Turbo, Gemini 1.5 Pro, Gemini 2.0 Flash, Claude-4, GPT-4.1; (Anthropic, 2024; Achiam et al., 2023; Team et al., 2024; DeepMind, 2025; Anthropic, 2025; OpenAI, 2025a)), with some reaching 10M tokens (Llama 4 Scout; (Meta-AI, 2025)). This growth has been enabled by innovations that address the quadratic cost of self-attention, including sparse mechanisms (Longformer, BigBird; (Beltagy et al., 2020; Zaheer et al., 2020)), linear approximations (Linformer, Performer; (Wang et al., 2020; Choromanski et al., 2020)) and memory-efficient kernels (FlashAttention; (Dao et al., 2022)). Advances in positional encoding, such as relative encodings (Transformer-XL; (Dai et al., 2019)), rotary embeddings (RoPE; (Su et al., 2024)) with scaling methods (YaRN, NTK; (Peng et al., 2023b)), and linear biases (ALiBi; (Press et al., 2021)), have extended usable context lengths. Training strategies like continued pre-training and curriculum learning (e.g., LLaMA-2-Long (Xiong et al., 2023), LongRoPE (Ding et al., 2024)) further expand capabilities, while inference optimizations such as PagedAttention (Kwon et al., 2023), KV-cache compression (H2O, SnapKV; (Zhang et al., 2023; Li et al., 2024)) and distributed approaches (Ring Attention; (Liu et al., 2023)) enable practical deployment at scale.

> Long-Term Memory Methods. Researchers have developed approaches to enhance long-term memory beyond simply extending context windows. Architectural modifications include Transformer-XL (Dai et al., 2019), which introduced segment-level recurrence, and Compressive Transformer (Rae et al., 2019), which stored both recent states and compressed older information. State-space models such as RWKV (Peng et al., 2023a), Mamba (Gu & Dao, 2023), and Hyena (Poli et al., 2023) replace attention with recurrent dynamics, allowing linear scaling and theoretically unbounded memory. Memory-augmented transformers such as Memformer (Wu et al., 2020), RETRO (Borgeaud et al., 2022) and RMT (Fan et al., 2024) add external memory slots for explicit storage and recall. Context compression offers an orthogonal strategy by summarizing past information rather than storing it verbatim, as in AutoCompressor (Chevalier et al., 2023), which learns compact, information-preserving representations to reduce token usage. Retrieval-augmented generation (RAG) scales further by maintaining external knowledge stores: REALM (Guu et al., 2020) and RAG (Lewis et al., 2020) pioneered dense retrieval, RETRO (Borgeaud et al., 2022) integrated retrieval into transformers, and HippoRAG (Jimenez Gutierrez et al., 2024) incorporated structured knowledge graphs.

Building on these foundations, we propose a novel retrieval-augmented method that shows substantial improvements over baselines in long-memory evaluation.

Long-Term Memory Benchmarks. Several benchmarks have emerged to evaluate long-term memory capabilities in LLMs. DialSim (Kim et al., 2024a) derives evaluation data from multiparty television scripts, producing dialogues extending to 350K tokens with naturalistic patterns but limited topical diversity. MSC (Xu et al., 2021) introduces multisession human-assistant conversations testing memory across session boundaries, though with brief sessions and shallow dependencies. LoCoMo (Maharana et al., 2024) presents 50 conversations averaging 9K tokens in 35 sessions, while MemoryBank (Zhong et al., 2024) provides 300 sessions with 194 probing questions evaluating recall and temporal reasoning. DuLeMon (Xu et al., 2022) focuses on dialogue-level memory and forgetting curves, PerLTQA (Du et al., 2024) targets memory classification and retrieval, and LongMemEval (Wu et al., 2024) constructs multisession evaluations with 500 questions testing information extraction and temporal reasoning. More recently, MemBench (Tan et al., 2025) evaluates the memory of LLM-based agents by assessing their performance on information extraction, multi-hop reasoning, knowledge updating, preference following, and temporal reasoning.

As summarized in Table 2, the existing benchmarks are largely based on concatenated short sessions with limited coherence, narrow personal and casual domains, and few memory abilities. They also lack realistic bidirectional interactivity. In contrast, our benchmark spans diverse domains, scales up to 10M tokens, and introduces three additional dimensions—contradiction resolution, event ordering, and instruction following—yielding a more comprehensive framework for evaluating long-term memory in conversational systems.

Table 2: Comparison of our benchmark with existing long-term memory benchmarks. Memory abilities: IE = Information Extraction, MR = Multi-hop Reasoning, KU = Knowledge Update, TR = Temporal Reasoning, ABS = Abstention, CR = Contradiction Resolution, EO = Event Ordering, IF = Instruction Following, PF = Preference Following, SUM = Summarization.

Benchmark	Domain	Chat Length	Memory Abilities									
Deliciniar K	Domain	Chut Eength	ΙE	MR	KU	TR	ABS	CR	EO	IF	PF	SUM
MSC (Xu et al., 2021)	Casual	~1K	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
DuLeMon (Xu et al., 2022)	Casual	$\sim 1 \text{K}$	Х	X	X	X	Х	X	X	Х	X	X
MemoryBank (Zhong et al., 2024)	Personal life	\sim 5K	1	X	X	1	Х	X	X	Х	X	X
PerLTQA (Du et al., 2024)	Personal life	N/A	1	Х	X	X	/	X	X	Х	X	×
LoCoMo (Maharana et al., 2024)	Personal life	$\sim 10 \text{K}$	1	1	X	1	/	X	X	Х	X	1
DialSim (Kim et al., 2024a)	TV/Film scripts	~350K	1	1	X	1	1	X	X	Х	X	Х
LongMemEval (Wu et al., 2024)	Personal life	115K, 1M	1	1	1	1	/	X	X	Х	1	×
MemBench (Tan et al., 2025)	Personal life	$\sim 100 \mathrm{K}$	1	1	1	1	X	X	X	X	1	X
BEAM (This work)	Multi-domain: Coding, Math, Health, Finance, Personal life,	128K, 500K, 1M, 10M	/	1	1	1	1	1	1	1	1	1

B BENCHMARK DESIGN

B.1 Dataset Statistics

Table 3 summarizes the statistics of the generated dataset, including averages of user messages, assistant messages, assistant and user follow-up questions, and dialogue turns across different chat sizes.

Table 3: Statistics of the dataset. Reported values are averages per chat in each chat size. # User Messages and # Assistant Messages denote the average number of utterances from the user and assistant, respectively. # Answer Assistant Questions is the number of times the assistant posed a question that the user answered. # Followup Questions is the number of follow-up questions asked by the user. # Turns refers to the total number of dialogue turns.

Chat Size	# User Messages	# Assistant Messages	# Answer Assistant Questions	# Followup Questions	# turns
128K	144	144	27	216	107
500K	544	544	79	51	416
1M	1067	1067	105	120	842
10M	10435	10435	1151	1528	7757

B.2 BENCHMARK QUALITY EVALUATION

To evaluate the quality of the generated conversations, we conducted human assessment across all conversations. Two annotators rated each conversation on three dimensions using a 5-point Likert scale (1 = lowest, 5 = highest): Coherence and Flow, Dialogue Realism, and Complexity and Depth.

- Coherence and Flow: Conversation continuity (each turn follows naturally from the previous one), smooth transitions across topics and responses, and thread consistency without abrupt or jarring shifts.
- **Dialogue Realism**: Naturalness of user queries (messages sound authentic), realistic progression of topics over time, human-like interactions (appropriate clarifications, follow-ups, etc.), and believability of scenarios.
- Complexity and Depth: Handling of multi-layered, interconnected topics, progressive increase in difficulty, and demonstration of domain expertise when required.

The aggregated results are reported in Table 4.

Table 4: Conversations quality human evaluation results (1–5 scale). Higher is better.

Chat Size	Coherence and Flow	Dialogue Realism	Complexity and Depth
128K	4.4	4.55	4.35
500K	4.49	4.4	4.63
1M	4.66	4.54	4.6
10M	4.6	4.8	5
Average	4.53	4.57	4.64

B.3 BENCHMARK CREATION DETAILS

B.3.1 Domain Coverage of the Dataset

To ensure broad coverage and realism, our dataset spans a diverse set of domains. The collection includes both technical and non-technical conversations, ranging from specialized domains such as coding, mathematics, financial investment and health to personal and social domains such as therapy, lifestyle, and trip planning. In total, we designed 100 multi-turn chats distributed across 19 domains, each represented by a set of distinct titles that capture the thematic scope of the dialogues. The full list of domains and their associated chat titles is provided in Table 5.

Table 5: Domains and associated chat titles in our dataset (100 total chats).

Domain	Chat Titles
Coding	Designing a Large-Scale Retrieval-Augmented Generation (RAG) System for Enterprise Search • Creating a Self-Driving Car Simulation Environment • Developing a Multi-Agent AI Research Platform • Building a Multi-Language AI Chatbot with Contextual Memory • Developing a Personalized News Aggregator with AI Summarization • Creating an Autonomous Stock Trading Bot • Implementing a Custom Image Captioning Model • Building a Multiplayer Online Game with Real-Time Physics • Building a Real-Time Chat Application with Node.js and Socket.io • Creating an AI-Powered Resume Analyzer with Python and NLP • Developing a Computer Vision App for Real-Time Object Detection • Creating a Restaurant Recommendation System • Automating Social Media Posts with Python • Building a Personal Budget Tracker Web App in Python and Flask • Creating a Command-Line To-Do List Manager in Go • Developing a Weather Forecast App in JavaScript with OpenWeather API • Training a Spam Email Classifier Using Python and Scikit-learn • Building a Portfolio Website with HTML, CSS, and Bootstrap
Math	Partial Differential Equations (PDEs) in Depth • Functional Analysis and Infinite-Dimensional Spaces • Solving Ordinary Differential Equations (ODEs) • Deep Dive into Number Theory • Advanced Probability and Combinatorics • Exploring Non-Euclidean Geometry • Studying Multivariable Calculus • Diving into Analytic Geometry • Developing Skills in Mathematical Induction • Exploring Conic Sections in Depth • Understanding Sequences and Series • Mastering Basic Differential Calculus • Exploring the Geometry of Triangles • Understanding the Basics of Probability • Mastering Algebraic Equations for Everyday Problem Solving • Learning the Foundations of Trigonometry • Mastering Fractions, Decimals, and Percentages
Writing Assistant & Learning	Building a Portfolio-Ready Resume that Passes Any Applicant Tracking System • Mastering the Art of Persuasive Academic Essay Writing • Crafting a Standout Cover Letter for Competitive Job Markets • Designing a Multi-Purpose Personal Statement for Global Opportunities • Developing a Self-Editing System for Lifelong Writing Improvement

Domain	Chat Titles
Therapy & Emotional Support	Recovering from Workplace Burnout and Chronic Stress • Healing After the Loss of a Loved One • Overcoming Childhood Trauma and Rebuilding Self-Trust • Coping with Post-Breakup Emotional Pain and Relationship Trauma
Career & Professional Development	Advancing from Mid-Level to Senior Leadership Roles • Building a Powerful Professional Network from Scratch • Landing Your Next Job: From Resume to Job Offer • Designing a 5-Year Career Growth Plan • Positioning Yourself for a Promotion
Financial Investment	Building a Long-Term Stock Market Investment Strategy • Getting Started in Real Estate Investing • Navigating the World of Cryptocurrency • Creating a Balanced Investment Portfolio
Health & Wellness	Creating a Personalized Nutrition and Meal Planning System • Designing a Sustainable Fitness Routine • Improving Sleep Quality for Better Health • Understanding and Managing Chronic Illness • Recognizing Symptoms and Seeking Medical Help Early
Relationship & Family	Strengthening Communication in Romantic Relationships • Parenting Through Different Life Stages • Navigating In-Law and Extended Family Relationships • Rebuilding Relationships After Trust Has Been Broken
Education & Learning	Learning to Play a Musical Instrument from Scratch • Mastering a New Language for Real-World Communication • Becoming a Skilled Photographer • Exploring Performing Arts: Acting, Theater, and Dance
Home & Real Estate	Buying Your First Home with Confidence • Renting a Home or Apartment Without Stress • Selling Your Home for Maximum Value • DIY Home Improvement and Repairs • Making Your Home More Comfortable and Functional
Lifestyle	Designing a Daily Routine That Boosts Productivity and Well-Being • Building Healthy and Sustainable Lifestyle Habits • Balancing Social Life and Personal Time
Cooking	Mastering Quick and Healthy Weeknight Dinners • Baking Like a Pro at Home • Exploring Global Cuisines from Your Kitchen • Cooking for Special Diets and Allergies • Meal Prepping for the Week Ahead
Business & Entrepreneurship	Starting a Business from Scratch • Growing and Scaling Your Small Business • Building a Successful Startup
Trip Planning	Preparing for a Week-Long Hiking and Camping Adventure in Patagonia • Organizing a Cross-Country USA Road Trip • Planning a Cultural Immersion Trip to Japan • Planning a Budget Backpacking Trip Across Southeast Asia • Arranging a Luxury Honeymoon in the Maldives
Sport	Soccer – Playing, Watching, and Supporting the World's Most Popular Game • Basketball – From Street Courts to the NBA • Volleyball – Indoor, Beach, and Competitive Play • Hockey – Ice, Field, and Global Competitions • Tennis – From Local Courts to Grand Slams
Event Planning	Planning a Surprise 30th Birthday Party for a Close Friend ◆ Coordinating a Destination Beach Wedding for 100 Guests ◆ Organizing a Weekend Community Food and Music Festival ◆ Planning a Cozy Christmas Eve Dinner for Extended Family

Domain	Chat Titles
Asking Recommendation	Finding the Perfect Smartphone for Photography and Gaming • Choosing a Lightweight Laptop for Work, Travel, and Entertainment • Selecting a Must-Read Fiction Series for Winter Evenings • Finding the Best Streaming Movies for a Family Weekend • Choosing Comfortable and Stylish Sneakers for Daily Wear
Legal & Administrative	Filing for a Marriage-Based Green Card in the United States • Creating a Legally Valid Will and Estate Plan • Applying for a Patent to Protect a New Invention
Philosophical & Eth- ical Discussion	Deciding Whether to Use AI to Automate Hiring in My Company • Considering Whether to Believe in and Live by the Idea of Free Will

B.3.2 Conversation Plan Generation

A conversation plan serves as the central scaffold of each conversation, providing a coherent story-line that evolves chronologically. The process of constructing conversation plans is anchored by a seed that specifies the domain of the dialogue (e.g., sports, finance, programming, mathematics), a title representing the high-level topic, and a theme that provides a more detailed instantiation of the title. The seed also includes a set of subtopics, which enumerate finer-grained subtopics and details to ensure topical diversity. However, a title, theme, and subtopics alone are insufficient to support detailed and information-rich conversations. To enrich the narrative, we introduce narratives set that define the evolving aspects of a conversation (e.g., career progression, goals, relationships). Each narrative is paired with descriptive details that specify its scope and trajectory.

In addition to the seed and narrative set, each conversation incorporates a *user profile*, a *relationship graph*, and an explicit *timeline*. The user profile includes attributes such as name, age, gender, location, profession, and personality traits. To avoid redundancy, personality traits are grounded in the Myers–Briggs Type Indicator (MBTI). Specifically, we randomly select six MBTI types, provide their descriptions, and instruct an LLM to synthesize a composite trait profile, enabling the creation of 8,008 unique user profiles. Relationship graphs are then constructed, linking the main user to family members (parents, partner, children), friends, and acquaintances, subject to constraints (e.g., plausible age gaps) to preserve realism. The timeline specifies the temporal span of the conversation, defining the range between its beginning and end.

In order to generate titles and themes of the chats, target domains are first specified by human. Given these domains, GPT-4.1 (OpenAI, 2025a) is prompted using the prompt shown in Listing 22 in Appendix G, to produce candidate titles, themes, and subtopics. These candidates are refined by human to ensure topical diversity by removing the similar chat titles and selecting diverse chat titles. Finally, for each conversation, we generate 15–20 narratives using open-source LLaMA-3.3 70B (AI, 2024) with the prompt shown in Listing 23 to save cost. In this prompt, given the conversation seed as input, the LLM produces narratives that capture evolving aspects of the storyline, providing the backbone for constructing coherent conversation plans.

Conversation plans are structured as a sequence of N sub-plans, where each sub-plan corresponds to a distinct stage of the conversation. Each sub-plan contains a fixed number of M bullet-points, and each bullet-point is defined by a narrative and a descriptive statement specifying how that narrative unfolds in the storyline. To maintain temporal coherence, each sub-plan also includes a time anchor specifying a concrete date or period.

For conversations of sizes 128K, 500K, and 1M tokens, a single conversation plan is generated, as shown in line 4 of Algorithm 1 in Appendix B.3.5. The plan is produced by conditioning the LLM on the conversation seed, user profile, relationship graph, timeline, the number of sub-plans, the number of bullet points within each sub-plan and narrative set, using the prompt shown in Listing 24 in Appendix G. The number of sub-plans is not fixed but varies with both the domain and the target conversation length, in order to adhere to the length budget. For instance, domains such as coding typically require fewer dialogue turns to reach the same token budget compared to more general domains.

For 10M-token conversations, a single plan cannot adequately capture the scope and continuity required at this scale. To address this, we construct ten distinct yet interlocking conversation plans that together produce a coherent long-term narrative. While the process begins with a main seed that defines the global topic and theme of the conversation, a single seed is insufficient for producing ten plans. Instead, we generate ten distinct conversation seeds—one for each plan—so that the narrative can unfold across multiple stages. The procedure for deriving these seeds—and the plans that follow—differs depending on the strategy. We propose two strategies for constructing them:

- Sequential Expansion: The conversation seed is used as the first seed in the sequence. The remaining seeds are generated to represent successive stages of the user's life, extending the storyline chronologically. For instance, if the main seed concerns an international trip, the first plan covers the trip itself, the second covers the period after returning (e.g., job search), and subsequent seeds correspond to later milestones. We generate these seeds using the prompt shown in Listing 28, which conditions on the main seed, user profile, and timeline to produce a sequence of temporally aligned seeds. Each conversation plan is then generated sequentially, with every plan conditioned on its predecessor to maintain continuity, as specified in line 12 of Algorithm 1 in Appendix B.3.5. The plans are generated using the prompt shown in Listing 30, yielding a temporally ordered series of interconnected narrative arcs. To maintain realism, the user's core relationships (e.g., parents, children, partner) remain fixed across plans, while new acquaintances are gradually introduced.
- Hierarchical Decomposition: Instead of extending the seed chronologically, the main seed is decomposed into ten sub-seeds, each corresponding to a distinct topical or temporal slice of the overall storyline. Together, these seeds span the full narrative. For example, if the main seed concerns an international trip, the first three seeds may cover preparation steps (e.g., reservations, document gathering), the next five capture events during the trip, and the final two represent post-trip activities (e.g., reflections, recounting experiences). Like in Sequential Expansion, the user's core relationships (e.g., parents, children, partner) remain fixed across plans, while new acquaintances are gradually introduced. We generate these ten sub-seeds using the prompt shown in Listing 29, which takes the main seed, user profile, and timeline, and outputs ten derived seeds.

Each plan is assigned explicit topical and temporal boundaries to prevent redundancy or thematic overlap, ensuring that sub-themes unfold in the correct stage of the narrative. These boundaries are encoded in the conversation seed itself. For coherence, summaries of all prior plans are provided to the LLM when generating a new plan, allowing contextual references to past events. Moreover, when generating each plan, future seeds are also supplied, encoding their own topical and temporal boundaries. This design allows earlier plans to anticipate upcoming events with consistent references (e.g., booking tickets for the correct travel dates before the trip actually occurs). This strategy is implemented in line 20 of Algorithm 1 in Appendix B.3.5. Conversation plans are generated using the prompt shown in Listing 31, which takes as input the main seed, the current sub-seed, the number of sub-plans, the narrative set, the user profile, core and newly introduced relationships, the preceding and subsequent sub-seeds, the previous plan, the summary of all previous plans, the index of the current sub-seed, and a binary indicator specifying whether the plan is the first in the sequence (in which case the introduction of the user is included). The output is a fully specified conversation plan.

After the conversation plan is constructed, it is expanded into user-turn questions and subsequently assistant responses, yielding complete dialogues that can be used to evaluate memory abilities. However, in its initial form, the plan may not include sufficient information to evaluate three critical memory abilities: *contradiction resolution, knowledge update*, and *instruction following*. To address this, after the initial plan generation, we pass the plan to GPT-4.1 to generate high-quality plans and augment each sub-plan with additional bullet points specifically designed to enable evaluation of these abilities. Importantly, this augmentation is performed in a second stage rather than during the initial plan generation, since incorporating such information directly in a single-pass generation leads to lower quality and less reliable coverage of these abilities. The augmentation is implemented using the prompt shown in Listing 27, which takes an existing conversation plan as input and outputs a revised version where each sub-plan includes three additional bullet points targeting these abilities.

B.3.3 USER UTTERANCE GENERATION

Once conversation plans are constructed, user turns are synthesized directly from them. Each subplan within a conversation plan consists of M bullet-points, which are partitioned into K contiguous batches of equal size. Partitioning is performed sequentially, such that each batch corresponds to a consecutive segment of the sub-plan. Partitioning is necessary because conditioning the LLM on an entire sub-plan at once tends to yield repetitive or low-quality questions; batching mitigates this by narrowing the focus of generation. For each batch, the LLM produces I user questions (line 6 of Algorithm 2 in Appendix B.3.5) using the prompt presented in Listing 32. The model is conditioned on the conversation seed, the current batch specification, preceding batches within the same sub-plan, and contextual information from earlier sub-plans. This setup ensures that generated questions remain grounded in prior context, yielding conversations that are coherent and continuous over extended spans.

The values of K and I vary depending on the domain and the target conversation length, in order to adhere to the overall length budget. We specify the values for K and I manually. The specific configurations of K and I across domains and conversation sizes are reported in Table 6. This provides fine-grained control over the density of user interactions and helps prevent both undergeneration and excessive redundancy. Additionally, to better capture domain-specific conversational patterns, we incorporate domain-specific features during question generation:

- **Programming:** To reflect realistic developer—assistant interactions, we incorporate questions that involve sharing code snippets. These include (i) buggy code requiring debugging assistance, (ii) correct code seeking optimization, and (iii) natural language descriptions of desired functionality for which code is requested. We use the prompt shown in Listing 33 to generate questions specific to the programming domain.
- Mathematics. To capture authentic problem-solving dynamics, we incorporate questions that involve sharing mathematical work, requesting corrections, asking for the next logical step in a solution, or introducing problems to be solved. We use the prompt shown in Listing 34 to generate questions specific to the mathematics domain.

To reduce computational cost while maintaining generation quality, question generation is performed using the open-source LLaMA-3.3 70B model (AI, 2024), which produces high-quality questions.

B.3.4 ASSISTANT UTTERANCE GENERATION

After generating user-side questions, assistant-side responses are generated in an iterative, role-playing framework where one LLM assumes the *assistant role* and another assumes the *user role*. For each sub-plan, the assistant LLM is conditioned on the seed as explained in Section 2.2.1, prior sub-plans of the conversation plan, a summary of the most recent M dialogue turns, and a compressed summary of older turns (generated using the prompt shown in Listing 37). For 10M-token conversations, additional summaries of prior plans are also provided.

The response generation process unfolds as an iterative interaction between the assistant and user roles. First, the assistant LLM produces an answer to the user's most recent question (line 9). This output is then analyzed by a *question-detection module*, which determines whether the assistant's response contains a counter-question directed at the user (line 11), using the prompt shown in Listing 35 that takes the assistant response as input and outputs yes if a question is present and no otherwise. If such a counter-question is detected, the response—together with the current and previous sub-plans, relevant past context, and conversation summaries—is passed to the user LLM, which generates a realistic reply that reflects the storyline and contextual details using the prompt shown in Listing 38 (line 14). This new user reply is subsequently passed back to the assistant LLM, continuing the conversation. This loop repeats until no further assistant questions are detected or the predefined threshold δ_1 (which is set to two) is reached, preventing infinite cycles. For δ_1 we tested values 2, 3 and 5 which we selected 2 as it produces more realistic dialogues.

Beyond direct question—answer exchanges, a *follow-up detection module* (line 21) evaluates whether, in a realistic setting, the user would naturally ask a clarifying or elaborative follow-up. The need for a follow-up is determined using the prompt shown in Listing 36, which takes as input the seed, dialogue history, and the assistant's most recent response, and outputs yes or no. This

decision is guided by factors such as subject complexity, ambiguity in the assistant's answer, or incompleteness of the response. When a follow-up is required, the module conditions on the seed, the current and prior sub-plans, the most recent M turns, and summaries of earlier turns to generate the follow-up query using the prompt shown in Listing 39. The generated query is then passed back to the assistant LLM for resolution. As with the assistant-question loop, a strict threshold δ_2 (which is set to two like δ_1) limits the number of follow-up exchanges, preventing unbounded cycles.

Through the interaction of these two threshold-controlled modules, the system produces conversations that exhibit naturalistic bidirectional dynamics, rich contextual references, and realistic clarification behaviors characteristic of human–AI dialogues.

B.3.5 ALGORITHMS

1134

1135

1136

1137

1138

1139 1140

1141

1142

1156

1157

1158

Algorithm 1 Conversation plan generation.

Input: domain c, length budget L, title θ , theme τ , subtopics Σ , user profile u, user relationships ρ , timeline Γ , number of conversation sub-plans N, number of bullet-points in each conversation sub-plan M, generator G

```
1159
          Output: Conversation plan set p
1160
           1: S \leftarrow (c, \theta, \tau, \Sigma)
                                                                                                              ▷ Initialize seed
1161
           2: if L \in \{128K, 500K, 1M\} then
1162
                   \Lambda \leftarrow G(S)
                                                                                   P \leftarrow G(S, u, \rho, \Gamma, N, M, \Lambda)
1163
                                                                 ▶ Generate a single conversation plan with Listing 24
           4:
           5: else if L = 10M then
1164
                    P \leftarrow \{\}
           6:
                                                                                                      ▶ Initialize set of plans
1165
           7:
                   if \sigma = Sequential Expansion then
1166
           8:
                        S' \leftarrow G_{\text{seeds}}(S, \Gamma)
                                                                        ▶ Generate sequential sub-seeds with Listing 28
1167
                        for each s_i' \in S' do
           9:
1168
                             \Lambda_i \leftarrow G(s_i')
                                                                                        ▷ Generate narratives for sub-seed
          10:
1169
                             b \leftarrow \mathbf{1}[i=0]
                                                                                 ▶ Binary indicator: 1 if first plan, else 0
          11:
1170
                             P_i \leftarrow G(s_i', \Gamma_i, N, \Lambda_i, u, \rho, P_{i-1}, i, b)
                                                                                           ▶ Generate plan with Listing 30
          12:
1171
                             P \leftarrow P \cup \{P_i\}
          13:
1172
          14:
                        end for
1173
                   else if \sigma = Hierarchical Decomposition then
          15:
                        S' \leftarrow G_{\text{decompose}}(S, \Gamma)
                                                                                        Decompose seed with Listing 29 

→
1174
          16:
                        for each s_i' \in S' do
          17:
1175
                            \Lambda_i \leftarrow G(s_i')
                                                                                        18:
1176
                            b \leftarrow \mathbf{1}[i=0]
          19:
1177
                             P_i \leftarrow G(S, S', s_i', \Gamma_i, N, \Lambda_i, u, \rho, P_{i-1}, \overline{P_{0,\dots,i-1}}, i, b)
          20:
                                                                                                        1178
               Listing 31
1179
                             P \leftarrow P \cup \{P_i\}
          21:
1180
                        end for
          22:
1181
          23:
                   end if
1182
          24: end if
1183
          25: return P
```

34: **return** *T*

```
1188
           Algorithm 2 User questions generation.
1189
           Input: seed S, conversation plan p, number of questions per iteration I, generator G
1190
           Output: Question set Q
1191
                                                                                             \triangleright Conversation plan with N sub-plans
             1: p \leftarrow \{p_1, \dots, p_N\}
1192
             2: Q \leftarrow \{\}
                                                                                                        ▶ Initialize empty question set
1193
             3: for each p_i \in P do
1194
                      p_i = \{p_{i1}, \dots, p_{iK}\}
             4:
1195
             5:
                      for each p_{ij} \in p_i do
                           Q_{ij} \leftarrow G(S, p_{ij}, \{p_{i1}, \dots, p_{i(j-1)}\}, \{p_1, \dots, p_{i-1}\}, I)
                                                                                                         \triangleright Generate I questions using
1196
1197
                           Q \leftarrow Q \cup \{Q_{ij}\}
                                                                               > Append generated questions to the question set
             7:
1198
                      end for
1199
             9: end for
            10: return Q
1201
1202
1203
           Algorithm 3 Answer generation.
           Input: question set Q = \{Q_1, \ldots, Q_N\}, seed S, conversation plan set P, thresholds \delta_1, \delta_2,
1205
                 assistant-question detector \phi, follow-up detector \psi, generator G
           Output: conversation list T
1207
             1: \mathcal{T} \leftarrow \{\}
                                                                                                  ▶ Initialize empty conversation list
1208
             2: for each Q_i \in Q do
1209
             3:
                      Q_i = \{q_1, \dots, q_J\}
                                                                                                              \triangleright Questions in sub-plan i
1210
                      for each q_j \in Q_i do
             4:
1211
             5:
                           t \leftarrow \{\}
                                                                                                              ▶ Initialize turn sequence
                           H_t^{(M)} \leftarrow \text{recent-}M \text{ turn window at turn } t
1212
             6:
1213
                           \overline{H}_t \leftarrow \text{summary of turns prior to } H_t^{(M)}
             7:
1214
                           \overline{P}^{(< p)} \leftarrow summaries of conversation plans preceding p
1215
                          a_{ij} \leftarrow G_{\text{assistant}}(S, p_{1:(i-1)}, H_t^{(M)}, \overline{H_t}, \overline{P}^{(<\hat{p})})
                                                                                                  1216
                 Listing 37
1217
                           t \leftarrow t \cup \{a_{ij}\}
                                                                           ▶ Add assistant's response to current dialogues turn
           10:
1218
                          isQ \leftarrow \phi(a_{ij}, H_t^{(M)}, \overline{H}_t)
                                                                  ▶ Checks if assistant response contains question from user
           11:
1219
                 with Listing 35
1220
           12:
                           count \leftarrow 0
                           while isQ and count < \delta_1 do
           13:
1222
                                u_{ij} \leftarrow G_{\mathrm{user}}(S, p_i, p_{1:(i-1)}, \overline{P}^{(< p)}, H_t^{(M)}, \overline{H}_t, a_{ij}) \qquad \triangleright \text{ Generate user's response to}
           14:
1223
                 assistant question with Listing 38
1224
                                                                                 ⊳ Add user's response to current dialogues turn
           15:
                                t \leftarrow t \cup \{u_{ij}\}
1225
                                a_{ij} \leftarrow G_{\text{assistant}}(S, p_{1:(i-1)}, H_t^{(M)}, \overline{H}_t, \overline{P}^{(< p)})
                                                                                                      ⊳ Generate assistant's response
1226
           16:
                                t \leftarrow t \cup \{a_{ij}\}
                                                                          > Add assistant's response to current dialogues turn
           17:
1227
           18:
                                count \leftarrow count + 1
1228
                                isQ \leftarrow \phi(a_{ij}, H_t^{(M)}, \overline{H}_t)
           19:
1229
           20:
1230
                           needFU \leftarrow \psi(a_{ij}, H_t^{(M)}, \overline{H}_t, S) \triangleright \text{Checks if user need to ask followup question with}
           21:
1231
                 Listing 36
1232
           22:
                           fu\_count \leftarrow 0
1233
                           while needFU and fu\_count < \delta_2 do
           23:
1234
                                u_{ij} \leftarrow G_{\text{user}}(S, p_i, p_{1:(i-1)}, \overline{P}^{(\tilde{<}p)}, H_t^{(M)}, \overline{H}_t, a_{ij})
           24:
                                                                                                           1235
                 question with Listing 39
1236
                                t \leftarrow t \cup \{u_{ii}\}\
1237
                                a_{ij} \leftarrow G_{\text{assistant}}(S, p_{1:(i-1)}, H_t^{(M)}, \overline{H}_t, \overline{P}^{(< p)}) \qquad \text{$\rhd$ Generate assistant's response to}
           26:
                 user's followup question
1239
                                t \leftarrow t \cup \{a_{ij}\}
           27:
1240
                                fu\_count \leftarrow fu\_count + 1
           28:
1241
                                needFU \leftarrow \psi(a_{ij}, H_t^{(M)}, \overline{H}_t, S)
           29:
           30:
                           end while
                           \mathcal{T} \leftarrow \mathcal{T} \cup \{t\}
           31:
                                                                            23
                      end for
           32:
           33: end for
```

B.4 USER UTTERANCE GENERATION HYPERPARAMETERS

Table 6: Batching configuration by chat size and domain category for user-turn question generation. NUM_SUBPLANS denotes the number of conversation sub-plans, K the number of batches per sub-plan, and I the number of questions generated per batch.

Chat Size	Category	NUM_SUBPLANS	K	I
	General	5	10	2
128K	Coding	3	23	1
	Math	3	25	1
	General	10	10	4
500K	Coding	10	10	3
	Math	10	10	4
	General	10	10	9
1M	Coding	10	10	6
	Math	10	10	6
	General	10	10	9
10M	Coding	10	10	6
	Math	10	10	6

B.5 Created Probing Questions Distribution

We measure which parts of the dialogue contain the information required to answer the probing questions. To this end, each conversation is divided into ten equal segments, and we record the segment(s) where the supporting evidence for each probing question resides. The detailed methodology for aligning probing questions with dialogue segments is described in Section 2.3. The resulting distributions across conversation lengths are reported in Table 7.

Table 7: Percentage distribution of created probing questions across ten equal chat segments (deciles) for different chat sizes. Each row corresponds to a segment of the dialogue, moving from the beginning (Segment 1) to the end (Segment 10).

Chat Segment (Decile)	100K	500K	1M	10M
1	0.00%	0.65%	0.19%	0.00%
2	11.05%	23.70%	21.60%	10.24%
3	14.83%	15.91%	20.11%	16.27%
4	12.79%	14.45%	15.83%	15.06%
5	13.08%	7.95%	9.50%	14.46%
6	13.37%	9.09%	8.01%	9.64%
7	11.92%	6.33%	5.96%	10.24%
8	8.14%	5.52%	5.21%	13.25%
9	9.59%	4.55%	4.47%	8.43%
10	5.23%	11.85%	9.12%	2.41%

B.6 MEMORY ABILITIES EXAMPLES

To illustrate how our benchmark evaluates different aspects of long-term conversational memory, we provide representative probing questions and their ideal answers for each of the ten memory abilities. These examples demonstrate how each ability is operationalized in practice.

1. Abstention (withholding answers when information is missing)

Probing Question: What specific advice did Manuel give about property management companies during the March 5 Investors Meetup?

Ideal Answer: Based on the provided chat, there is no information related to the specific advice Manuel gave about property management companies.

2. Contradiction Resolution (detecting and reconciling inconsistencies)

Probing Question: Have I ever attended any real estate webinars or investor meetups? **Ideal Answer:** I notice you've mentioned contradictory information about this. You said you have never attended any real estate webinars or investor meetups, but you also mentioned attending a webinar about Turkey's rising demand for multi-family rentals. Which statement is correct?

3. Event Ordering (reasoning about chronological sequence)

Probing Question: How did my focus on different aspects of property investment and management develop throughout our conversations in order? Mention ONLY and ONLY ten items.

Ideal Answer: Your focus developed in this sequence: 1) Agent interaction and preparation, 2) Financial evaluation, 3) Financing and mortgage, 4) Contractor management, 5) Zoning and permits, 6) Renovation planning, 7) Viewing preparation, 8) Negotiation and cash flow, 9) Renovation completion, 10) Commercial property considerations.

4. Information Extraction (recalling factual details)

Probing Question: What amount did I say I had set aside as my initial capital for investing?

Ideal Answer: You said you had set aside \$50,000 as your initial capital.

5. Instruction Following (adhering to explicit user constraints)

Probing Question: How should I allocate my funds for the upcoming quarter? **Ideal Answer:** The response should include an itemized list of costs, category-by-category breakdown, and detailed cost analysis, reflecting the instruction to always provide detailed financial breakdowns when budgeting.

6. Information Update (revising prior facts when updated)

Probing Question: How much initial capital have I allocated for real estate investing? **Ideal Answer:** \$60,000

7. Multi-hop Reasoning (integrating evidence across turns)

Probing Question: How many different banks did I consider for my mortgage options across my conversations?

Ideal Answer: Two banks: Halkbank and Ziraat Bank.

8. Preference Following (adapting to evolving user preferences)

Probing Question: I'm looking at several properties and want to understand how to approach comparing them effectively. What steps would you suggest I take? **Ideal Answer:** A structured, step-by-step process that emphasizes data collection and analysis, breaking comparisons into measurable factors, reflecting the user's preference for methodical, data-driven decisions.

9. Summarization (abstraction and compression of content)

Probing Question: Can you give me a comprehensive summary of my journey and decision-making process around investing in rental properties, including how my budget, property choices, management considerations, and financing plans have developed over time?

Ideal Answer: Your journey began with an initial capital of \$50,000, followed by exploration of market conditions, renovation planning, property type tradeoffs, financing through Halkbank and Ziraat Bank, and a structured plan for purchase and management.

10. Temporal Reasoning (reasoning about durations and timelines)

Probing Question: How many days are there between my first property viewing with Mehmet Yilmaz and the last one I scheduled?

Ideal Answer: There are 2 days between the first property viewing on March 25 and the last one on March 27.

C DETAILED EXPERIMENTS

C.1 ABLATION STUDY

In this section, we present the complete results of our ablation experiments. We evaluate the contribution of individual components in our proposed module as shown in table 8.

Table 8: Ablation study showing the impact of removing key memory components (retrieval, scratchpad, working memory, and noise filtering) on performance across various conversation lengths (100K–10M).

Length	Memory Ability	Base	w/o Retrieval from Index	w/o Scratchpad	w/o Working Memory	w/o Noise Filtering
	Abstention	0.475	0.725	0.600	0.575	0.700
	Contradiction Resolution	0.037	0.043	0.012	0.043	0.018
	Event Ordering	0.216	0.190	0.194	0.220	0.200
	Information Extraction	0.502	0.329	0.510	0.451	0.485
	Instruction Following	0.312	0.375	0.287	0.387	0.312
100K	Knowledge Update	0.337	0.237	0.350	0.362	0.312
	Multi-Hop Reasoning	0.307	0.201	0.248	0.303	0.181
	Preference Following	0.550	0.675	0.533	0.579	0.491
	Summarization	0.231	0.266	0.143	0.223	0.103
	Temporal Reasoning	0.112	0.075	0.125	0.125	0.087
	Average	0.308	0.311	0.300	0.327	0.289
	Abstention	0.600	0.571	0.585	0.657	0.585
	Contradiction Resolution	0.014	0.007	0.014	0.017	0.014
	Event Ordering	0.246	0.222	0.266	0.262	0.229
	Information Extraction	0.508	0.254	0.466	0.485	0.464
	Instruction Following	0.375	0.307	0.316	0.334	0.286
500K	Knowledge Update	0.257	0.192	0.285	0.235	0.314
	Multi-Hop Reasoning	0.206	0.104	0.227	0.192	0.247
	Preference Following	0.557	0.553	0.450	0.547	0.465
	Summarization	0.323	0.312	0.225	0.353	0.203
	Temporal Reasoning	0.178	0.042	0.116	0.114	0.130
	Average	0.326	0.256	0.295	0.320	0.294
	Abstention	0.500	0.664	0.600	0.557	0.507
	Contradiction Resolution	0.021	0.021	0.035	0.042	0.032
	Event Ordering	0.200	0.215	0.221	0.227	0.199
	Information Extraction	0.366	0.246	0.391	0.397	0.366
	Instruction Following	0.419	0.427	0.335	0.384	0.351
1M	Knowledge Update	0.357	0.185	0.321	0.400	0.285
	Multi-Hop Reasoning	0.209	0.129	0.227	0.221	0.169
	Preference Following	0.551	0.602	0.536	0.597	0.540
	Summarization	0.316	0.310	0.169	0.330	0.128
	Temporal Reasoning	0.154	0.050	0.111	0.121	0.111
	Average	0.309	0.285	0.295	0.328	0.269
	Abstention	0.550	0.800	0.650	0.650	0.600
	Contradiction Resolution	0.012	0.000	0.012	0.000	0.000
	Event Ordering	0.197	0.199	0.199	0.209	0.181
	Information Extraction	0.350	0.000	0.200	0.150	0.200
	Instruction Following	0.350	0.175	0.175	0.175	0.050
10M	Knowledge Update	0.275	0.050	0.300	0.150	0.225
	Multi-Hop Reasoning	0.125	0.000	0.125	0.125	0.075
	Preference Following	0.308	0.191	0.241	0.200	0.175
	Summarization	0.220	0.119	0.068	0.0083	0.050
	Temporal Reasoning	0.000	0.000	0.050	0.075	0.000
	Average	0.238	0.153	0.202	0.181	0.155

C.2 RETRIEVAL BUDGET

We investigate the impact of the retrieval budget through two sets of experiments: (i) varying the retrieval depth by setting the number of retrieved documents $K \in \{5, 10, 15, 20\}$, and (ii) comparing a dense retriever against a sparse retriever (SPLADE).

The full results examining the effect of different retrieval depths (number of retrieved documents) are presented in Table 9.

Table 9: Effect of retrieval depth on performance across conversation lengths (100K–10M) and memory abilities. Results are shown for different numbers of retrieved documents ($K \in \{5, 10, 15, 20\}$).

Length	Memory Ability	K=5	K=10	K=15	K=20
	Abstention	0.475	0.500	0.625	0.625
	Contradiction Resolution	0.037	0.025	0.025	0.031
	Event Ordering	0.216	0.191	0.218	0.210
	Information Extraction	0.502	0.450	0.412	0.391
	Instruction Following	0.312	0.362	0.475	0.462
100K	Knowledge Update	0.337	0.375	0.350	0.300
	Multi-Hop Reasoning	0.307	0.322	0.321	0.309
	Preference Following	0.550	0.591	0.562	0.575
	Summarization	0.231	0.231	0.218	0.213
	Temporal Reasoning	0.112	0.162	0.137	0.137
	Average	0.308	0.321	0.334	0.325
	Abstention	0.600	0.514	0.614	0.642
	Contradiction Resolution	0.014	0.021	0.071	0.071
	Event Ordering	0.246	0.229	0.238	0.247
	Information Extraction	0.508	0.531	0.503	0.507
	Instruction Following	0.375	0.341	0.390	0.373
500K	Knowledge Update	0.257	0.307	0.326	0.326
	Multi-Hop Reasoning	0.206	0.188	0.234	0.213
	Preference Following	0.557	0.597	0.628	0.607
	Summarization	0.323	0.354	0.375	0.376
	Temporal Reasoning	0.178	0.128	0.121	0.135
	Average	0.326	0.321	0.350	0.350
	Abstention	0.500	0.521	0.600	0.585
	Contradiction Resolution	0.021	0.021	0.057	0.053
	Event Ordering	0.200	0.224	0.240	0.242
	Information Extraction	0.366	0.398	0.377	0.391
	Instruction Following	0.419	0.476	0.439	0.446
1M	Knowledge Update	0.357	0.350	0.400	0.407
	Multi-Hop Reasoning	0.209	0.189	0.209	0.190
	Preference Following	0.551	0.596	0.535	0.514
	Summarization	0.316	0.317	0.325	0.351
	Temporal Reasoning	0.154	0.154	0.119	0.199
	Average	0.309	0.325	0.330	0.330
	Abstention	0.550	0.600	0.650	0.600
	Contradiction Resolution	0.012	0.012	0.025	0.025
	Event Ordering	0.197	0.210	0.213	0.236
	Information Extraction	0.350	0.150	0.300	0.300
	Instruction Following	0.350	0.150	0.450	0.400
10M	Knowledge Update	0.275	0.200	0.300	0.300
	Multi-Hop Reasoning	0.125	0.100	0.125	0.150
	Preference Following	0.308	0.175	0.275	0.275
	Summarization	0.220	0.089	0.196	0.164
	Temporal Reasoning	0.000	0.025	0.000	0.000
	Average	0.238	0.171	0.253	0.245

In

In a complementary experiment, we examined the impact of retriever choice. Our base architecture employs a dense retriever, which we compare against the sparse Splade-V2 retriever (Formal et al., 2022). As shown in Figure 5 in Appendix C.2, Splade yields performance gains of 2.01% at 100K tokens and 0.8% at 1M, but leads to slight degradations of 0.003% at 500K and 0.71% at 10M. On average, the sparse retriever provides a modest improvement across conversation lengths. The complete results comparing the dense retriever with the SPLADE retriever are provided in Table 10.

Figure 5: Performance comparison between dense retrieval and sparse retrieval (SPLADE) in LIGHT.

Table 10: Comparison of dense and sparse retrieval strategies across conversation lengths (100K-10M) and ten memory abilities. The table reports performance when using the default dense retriever versus a sparse retriever (SPLADE).

Length	Memory Ability	Base (Dense retriever)	Sparse retriever (SPLADE
	Abstention	0.475	0.525
	Contradiction Resolution	0.037	0.43
	Event Ordering	0.216	0.181
	Information Extraction	0.502	0.596
	Instruction Following	0.312	0.400
100K	Knowledge Update	0.337	0.350
	Multi-Hop Reasoning	0.307	0.267
	Preference Following	0.550	0.562
	Summarization	0.231	0.230
	Temporal Reasoning	0.112	0.125
	Average	0.308	0.328
	Abstention	0.600	0.557
	Contradiction Resolution	0.014	0.025
	Event Ordering	0.246	0.226
	Information Extraction	0.508	0.559
	Instruction Following	0.375	0.345
500K	Knowledge Update	0.257	0.307
	Multi-Hop Reasoning	0.206	0.212
	Preference Following	0.557	0.565
	Summarization	0.323	0.330
	Temporal Reasoning	0.178	0.107
	Average	0.326	0.323
	Abstention	0.500	0.564
	Contradiction Resolution	0.021	0.028
	Event Ordering	0.200	0.196
	Information Extraction	0.366	0.392
	Instruction Following	0.419	0.401
1 M	Knowledge Update	0.357	0.371
	Multi-Hop Reasoning	0.209	0.193
	Preference Following	0.551	0.595
	Summarization	0.316	0.300
	Temporal Reasoning	0.154	0.133
	Average	0.309	0.317
	Abstention	0.550	0.700
	Contradiction Resolution	0.012	0.000
	Event Ordering	0.197	0.202
	Information Extraction	0.350	0.350
	Instruction Following	0.350	0.250
10M	Knowledge Update	0.275	0.375
	Multi-Hop Reasoning	0.125	0.125
	Preference Following	0.308	0.200
	Summarization	0.220	0.090
	Temporal Reasoning	0.000	0.025
	Average	0.238	0.231

D NUGGET DESIGN

In this section, we provide illustrative examples for each memory ability, demonstrating how nuggets are derived from the corresponding probing questions.

1. Abstention

Objective: The correct behavior is to acknowledge that the requested information is not present in the provided conversation.

Rubric pattern: Each atomic unit should be in this format: *States that, based on the provided chat, there is no information about* <target topic>

Example JSON:

```
"question": "What specific advice did Manuel give about property management companies during the March 5 Investors Meetup?",
"ideal_response": "Based on the provided chat, there is no information related to the specific advice Manuel gave about property management companies.",
"source_chat_ids": {},
"rubric": [

"Based on the provided chat, there is no information related to the specific advice Manuel gave about property management companies."
]
```

2. Contradiction Resolution

Objective: Correct behavior is that the LLM should detect the contradiction and state both contradictory information while requesting clarification.

Rubric pattern:

- States there is contradictory information.
- Mentions claim <A>
- Mentions claim
- Requests clarification about which statement is correct

Example JSON:

3. Event Ordering

Objective: Correct behavior is the model lists a sequence of events/topics in the correct chronological order.

Rubric pattern:

- LLM response should mention: <event 1>
- . . .

```
    LLM response should mention: <event N>

1621
               Example JSON:
1622
1623
                    "question": "How did my focus on different aspects of property investment and
1624
                        management develop throughout our conversations in order? Mention ONLY and
                        ONLY ten items.",
1625
                    "answer": "Your focus on property investment and management developed in this
1626
                        sequence: 1) Initial engagement with the local agent and preparation for
1627
                        property viewings, 2) Evaluation of property financials including ROI and
                        rental income potential, 3) Exploration of financing options and mortgage
1628
                        concerns, 4) Handling contractor performance and repair negotiations, 5)
1629
                        Understanding zoning regulations and permit requirements for property
                        conversions, 6) Planning and prioritizing renovations and investment risks
1630
                        for multi-family properties, 7) Detailed preparation for property viewings
                        involving both agent and contractor, 8) Negotiation strategies and cash
                        flow implications related to repair costs, 9) Final renovation project
                        completion steps and portfolio diversification strategies, 10)
1633
                        Consideration of commercial property types and location factors for long-
                        term investment.",
                   "ordering_tested": [
1635
                       "1st: Agent interaction and viewing preparation",
                       "2nd: Property financial evaluation"
1636
                       "3rd: Financing and mortgage concerns"
                       "4th: Contractor management",
                       "5th: Zoning and permits",
                       "6th: Renovation planning and investment risks",
                       "7th: Viewing preparation with agent and contractor",
                       "8th: Repair cost negotiation and cash flow",
1640
                       "9th: Renovation completion and portfolio diversification",
1641
                       "10th: Commercial property and location considerations"
1642
                    "source chat ids": [],
                    "rubric": [
1643
                       "LLM response should mention: Agent interaction and viewing preparation",
1644
                       "LLM response should mention: Property financial evaluation",
1645
                       "LLM response should mention: Financing and mortgage concerns",
                       "LLM response should mention: Contractor management",
1646
                       "LLM response should mention: Zoning and permits",
1647
                       "LLM response should mention: Renovation planning and investment risks",
                       "LLM response should mention: Viewing preparation with agent and contractor"
1648
                       "LLM response should mention: Repair cost negotiation and cash flow",
1649
                       "LLM response should mention: Renovation completion and portfolio
1650
                            diversification".
                       "LLM response should mention: Commercial property and location
                            considerations",
                       "Presents the events in the correct chronological order"
1654
1655
```

4. Information Extraction

1656

1657 1658 1659

1662

1663 1664

1671

1673

Objective: LLM should answer the questioned facts correctly. **Rubric pattern:**

• Instantiate one criterion per fact directly from the ideal answer, using the stem "LLM response should state/mention:"

Example JSON:

```
"question": "What amount did I say I had set aside as my initial capital for
        investing?",
"ideal_answer": "You said you had set aside $50,000 as your initial capital.",
"source_chat_ids": [],
"rubric": [
        "LLM response should state: $50,000"
]
```

5. Instruction Following

Objective: LLM should adhere to format and/or content priorities stated in the conversation.

1676 1677

1678 1679

1680 1681

1682 1683 1684

1685 1686 1687

1688 1689 1690

1691

1692 1693

1694 1695 1696

1698 1699

1700

1701

1706 1709

1710

1711 1712

1713 1714 1715

1716 1717

1718 1719 1720

1721 1722 1723

1724 1725

1726

1727

Rubric pattern:

• Use instruction_being_tested (the explicit instruction) and decompose expected_compliance into atomic criteria

Example JSON:

```
"question": "How should I allocate my funds for the upcoming quarter?",
"instruction_being_tested": "Always provide detailed financial breakdowns when I
     ask about budgeting decisions.",
"expected_compliance": "Response should include itemized costs, specific amounts
     for different categories, and detailed breakdown rather than just a total
    estimate",
"source_chat_ids": [],
"rubric": [
    "LLM response should contain: itemized list of costs",
    "LLM response should contain: category-by-category breakdown",
    "LLM response should contain: detailed cost analysis"
```

6. Knowledge Update

Objective: LLM must reflect updated values when prior values have changed over time. **Rubric pattern:**

 Derive criteria from the ideal answer, using the stem "LLM response should state/mention:" for the updated value(s).

Example JSON:

```
"question": "How much initial capital have I allocated for real estate investing
"answer": "$60,000",
"source_chat_ids":
   "original_info": [
    "updated_info": [
"rubric": [
   "LLM response should state: $60,000"
```

7. Multi-hop Reasoning

Objective: LLM must aggregate or compare information spanning multiple sessions. **Rubric pattern:**

· Instantiate criteria from the ideal answer for each required intermediate or aggregated fact.

Example JSON:

```
"question": "How many different banks did I consider for my mortgage options
        across my conversations?",
    "answer": "Two banks: Halkbank and Ziraat Bank.",
    "source_chat_ids": [],
    "rubric": [
        "LLM response should state: Two banks",
       "LLM response should state: Halkbank"
        "LLM response should state: Ziraat Bank"
}
```

8. Preference Following

Objective: LLM must generate content consistent with user-specified preferences. **Rubric pattern:**

• Use preference_being_tested (the user's stated preference) and decompose expected_compliance into atomic criteria.

Example JSON:

1728

1729

1730

1731

1732

1733 1734

1735

1736

1737

1738

1739

1740

1741

1747 1748 1749

1750

1751

1752

1753

1754

1755 1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

```
"question": "I'm looking at several properties and want to understand how to
    approach comparing them effectively. What steps would you suggest I take?",
"preference_being_tested": "I prefer methodical, data-driven decisions over
    impulsive purchases, reflecting my analytical nature.",
"expected_compliance": "Response should outline a structured, step-by-step
    approach that involves gathering and analyzing relevant data before making
    a choice, rather than suggesting quick or impulsive actions.",
"source_chat_ids": [],
"rubric": [
    "LLM response should contain: provides a clear, logical process",
    "LLM response should contain: emphasizes data collection and analysis",
    "LLM response should contain: breaks down comparison into measurable factors
```

9. Summarization

Objective: LLM must provide a comprehensive summary covering required content elements.

Rubric pattern:

 Decompose ideal_summary into atomic content units; use the stem "LLM response should contain:".

Example JSON:

```
"question": "Can you give me a comprehensive summary of my journey and decision-
    making process around investing in rental properties, including how my
    budget, property choices, management considerations, and financing plans
    have developed over time?",
"ideal_summary": "Your journey toward investing in rental properties began with
    an initial capital of $50,000, which you questioned as potentially
    insufficient for purchasing a property within 12 months. Early discussions
    highlighted the need to research local market conditions, down payment
    requirements, and additional costs like closing fees and renovations,
    revealing that typical investments might exceed your initial capital. You
    explored identifying good fixer-upper properties by learning to recognize
    signs such as structural issues and outdated features, emphasizing the
    importance of cost-benefit analysis for renovations. As your plans
    progressed, you weighed the pros and cons of investing close to your
    location versus elsewhere, balancing ease of management against market
    diversity and growth potential. You also considered the choice between
    single-family homes and multi-family units, analyzing factors like rental
    yield, management complexity, and investment scale, with examples showing
    similar yields but differing capital needs. Financing options were
    carefully compared, particularly between Halkbank and Ziraat Bank mortgages
      focusing on interest rates, fees, and service quality to optimize costs.
    Throughout, you developed a step-by-step plan for purchasing your first
    rental property, including market research, budgeting, inspections,
    financing, and tenant management, with timelines to reduce anxiety and
    ensure readiness. This comprehensive process reflects a thoughtful
    evolution from initial capital concerns to detailed investment strategies,
    property evaluation, financing decisions, and management planning, all aimed at making informed, balanced real estate investment choices.",
"source chat ids": [],
"rubric": [
    "LLM response should contain: investing in rental properties began with an
        initial capital of $50,000".
    "LLM response should contain: Early discussions highlighted the need to
        research local market conditions, down payment requirements, and
        additional costs like closing fees",
    "LLM response should contain: You explored identifying good fixer-upper
        properties by learning to recognize signs such as structural issues and
         outdated features",
```

```
"LLM response should contain: you weighed the pros and cons of investing close to your location versus elsewhere, balancing ease of management against market diversity and growth potential",

"LLM response should contain: You also considered the choice between single-family homes and multi-family units, analyzing factors like rental yield, management complexity, and investment scale",

"LLM response should contain: Financing options were carefully compared, particularly between Halkbank and Ziraat Bank mortgages, focusing on interest rates, fees, and service quality to optimize costs",

"LLM response should contain: you developed a step-by-step plan for purchasing your first rental property, including market research, budgeting, inspections, financing, and tenant management"

]
```

10. Temporal Reasoning

Objective: LLM must compute or restate durations and timeline relations correctly. **Rubric pattern:**

 Derive criteria from the ideal answer, using the stem "LLM response should state:".

Example JSON:

E EXAMPLES FROM DIFFERENT COMPONENTS OF BEAM

In this section, we provide illustrative examples of generating a chat in the *coding* domain. Specifically, we include a representative *chat seed* with its domain, title, theme, and subtopics, followed by the corresponding *narratives*, where only a truncated set is shown for brevity. We then present the *user profile* and the user's social *relationships*. Next, we provide excerpts from the *conversation plans*, showing only a subset of bullet points from each sub-plan while preserving their full descriptions to maintain clarity. Finally, we provide samples of the *generated chat*, highlighting exchanges where the user shares or requests code, and including follow-up turns to demonstrate the naturalistic back-and-forth flow. Together, these examples illustrate how different components of BEAM interact to form coherent, long-context dialogues.

Chat Seed

Domain: Coding

Title: Automating Social Media Posts with Python

Theme: Scheduling and posting content across multiple platforms

Subtopics:

- Twitter API integration Facebook Graph API usage Instagram automation tools
- · Scheduling with cron jobs / APScheduler
- Image and caption management; hashtag generation
- · Error handling for failed posts; tracking engagement metrics

Narratives (Truncated)

Technical Problem-Solving: Debugging Twitter OAuth/403/429; fixing hashtag validation; profiling scheduler bottlenecks.

Learning & Knowledge: API docs comprehension (Twitter v2, Facebook Graph v12–15); best practices for Instagram automation; mastering cron/APScheduler.

Progress & Development: Setting up Twitter/Facebook integrations; building Instagram tools; designing scheduling algorithms.

Implementation: Feature implementation and refactoring for efficiency; async migration; retry and backoff strategies.

Framework & Technology: Python libraries (Tweepy, facebook-sdk, requests); APScheduler/cron; Redis; asyncio.

Testing & QA: Unit/integration/E2E tests (pytest, Selenium); TDD for schedulers and hashtag rules.

DevOps & Deployment: CI/CD (GitHub Actions), containerization (Docker), EC2 deployment, blue–green releases.

Data: PostgreSQL schemas, indices, ETL for engagement metrics, Redis caching.

Integration & APIs: Webhooks, message queues (RabbitMQ), API Gateway, SNS/Lambda. **Performance:** Caching, load balancing (HAProxy), CPU/memory targets, throughput goals. **Security/Compliance:** OAuth, token rotation, TLS, GDPR.

PM & Workflow: Sprints, reviews, documentation standards.

User Profile

Name: John Brooks Age: 52 Gender: Male

Location: Port Charles, Luxembourg **Profession:** Secretary/Administrator

Personality: He is a pillar of his community, always ready to lend a helping hand and offer guidance when needed. With a strong sense of tradition and order, he values honesty and dedication, often taking on a mentorship role to help others. His diligent and efficient approach to planning and organization makes him a reliable asset to those around him. He has a warm and welcoming demeanor, always willing to open his heart and home to friends, loved ones, and neighbors. Despite his strong convictions, he believes in the power of hospitality and good manners, often going out of his way to make others feel supported and cared for.

With a dry sense of humor and a quick wit, he can be entertaining to be around, but he's not afraid to speak his mind and challenge the status quo when necessary. His practical and responsible nature makes him a respected member of his community, and his ability to stay grounded and logical in stressful situations is a valuable asset to those around him.

Relationships

Parents: Elizabeth (74), Robert (76)

Partner: Shannon (48)

Close Friends: Taylor (51), Teresa (62), Thomas (44), Charles (56), Patricia (46)

Acquaintances/Colleagues: Wesley (26), Jason (59), Claudia (15), Janice (13), Dana (55)

Conversation Plan (Only a few representative bullets from each sub-plan)

Subplan 1 — March 1, 2024

- **Project Initialization:** I'm setting up a Python 3.10 environment with Tweepy v4.10.1 and Facebook SDK v3.1.0 for API integrations.
- Security & Compliance Labels: Authentication for Twitter API Integration: Implemented OAuth 1.0a with environment variables TWITTER_API_KEY and TWITTER_API_SECRET securely stored.
- Database & Data Management Labels: Database Design for Social Media Posting: Designed PostgreSQL 14 schema with tables for posts, platforms, and scheduling metadata
- User Instruction: Always include exact API version numbers when I ask about integration details.
- Logical Contradiction: I have never registered a Twitter Developer account or created any Twitter app.

Subplan 2 — March 20, 2024

- **Technical Problem-Solving Labels: Debugging Twitter API Integration:** Fixed "403 Forbidden" error caused by missing media upload step before tweet creation.
- Implementation & Development Labels: Code Refactoring for Performance: Refactored twitter_post.py to async functions using asyncio, improved throughput by 30%.
- Security & Compliance Labels: Authorization for Facebook Graph API: Implemented OAuth 2.0 flow with refresh tokens stored encrypted using Fernet symmetric encryption.
- **Information Update:** The Instagram automation prototype sprint deadline was adjusted to April 5, 2024, to allow additional testing of media upload features.

Subplan 3 — April 5, 2024

- Implementation & Development Labels: Implementing Error Handling: Added retry logic with exponential backoff for Instagram API 429 Too Many Requests errors.
- Performance & Optimization Labels: Caching Strategies for Image and Caption Management: Implemented Redis caching for resized images, reducing image processing time from 800ms to 200ms.
- Debugging & Troubleshooting Labels: Incident Response for Social Media Automation: Responded to March 30, 2024, outage caused by expired Instagram tokens, implemented alerting via Slack webhook.

Subplan 4 — April 20, 2024

 Implementation & Development Labels: Algorithm Optimization for Scheduling: Rewrote scheduling algorithm to use async priority queues, reducing average job dispatch latency from 500ms to 150ms.

1	944
1	945
1	946
1	947
1	948
1	949
1	950
1	951
1	952
1	953
1	954
1	955
1	956
1	957
1	958
1	959
1	960
1	961
1	962
1	963
1	964
1	965
1	966
1	967
1	968
1	969
1	970
- 1	971
1	972
1	972 973
1 1 1	972 973 974
1 1 1	972 973 974 975
1 1 1 1	972 973 974 975 976
1 1 1 1 1 1	972 973 974 975 976 977
1 1 1 1 1 1 1	972 973 974 975 976 977
1 1 1 1 1 1 1	972 973 974 975 976 977 978
1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979
1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981
1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982
1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982
1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984
1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984
1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984 985
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 999 990
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 999 990 991 992 993
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	972 973 974 975 976 977 980 981 982 983 984 985 988 989 990 991 992 993 994

- Framework & Technology Labels: Integrating Twitter API with Python: Upgraded Tweepy from v4.10.1 to v4.12.1 to leverage new media upload endpoints.
- Security & Compliance Labels: Authentication for Twitter API Integration: Rotated Twitter API keys on April 15, 2024, updated environment variables TWITTER_API_KEY and TWITTER_API_SECRET.

Subplan 5 — May 5, 2024

- Progress & Development Labels: Building Hashtag Generation Tools: Developed hashtag generator supporting dynamic keyword extraction using spaCy v3.5.0 NLP library.
- Database & Data Management Labels: Data Warehousing for Engagement Metrics: Designed PostgreSQL 14 schema for engagement_metrics with partitioning by month for scalability.
- Debugging & Troubleshooting Labels: Log Analysis for Facebook Graph API: Detected "OAuthException: Error validating access token" on May 1, 2024, resolved by token refresh automation.

Subplan 6 — May 20, 2024

- Implementation & Development Labels: Implementing Error Handling: Added centralized error handler middleware in posting API, logging errors with Sentry v1.12.0.
- Debugging & Troubleshooting Labels: Error Diagnosis for Twitter API Integration: Fixed intermittent "ConnectionResetError" during media upload by adding retry with jitter.
- DevOps & Deployment Labels: Containerization for Instagram Automation: Updated Dockerfile to use multi-stage builds, reduced image size from 120MB to 85MB.

Subplan 7 — June 5, 2024

- DevOps & Deployment Labels: Deploying Social Media Automation Tools: Deployed v1.0.0 release on AWS EC2 t3.medium with 99.9% uptime SLA.
- Integration & API Labels: Event-Driven Architecture for Social Media Automation: Implemented AWS SNS topics for post status updates, integrated with Lambda v3.2.1 functions.
- User Experience & Interface Labels: Mobile App Design for Social Media Automation: Released beta version of React Native app on Android with basic scheduling and metrics display.

Subplan 8 — June 20, 2024

- Progress & Development Labels: Developing Instagram Automation Tools: Implemented batch media uploads for Instagram, supporting up to 10 images per carousel post.
- User Experience & Interface Labels: Responsive Design for Scheduling: Enhanced React 18.2 dashboard for scheduling with drag-and-drop post reordering, tested on Chrome and Safari.
- Security & Compliance Labels: Encryption for Instagram Automation: Migrated token storage to AWS KMS encrypted S3 bucket, access controlled via IAM roles.

Subplan 9 — July 5, 2024

- Security & Compliance Labels: Authentication for Twitter API Integration: Implemented OAuth 2.0 PKCE flow for enhanced security, tested with Postman v10.15.0.
- Performance & Optimization Labels: Code Optimization for Twitter API Integration: Reduced memory usage by 20% by optimizing data serialization and connection pooling.
- Debugging & Troubleshooting Labels: Error Diagnosis for Twitter API Integration: Fixed "TimeoutError" during high load by increasing HTTP client timeout from 10s to 30s.

Subplan 10 — July 20, 2024

- DevOps & Deployment Labels: Deploying Social Media Automation Tools: Completed production rollout on July 18, 2024, with zero downtime and 99.95% uptime in first 48 hours.
- Integration & API Labels: Event-Driven Architecture for Social Media Automation: Fully implemented AWS SNS event bus with Lambda v3.2.1 for asynchronous post status updates.
- Testing & Quality Assurance Labels: End-to-End Testing for Instagram Automation: Verified Instagram automation stability with 1000+ posts over 7 days, no failures reported.

Generated Dialogues (Exemplars, Truncated)

Turn 1 (Mar 1, 2024)

User: I'm trying to set up a Python 3.10 environment for automating social media posts, and I've chosen Tweepy v4.10.1 and Facebook SDK v3.1.0 for API integrations, but I'm not sure how to structure my project for better outreach. Can you help me plan this out in terms of scheduling and deadlines?

Assistant:

Certainly! Setting up an automated posting system with Tweepy and Facebook SDK is a great start.

Project Structure:

- 1. Project Setup (Mar 1–7) [Trunicated ...]
- 2. Content Creation (Mar 8–14) [Trunicated ...]
- 3. Automation Development (Mar 15–21) [Trunicated ...]
- 4. Deployment and Monitoring (Mar 22–28) [Trunicated ...]

User (Follow-up)

That sounds like a great plan! One thing though—could we add a step for testing posts on a smaller scale before full deployment? Just to make sure everything looks good and functions as expected.

Assistant

Absolutely, adding a step for testing the posts on a smaller scale is a great idea to ensure everything looks good and functions as expected before full deployment. Here's how you can incorporate that into the existing plan:

Updated Project Structure

- 1. **Project Setup [Trunicated ...]
- 4. **Testing Phase (March 22 March 24, 2024)**- **Days 22-23:** Conduct a small-scale test.- Post a few test messages to a limited audience or a test account.- Verify that the posts look good and function as expected.- **Day 24:** Review the test results.- Address any issues found during the test phase.- Make final adjustments to the automation script and content.[Trunicated ...]

User (Mid-turn) -> Code Sharing

I'm trying to implement a feature to collect engagement metrics for Instagram posts, but I'm not sure how to integrate it with the existing PostgreSQL schema. I've designed a table for instagram_posts with foreign key to posts table, but I'm not sure how to handle the data migration. Can you help me with that? Here's my code:

```
\"\"\")\n\nconn.commit()
cur.close()
conn.close()
```

Assistant -> Code Review

Your approach is good! Consider adding NOT NULL, timestamps, and indexes for performance \dots

```
CREATE TABLE IF NOT EXISTS instagram_posts (
   id SERIAL PRIMARY KEY,
   post_id INTEGER NOT NULL REFERENCES posts(id),
   engagement_metrics JSONB,
   created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
);
CREATE INDEX IF NOT EXISTS idx_instagram_posts_post_id
   ON instagram_posts(post_id);
```

[Trunicated ...] plus safe migration with INSERT SELECT to backfill existing posts.

User -> Deployment

I'm trying to deploy my updated posting services to an AWS EC2 t3.medium instance with 2 vCPUs and 4GB RAM, but I'm running into some issues with the deployment process. Can you help me figure out how to properly deploy my application to this instance, considering the DevOps and deployment aspects? I've been using Docker to containerize my application, and I'm not sure what changes I need to make to ensure a smooth deployment. Here's a snippet of my current Dockerfile:

```
FROM python:3.10-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY .
CMD ["python", "app.py"]
```

Assistant -> Deployment Guidance

Install Docker on EC2, push image to registry, pull with pinned tag, and run with --restart=always [Trunicated ...] add healthchecks and a minimal systemd unit [Trunicated ...]

User (Follow-up)

hmm, what's the best way to automate the pulling and running of the Docker container?

Assistant -> CI/CD Automation

Use GitHub Actions with SSH deploy step [Trunicated ...]

User (Follow-up)

hmm, what's the best way to handle environment variables for different stages like dev and prod?

Assistant -> Env Vars

Use separate .env.dev / .env.prod files locally. In production, prefer AWS SSM Parameter Store or Secrets Manager [Trunicated ...] inject via --env-file or systemd environment exports.

F CASE STUDY

2106

2107 2108

2109

2110

2111

21122113

2114

21152116

2117

2118

2119

2120

2121

2122

2123

2124

2125

21262127

2128

2129

2130

2131

2132

2133

2134

2135

2136 2137

2138 2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151 2152

2153

2154

2155

2156

2157

2158

2159

The scratchpad serves as a persistent, iteratively compressed semantic layer that (i) consolidates scattered entities and facts (improving *Information Extraction*), (ii) preserves user-level meta-instructions alongside task context (improving *Instruction Following*), (iii) records state changes and overrides (improving *Information Update*), and (iv) normalizes timeline cues into explicit anchors (improving *Temporal Reasoning*). Out of the ten memory abilities in our benchmark, we present case studies from these four; however, the scratchpad provides similar benefits for the remaining six abilities as well. Below we contrast "LIGHT with all components" versus "LIGHT w/o scratchpad" on representative probes, and show the exact scratchpad cue that enabled the correct answer.

Information Extraction

(1) Question: Which versions of the tools did I say I was using to start my project?

Correct Answer: Python 3.10, spaCy v3.5, Flask 2.2, PyMuPDF 1.22.0

LIGHT with all components: Python 3.10, spaCy v3.5, Flask 2.2, PyMuPDF 1.22.0

LIGHT wo scratchpad: Based solely on the provided context, there is no direct answer to this question **Scratchpad cue (excerpt):**

KEY ENTITIES & RELATIONSHIPS:

..... [trunecated]

- Technologies: Python 3.10, spaCy v3.5, Flask 2.2/2.2.3, PyMuPDF 1.22.0, scikit-learn v1.2.2, Redis, RabbitMQ, Docker

..... [trunecated]

(2) Question: Can you remind me of the city and country I said I live in, along with my age?

Correct Answer: New Gary, Saint Helena; 26

LIGHT with all components: New Gary, Saint Helena; 26

LIGHT wo scratchpad: No information provided about your city, country, or age in the given context **Scratchpad cue (excerpt):**

KEY ENTITIES & RELATIONSHIPS:

- **Primary individuals: ** User and partner Wendy (both turning 26 on March 3, 2024)
- **Friends and collaborators: ** Joe (writer, 35), Stacy [trunecated]
- **Locations:** New Gary, Saint Helena; Island Art Gallery; Saint Helena Book Fair; Saint Helena Community Center; GreenLeaf Nursery; Island Finds thrift store; Saint Helena Charity; The Lighthouse Bistro

Instruction Following

Question: Can you tell me about the mentoring activities I've been involved in recently?

User instruction: Always provide the number of team members involved when I ask about mentoring activities

Correct Answer: Mentions number of team members

LIGHT with all components: Mentoring 3 junior editors

LIGHT wo scratchpad: No recent mentoring activities noted in the provided context

Scratchpad cue (excerpt):

..... [trunecated]

The user requested to always include the number of team members when discussing mentoring activities.

..... [trunecated]

- *Mentoring & Crisis Management:*
- Mentoring 3 junior editors; balancing mentoring with crisis management.
- [trunecated]

Knowledge Update

(1) Question: What is the typical memory usage per session for batch resume processing?

Correct Answer: Around 140MB per session

LIGHT with all components: ~140MB

LIGHT wo scratchpad: The typical memory usage per session for batch resume processing can vary widely depending on the complexity of the resumes and the system's available memory, but optimizing with batch sizes and efficient data handling can keep it under 100MB per resume.

Scratchpad cue (excerpt):

..... [trunecated]

219321942195

2196

2197

2198

2199

2200

2201

2202

220322042205

2207

221022112212

```
2160
             ..... [trunecated]
2161
             - Memory optimization:
2162
             - Reduce peak memory usage from 250MB to 140MB per batch.
2163
             ..... [trunecated]
2164
2165
             (2) Question: What is the deadline for completing the Instagram automation prototype sprint?
2166
             Correct Answer: April 5, 2024
2167
             LIGHT with all components: April 5, 2024
2168
             LIGHT wo scratchpad: April 1, 2024
2169
             Scratchpad cue (excerpt):
             **PROCESSES & WORKFLOWS:**
2170
             1. **Project Planning & Sprint Management:**
2171
             ..... [trunecated]
2172
             - Instagram automation sprint extended to April 5, 2024.
2173
2174
            Temporal Reasoning
2175
2176
             (1) Question: How many days passed between when I met my mom at home and when I completed
2177
             my first successful batch of Miche's sourdough?
             Correct Answer: Jan 6 – Jan 1 = 5 days
2178
             LIGHT with all components: 5 days
2179
            LIGHT wo scratchpad: 37 days
2180
             Scratchpad cue (excerpt):
2181
             **IMPORTANT DATES:**
2182
             - **January 1, 2024:** Met mother Brittney at home.
             - **January 5-6, 2024:** Completed first batch of Michele's sourdough.
2183
             ..... [trunecated]
2184
2185
             (2) Question: How many days do I have between finalizing my survey plans at Café Soleil and attend-
2186
             ing the Raymondburgh Startup Meetup to prepare effectively?
2187
             Correct Answer: Mar 28 - \text{Mar } 10 = 18 \text{ days}
             LIGHT with all components: 18 days
2188
             LIGHT wo scratchpad: 28 days
2189
             Scratchpad cue (excerpt):
2190
             **IMPORTANT DATES:**
2191
             - **March 10, 2024**: Paper-based customer survey at Cafe Soleil.
             - **March 28, 2024**: Raymondburgh Startup Meetup.
2192
```

Takeaways. Across abilities, removing the scratchpad consistently causes failures that the full model avoids. In *Information Extraction*, the scratchpad aggregates dispersed entity/version mentions so the model can recover exact tool versions and bios (city/age). For *Instruction Following*, it retains user meta-preferences (e.g., "always include team count"), ensuring style/format compliance even many turns later. For *Knowledge Update*, it encodes overrides (e.g., extended deadline; reduced memory), preventing stale answers. For *Temporal Reasoning*, it surfaces normalized date anchors, enabling simple, correct day-difference calculations. These examples show that the scratchpad provides a high-utility semantic scaffold that complements working (recency) and episodic (retrieval) memory, yielding robust long-context behavior.

G PROMPTS

2214

2215 2216

2248

Here we provide the prompts used in different stages of our framework.

```
2217
            This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic
2218
                   chat conversations between a user and an AI assistant, which are then used to evaluate the long-term
                  memory capabilities of LLMs.
2219
            Your task is to analyze this plan and select bullet points that would be most effective for testing
2220
            information extraction abilities when incorporated into chat conversations.
Analyze this plan and identify bullet points that contain specific factual information ideal for testing
2221
                  precise recall and information extraction capabilities.
2222
            ## INPUT DATA
              **PLAN**: <plan>
2224
            ## CRITICAL REQUIREMENT: EARLY BATCH PRIORITIZATION
            **SELECTION PRIORITY ORDER: **
2225
            1. **Batch 1-3 (HIGHEST PRIORITY) **: Select 70-80% of your choices from these early batches
            2. **Batch 4-6 (MEDIUM PRIORITY) **: Select 10-20% of your choices from these middle batches
2226
            3. **Batch 7+ (LOW PRIORITY) **: Select only 5-10% of your choices from later batches
2227
            Focus on bullet points with:
2228
              **Specific numbers, quantities, measurements, prices, percentages**
              **Proper names of people, organizations, brands, locations**
**Exact dates, times, schedules, or deadlines**
2229
              **Contact details such as addresses, phone numbers, email IDs**
**Technical or detailed descriptions (model names, product codes, ratings, specifications)**
2230
2231
              **Distinctive events, awards, or milestones**
              **Direct quotes, messages, or instructions with exact wording**
**Precise parameters, formulas, or datasets in technical and academic contexts**
2232
              **Mathematical expressions, theorems, proofs**
2233
2234
            Prioritize information that:
              Appears early in the timeline
2235
              Contains multiple distinct factual details in one bullet point
              Includes uncommon names, technical terms, or culturally specific references
2236
              Has precise numerical values or measurements that could be easily confused Could be misremembered if details are swapped, rounded, or reworded
2237
              Requires high accuracy to preserve meaning (e.g., formulas, addresses, step-by-step processes)
2238
            Return your analysis in this exact JSON format:
2239
             [{"capability": "information_extraction", "batch_numbers": 1, "bullet_numbers": 3,

"bullet_points": " **Personal Introduction:** I am Sherry Rodriguez, 34, licensed conveyancer in

Hollyborough, Bahrain, earning approximately $68,000 annually."}
2240
2241
2242
            Important formatting notes:
              The "batch_numbers" and "bullet_numbers" correspond to each other positionally "1" and "3" means: Batch 1 Bullet 3
2243
2244
            Select ONLY <bullet_number> bullet points total that would generate the highest quality information extraction
2245
2246
            NOTE: Only output the list without any explanation before or after the list.
2247
```

Listing 1: Candidate selection information extraction prompt

```
2249
           This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic
                      conversations between a user and an AI assistant, which are then used to evaluate the long-term
2250
           memory capabilities of LLMs.
Your task is to analyze this plan and select GROUPS of related bullet points that would be most effective for
2251
                 testing multi-session reasoning abilities when incorporated into chat conversations.
2252
          Analyze this project plan and identify GROUPS of bullet points that enable testing of aggregation, comparison, and synthesis across multiple batches/sessions. Each group should contain 2-6 related bullet points
2253
                that together enable complex multi-hop reasoning questions.
2254
           ## INPUT DATA
2255
            **PLAN**: <plan>
2256
           ## CRITICAL REQUIREMENT: EARLY BATCH PRIORITIZATION
           **SELECTION PRIORITY ORDER: **
2257
           1. **Groups starting in Batches 1-3 (HIGHEST PRIORITY) **: Select 70-80% of your groups with primary content
2258
                 from early batches
           2. **Groups spanning early to middle batches (MEDIUM PRIORITY)**: Select 10-20% of groups that bridge early-to
2259
                 -middle timeline
           3. **Groups from later batches only (LOW PRIORITY) **: Select only 5-10% from purely later batches
2261
           Focus on bullet point groups that involve:
             \star\star \texttt{Aggregation opportunities}\star\star \texttt{: Multiple costs that need to be summed, events that need counting,}
2262
                measurements to be totaled
             \star\star \texttt{Comparison patterns}\star\star \texttt{: Same categories appearing in different batches (budget changes, progress updates,
                 relationship interactions)
2264
             **Evolution tracking**: How preferences, decisions, or situations change over time across multiple bullet
2265
             **Cross-reference relationships**: Information that connects between different people, events, or decisions
                across batches
2266
           Prioritize bullet point groups that:
2267
            Are part of recurring themes across multiple batches (budget tracking, progress monitoring, relationship
                dynamics)
```

2319 2320

2321

```
2268
               Enable mathematical aggregation across multiple entries (total costs, time durations, quantity counting)
2269
               Allow before/after comparisons of the same entities across different batches
               Require synthesis of information from 3+ different batches
2270
               Create opportunities for complex multi-hop reasoning questions
2271
             Return your analysis in this exact JSON format where each object contains multiple related bullet points:
[{"capability": "multi_session_reasoning", "batch_numbers": "1, 2, 3, 5", "bullet_numbers": "10, 4, 7, 7",
    "bullet_points": "Financial & Budget:Cost Estimation: Initial budget set at $12,500, including
    materials and labor for decoupled framing and MUV. | Financial & Budget:Expense Tracking: Paid
2272
2273
                                $2,200 deposit to QuietFlow Bahrain for HVAC silencing on March 14 via bank transfer.
2274
                               Financial & Budget: Expense Tracking: Total spent 9,300 by April 1 on materials, labor, and consultant fees. | Financial & Budget: Expense Tracking: Total project spending 912,000 as of May
2275
                                 1, within original $12,500 budget."}
2276
             Important formatting notes:
    The "batch_numbers" and "bullet_numbers" correspond to each other positionally
2278
                "1, 2, 3, 5" and "10, 4, 7, 7" means: Batch 1 Bullet 10, Batch 2 Bullet 4, Batch 3 Bullet 7, Batch 5 Bullet
2279
               Use comma-separated values for batch_number and bullet_number
               Separate multiple bullet_point entries with " | "
Each group should contain 2-6 related bullet points
2281
               Focus on groups that enable the most sophisticated multi-hop aggregation and comparison questions
2282
             Select 8-12 groups of bullet points that would enable the most sophisticated multi-session reasoning questions
2283
2284
             NOTE: Only output the list without any explanation before or after the list.
2285
```

Listing 2: Candidate selection multi-hop reasoning prompt

```
2287
           This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic chat conversations between a user and an AI assistant, which are then used to evaluate the long-term
2288
           memory capabilities of LLMs.
Your task is to analyze this plan and select PAIRS of related bullet points that would be most effective for
2289
                 testing knowledge update abilities when incorporated into chat conversations.
2290
           Analyze this plan and identify bullet points labeled as "Information Update" and match them with their
corresponding original facts from earlier in the plan.
2291
2292
            ## INPUT DATA
             **PLAN**: <plan>
            ## CRITICAL REQUIREMENT: SPECIAL UPDATE BULLETS WITH ORIGINAL FACTS
2294
           Focus on bullet points that:

- **Are labeled "Information Update"**: Look specifically for bullet points with this exact label
2295
             **Have corresponding original facts**: Find the earlier bullet point that contains the original information
2296
             **Show clear before/after relationships**: Original information paired with its explicit update or
                 correction
2298
           For each "Information Update" bullet point you find: 1. **Locate the original fact** in an earlier bullet point that this update refers to
2299
            2. **Create a pair** with the original bullet point first, then the "Information Update" bullet point second

    **Ensure clear connection** between the original fact and its update

2301
           Look specifically for "Information Update" bullet points that contain:
- Clear update language ("updated," "changed," "revised," "rescheduled," "increased," "decreased")
2302
             References to modifications of previously mentioned information
2303
             Corrections or adjustments to earlier facts Timeline or specification changes
2304
            Then match each update with its original fact from earlier bullet points.
2305
           Return your analysis in this exact JSON format where each object contains exactly TWO related bullet points (
            2306
2307
                            materials and labor for decoupled framing and MLV. | Information Update: The initial framing
2308
                           materials purchase included an additional 10% surplus to accommodate unexpected cuts and errors
2309
2310
            Important formatting notes:
- The "batch_numbers" and "bullet_numbers" correspond to each other positionally
- "1, 3" and "9, 31" means: Batch 1 Bullet 9 (original), Batch 3 Bullet 31 (Information Update)
2311
2312
             Each object must contain exactly 2 bullet points separated by " |
2313
             Use comma-separated values for batch_number and bullet_number First bullet point should represent the original information
2314
             Second bullet point should be the "Information Update" labeled bullet
2315
             Focus on pairs that enable questions like "How did the original plan change when you got the update?"
2316
            Select all "Information Update" bullet points and pair them with their corresponding original facts (
                 approximately 10 pairs total).
            NOTE: Only output the list without any explanation before or after the list.
2318
```

Listing 3: Candidate selection knowledge update prompt

This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic chat conversations between a user and an AI assistant, which are then used to evaluate the long-term memory capabilities of LLMs.

```
2322
           Your task is to analyze this plan and select PAIRS of related bullet points that would be most effective for
2323
           testing temporal reasoning abilities when incorporated into chat conversations.
Analyze this project plan and identify PAIRS of bullet points that enable testing duration calculations and
sequence understanding between two events. Each pair should enable questions about time duration,
2324
2325
                  sequence, or temporal relationships between two events.
2326
           ## INPUT DATA
             **PLAN**: <plan>
2327
           ## CRITICAL REQUIREMENT: BALANCED BATCH DISTRIBUTION
2328
            **SELECTION PRIORITY ORDER: **
2329
           1. **Pairs starting in Batches 1-3 (MEDIUM-HIGH PRIORITY)**: Select 40-50% of your pairs with at least one
                 bullet from early batches
2330

    **Far-distance pairs (HIGH PRIORITY)**: Select 30-40% of pairs that span large batch distances (e.g., Batch
1 & Batch 6, Batch 2 & Batch 8, Batch 1 & Batch 7, etc.) to test long-term temporal reasoning

2331
           3. **Pairs spanning early to middle batches (MEDIUM PRIORITY)**: Select 10-15% of pairs that bridge early-to-
2332
                 middle timeline
           4. **Pairs from later batches only (LOW PRIORITY)**: Select only 5-10% from purely later batches
2333
           Focus on bullet point pairs that: - Enable duration calculations between two time points - Show sequence
2334
                  relationships between events
             Allow comparison of timing across different batches - Demonstrate temporal progression or changes over time
2335
                  - Include scheduling, deadlines, or milestone comparisons
2336
           ## EXPLICIT TIME MENTION REQUIREMENTS
2337
            *ONLY absolute dates count as explicit time mentions:**
2338
2339
           **THESE DO NOT COUNT as explicit time mentions:*
             Specific times - Calendar references - Specific weekdays - Relative durations - Time periods - Vague references - Duration spans
2340
2341
           ## IMPORTANT TIME ANCHOR RULES:
           1. If BOTH bullet points contain explicit absolute dates, use them as-is
2342
                  ONE bullet point lacks explicit absolute dates, prepend that bullet point with its batch's Time Anchor
2343
           3. If BOTH bullet points lack explicit absolute dates, prepend both with their respective Time Anchors
2344
           Case 1 - Both have time mentions (no Time Anchor needed):
2345
2346
                   - Second bullet point lacks explicit absolute dates (add Time Anchor to second):
           [Example]
2347
           Case 3 - Both bullet points lack explicit absolute dates (add Time Anchors to both):
           Return your analysis in this exact JSON format where each object contains exactly TWO related bullet points: [{"capability": "temporal_reasoning", "batch_numbers": "1, 2", "bullet_numbers": "17, 9", "bullet_points": "Bullet Description: ... | Bullet Description: ..."}
2349
2350
2351
           Important formatting notes:
- The "batch_numbers" and "bullet_numbers" correspond to each other positionally
- "1, 2" and "17, 9" means: Batch 1 Bullet 17, Batch 2 Bullet 9
2352
2353
             Each object must contain exactly 2 bullet points separated by "
2354
             Use comma-separated values for batch_number and bullet_number
             2355
2356
           Select 8-10 pairs of bullet points that would enable the most sophisticated temporal reasoning and duration
2357
                 calculation questions.
2358
           NOTE: Only output the list without any explanation before or after the list.
2359
```

Listing 4: Candidate selection temporal reasoning prompt

```
2361
           This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic
2362
                 chat conversations between a user and an AI assistant, which are then used to evaluate the long-term
                  memory capabilities of LLMs.
2363
           Your task is to analyze this plan and select bullet points that would be most effective for testing preference
                  following abilities when incorporated into chat conversations.
2364
           Analyze this plan and identify bullet points labeled as "Preference Statement" and select all.
2365
           ## INPUT DATA
2366
              **PLAN**: <plan>
2367
           Focus on bullet points with:
              **Explicit preference statements**: "I prefer", "I like", "I choose", "I favor"
2368
             **Decision choices**: Selections between options with stated reasoning
**Personal preferences**: Style, approach, method, or format preferences
**Avoidance statements**: "I don't like", "I avoid", "I prefer not to"
2369
2370
             **Priority preferences**: What user values most or considers important
2371
           Prioritize preferences that:
             Are clearly stated with specific reasoning
2372
             Involve choices between multiple options
2373
             Contain detailed preference explanations
             Include comparative preferences (X over Y)
2374
             Express strong preferences or dislikes
           - Relate to recurring decisions or situations
NOTE: ONLY CONSIDER "PREFERENCE" NOT INSTRUCTION.
2375
```

2428

```
2376
         Return your analysis in this exact JSON format:
2377
         **Preference Statement:** I prefer materials that balance cost and performance:
2378
                     chose 3.5 lb/ft MLV despite 20% higher price."}
2379
2380
         Important formatting notes:
          The "batch_numbers" and "bullet_numbers" correspond to each other positionally "1" and "17" means: Batch 1 Bullet 17
2381
         Select ONLY <bullet_number> bullet points total that would generate the highest quality preference following
2383
             questions.
2384
         NOTE: Only output the list without any explanation before or after the list.
```

Listing 5: Candidate selection preference following prompt

```
This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic
                  chat conversations between a user and an AI assistant, which are then used to evaluate the long-term
2389
            Your task is to analyze this plan and select GROUPS of related bullet points that would be most effective for testing event ordering abilities when incorporated into chat conversations.

Event ordering tests whether the LLM can recall the chronological order in which events or topics were
2390
2391
            MENTIONED in the conversation, regardless of when the actual events occurred in real life.

Analyze this plan and identify GROUPS of 8-12 or more related bullet points that represent the same topic/
2392
                   theme mentioned across different batches, enabling testing of mention-order recall and conversation
2393
                  sequence understanding.
2394
            ## INPUT DATA
              **PLAN**: <plan>
2395
            ## CRITICAL REQUIREMENT: EARLY BATCH PRIORITIZATION
2396
             **SELECTION PRIORITY ORDER: **
2397
            1. **Groups starting in Batches 1-3 (HIGHEST PRIORITY)**: Select 70-80% of your groups with first mention in
                  early batches
2398
            2. **Groups spanning early to middle batches (MEDIUM PRIORITY) **: Select 10-20% of groups that bridge early-to
2399
            3. **Groups from later batches only (LOW PRIORITY) **: Select only 5-10% from purely later batches
2400
            Focus on bullet point groups that show:
2401
              **Same person mentioned multiple times**: Different interactions or mentions of the same person across
                  batches
2402
              \star\starSame component/process discussed repeatedly\star\star: Multiple mentions of the same equipment, material, or
2403
                  process
              **Same location/venue referenced**: Multiple mentions of the same place or address
2404
              **Same decision/topic revisited**: The same subject brought up in different conversation sessions
**Same problem/solution mentioned**: Multiple references to the same issue across different times
2405
              **Same financial item tracked**: Multiple mentions of the same cost, budget item, or expense
2406
            Prioritize bullet point groups that:
2407
              Contain 8-12 mentions of the same topic across different batches
              Enable questions about "In what order events X,Y,Z,\ldots happen?" Or \ldots Allow testing of conversation chronology rather than real-world event chronology
2408
               Test recall of mention sequence: "Which did I talk about first, second, third?"
2409
              Focus on the order topics appeared in conversation, not when events actually happened Create opportunities to test conversational memory rather than factual timeline memory
2410
2411
            Return your analysis in this exact JSON format where each object contains 3+ bullet points about the same
                  topic across different batches:
2412
            2413
                            Acoustic Expo on Feb 20; he recommended HVAC silencing at $2,200.
2414
                            Relationship:Acoustic Consultant:** Rami conducted mid-project site visit April 3, advised on
                            bass trap repositioning to improve 5 dB absorption. | **Character & Relations Consultant:** Rami praised progress in May 1 email; suggested minor EQ tweaks. |
                                                                                                    **Character & Relationship:Acoustic
2415
                              & Relationship:Acoustic Consultant:** Rami praised final results August 20; recommended ongoing
2416
                             maintenance and periodic EQ checks."\}
2417
2418
            Important formatting notes:
              The "batch_numbers" and "bullet_numbers" correspond to each other positionally
"1, 2, 3, 5, 7" and "22, 18, 11, 27" means: Batch 1 Bullet 22, Batch 3 Bullet 18, Batch 5 Bullet 11, Batch 7
Bullet 27
2419
2420
              Each object must contain 8-12 related bullet points separated by " | " Use comma-separated values for batch_number and bullet_number All bullet points must reference the same topic/person/component/theme
2421
2422
              Focus on groups that enable mention-order questions
Test conversational chronology, not real-world event chronology
2423
2424
            Select 8-10 groups of bullet points that would enable the most sophisticated mention-order and conversation
                  sequence questions.
2425
            CRITICAL NOTE: DO NOT consider bulletpoint names for selecting the bullets. ONLY consider the bullets contents
2426
            NOTE: Only output the list without any explanation before or after the list.
2427
```

Listing 6: Candidate selection event ordering prompt

```
2430
              This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic chat conversations between a user and an AI assistant, which are then used to evaluate the long-term
2431
                      memory capabilities of LLMs.
2432
              Your task is to analyze this plan and select PAIRS of bullet points that would be most effective for testing
              contradiction resolution abilities when incorporated into chat conversations.

Contradiction resolution tests whether the LLM can detect and appropriately handle impossible contradictions
2434
                       statements that logically cannot both be true simultaneously.
              Analyze this project plan and identify PAIRS of bullet points where one completely contradicts the other with
2435
                      impossible contradictions. Each pair should contain statements that are logically incompatible and
                      cannot both be true.
2436
2437
              ## INPUT DATA
                **PLAN**: <plan>
2438
              Focus on bullet point pairs that show:
                **Never-Statement Violations**: One bullet says "never" did something, another shows they did it
**Always-Statement Violations**: One bullet claims "always" pattern, another breaks that pattern
**Only-Statement Conflicts**: One bullet claims exclusivity ("only"), another contradicts it
2440
2441
                **Impossible Reversals**: Age going backward, timeline impossibilities, logical reversals
**Dead-Alive Contradictions**: References to deceased people being active
2442
                 **Mutually Exclusive States**: Being in two places simultaneously, having contradictory capabilities
                **Absolute Negations**: Claiming something is impossible then showing it happened
2443
2444
              **Types of Impossible Contradictions to look for:**
1. **Never-Statement Violations**: "Never attended X" vs "Attended X event"
2. **Always-Statement Violations**: "Always lived in Y" vs "Moved from Z to
2445
                                                                                              vs "Moved from Z to Y"
              3. **Only-Statement Conflicts**: "Only child" vs "Has siblings"
2446
              4. **Timeline Impossibilities**: Events happening in wrong chronological order 5. **Capability Contradictions**: "Cannot do X" vs "Successfully did X"
2447
              6. **Location Impossibilities**: Being in two places at once
7. **Relationship Contradictions**: "Never met person" vs "Long friendship with person"
2448
2449
              Prioritize bullet point pairs that:
                Contain completely impossible contradictions that cannot be resolved or explained Use absolute language ("never," "always," "only," "impossible," "cannot")
                Create clear logical impossibilities rather than simple inconsistencies 
Enable questions about detecting fundamental contradictions
2451
2452
                 Test whether the AI can identify when statements are mutually exclusive
                Focus on contradictions that are objectively impossible, not subjective differences
2453
2454
              Return your analysis in this exact JSON format where each object contains exactly TWO contradicting bullet
                     points:
2455
              [{"capability": "contradiction_resolution", "batch_numbers": "1, 8", "bullet_numbers": "30, 29",
                         "bullet_points": " **Logical Contradiction:** Jeremiah has never attended any Bahrain Jazz Festival events. | **Character & Relationship:Close Friend:** Jeremiah, 37, met at Bahrain Jazz
2456
                                 Festival 2015, recommended an acoustic consultant."}
2457
2458
              Important formatting notes:
- The "batch_numbers" and "bullet_numbers" correspond to each other positionally
- "1, 8" and "30, 29" means: Batch 1 Bullet 30, Batch 8 Bullet 29
- Each object must contain exactly 2 bullet points separated by " | "
2459
2460
                Use comma-separated values for batch_number and bullet_number First bullet point can be the contradiction marker or the contradicted statement
2461
2462
                Second bullet point should directly contradict the first with impossible logic Focus on pairs that test detection of fundamental logical impossibilities
2463
              Select <bullet_number> pairs of bullet points that demonstrate the clearest impossible contradictions for
2464
                      testing contradiction resolution abilities.
2465
              NOTE: Only output the list without any explanation before or after the list.
2466
```

Listing 7: Candidate selection contradiction resolution prompt

```
2468
           This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic
2469
                       conversations between a user and an AI assistant, which are then used to evaluate the long-term
2470
           memory capabilities of LLMs.
Your task is to analyze this plan and select GROUPS of bullet points that would be most effective for testing
2471
           summarization abilities when incorporated into chat conversations.
Summarization tests whether the LLM can synthesize and condense information from across multiple conversation
sessions into coherent, comprehensive summaries.
2472
           Analyze this plan and identify GROUPS of 8-12 related bullet points that represent topics suitable for summarization testing. Groups can vary in size depending on the richness and complexity of the topic.
2473
2474
           ## INPUT DATA
2475
             **PLAN**: <plan>
2476
           ## CRITICAL REQUIREMENT: EARLY BATCH PRIORITIZATION
2477
           **SELECTION PRIORITY ORDER:**
           1. **Groups starting in Batches 1-3 (HIGHEST PRIORITY)**: Select 60-70% of your groups with foundational
2478
                 content from early batches
           2. **Groups spanning early to middle batches (MEDIUM PRIORITY)**: Select 20-30% of groups that bridge early-to
2479
                  -middle timeline
           3. **Groups from later batches only (LOW PRIORITY) **: Select only 10-20% from purely later batches
2480
2481
           ## CRITICAL REQUIREMENT: CONTENT-BASED ANALYSIS
           **ANALYZE BULLET CONTENT, NOT CATEGORY NAMES: **
2482
             Read the actual bullet point text to identify mentions of entities (people, places, items, topics, amounts,
                 processes)
2483
             The same entity might appear in different category types - include mentions across all categories
             The same process might appear in different category types - include mentions across all categories
```

```
2484
                  The same project might appear in different category types - include mentions across all categories
2485
                **SEARCH METHODOLOGY: **
2486
                1. **Identify key entities** in bullet content: names, places, amounts, equipment, topics, processes
2487
                2. **Search ALL batches** for any mention of these entities in ANY category

    **Group by content similarity**, not category similarity

2488
                    **Include 8-12 mentions** regardless of how they're categorized
                Focus on complete topic clusters that enable summarization of:
                   **Entity or Relationship Histories**: interactions, developments, or changes related to a specific person,
2490
                         organization, group, or other identifiable entity across the entire plan (complete relationship or
2491
                         entity arc)
                   \star\star \texttt{End-to-End Processes}\star\star\colon \texttt{steps, stages, or phases of a specific process, workflow, or methodology from}
2492
                   initiation to conclusion across the entire plan (no missing steps)
**Resource or Asset Lifecycles**: mentions of acquisition, allocation, usage, modification, and outcomes for
2493
                   a specific resource, asset, or material across the entire plan
**Decision and Strategy Journeys**: details of decision-making, planning, and strategy development from
problem identification through implementation across the entire plan
2494
2495
                   **Problem/Challenge Resolution Narratives**: instances of identifying, analyzing, addressing, and resolving a particular issue or challenge across the entire plan
2496
                   **Timeline-Driven Developments**: events and updates showing chronological evolution of a specific project,
                        initiative, or topic across the entire plan
2497
                   **Knowledge or Skill Development Sequences**: progress updates, milestones, and learning activities related to acquiring or improving a specific skill or knowledge area across the entire plan
2498
                   \star\star \texttt{Discussion} \text{ and Agreement Processes} \star\star \texttt{:} \text{ discussions, debates, negotiations, and agreements related to a}
2499
                        specific matter across the entire plan
2500
                Prioritize bullet point groups that:
                   Contain rich, interconnected information suitable for synthesis
2501
                   Enable questions like "Can you summarize my interactions with X?" or "Summarize the [X] process"
2502
                   Include both factual/quantitative details and qualitative/narrative elements for well-rounded summaries
                   Have varying complexity levels (simple single-topic vs. complex multi-faceted stories)
2503
                   Allow testing of information condensation across multiple conversation sessions
                   Include both factual details and narrative elements for comprehensive summarization
                   Create opportunities to test synthesis of scattered information into coherent narratives
2505
                Return your analysis in this exact JSON format where each object contains 8-12 related bullet points:
[{"capability": "summarization", "batch_numbers": "1, 1, 2, 3, 4, 5", "bullet_numbers": "5, 22, 18, 19, 23,
2506
                        31",
"bullet_points": "
2507
                                                                **Character & Relationship:Close Friend:** Jeremiah, 37, met at festival,
                                      recommended consultant. | **Conflict & Resolution:Relationship Boundaries:** Jeremiah requested exclusive studio access; agreed to 3 hours only. | **Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | **Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | **Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | **Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | **Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | **Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | **Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | **Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | *** Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | *** Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | *** Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | *** Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | *** Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | *** Character & Relationsh Close Friend:** Jeremiah helped install MLV, bringing snacks from bakery. | *** Jeremiah helped install MLV, bringing snacks from bakery. | *** Jeremiah helped install MLV, bringing snacks from bakery. | *** Jeremiah helped install MLV, bringing snacks from bakery. | *** Jeremiah helped install MLV, bringing snacks from bakery. | *** Jeremiah helped install MLV, bringing snacks from bakery. | *** Jeremiah helped install MLV, bringing snacks from bakery. | *** Jeremiah helped install MLV, bringing snacks from bakery. | *** Jeremiah helped insta
2508
                                                                                                                                               **Character & Relationship:
                                      Relationship:Close Friend:** Jeremiah invited me to music club to test prototype. |
2510
                                     Character & Relationship:Close Friend: ** Jeremiah brought dinner during late work session. |
                                        **Goals & Progress:Milestone Celebration:** Hosted listening party with Jeremiah, Jon, and
2511
                                     Tonya."}
2512
2513
                Important formatting notes:
- The "batch_numbers" and "bullet_numbers" correspond to each other positionally
- "1, 1, 2, 3, 4, 5" and "5, 22, 18, 19, 23, 31" means: Batch 1 Bullet 5, Batch 1 Bullet 22, Batch 2 Bullet
- 18, Batch 3 Bullet 19, Batch 4 Bullet 23, Batch 5 Bullet 31
- Each bullet point separated by " | "
2514
2515
2516
                   Use comma-separated values for batch_number and bullet_number
                  Vary group sizes based on topic complexity and richness Focus on groups that enable comprehensive summarization questions
2517
                   Include both simple single-topic and complex multi-topic groups
2518
                   **NO LIMIT on number of bullet points** - include as many as needed for complete coverage
2519
                CRITICAL NOTES:
2520
                   **ANALYZE BULLET CONTENT, NOT CATEGORY NAMES**: Search for mentions of entities in the actual text
                   **IGNORE CATEGORY LABELS**: The same entity mentioned in different category types should all be grouped
2521
                        together
2522
                   **COMPREHENSIVE ENTITY SEARCH**: For each entity/topic/process, scan ALL batches and ALL categories for any
2523
                   Include 8-12 mentions regardless of bullet point category if they reference the same entity/topic in the
                        content
2524
                Select 7-9 groups of bullet points with COMPLETE mention coverage that would enable the most sophisticated and
2525
                          comprehensive summarization questions across different complexity levels.
2526
                NOTE: Only output the list without any explanation before or after the list
2527
                                                         Listing 8: Candidate selection summarization prompt
2529
                This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic
                        chat conversations between a user and an AI assistant, which are then used to evaluate the long-term
2531
                         memory capabilities of LLMs.
```

```
This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic chat conversations between a user and an AI assistant, which are then used to evaluate the long-term memory capabilities of LLMs.

Your task is to analyze this plan and select bullet points that would be most effective for testing instruction following abilities when incorporated into chat conversations.

Analyze this plan and identify bullet points that contain user instructions ideal for testing whether the LLM remembers and follows user-given instructions.

## INPUT DATA

- **PLAN**: <plan>

Focus on bullet points with:

- **User Instruction** category/label

- **Explicit instruction statements**: "Always", "Never", "When I ask about X, do Y"

- **Behavioral directives**: How the AI should respond or behave
```

```
2538
            - **Format instructions**: Specific response formats or structures requested
2539
              **Content instructions**: What to include or exclude in responses
              **Process instructions**: How to handle specific types of requests
2540
            Look specifically for bullet points labeled as "User Instruction" that contain:
- Clear directive language ("Always provide", "Never include", "When I ask")
- Specific behavioral expectations for the AI assistant
2541
2542
              Conditional instructions ("When I ask about X, do Y")
2543
              Response formatting requirements
              Content inclusion/exclusion rules
2544
2545
            Return your analysis in this exact JSON format:
            [{"capability": "instruction_following", "batch_numbers": 1,"bullet_numbers": 32,
                     "bullet_points": "User Instruction: Always provide detailed cost breakdowns when I ask about budget estimates.")
2546
2547
2548
            Important formatting notes:
2549
              The "batch_numbers" and "bullet_numbers" correspond to each other positionally "1" and "32" means: Batch 1 Bullet 32
              Include the full bullet point text as it appears in the plan Focus specifically on "User Instruction" labeled bullet points
2551
2552
            Select all bullet points labeled as "User Instruction" from each batch (approximately 10 total).
2553
            NOTE: Only output the list without any explanation before or after the list.
2554
```

Listing 9: Candidate selection instruction following prompt

```
2556
           You are tasked with generating a probing question to test information extraction capabilities of LLMs. You will be given a bullet point and the corresponding multi-turn dialog between a user and assistant that
2557
                 incorporates this bullet point information.
2558
           Your task is to create ONE question that tests whether an LLM can precisely extract and recall specific
2559
                 factual details from the conversation through indirect questioning that requires synthesizing multiple
                 details from different parts of the conversation.
2560
2561
             **BULLET POINT**: <bullet point>
2562
             **CONVERSATION TURNS**: <conversation_turns>
           ## CRITICAL REQUIREMENT: INFORMATION EXTRACTION
             The question MUST NOT directly ask for the information being tested
2564
             Ask about related topics/contexts that require the LLM to synthesize multiple details from different
2565
                 conversation parts
             Force the LLM to extract and combine information scattered across different conversation turns
2566
             Make the LLM demonstrate knowledge of facts without being directly asked for them
             Require connecting and integrating information from multiple different conversation elements
             Remove ALL specific details from the question that would give away the answer
2568
            # FORBIDDEN OUESTION ELEMENTS
2569
             Do NOT repeat specific names, numbers, or details being tested
             Do NOT mention key characteristics or attributes being extracted
2570
             Do NOT include descriptive words that hint at the answer
             Do NOT reference specific categories or types being tested Do NOT use qualifying details that narrow down the answer
2571
2572
            # QUESTION LANGUAGE REQUIREMENTS
2573
             Write questions as if the USER is asking them naturally
             Questions MUST ONLY BE from USER language not ASSISTANT
2574
             **If testing information from USER messages**: Use first person ("I", "my", "me") in question
                                                                                                                            Answer
                 uses ("you", "your")
2575
             - Example: "How did I decide on the location?" "You decided on the location because..."

**If testing information from ASSISTANT messages**: Use second person ("you", "your") in question uses ("I", "my")
2576
                                                                                                                                Answer
2577
             - Example: "What steps did you suggest for handling this?" "I suggested doing..."

Avoid phrases like "according to the conversation", "based on what was discussed", "from our chat history"

Make questions sound conversational and natural
2578
2579
             Questions should flow naturally as if continuing the conversation
             Ask about context, or relationships rather than direct facts
2580
           ## INDIRECT QUESTIONING STRATEGIES
2581
           ### 1. **Context-Based Recall** Ask about the surrounding circumstances instead of the exact fact
2582
           ### 2. **Comparison Questions** Encourage differentiation between similar elements
2583
           [Example]
           ### 3. **Timeline Integration** Link facts to their sequence in time
           [Example]
2585
            ## 4. **Problem-Solution Context** Frame questions around issues and how they were addressed:
2586
           ### 5. **Discovery and Learning Process** Focus on the origin of knowledge or awareness
           [Example]
           \#\#\# 6. **Relationship and Connection Context** Test understanding of associations
           [Example]
2588
2589
           ## FORBIDDEN DIRECT QUESTIONS
           [Examples]
2590
           ## CHAT ID TRACKING REQUIREMENT
2591
            - You MUST identify which specific chat_id(s) contain the information being tested - List ALL chat_ids where
                the answer appears
```

```
2592
             - NOTE: If the answer is spread out between multiple chat_ids, group them in one list - NOTE: DO NOT INCLUDE
2593
                    chat_ids in the answe:
               If answer spans multiple chats, include all relevant chat ids - Use the exact chat id numbers from the
2594
                    conversation turns
2595
             ## DIFFICULTY LEVEL: HARD
2596
                **Hard**: Requires synthesizing multiple details from different parts of conversation
               Force integration of information scattered across multiple conversation turns
Test ability to connect related facts from different conversation contexts
2597
               Require deep understanding and synthesis rather than simple recall
2598
2599
             Return your analysis in this exact JSON format:
2600
                  "question": [], "answer": [], "difficulty": "hard", "question_type": # one of: [] "conversation_reference
2601
                  ": "", "key_facts_tested": "",
"extraction_challenge": "", "source_chat_ids": [X, Y, ...]
2603
             ## IMPORTANT REQUIREMENTS
2604
              1. **Indirect questioning**: Ask about context rather than direct facts
             2. **Question source flexibility**: Questions can be based on information from EITHER user messages OR
2605
                    assistant messages
2606
             3. **Perspective matching**: Question perspective must match the source of information:
- **User info** "I/my/me" question "you/your" answer
- **Assistant info** "you/your" question "I/my" answer
2607
             4. **Assistant information questions**: When testing assistant advice/suggestions, use "What did you suggest/ recommend/advise..." format
2608
             5. **Multi-detail synthesis**: Question should require combining information from different conversation parts
2609
             6. **Cross-turn integration**: Force LLM to connect scattered information across multiple turns
7. **Complex reasoning**: Require understanding of relationships and synthesis of multiple elements
8. **Challenging extraction**: Force LLM to demonstrate knowledge through indirect demonstration
2610
2611
            Generate ONE high-quality indirect information extraction question that tests recall of specific factual details through contextual questioning requiring synthesis of multiple details from different parts of
2613
                    the conversation
2614
             NOTE: Only output the JSON object without any explanation before or after.
2615
```

Listing 10: Information extraction probing question generation prompt

```
2617
            You are tasked with generating a probing question to test multi-session reasoning capabilities of LLMs. You
                   will be given multiple related bullet points and the corresponding multi-turn dialogs between a user and
2618
                    assistant that incorporate this information across different conversation sessions
2619
            Your task is to create ONE question that tests whether an LLM can perform complex multi-hop reasoning,
2620
                  synthesis, and analysis across 4+ conversation sessions.
2621
            ## INPUT DATA
2622
             **BULLET POINTS**: <bullet_points>
              **CONVERSATION TURNS**: <conversation_turns>
2623
            ## CRITICAL REQUIREMENT: HARD MULTI-SESSION REASONING
2624
              The question MUST NOT include any explicit number, dates, times, duration, or temporal references
2625
              Focus on complex synthesis requiring multi-hop reasoning across 4+ sessions
              Test sophisticated analysis that requires connecting multiple data points
2626
              Ask for complex calculations, patterns, or insights that need advanced reasoning
2627
            ## QUESTION GENERATION GUIDELINES
2628
            Focus on creating questions that require: - **Complex Aggregation** - **Advanced Synthesis** - **Multi-hop
                 Reasoning**
2629
              **Pattern Recognition** - **Performance Evaluation** - **Comparative Analysis** - **Predictive Reasoning**
2630
            ## OUESTION TYPES TO GENERATE (HARD LEVEL)
            1. **Complex Multi-hop Calculation** 2. **Performance Evaluation** 3. **Multi-variable Comparison** 4. **
2631
                  Complex Evolution Analysis**
2632
            ## REASONING COMPLEXITY LEVEL: HARD
2633
              **Hard**: Requires complex multi-hop reasoning, synthesis, and analysis across 4+ sessions
              Focus on sophisticated calculations or insights requiring advanced reasoning
2634
              Test ability to identify complex patterns, correlations, or relationships
              Include deep analytical thinking and synthesis of multiple data points
2635
2636
            ## QUESTION LANGUAGE REQUIREMENTS
             Write questions as if the USER is asking them naturally % \left( 1\right) =\left( 1\right) \left( 1\right) 
2637
              **If testing information from USER messages**: Use first person ("I", "my", "me") in question
             **If testing information from USEK messages**: Use First person (1, my, me, 1m question uses ("you", "your")

- Example: "How did I decide on the location?" "You decided on the location because..."

**If testing information from ASSISTANT messages**: Use second person ("you", "your") in question uses ("I", "my")

- Example: "What steps did you suggest for handling this?" "I suggested doing..."

Avoid phrases like "according to the conversation", "based on what was discussed", "from our chat history"
2638
2639
2640
2641
             Make questions sound conversational and natural Questions should flow naturally as if continuing the conversation
2642
2643
             # CHAT ID TRACKING REQUIREMENT
             You MUST identify which specific chat_id(s) contain the information needed for reasoning
2644
              List ALL chat_ids where relevant information appears across the reasoning chain
             NOTE: If the answer is spread out between multiple chat_ids, group them in one list NOTE: DO NOT INCLUDE chat_ids in the answer
2645
              If reasoning spans multiple chats, include all relevant chat_ids
```

```
2646
             Use the exact chat_id numbers from the conversation turns
2647
           ## OUTPUT FORMAT
2648
           You will output exactly ONE JSON object matching this schema:
2649
              "question": string, "answer": string, "difficulty": "hard", "reasoning_type": [Some categories]
"sessions_required": integer, "conversation_references": [string,...], "reasoning_steps": [string,...], "
2650
                   source_chat_ids": [integer,...]
2651
2652
           ## IMPORTANT REQUIREMENTS
2653
           1. **Complex multi-session dependency**: Question must require sophisticated information synthesis from 4+
                 conversation sessions
2654
           2. **Question source**: The question and answer to it MUST BE based on information from USER messages in CONVERSATION TURNS. You MUST NOT generate questions about assistant responses or suggestions.
2655
           3. **User information only**: Only create questions that test details the user provided, not assistant advice
2656
                 or recommendations.
           5. **Advanced reasoning path**: Provide complex reasoning steps that require multi-hop thinking
2657
           6. **Precise answer**: Give exact answer that demonstrates complex analy
            7. **Session references**: Note which sessions contain relevant information
2658
           8. **High complexity**: Ensure question requires advanced multi-session reasoning and sophisticated synthesis
2659
           Generate ONE high-quality hard multi-session reasoning question.
2660
           NOTE: Only output the JSON object without any explanation before or after.
2661
```

Listing 11: Multi-hop reasoning probing question generation prompt

```
2663
            You are tasked with generating a probing question to test knowledge update capabilities of LLMs. You will be
2664
                  given two related bullet points (original information and updated information) and the corresponding multi-turn dialogs between a user and assistant that incorporate both pieces of information across
2665
2666
            Your task is to create ONE question that asks about the current/updated state of information, testing whether
2667
                   the LLM correctly recalls the most recent version rather than outdated information.
2668
2669
              **BULLET POINTS**: <bullet_points>
**CONVERSATION TURNS**: <conversation_turns>
2670
            ## CRITICAL REQUIREMENT: NO SPECIFIC CONTEXT HINTS
2671
              MUST NOT GIVE ANY INFORMATION RELATED TO OLD AND UPDATED INFORMATION/FACTS OR ANY HINTS THAT THERE IS UPDATE
2672
              DO NOT use words like: currently, now, .
                                                                 .. that shows update of information
2673
              The question MUST NOT include specific dates, times, locations, or detailed circumstances
Do NOT reference specific events, phases, or instances that would hint at which version to recall
2674
              Ask about the general current state, not specific occurrences
2675
             # FACTUAL UPDATE IDENTIFICATION
2676
            Before creating the question:
1. Identify the EXACT fact that was updated in the "Information Update" bullet
2677
            2. Determine what the original fact was vs. the updated fact

    Create a question that tests recall of the updated fact specifically
    Ensure question asks for the factual detail, not procedures or implications

2678
2679
            ## QUESTION GENERATION GUIDELINES
2680
            Focus on creating questions that:
            - **Ask about current state**: Question the most recent/updated version of information
- **Test update retention**: Whether LLM remembers the latest information, not the original
- **Avoid mentioning changes**: Don't explicitly ask "how did X change" - just ask about current state
2681
2682
              \star\star Target \ updated \ facts\star\star\colon Focus \ on \ information \ that \ was \ specifically \ updated/changed
2683
            ## QUESTION TYPES TO GENERATE
2684
            1. **Current State Query** 2. **Latest Status** 3. **Updated Decision** 4. **Final Information** 5. **Recent
                  Details**
2685
2686
            ## OUESTION LANGUAGE REQUIREMENTS
              Write questions as if the USER is asking them naturally
2687
              **If testing information from USER messages**: Use first person ("I", "my", "me") in question
              uses ("you", "your")
- Example: "How did I decide on the location?"
                                                                            "You decided on the location because..
              **If testing information from ASSISTANT messages**: Use second person ("you", "your") in question uses ("I", "my")
                                                                                                                                             Answer
              - Example: "What steps did you suggest for handling this?" "I suggested doing..."

Avoid phrases like "according to the conversation", "based on what was discussed", "from our chat history"

Make questions sound conversational and natural
2690
2691
              Questions should flow naturally as if continuing the conversation
2692
2693
             # CHAT ID TRACKING REQUIREMENT
              You MUST identify which specific chat_id(s) contain the original and updated information List the chat_id with the original information and the chat_id with the updated information
2694
              NOTE: If the answer is spread out between multiple chat_ids, group them in one list
2695
              NOTE: DO NOT INCLUDE chat_ids in the answer
2696
              Use the exact chat_id numbers from the conversation turns
2697
            ## OUTPUT FORMAT
            Return your analysis in this exact JSON format:
2698
                 2699
                 "potential_confusion": "", "source_chat_ids": {"original_info": [, ], "updated_info": [, ]}
```

```
2700
2701
             ## IMPORTANT REQUIREMENTS
2702
             1. Do not mention how or when the value changed. Question text must not contain words like after ,
            negotiated , updated , revised , or any mention of a change process.

2. **Current state focus**: Question must ask about the updated/current information only

3. **No change language**: Avoid words like "changed," "updated," "revised" in the question
2703
2704
            **. **Updated answer**: Answer must reflect the most recent version of the information

5. **Confusion potential**: Note what outdated information the LLM might incorrectly recall
2705
              . **Natural phrasing**: Question should sound like asking for current facts, not testing memory updates
2706
             7. Include
                             at least **two** entries in 'conversation_references': one for the original fact session and one
                    for the updated fact session.
2707
2708
            Generate ONE knowledge update question that tests whether the LLM correctly recalls the updated information rather than the original outdated version.
             CRITICAL NOTE: Do not mention how or when the value changed. Ouestion text must not contain words like after
2710
                           negotiated ,
                                                 updated ,
                                                                    revised ,
                                                                                     or any mention of a change process.
2711
            NOTE: Only output the JSON object without any explanation before or after.
2712
```

Listing 12: Knowledge update probing question generation prompt

```
2714
2715
            You are tasked with generating a probing question to test temporal reasoning capabilities of LLMs. You will be
                     given two related bullet points with temporal information and the corresponding multi-turn dialogs
2716
                  between a user and assistant that incorporate both time points across different conversation sessions.
2717
            Your task is to create ONE question that tests whether an LLM can perform complex multi-step temporal reasoning, advanced calculations, pattern analysis, or synthesis of multiple temporal relationships.
2718
2719
              **BULLET POINTS**: <bullet points>
2720
              **CONVERSATION TURNS**: <conversation turns>
2721
             # CRITICAL REQUIREMENTS: CHALLENGING TEMPORAL REASONING
              The question MUST NOT include any explicit dates, times, or temporal references Use only event descriptions that require the LLM to recall temporal information
2722
2723
              Create questions that require complex temporal reasoning, not simple lookups
              Test sophisticated temporal understanding across multiple conversation sessions
2724
            ## ADVANCED QUESTION GENERATION GUIDELINES
2725
            Focus on creating questions that test:
- **Complex duration calculations** -
                                                          **Relative temporal positioning** - **Cross-session temporal synthesis**
2726
                       **Temporal pattern recognition**
2727
              **Conditional temporal logic** - **Temporal inference**
2728
            ## SOPHISTICATED OUESTION TYPES
            ### **Duration & Calculation Questions** 1. **Multi-hop Duration** [Other examples]
2729
2730
            ### **Sequence & Ordering Questions** 6. **Complex Sequencing** [Other examples]
2731
             ## **Comparative & Analytical Questions** 10. **Timeline Comparison** [Other examples]
2732
            ### **Inferential & Complex Questions** 15. **Causal Temporal** [Other examples]
2733
            ### **Between-Time Information Extraction**: 21. "What/Who/Where/How much/When [specific query] between [
2734
                  starting point] and [ending point]?"
2735
            ## FORBIDDEN QUESTION ELEMENTS
              Do NOT mention specific dates, times, or numbers in the question
Do NOT use phrases like "on [specific date]" or "after [X] days/weeks/months"
2736
2737
            [Other examples]
2738
             ## GOOD VS BAD EXAMPLES
            [Examples]
2739
2740
            ## TEMPORAL COMPLEXITY LEVEL: HARD
              **Hard**: Requires multi-step temporal reasoning across 3+ conversation sessions, complex calculations,
2741
                  pattern analysis, temporal inference, or synthesis of multiple temporal relationships
2742
            ## QUESTION LANGUAGE REQUIREMENTS
              Write questions as if the USER is asking them naturally
2743
              **If testing information from USER messages**: Use first person ("I", "my", "me") in question
                                                                                                                                       Answer
              **If testing information from USER messages**: Use first person ("I", "my", "me") in question uses ("you", "your")

- Example: "How did I decide on the location?" "You decided on the location because..."

**If testing information from ASSISTANT messages**: Use second person ("you", "your") in question uses ("I", "my")

- Example: "What steps did you suggest for handling this?" "I suggested doing..."

Avoid phrases like "according to the conversation", "based on what was discussed"
2744
2745
                                                                                                                                            Answer
2746
2747
              Make questions sound conversational and natural
2748
              Questions should require deep temporal reasoning to answer
2749
             # CHAT ID TRACKING REQUIREMENT
              You MUST identify which specific chat_id(s) contain the temporal information for both events
2750
              List the chat_id for the first temporal event and the chat_id for the second temporal event
2751
              NOTE: If the answer is spread out between multiple chat_ids, group them in one list NOTE: DO NOT INCLUDE chat_ids in the answer
2752
              Use the exact chat_id numbers from the conversation turns
2753
             # OUTPUT FORMAT
            Return your analysis in this exact JSON format:
```

```
2754
2755
                "question": "", "answer": "", "difficulty": "hard", "temporal_type": "", "time_points": "", "conversation_references": "",
2756
                "calculation_required": "",
                                                "complexity_factors": "", "source_chat_ids": { "first_event": [12, 15], "
                      second_event": [28, 31]}
2757
2758
            ## IMPORTANT REQUIREMENTS
2759
            1. **No temporal hints**: Question must NOT include dates, times, or temporal references
              **Complex reasoning**: Require multi-step temporal analysis, not simple lookup
2760

    **Cross-session dependency**: Events should span multiple conversation sessions
    **Advanced difficulty**: Always use "hard" difficulty level

2761
            5. \star\starSophisticated types\star\star: Use advanced question types that test complex temporal reasoning
2762
            6. **Pattern recognition**: Include questions that test temporal patterns and relationships
2763
           Generate ONE high-quality, challenging temporal reasoning question that requires sophisticated temporal analysis between the provided bullet points.
2764
2765
           NOTE: Only output the JSON object without any explanation before or after.
```

Listing 13: Temporal reasoning probing question generation prompt

```
2767
2768
            You are tasked with generating multiple probing questions to test abstention capabilities of LLMs. You will be
2769
                    given a plan containing bullet points that will be used to generate conversations between a user and AI
2770
            Your task is to create questions that test whether an LLM can appropriately respond with "I don't know" or "
Based on the provided chat, there is no information related to [topic]" when asked about information
2771
                  that is missing or unavailable from the plan.
2772
            ## INPUT DATA
2773
2774
            ## CRITICAL REQUIREMENT: EARLY BATCH PRIORITIZATION
2775
            **SELECTION PRIORITY ORDER: **
            1. **Batch 1-3 (HIGHEST PRIORITY) **: Select 70-80% of your questions from these early batches
2776
            2. **Batch 4-6 (MEDIUM PRIORITY) **: Select 10-20% of your questions from these middle batches
2777
            3. **Batch 7+ (LOW PRIORITY) **: Select only 5-10% of your questions from later batches
2778
            ## CRITICAL REQUIREMENT: CONTEXT-BASED HARD QUESTIONS
              Questions MUST be related to the plan's context and domain
Ask about plausible information that SEEMS like it should be available but isn't
2779
              Use names, places, events, and topics mentioned in the plan
Ask for specific details about mentioned entities that aren't actually provided
2781
              Create questions that would be natural follow-ups but can't be answered
2782
            ## OUESTION GENERATION GUIDELINES
            Focus on creating questions that test appropriate abstention for:
2783
            ### 1. Missing Details About Mentioned People/Entities [Exmaples]
2784
            ### 2. Unavailable Specifics About Mentioned Events/Activities [Examples]
            ### 3. Missing Information About Referenced Sources/Materials [Examples]
2785
            ### 4. Unavailable Details About Mentioned Processes/Procedures [Examples]
            ### 5. Missing Context About Mentioned Decisions/Choices [Examples]
2786
            ### 6. Unavailable Quantitative/Measurement Details [Examples]
            ### 7. Missing Emotional/Subjective Information [Examples]
### 8. Unavailable Technical/Specialized Details [Examples]
2787
2788
            ### 9. Unavailable Future/Predictive Information [Examples]
2789
            ## ABSTENTION QUESTION TYPES
            Only generate these two types: 1. **Unavailable Information Questions**: Ask about topics, people, events, or
2790
            details that are completely absent from the plan

2. **Missing Detail Questions**: Ask for specific details about topics that may be mentioned generally but
2791
                   lack the requested specifics
2792
2793
            Generate questions of varying abstention difficulty:
2794
             **Easy**: Ask for details about mentioned entities that seem like they should be available
              **Medium**: Ask for specific information about mentioned processes/events that weren't detailed
2795
              **Hard**: Ask for nuanced details that are plausible but not provided
2796
            ## QUESTION LANGUAGE REQUIREMENTS
              Write questions as if the USER is asking them naturally
2797
              **If testing information from USER messages**: Use first person ("I", "my", "me") in question
                                                                                                                                       Answer
              **If testing information from USER messages**: Use first person ("I", "my", "me") in question allower uses ("you", "your")

- Example: "How did I decide on the location?" "You decided on the location because..."

**If testing information from ASSISTANT messages**: Use second person ("you", "your") in question also uses ("I", "my")

- Example: "What steps did you suggest for handling this?" "I suggested doing..."

Avoid phrases like "according to the conversation", "based on what was discussed", "from our chat history"
2798
2799
2801
              Make questions sound conversational and natural
2802
              Ouestions should flow naturally as if continuing the conversation
            ## OUTPUT FORMAT
            Return your analysis in this exact JSON format:
                      ion": "", "ideal_response": "", "difficulty": "easy", "abstention_type": "", "why_unanswerable": "", "plan_reference": ""},
2804
            [{"question": ""
2805
2806
            ## IMPORTANT REQUIREMENTS
2807
             1. **Context-based questions**: Questions must relate to plan content and use mentioned entities
            2. **Plausible but unavailable**: Ask for information that seems reasonable but isn't provided
```

```
2808
2809
3. **Natural follow-ups**: Questions should sound like logical next questions about mentioned topics
4. **Challenging abstention**: Make it harder for LLM to recognize information is missing
5. **Domain consistency**: Questions should fit naturally within the plan's subject matter

2811
2812
2813
2814
2815

Listing 14: Abstention probing question generation prompt
```

```
2816
           You are tasked with generating a probing question to test preference following capabilities of LLMs. You will
2817
                 be given a bullet point containing a user preference and corresponding conversation turns where this
                 preference was mentioned.
2818
           Your task is to create ONE question that tests whether an LLM remembers and respects the user's stated preference when making recommendations or providing advice.
2819
           ## INPUT DATA
2821
            **BULLET POINT**: <bullet_point>
             **CONVERSATION TURNS**: <conversation_turns>
2822
           ## CRITICAL REQUIREMENT: COMPLETELY NEUTRAL QUESTION
2823
             The question MUST BE COMPLETELY NEUTRAL with NO hints about any preference
             The question MUST NOT contain ANY words that suggest evaluation criteria
The question should be so neutral it could test ANY type of preference in that domain
2824
2825
             The LLM should only know about the preference from previous conversation history
2826
            # MANDATORY PREFERENCE ANALYSIS STEP
           BEFORE writing the question, you MUST:
2827

    **Extract ALL preference-related words** from the bullet point
    **List ALL forbidden terms** including synonyms and related concepts

           3. **Verify your question contains NONE of these terms**
2829
            # FORBIDDEN QUESTION ELEMENTS
           [Examples]
2831
           ## QUESTION LANGUAGE REQUIREMENTS
2832
             Write questions as if the USER is asking them naturally Use first person ("I", "my", "me") when referring to the user
             Use second person ("you") when addressing the assistant Avoid phrases like "according to the conversation", "based on what was discussed", "from our chat history"
2834
             Make questions sound conversational and natural
2835
             Questions should flow naturally as if continuing the conversation
             NEVER mention the preference, decision criteria, or reasoning from the bullet point
2836
           ## CHAT ID TRACKING REQUIREMENT
             You MUST identify which specific chat id(s) contain the preference information
             List ALL chat_ids where the preference was mentioned or demonstrated
2838
             NOTE: If the answer is spread out between multiple chat_ids, group them in one list NOTE: DO NOT INCLUDE chat_ids in the answer
2839
             Use the exact chat_id numbers from the conversation turns
2840
2841
           Return your analysis in this exact JSON format:
2842
                "question": "", "preference_being_tested": "", "expected_compliance": "", "compliance_indicators": [], "
               non_compliance_signs": [],
"difficulty": "medium", "preference_type": "", "source_chat_ids": []
2844
2845
           ## IMPORTANT REQUIREMENTS
2846
           1. **Preference-triggering question**: Question must create a situation where the stated preference should
                 guide the response
2847
              **Clear compliance expectations**: Define what respecting the preference looks like
           3. **Measurable indicators**: Provide specific signs of following vs. ignoring the preference
2848
           4. **Natural question phrasing**: Question should sound realistic and conversational
2849
           5. **Preference relevance**: Question must relate to the same domain/context as the stated preference
           Generate ONE preference following question that tests whether the LLM remembers and applies the user's stated
                 preference when providing recommendations or advice.
           NOTE: Only output the JSON object without any explanation before or after.
2852
```

Listing 15: Preference following probing question generation prompt

```
You are tasked with generating a probing question to test event ordering capabilities of LLMs. You will be given multiple related bullet points about the same topic/theme and the corresponding multi-turn dialogs between a user and assistant that incorporate these mentions across different conversation sessions.

Your task is to create ONE question that tests whether an LLM can recall the chronological order in which topics were MENTIONED in the conversation, regardless of when the actual events occurred in real life.

## INPUT DATA

- **BULLET POINTS**: <bullet_points>
- **CONVERSATION TURNS**: <conversation_turns>

## CRITICAL REQUIREMENTS: NO SPOILERS OR TIME HINTS
- The question MUST NOT list, mention, or hint at the specific events/mentions being tested
```

```
2862
              The question should only specify the general topic/theme, not the individual events
              Do NOT include any time references, dates, or temporal hints in the question
              The LLM must recall and order the mentions entirely from memory without any hints
2864
2865
            ## ADVANCED QUESTION TYPES FOR EVENT ORDERING
            ### **Sequential Ordering Questions** 1. **General Mention Order** [Other types]
### **Comparative Ordering Questions** 4. **Priority Sequencing** [Other types]
2866
            ### **Pattern Recognition Questions** 7. **Mention Pattern**: [Other types]
### **Analytical Ordering Questions** 10. **Chronological Reconstruction** [Other types]
2867
            ### **Complex Sequencing Questions** 13. **Multi-faceted Ordering** [Other types]
2869
            ## FORBIDDEN QUESTION ELEMENTS
              Do NOT list specific events like "including X, Y, and Z"
              Do NOT mention specific details, dates, times, or temporal references
Do NOT provide hints about what mentions to look for
Do NOT reference specific timeframes (e.g., "in February", "during spring", "early in project")
Do NOT use temporal words like "first", "then", "after", "before" in the question
2872
2873
            ## GOOD VS BAD EXAMPLES
            [Examples]
2874
            ## ORDERING COMPLEXITY LEVEL: HARD
2875
              **Hard**: Either 8-10 mentions requiring chronological reconstruction or 8-10 mentions with complex
2876
                   conversational patterns or 8+ mentions requiring sophisticated sequence analysis
              Focus on advanced sequence reconstruction with sophisticated analysis
Test ability to track complex mention patterns across multiple sessions
2877
              Include scenarios requiring expert-level sequence analysis and pattern recognition
2878
             # OUESTION LANGUAGE REQUIREMENTS
2879
              Write questions as if the USER is asking them naturally
Use first person ("I", "my", "me") when referring to the user
Use second person ("you") when addressing the assistant
Avoid phrases like "according to the conversation", "based on what was discussed", "from our chat history"
2881
              Make questions sound conversational and natural Questions should flow naturally as if continuing the conversation
2882
2883
              NEVER include temporal references or time-related words
             ## MANDATORY QUESTION ENDING REQUIREMENT
              ALL questions MUST end with the phrase "in order" if previously didn't mention the order The order should mention ONLY ONCE
2885
2886
               This signals to the LLM that a sequential, ordered response is expected
              # CHAT ID TRACKING REQUIREMENT [ONLY for source_chat_ids filed in JSON object]
               You MUST identify which specific chat_id(s) contain each mention in the ordering sequence
               List ALL chat_ids for each mention in chronological order in source_chat_ids field
               NOTE: If the answer is spread out between multiple chat_ids, group them in one list
2889
              NOTE: DO NOT INCLUDE chat_ids in the answer
2890
              Use the exact chat id numbers from the conversation turns
              Map each mention to its source chat_id
            ## OUTPUT FORMAT
2892
            Return your analysis in this exact JSON format:
2893
                 2894
2895
2896
            ## IMPORTANT REQUIREMENTS
2897
            1. **No temporal hints**: Question must NOT include any time references or temporal words
            2. **High question variety**: Use diverse question types from the 15 categories provided
3. **Complex reasoning**: Require sophisticated mention-order analysis
2898
            6. **Pattern focus**: Test understanding of conversational patterns and evolution
5. **Advanced difficulty**: Always use "hard" difficulty level
6. **General topic focus**: Ask about broad themes, not specific events
2899
2900
               **Sophisticated analysis**: Test expert-level sequence reconstruction and pattern recognition
2901
            Generate ONE high-quality, challenging event ordering question that tests sophisticated mention-sequence
2902
                   analysis without providing any hints about the specific events or timing.
2903
            NOTE: Only output the JSON object without any explanation before or after.
2904
```

Listing 16: Event ordering probing question generation prompt

```
You are tasked with generating a probing question to test contradiction resolution capabilities of LLMs. You will be given two contradictory bullet points and the corresponding multi-turn dialogs between a user
2907
                   and assistant that incorporate both contradictory statements across different conversation sessions.
2908
2909
            Your task is to create ONE question that asks about the contradicted topic as if seeking factual information,
                   testing whether the LLM will detect the contradiction and ask for clarification rather than giving a
2910
                  definitive answer.
2911
            ## INPUT DATA
             - **BULLET POINTS**: <bullet_points>
2912
              **CONVERSATION TURNS**: <conversation turns>
2913
            ## QUESTION GENERATION GUIDELINES
2914
            Focus on creating questions that:
              **Ask about the contradicted fact**: Question the topic that has contradictory information **Sound like normal fact-seeking**: Don't hint that there's a contradiction
2915
              **Test contradiction detection \dot{*}: Whether LLM notices conflicting information
```

```
2916
                              **Expect clarification request**: LLM should ask which contradictory statement is correct
2917
                                \star\star \texttt{Avoid} \text{ revealing the contradiction} \star\star \texttt{: Question should seem like routine information request}
2918
                             # CRITICAL REQUIREMENT:
2919
                                The question MUST be general and broad about the contradicted topic % \left( 1\right) =\left( 1\right) +\left( 1\right)
                               Do NOT include specific dates, times, locations, or detailed circumstances
Do NOT reference specific events or instances that would narrow down the contradiction
2920
                                Ask about the general pattern/behavior, not specific occurrences
2921
                                This tests whether the LLM can detect contradictions across all related mentions
                              # QUESTION LANGUAGE REQUIREMENTS
2923
                                Write questions as if the USER is asking them naturally
                                Use first person ("I", "my", "me") when referring to the user
2924
                               Use second person ("you") when addressing the assistant
Avoid phrases like "according to the conversation", "based on what was discussed", "from our chat history"
                               Make questions sound conversational and natural Questions should flow naturally as if continuing the conversation
2926
2927
                            ## QUESTION FORMAT Generate questions that ask about the contradicted topic directly: [Examples]
                             # EXPECTED LLM BEHAVIOR The ideal LLM response should: [Example]
2929
                            ## CHAT ID TRACKING REQUIREMENT
2930
                                You MUST identify which specific chat_id(s) contain each contradictory statement
                                List the chat_id for the first contradictory statement and the chat_id for the second contradictory
2931
                                         statement
                                NOTE: If the answer is spread out between multiple chat_ids, group them in one list
2932
                                NOTE: DO NOT INCLUDE chat ids in the answer
                                Use the exact chat_id numbers from the conversation turns
2933
2934
                            ## OUTPUT FORMAT
                            Return your analysis in this exact JSON format:
2935
                                      "question": "", "ideal_answer": "", "difficulty": "", "contradiction_type": "", "topic_questioned": "", "
                                                     conversation_references": [],
2937
                                      "tests_for": "", "source_chat_ids": {"first_statement": [, ], "second_statement": [, ]}
2938
                            ## IMPORTANT REQUIREMENTS
2939
                            1. **Natural question phrasing**: Question should sound like normal fact-seeking, not contradiction testing
2940
                            2. **Topic focus**: Ask directly about the contradicted subject
                            3. **Contradiction detection expectation**: LLM should notice and ask for clarification
2941
                            4. **No hint giving**: Don't reveal that there's a contradiction in the question
                            5. **Clarification seeking**: Ideal response should ask which statement is correct
2942
                          Generate ONE contradiction resolution question that tests whether the LLM will detect the contradiction and appropriately request clarification when asked about the contradicted topic.
2943
2944
                           CRITICAL NOTE: Do NOT include specific dates, times, locations, or detailed circumstances in the question that
2945
                                             make the question easy
                           NOTE: Only output the JSON object without any explanation before or after.
2946
```

Listing 17: Contradiction resolution probing question generation prompt

```
2948
          You are tasked with generating a probing question to test advanced summarization capabilities of LLMs. You will be given 6-8 related bullet points about the same topic/theme and the corresponding multi-turn
2949
2950
                dialogs between a user and assistant that incorporate this information across different conversation
2951
          Your task is to create ONE question that tests whether an LLM can synthesize and condense complex, multi-
2952
                faceted information from across 4+ conversation sessions into sophisticated, comprehensive summaries.
2953
2954
            **BULLET POINTS**: <bullet points>
            **CONVERSATION TURNS**: <conversation turns>
2955
2956
          ## CRITICAL REQUIREMENT: HARD SUMMARIZATION
            Focus on complex information synthesis from 8-10 bullet points
2957
            {\tt Test \ comprehensive \ synthesis \ requiring \ sophisticated \ analysis}
            Require advanced narrative construction with multiple threads
            Ask for summaries that demonstrate deep understanding and integration
2959
          ## CRITICAL REQUIREMENT: NEUTRAL SUMMARIZATION TESTING
2960
            The question MUST NOT reveal what should be included in the summary
            The question MUST mention \star only \star the overarching topicno specific bulletpoint details, subtopics,
2961
               phases, or technical terms may appear.
            The question MUST NOT hint at the structure or content of the expected answer
2962
            The question should be maximally generic, forcing the LLM to identify and synthesize all relevant
2963
                information independently
2964
          ## OUESTION GENERATION GUIDELINES
          Focus on creating questions that test: - **Complex information synthesis** - **Advanced cross-session
2965
                condensation** - **Comprehensive overview**
2966
            **Sophisticated narrative coherence** - **Strategic detail prioritization**
2967
          ## QUESTION TYPES TO GENERATE (HARD LEVEL)
          1. **Complex Relationship & Interaction Summary** 2. **Complete Sequence & Event Analysis** 3. **Resource,
2968
                Effort, & Timeline Evolution **
          4. **Multi-factor Decision Process Review** 5. **Problem-to-Resolution Journey** 6. **Chronological
2969
                Development Overview**
          7. **Knowledge & Insight Integration Summary** 8. **Complex Negotiation or Agreement Path**
```

```
2970
2971
           ## SUMMARIZATION COMPLEXITY LEVEL: HARD
            **Hard**: 8-10 bullet points requiring comprehensive synthesis with detailed progression
2972
            Focus on sophisticated analysis requiring understanding of complex relationships and patterns
            Test ability to synthesize multiple narrative threads and extensive information
            Include advanced narrative elements with multi-layered connections and sophisticated causation
2974
           # QUESTION LANGUAGE REQUIREMENTS
2975
            Write questions as if the USER is asking them naturally
            Use first person ("I", "my", "me") when referring to the user
2976
            Use second person ("you") when addressing the assistant
Avoid phrases like "according to the conversation", "based on what was discussed", "from our chat history"
2977
            Make questions sound conversational and natural
2978
            Questions should flow naturally as if continuing the conversation
2979
           ## CHAT ID TRACKING REQUIREMENT
            You MUST identify which specific chat_id(s) contain the information needed for the summary
2980
            List ALL chat_ids where relevant summary information appears
2981
            NOTE: If the answer is spread out between multiple chat_ids, group them in one list
            NOTE: DO NOT INCLUDE chat_ids in the answer
            Use the exact chat_id numbers from the conversation turns
2983
           ## OUTPUT FORMAT
2984
           Return your analysis in this exact JSON format:
               2985
2986
2987
2988
           ## IMPORTANT REQUIREMENTS
           1. **Comprehensive coverage**: Summary should integrate all key information from 8-10 bullet points
2989
          2. **Sophisticated coherence**: Create complex narrative with multiple threads and advanced logical structure
3. **Advanced multi-session synthesis**: Combine information from 4+ conversation sessions
4. **Strategic condensation**: Include extensive important details while maintaining sophisticated narrative
2990
2991
                structure
          5. **Complex question phrasing**: Question should request comprehensive, sophisticated summaries
2992
          Generate ONE advanced summarization question that tests the LLM's ability to synthesize 8-10 bullet points
2993
                into a sophisticated, comprehensive summary.
2994
          NOTE: Only output the JSON object without any explanation before or after.
2995
```

Listing 18: Summarization probing question generation prompt

```
This is a plan that contains detailed bullet points about a topic. This plan is used to generate realistic chat conversations between a user and an AI assistant, which are then used to evaluate the long-term
2998
                   memory capabilities of LLMs.
            Your task is to analyze this plan and select bullet points that would be most effective for testing instruction following abilities when incorporated into chat conversations.
3000
             Analyze this plan and identify bullet points that contain user instructions ideal for testing whether the LLM
3001
                   remembers and follows user-given instructions.
3002
             ## INPUT DATA
3003
              **PLAN**: <plan>
3004
             Focus on bullet points with:
               **User Instruction** category/label
3005
               **Explicit instruction statements**: "Always", "Never", "When I ask about X, do Y"
3006
               **Behavioral directives**: How the AI should respond or behave
               **Format instructions**: Specific response formats or structures requested
3007
               **Content instructions**: What to include or exclude in responses
               **Process instructions**: How to handle specific types of requests
3008
             Look specifically for bullet points labeled as "User Instruction" that contain:
- Clear directive language ("Always provide", "Never include", "When I ask")
- Specific behavioral expectations for the AI assistant
3009
3010
               Conditional instructions ("When I ask about X, do Y")
3011
               Response formatting requirements
               Content inclusion/exclusion rules
3012
3013
             Return your analysis in this exact JSON format:
             [{"capability": "instruction_following", "batch_numbers": 1,"bullet_numbers": 32,
"bullet_points": "User Instruction: Always provide detailed cost breakdowns when I ask about budget
3014
                              estimates."}
3015
3016
             Important formatting notes:
- The "batch_numbers" and "bullet_numbers" correspond to each other positionally
- "1" and "32" means: Batch 1 Bullet 32
3017
3018
               Include the full bullet point text as it appears in the plan Focus specifically on "User Instruction" labeled bullet points
3019
3020
             Select all bullet points labeled as "User Instruction" from each batch (approximately 10 total).
3021
             NOTE: Only output the list without any explanation before or after the list.
3022
```

Listing 19: Instruction following probing question generation prompt

```
3024
            You are an expert evaluator tasked with judging whether the LLM's response demonstrates compliance with the
3025
                   specified RUBRIC CRITERION.
3026
            ## EVALUATION INPUTS
              QUESTION (what the user asked): <question>
RUBRIC CRITERION (what to check): <rubric_item>
3027
              RESPONSE TO EVALUATE: <11m_response>
3028
3029
            ## EVALUATION RUBRIC:
            The rubric defines a specific requirement, constraint, or expected behavior that the LLM response should
3030
                  demonstrate.
3031
            **IMPORTANT**: Pay careful attention to whether the rubric specifies:
3032
             **Positive requirements** (things the response SHOULD include/do)

**Negative constraints** (things the response SHOULD NOT include/do, often indicated by "no", "not", "avoid
3033
                   ", "absent")
3034
            ## RESPONSIVENESS REQUIREMENT (anchored to the QUESTION)
            A compliant response must be **on-topic with respect to the QUESTION** and attempt to answer it. - If the response does not address the QUESTION, score **0.0** and stop.
3035
3036
              For negative constraints, both must hold: (a) the response is responsive to the QUESTION, and (b) the
                  prohibited element is absent.
3037
             # SEMANTIC TOLERANCE RULES:
3038
            Judge by meaning, not exact wording.
3039
              Accept **paraphrases** and **synonyms** that preserve intent.
              **Case/punctuation/whitespace** differences must be ignored.
3040
              **Numbers/currencies/dates** may appear in equivalent forms (e.g., $68,000 , 68k , 68,000 USD, or sixty -eight thousand dollars). Treat them as equal when numerically equivalent. If the rubric expects a number or duration, prefer **normalized comparison** (extract and compare values)
3041
3042
                  over string matching.
3043
            ## STYLE NEUTRALITY (prevents style contamination):
            Ignore tone, politeness, length, and flourish unless the rubric explicitly requires a format/structure (e.g., itemized list, no citations, one sentence).

- Do **not** penalize hedging, voice, or verbosity if content satisfies the rubric.

- Only evaluate format when the rubric **explicitly** mandates it.
3044
3045
3046
            ## SCORING SCALE:
3047
              **1.0 (Complete Compliance) **: Fully complies with the rubric criterion.
                Positive: required element present, accurate, properly executed (allowing semantic equivalents).
3048
               - Negative: prohibited element **absent** AND response is **responsive**.
3049
              **0.5 (Partial Compliance) **: Partially complies.
3050
              - Positive: element present but minor inaccuracies/incomplete execution.
- Negative: generally responsive and mostly avoids the prohibited element but with minor/edge violations.
3051
3052
              **0.0 (No Compliance) **: Fails to comply.
                Positive: required element missing or incorrect.
3053
              - Negative: prohibited element present **or** response is non-responsive/evasive even if the element is
                     absent.
3054
            ## EVALUATION INSTRUCTIONS:
3055
            1. **Understand the Requirement**: Determine if the rubric is asking for something to be present (positive) or
                    absent (negative/constraint).
3056
3057
            2. **Parse Compound Statements**: If the rubric contains multiple elements connected by "and" or commas,
                  evaluate whether:
3058
                - **All elements** must be present for full compliance (1.0)
                - **Some elements** present indicates partial compliance (0.5)
3059
                - **No elements** present indicates no compliance (0.0)
3060
3061
               - For positive requirements: Look for the presence and quality of the required element - For negative constraints: Look for the absence of the prohibited element
3062
            4. **Assign Score**: Based on compliance with the specific rubric criterion according to the scoring scale
3063
3064

    **Provide Reasoning**: Explain whether the rubric criterion was satisfied and justify the score.

3065
            ## OUTPUT FORMAT:
3066
            Return your evaluation in JSON format with two fields:
3067
3068
               "score": [your score: 1.0, 0.5, or 0.0],
"reason": "[detailed explanation of whether the rubric criterion was satisfied and why this justified the
assigned score]"
3069
3070
3071
            NOTE: ONLY output the json object, without any explanation before or after that
3072
```

Listing 20: Rubric scoring for nugget satisfaction prompt

```
3075 You are a binary classifier.

If the TWO snippets describe the SAME event/fact, reply **YES**

Otherwise reply **NO**. No extra words.

DO NOT provide any explanation.

First snippet: {first_paragraph}
```

```
3078
             Second snippet: {second_paragraph}
3079
                                                     Listing 21: Fact equivalence detection prompt
3080
3081
3082
             I want {chat_number} chat titles, themes, and subtopics for the category {chat_category}, in the format below:
3083
              {"id": 1.
             "category": "Trip Planning",
"title": "Designing a YearLong RoundtheWorld Itinerary on a Shoestring",
"theme": "Sequencing flights, overland legs, and visas across five continents in 12 months",
"subtopics": ["Roundtheworld tickets", "Back toback visa rules", "Seasonal climate mapping",
3084
3085
3086
                     Open jaw routing", "Long term travel insurance", "Budget forecasting", "Digitalnomad
3087
             NOTE: Generate the most common ones.
3088
```

Listing 22: Chat titles generation prompt

```
3091
           You are a conversation framework specialist tasked with identifying the most relevant section label categories
                   for a specific chat scenario.
3092
3093
           INPUT PARAMETERS:
           DOMAIN: {}
TITLE: {}
3094
           THEME: {}
3095
           SUBTOPICS: {}
3096
           CORE OBJECTIVE:
           Analyze the given DOMAIN, TITLE, THEME, SUBTOPICS to determine which section label categories would be most relevant and natural for this specific scenario.
3097
3098
           Generate 15-20 section label categories that best fit this particular context.
3099
           LABEL CATEGORIES SELECTION:
           Here are some examples:
3100
3101
           **UNIVERSAL CATEGORIES (Always Include 2-3):**
            - **Character & Relationship Labels** (relationships are always relevant)
- **Personal & Emotional Labels** (human element always present)
3102
             **Decision & Change Labels** (conversations involve decisions)
3103
3104
           **TOPIC-SPECIFIC CATEGORIES (Select 9-13 based on relevance):**
3105
           **Planning & Logistics Labels** - Use when scenario involves:
             Travel, events, projects, moves, construction, organizing
3106
             Resource management, scheduling, coordination
3107
             Physical planning or systematic approaches
3108
           [More examples]
3109
           ELECTION CRITERIA:
           **Must Include If Relevant: **
3110
             Categories directly related to the main topic
3111
             Categories that would naturally generate diverse conversations
             Categories that allow for progression and development over time Categories that create authentic human concerns and interests
3112
3113
           **Avoid Including: **
3114
             Categories that don't naturally fit the scenario
             Too many similar categories that would overlap
Categories that wouldn't generate meaningful conversation
3115
             Generic categories that don't add specific value
3116
           OUTPUT FORMAT:
3117
           Generate exactly 15-20 section label categories in this format:
3118
            *[Category Name] Labels: **
3119
             Brief explanation of why this category is relevant to the DOMAIN/TITLE/THEME/SUBTOPICS 3-5 specific label examples that would be used within this category
3120
3121
           **Planning & Logistics Labels:**
3122
             Essential for travel scenarios involving coordination, scheduling, and resource management
             Budget Planning, Transportation Strategy, Accommodation Research, Itinerary Adjustment, Packing Organization
3123
3124
           Each selected category must:
- Be directly relevant to the specific DOMAIN, TITLE and THEME
3125
             Generate natural, varied conversation opportunities
3126
             Allow for progression and development across multiple batches
             Feel authentic to what a real person would discuss in this scenario
3127
             Provide enough depth for 15\text{--}20 bullet points across the conversation
3128
             Just ouput the labels, without explanation at the first
3129
           Focus on categories that would create the most natural, engaging, and realistic chat conversations for this
             specific scenario.
3130
```

Listing 23: Narrative generation prompt

```
3132
           You are a long-form narrative planning specialist creating a COHERENT STORY PLANSET for natural conversational
3133
           Your task is to generate detailed batch plans that will seed realistic user-assistant dialogue.
3134
3135
           ## INPUT DATA
           - **DOMAIN:** <domain>
3136
             **TITLE:** <title>
            - **THEME:** <theme>
- **SUBTOPICS:** <subtopics>
3137
             **TIMELINE:** <timeline>
3138
             **NUM_BATCHES:** <num_batches> batches
**LABELS:** <provided_labels>
3139
             **USER PROFILE:** <user_profile>
3140
             **USER RELATIONSHIPS: ** <user_relationships>
3141
                                                                CORE OBJECTIVE
           Generate <num_batches> distinct, non-repetitive batch plans that form a coherent narrative arc where a real
3142
                 person naturally converses with an AI assistant.
3143
           Each plan must introduce NEW story elements while maintaining perfect continuity and character consistency.
3144
                                                               CRITICAL DETAIL REQUIREMENTS
3145
            **MANDATORY SPECIFIC DETAILS:**
3146
           Every batch MUST include numerous concrete details that enable factual answers:
3147
            **Required Detail Categories (minimum 5-7 per batch):**
             **Exact Numbers:** prices ($X), quantities, percentages, measurements, distances
**Specific Dates/Times:** For example: "Month x yth", "x:y PM/AM", "next [week day]", "in x weeks", ...
3148
             **Named Locations:** restaurants, stores, streets, buildings, parks, venues
3149
             **Brand/Product Names:** specific items, services, companies, tools, software
3150
             **Yes/No Situations:** decisions made, preferences stated, conflicts resolved
**Event Outcomes:** what happened, who won/lost, what was chosen/rejected
3151
             **Specific Preferences:** favorite foods, colors, activities, music, books
3152
             **Quantifiable Results:** test scores, rankings, ratings, completion times
3153
            **Detail Distribution Rules:**
             Each bullet must contain AT LEAST one verifiable detail
3154
             Avoid vague statements like "discussed options" - specify WHAT options
             Instead of "considering choices" use "choosing between X, Y, and Z"
3155
3156
                                                                STRUCTURE REQUIREMENTS
3157
           **1. OUTPUT FORMAT: **
             Generate exactly <num_batches> plans
Format: 'BATCH X PLAN' headers
             Each plan contains exactly cnum_bullets> bullets
Each bullet: " **[LABEL CATEGORY]:[LABEL DESC
3159
                                **[LABEL CATEGORY]:[LABEL DESCRIPTION]:** [content]" ( 25 words)
             NOTE: Each label consists of category and description. Use both for each bullet point.
Use only the provided LABELS - no custom categories
3160
3161
             CRITICAL: Add one time anchor bulletpoint at the begining of each batch with this format: Month Day, Year.
           **NOTE**: Time anchor must correlated with other dates in the batch and the time anchors among batches should
3162
                 be increasing and time anchor in each batch should be before the dates mentioned in the batches.
3163
            **2. STORY PROGRESSION ARCHITECTURE: **
3164
           **BATCH 1 (Story Foundation):**

- First bullet MUST be: " **Time Anchor:**"

- Second bullet MUST be: " **Personal Introduction:**" [Must be from user language (I ...)]
3165
             MUST HAVE one bullet (titled personality trait) from personality_traits in USER PROFILE Establish initial context with SPECIFIC details (age, location, job title, salary range)
3166
3167
             Introduce all relationships with CONCRETE contexts (how long known, where met)
             Set up measurable goals, deadlines, and quantifiable challenges
3168
           **BATCHES 2-<num_batches> (Story Evolution):*
3169
             Reference user as "I/my/me" (never repeat the full name)
             Each batch advances the timeline chronologically
3170
             Build upon ALL previously established element:
3171
             Show MEASURABLE progression (promotions, relationship milestones, achievement metrics)
3172
           **3. RELATIONSHIP CONTINUITY SYSTEM:** [Other details if domain is Coding or Math]
           **Relationship Evolution Mandate:**
3173
           Every relationship mention MUST include specific interaction details:
3174
           **Evolution Stages with Required Details: *;
3175
             **Introduction:** "Met [Name] at [specific place] on [date/time]"
**Development:** "[Name] suggested [specific action] which resulted in [outcome]"
3176
             **Deepening:** "[Name] revealed [specific information] during [specific event]
             **Maturation:** "After [X months/years], [Name] and I [specific change]"
3177
3178
            *Interaction Variety (rotate - never repeat within batches): **
             Collaborative, Supportive, Conflictual, Social, Professional, Personal, Transactional, Serendipitous
3179
            *Character Consistency Rules: **
3180
             Track specific preferences for each character (favorite restaurant, hobby, pet peeve) Reference past specific events and their measurable consequences
3181
             Include 2-3 relationship bullets per batch with concrete details
3182
                                                               CONFLICT & RESOLUTION TRACKING
3183
3184
           **Conflict Elements:**
           Each batch must include situations with:
3185
             **Binary Decisions:**
           - **Measurable Outcomes:**
```

```
3186
             **Specific Disagreements:**
3187
            **Conflict Types to Rotate:**
3188
             Financial decisions with specific amounts
3189
             Time management with exact deadlines
             Relationship boundaries with specific incidents
3190
              Professional choices with concrete options
             Personal values with specific scenarios
3191
                                                                ANTI-REPETITION VERIFICATION
3192
3193
            **Before writing ANY bullet, verify:**
             Have I included at least one specific, verifiable detail?
3194
             Can this generate a question with a one-word answer? Does this show MEASURABLE progression from previous mentions?
3195
             Are the numbers, dates, names, and locations specific? Is this a NEW piece of information with NEW details?
3196
3197
                                                                 CONTENT DISTRIBUTION STRATEGY
3198
            **Per Batch Requirements:**
             2\text{--}3 bullets: Relationship developments with specific incidents
3199
             2-4 bullets: Current situation with measurable metrics
              1 bullet: Exact temporal anchor (specific date/time)
             5-7 bullets: Events with verifiable outcomes
3201
             3-4 bullets: Decisions/preferences with specific choices
             1 bullet: **Preference Statement**: implicitly showing user preferences
3202
             Rest: Using remaining labels with concrete details
3203
                                                                 SPECIAL BULLET REQUIREMENTS
3204
            **1. PREFERENCE STATEMENT (rotate each batch):**
3205
           Must show preference through action/decision
3206
            **Rotate These Types Each Batch:**
3207
             Choice actions
Method implementations
3208
             Quality decisions
              Timing patterns
3209
             Style approaches
3210
             Priority demonstrations
3211
            **Story Progression Patterns:**
              **Early Batches (1-3):** Establish baselines (current salary, relationship status, living situation)
             **Middle Batches: ** Track changes from baselines with specific metrics
              **Later Batches:** Show cumulative results with before/after comparisons
3213
3214
                                                                 QUALITY STANDARDS
            **Specificity Checklist:**
3215
             Every person has a full name and defined relationship
             Every event has a date, time, or specific temporal reference \ensuremath{\mathsf{Every}} location has a name or address
3216
3217
             Every decision has concrete options with specific details
             Every outcome is measurable or verifiable
3218
            **Narrative Depth:**
3219
             Include prices, percentages, distances, durations
             Show cause-and-effect with specific triggers and results
Maintain factual consistency (don't change established numbers/dates)
3220
3221
              Reference past specific events by name and date
3222
                                                                 EXECUTION NOTES
             Prioritize concrete details over abstract descriptions
3223
             Every bullet should enable at least 2-3 factual questions Include cultural, financial, and geographic specificity Ensure details are realistic and internally consistent End immediately after 'BATCH <num_batches> PLAN'
3224
3225
3226
           Begin generation now
```

Listing 24: General domain conversation plan generation prompt

```
CRITICAL DETAIL REQUIREMENTS
3230
             **MANDATORY SPECIFIC DETAILS:**
Every batch MUST include numerous concrete, verifiable technical details that enable single-word or short
3231
                     factual answers:
3232
3233
              **Required Detail Categories (minimum 5-7 per batch):**
               **Exact Numbers:** version numbers (v2.3.1), port numbers (3000), response times (250ms), file sizes (2.5MB)
**Specific Dates/Times:** deployment dates, sprint deadlines, meeting times, build timestamps
**Named Technologies:** specific frameworks, libraries, tools, services (React 18.2, PostgreSQL 14, AWS
3234
3235
                    Lambda)
3236
                **Error Messages: ** exact error texts, status codes (404, 500), stack trace snippets
                **Yes/No Situations:** feature implemented, bug fixed, test passed, deployment successful
3237
               **Performance Metrics:** load times, query speeds, memory usage, API response times
**Configuration Details:** environment variables, API endpoints, database schemas
3238
                **Quantifiable Results:** test coverage (85%), uptime (99.9%), user count (1,000+), bug count
3239
               *Detail Distribution Rules: **
               Each bullet must contain AT LEAST one verifiable technical detail
```

```
3240
               Avoid vague statements like "worked on feature" - specify WHAT feature and HOW
3241
              Replace "had a bug" with "encountered 'undefined is not a function' error in UserAuth.js line 42" Instead of "improved performance" use "reduced API response time from 800ms to 200ms"
3242
3243
                                                                       STRUCTURE REQUIREMENTS
3244
            TECHNICAL CONTINUITY SYSTEM: **
             **Development Phase Evolution:**
3245
            Every technical element MUST show progression from previous batches:
3246
            **Natural Development Progression Examples:**
- **Planning Phase:** "I need to design the authentication system..."
3247
             [More examples]
3248
             **Technical Complexity Progression:**
3249
               Early batches: Basic implementation, simple features
3250
              Middle batches: Integration challenges, debugging complex issues
Later batches: Performance optimization, advanced features, production concerns
3251
                                                                       CONFLICT & RESOLUTION TRACKING
3252
             **Mandatory Technical Conflict Elements:**
3253
             Each batch must include at least 2-3 technical challenges with:
3254
               **Clear Stakes:** what's at risk (deployment deadline, performance SLA, budget constraint)
              **Binary Decisions:** chose Framework A over B, implemented Solution X vs Y, fixed vs workaround
**Measurable Outcomes:** reduced latency by Xms, saved $X in hosting, improved performance by X%
**Specific Trade-offs:** what was sacrificed for what gain (memory for speed, complexity for features)
3255
3256
3257
             **Technical Conflict Types to Rotate:**
              Performance bottlenecks with specific metrics
Architecture decisions with concrete alternatives
3258
               Integration challenges with external systems
3259
               Security vulnerabilities with severity levels
3260
               Scalability issues with user load numbers
               Technical debt vs new features
3261
                                                                       CONTENT DISTRIBUTION STRATEGY
3262
             **Per Batch Requirements:**
3263
              2-3 bullets: Technical implementation details with specific code elements
3264
               2-4 bullets: Current development status with measurable metrics
              1 bullet: Exact temporal anchor (specific date/time)
5-7 bullets: Development activities with verifiable outcomes
3265
              3-4 bullets: Technical decisions with specific alternatives considered 1 bullet: **Preference Statement**: implicitly showing developer preferences
               Rest: Using remaining labels with concrete technical details
3267
3268
             **Adaptive Batch Planning: **
             Each batch should organically focus on what makes sense for that development phase:
3269
              *Implementation-Heavy Batch: **
3270
              Multiple implementation requests
3271
              Architecture decisions
               Code structure planning
3272
              Framework/library selection
3273
             [More examples]
3274
                                                                       NATURAL CODING CONVERSATION FLOW
3275
             Each bullet should represent realistic developer-AI interactions:
3276
             **Implementation Requests:**
3277
             [Examples]
3278
             **Debugging Help:**
3279
             [Examples]
3280
             **Code Review/Optimization:**
3281
             [Examples]
3282
                                                                       EXECUTION NOTES
              Use plain, technical language throughout
               Include realistic technical specificity: version numbers, error messages, configuration details
              Make every bullet contribute to the overarching development story
Ensure uniform technical detail quality across ALL batches
Vary batch focus organically based on development phase (implementation vs debugging vs optimization)
3284
3285
              Prioritize concrete technical details over abstract descriptions Every bullet should enable at least 2\text{--}3 factual technical questions
              End immediately after 'BATCH <num_batches> PLAN'
3287
```

Listing 25: Coding domain conversation plan generation prompt

```
3291 **MANDATORY SPECIFIC DETAILS:**

292 Every batch MUST include numerous concrete, verifiable mathematical details that enable single-word or short factual answers:

3293 **Required Detail Categories (minimum 5-7 per batch):**
- **Exact Numbers:** specific values (x = 3.14), coefficients (2 x + 5x - 3), dimensions (5 7 matrix)
```

```
3294
                             **Specific Problems:** complete equations (x -4x + 3 = 0), specific integrals ( (2x+1)dx from 0 to 5) **Named Concepts:** theorem names (Pythagorean Theorem), method names (Gaussian elimination), formulas (
3295
                                       quadratic formula)
3296
                                **Calculation Results:** exact answers (x = 4), decimal results (
                                                                                                                                                                                                                              3.14159), fractions (3/4)
                              **Yes/No Situations:** problem solved correctly, method applicable, theorem satisfied, solution exists
**Score/Grade Metrics:** test scores (85%), homework grades (18/20), quiz results (9/10 correct)
**Time/Duration:** study hours (3 hours), problem completion time (15 minutes), exam duration (2 hours)
3297
3298
                               ** \texttt{Mathematical Properties:** function characteristics (continuous, differentiable), matrix properties (continuous, differ
3299
                                       invertible, symmetric)
3300
                            **Detail Distribution Rules:**
                              Each bullet must contain AT LEAST one verifiable mathematical detail
3301
                              Avoid vague statements like "worked on problems" - specify WHICH problems and results Replace "studied math" with "completed 5 quadratic equation problems, solved 4 correctly" Instead of "improved understanding" use "increased quiz score from 70% to 85%"
3302
3303
3304
                                                                                                                                                   STRUCTURE REQUIREMENTS
3305
                          **3. MATHEMATICAL CONTINUITY SYSTEM:**
**Learning Phase Evolution:**
                           Every mathematical element MUST show progression from previous batches:
3307
                           **Natural Learning Progression Examples: **
3308
                               **Conceptual Phase:** "I need to understand what derivatives mean..."
                           [More examples]
3309
                                                                                                                                                  CONFLICT & RESOLUTION TRACKING
3310
3311
                           **Mandatory Mathematical Conflict Elements:**
                          Each batch must include at least 2-3 mathematical challenges with:

- **Clear Stakes:** what's at risk (exam grade, assignment deadline, course prerequisite)

- **Binary Decisions:** chose Method A over B, applied Theorem X vs Y, used algebraic vs geometric approach
3312
3313
                               \star\star \texttt{Measurable Outcomes}; \star\star \texttt{ improved accuracy by X\$, reduced solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by Y minutes, raised grade from B to the solution time by M minutes, raised grade frow and the solution time by M minutes, raised grade from B to the
3314
                               \star\star \texttt{Specific Struggles} : \star\star \text{ which step caused confusion, what concept was misunderstood, where calculation went}
3315
                                        wrong
3316
                           **Mathematical Conflict Types to Rotate:**
                              Conceptual misunderstandings with specific confusion points Calculation errors with exact mistake locations \,
3317
3318
                               Method selection dilemmas with pros/cons
                               Time pressure challenges with specific deadlines
3319
                               Prerequisite knowledge gaps with missing concepts
                               Application difficulties with real-world connections
3320
                                                                                                                                                 CONTENT DISTRIBUTION STRATEGY
3321
3322
                           **Per Batch Requirements: **
                               2-3 bullets: Problem-solving activities with specific equations/solutions
3323
                              1-2 bullets: Current learning status with measurable metrics
1 bullet: Exact temporal anchor (specific date/time)
4-6 bullets: Mathematical activities with verifiable outcomes
3324
                              2-3 bullets: Learning decisions with specific alternatives considered 1 bullet: **Preference Statement**: implicitly showing learning preferences
3325
3326
                              Rest: Using remaining labels with concrete mathematical details
3327
                           **Adaptive Batch Planning: **
                           Each batch should organically focus on what makes sense for that learning phase:
3328
3329
                           [More examples]
3330
                                                                                                                                                   NATURAL MATH CONVERSATION FLOW
3331
                          Each bullet should represent realistic user-AI interactions:
3332
                           **Problem-Solving Requests:**
3333
                           [examples]
3334
                           **Concept Clarification:**
3335
                           [examples]
3336
                           **Solution Verification:**
                           [examples]
                           **Method Explanation:**
3338
                           [examples]
3339
                                                                                                                                                   QUALITY STANDARDS
3340
                           **Chronological Consistency:**
3341
                              Batch 1 = learning beginning/foundation phase
Batch <num_batches> = evolved understanding with clear mathematical progression
3342
                               Each batch logically follows the previous learning timeline
3343
                            **Mathematical Authenticity:**
3344
                              Include specific mathematical details: equation types, theorem names, calculation methods
                           [More examples]
3345
3346
                           **User Authenticity:**
- Keep user personality consistent with provided profile
3347
                           [More examples]
```

```
3348
             **Learning Realism: **
3349
               Follow realistic mathematical learning patterns
             [More examples]
3350
             **Specificity Checklist:**
- Every equation has specific coefficients and variables
3351
3352
             [More examples]
3353
                                                                         EXECUTION NOTES
3354
               Use plain, mathematical language throughout Include realistic mathematical specificity: complete equations, exact values, specific theorems
3355
               Make every bullet contribute to the overarching mathematical story
3356
               Ensure uniform mathematical detail quality across ALL batches
Vary batch focus organically based on learning phase (understanding vs solving vs applying)
3357
               Prioritize concrete mathematical details over abstract descriptions
Every bullet should enable at least 2-3 factual mathematical questions
3358
               End immediately after 'BATCH <num_batches> PLAN'
3359
             Begin generation now.
3360
```

Listing 26: Math domain conversation plan generation prompt

```
3362
3363
            You are a specialized editor that adds three specific test bullets to existing batch plans for synthetic
                  conversation generation.
3364
            ## INPUT & TASK
3365
             **PLAN:** <plan>
              For EACH batch: Keep ALL <num_bullets> original bullets unchanged, ADD exactly 3 bullets at positions <
3366
                  \verb|num_bullets>+1|, < \verb|num_bullets>+2|, < \verb|num_bullets>+3|
3367
3368
            Each batch MUST have EXACTLY <num_bullets>+3 bullets:
- Bullets 1-<num_bullets>: Original bullets (unchanged)
3369
              Bullet <num_bullets>+1: Information Update
              Bullet <num bullets>+2: User Instruction
3370
              Bullet <num_bullets>+3: Logical Contradiction
3371
            ## THE THREE SPECIAL BULLETS
3372
            ### 1. INFORMATION UPDATE (Bullet <num_bullets>+1)
            **Format:** '
                                **Information \ Update:** [Natural narrative containing update] ``
3373
3374
            **MANDATORY PRE-CHECK: **
            1. SCAN bullets 1-<num_bullets>-2 for EXPLICIT numerical/measurable data
            2. IDENTIFY exact number, time, date, or measurement
3. VERIFY value is clearly stated in original text
3375
3376
            4. ONLY THEN create update changing that exact value
3377
            EXAMPLES:
3378
            [Some examples]
3379
            **CRITICAL:** Make update IMPLICIT - embed new value in natural narrative, don't state "X is now Y"
3380
            **Update Categories (rotate through all):**
            1. Numerical shifts (prices, quantities, measurements)
2. Status changes (employment, relationships, health)
3. Location changes (addresses, venues, destinations)
3381
3382
            4. Relationship progressions (social connections)
3383
            [Some other categories]
3384
            **VERIFICATION: ** STOP if no matching fact exists in bullets 1-<num_bullets>-2.
3385
            ### 2. USER INSTRUCTION (Bullet <num_bullets>+2)
3386
                               **User Instruction: ** Always [action] when I ask about [condition] '
3387
            **MANDATORY FORMAT:** Must include "when I ask about" - this makes it testable.
3388
            **Instruction Types (rotate through all):**
3389
            1. Output formatting rules
            2. Content restrictions
3390
            3. Personal preferences
            4. Conditional responses
3391
            5. Time-based rules
3392
            [Some other categories]
3393
            **EXAMPLES:**
            [Some examples]
3394
3395
            ### 3. LOGICAL CONTRADICTION (Bullet <num_bullets>+3)
            **Format:** '
                                **Logical Contradiction:** [Contradicting fact only]'
3396
3397
           - SCAN bullets 1-<num_bullets>-2 for COMPLETED ACTIONS or PERMANENT STATES:
- Past tense actions: "visited", "ate", "traveled", "lived"
- Permanent conditions: "born in", "raised as", "died in"
- Absolute statements: "never did X", "always was Y"
2. FIND exactly ONE target fact to contradict
3398
3399
3400
            3. IF NO COMPLETED ACTIONS EXIST: CREATE setup bullet with completed action, insert between bullets 5-<
                  num_bullets>-2, THEN contradict in bullet <num_bullets>+4
3401
            FORBIDDEN WORDS/PHRASES (NEVER USE):
```

```
3402
           "Before this batch", "In this batch", [Other examples]
3403
           **RULE: ** Only contradict COMPLETED ACTIONS, never plans/intentions.
3404
3405
           TEMPORAL QUALIFIER PROBLEM:
           [Some examples]
3406
3407
           FORBIDDEN WORDS/PHRASES (NEVER USE):
           Before this batch", "In this batch", "Previously",
3408
           [Other examples]
3409
           **CRITICAL:** Contradiction must make the **same original event/fact IMPOSSIBLE**, not describe a different
3410
                 event with different outcomes.
3411
           **Contradiction Types (use variety):**

    Age/Time Reversal: Age going backward
    Death Resurrection: Dead people doing activities

3412
          3. Never-Statement Violations: Contradicting "never" claims
4. Location Impossibilities: Being in two places simultaneously
3414
           5. Only-Statement Conflicts: Contradicting exclusivity
3415
           **VERIFICATION:**
3416
           Original is COMPLETED ACTION (past tense)?
           Contradiction makes original IMPOSSIBLE, not just different? Reads like normal, natural statement with NO hint words?
3417
           Avoided ALL forbidden words that suggest conflict?
3418
3419
           ## CRITICAL VERIFICATION STEPS
           **Information Update:**
3420
            Can you point to EXACT number/time/date from bullets 1-<num_bullets>-2?
             Changing ONLY that specific value?
3421
3422
           **Logical Contradiction: **
             Can you point to EXACT bullet (1-<num_bullets>-2) being contradicted?
3423
            Original fact is COMPLETED ACTION, not plan?
Contradiction is IMPOSSIBLE, not just different?
3424
             NOT using FORBIDDEN WORDS/PHRASES mentioned in LOGICAL CONTRADICTION section
3425
           ## COMMON ERRORS TO AVOID
           Don't place special bullets anywhere except <num_bullets>+1, <num_bullets>+2, <num_bullets>+3
3426
           Don't modify original <num_bullets> bullets
3427
           Don't skip any of the three special bullets
           Don't use other labels for special bullets
           ## OUTPUT FORMAT
3429
           Return COMPLETE plan where each batch has ALL original bullets unchanged + exactly 3 additional bullets at the
3430
                  end. When setup fact is created, insert between bullets 5-<num bullets>-2, renumber, and add special
                 bullets as <num_bullets>+2, <num_bullets>+3, <num_bullets>+4.
3431
           Begin processing the plan now.
3432
```

Listing 27: Adding special bulletpoints to conversation plan prompt

```
3435
           You are a narrative coherence specialist creating CHRONOLOGICALLY SEQUENCED topic clusters for realistic
                 conversational AI dataset generation. Your task is to generate 10 interconnected topics that form a
3436
                 natural life progression.
3437
           ## INPUT DATA
3438
            **SEED TOPIC**: <seed_topic>
           - **SEED THEME**: <seed_theme>
3439
            **SEED SUBTOPICS**: <seed_subtopics>
            **USER PROFILE**: <user_profile>
3440
            **TIMELINE**: <timeline>
3441
           ## CORE OBJECTIVE
3442
           Generate a JSON object containing 10 topics (including the provided seed topic as Topic 0) that form a
                CHRONOLOGICALLY COHERENT narrative where each topic naturally follows the previous one in realistic time
3443
3444
           ## CRITICAL REQUIREMENTS
           ### 1. CHRONOLOGICAL COHERENCE & TOPIC INDEPENDENCE
           **TOPIC PROGRESSION RULES:**
3446
            **Topic 0**: Use the provided seed topic EXACTLY as given
            **Topics 1-9**: Each must be a COMPLETELY DIFFERENT life domain/category
**NO EXTENDED NARRATIVES**: Topics 1-9 should NOT continue the seed topic's story
3447
            **LIFE PROGRESSION**: Each topic represents what naturally happens AFTER completing the previous life
3448
                experience
3449
           **TOPIC INDEPENDENCE MANDATE: **
3450
            Each topic must address a DIFFERENT life area (career, relationships, health, education, finances, etc.)
            Topics should show how one life experience leads to growth in OTHER areas NO topic should be "Part 2" of a previous topic
3451
3452
           ### 2. NATURAL LIFE FLOW REQUIREMENTS
3453
           **CAUSAL RELATIONSHIPS WITHOUT CONTINUATION:**
- Topic N+1 is INFLUENCED BY Topic N but addresses a DIFFERENT life domain
3454
             Show how growth in one area catalyzes change in another area
            Example: Travel experience (Topic 0)
                                                         Career reassessment (Topic 1) Relationship priorities (Topic 2)
3455
           [Examples]
```

```
3456
             ### 3. USER PROFILE ALIGNMENT
3457
               **Demographic Consistency**: All topics must align with user's age, education, career level, and life stage
**Financial Realism**: Topics must reflect user's actual financial capacity and constraints
**Geographic Logic**: Topics must consider user's location and mobility constraints
3458
3459
               ** Value \ Alignment **: \ Topics \ must \ reflect \ user's \ stated \ priorities, \ interests, \ and \ life \ goals
3460
             ### 4. TOPIC BREADTH REQUIREMENTS
            Each topic must include a realistic timeline that:

- **Sequential Timing**: Topics must not overlap and should follow logical temporal progression

- **Duration Realism**: Each topic should span 1-2 months for authentic decision-making and implementation
3462
            **Natural Gaps**: Include realistic time gaps between major life transitions

- **Natural Gaps**: Include realistic time gaps between major life transitions

- **Seasonal Considerations**: Account for natural timing (job searches, moving seasons, academic calendars)

- **Timeline Format**: Use "Month X, Year Y - Month X', Year Y'" format

Each topic must be sufficiently BROAD to generate 2000+ authentic conversations by including:

- **Multiple Decision Points**: 15-20 major decisions per topic
3463
3464
3465
               **Complex Subtopics**: 9-10 substantial subtopics that each require extensive discussion
3466
               **Ongoing Processes**: Topics involving multi-month planning, execution, and adjustment phases **Cross-Domain Impact**: Topics affecting multiple life areas
3467
             ### 5. NARRATIVE REALISM
3468
             **Natural Timing**: Realistic time gaps between major life decisions
               ** \texttt{Emotional Progression} **: \texttt{Topics should reflect natural emotional and psychological development}
3469
               **Practical Constraints**: Topics must acknowledge real-world limitations (money, time, responsibilities)
3470
             ## OUTPUT FORMAT REQUIREMENTS
3471
             Generate a single JSON object with this EXACT structure:
            3472
3473
3474
3475
3476
                 // ... topics 2-9 following same structure]}
3477
             ## CRITICAL TIMELINE REQUIREMENTS
3478
             ### MANDATORY NON-OVERLAPPING TIMELINE RULES
             **ABSOLUTE RULE**: Each topic's timeline MUST start AT LEAST one month AFTER the previous topic ends. **TIMELINE CALCULATION PROTOCOL:**
3479
             1. Topic 0: Uses provided timeline exactly
             2. Topic N+1 start = Topic N end + AT LEAST 1 month gap
3481
             3. NO overlapping months between any topics
                Each topic duration: 1-2 months
3482
             [Examples]
3483
             **TIMELINE VERIFICATION STEPS:**
3484
             Before finalizing each topic:
             1. Identify previous topic's END month
2. Add AT LEAST 1 month to get earliest possible START
3. Verify NO month appears in multiple topics
3485
3486
             4. Confirm realistic gaps for life transitions
3487
             **GAP JUSTIFICATION:**
3488
             The 1+ month gaps represent:
               Processing and integration time after major experiences
3489
               Natural life rhythms and decision-making periods
               Realistic pacing of significant life changes
3490
               Time for consequences of previous decisions to manifest
3491
              # TOPIC PROGRESSION GUIDELINES
3492
             ### Phase 1: Post-Seed Topic Reality (Topics 1-2)

- **Topic 1**: How the seed topic experience changes perspective on ANOTHER life area
3493
               **Topic 2**: Ripple effects creating needs in YET ANOTHER domain
3494
             ### Phase 2: Multi-Domain Growth (Topics 3-5)
3495
               **Topics 3-5**: Leveraging cumulative growth to address diverse life challenges
3496
             ### Phase 3: Integration Across Life (Topics 6-8)
               **Topics 6-8**: Synthesizing learnings to optimize different life areas
3497
3498
             ### Phase 4: Holistic Vision (Topic 9)
               **Topic 9**: Long-term life design incorporating all previous growth
3499
             **CRITICAL QUESTION FOR EACH TOPIC:**
3500
             "After completing [previous topic], what DIFFERENT area of life would this person naturally need to address
3501
3502
              # QUALITY VALIDATION CHECKLIST
3503
              # EXAMPLE PROGRESSION LOGIC
3504
3505
3506
               **Non-sequential topics**: Topics that could happen in any order
**Profile contradictions**: Topics that contradict user's established circumstances
3507
               **Unrealistic jumps**: Major life changes without proper foundation/motivation\\
3508
               **Narrow topics**: Topics that couldn't generate extensive conversation
**Template responses**: Generic topics that don't reflect unique user circumstances
3509
             ## EXECUTION NOTES
```

```
3510

- Generate all 10 topics in a single coherent response
- Ensure seamless narrative flow from Topic 0 through Topic 9
- Prioritize realism and character consistency over dramatic storylines
- Focus on authentic life progressions that real people experience
- End output immediately after closing the JSON structure

**CRITICAL**: Output your response in JSON format only. Do not include any explanatory text, markdown formatting, or additional commentary. Provide only the raw JSON object.

Generate the complete topic cluster now.
```

Listing 28: Ten million sequential seed generation prompt

```
3519
             You are creating a CHRONOLOGICAL SUBTOPIC FRAMEWORK that breaks down a main topic into 10 diverse, non-
                    repetitive phases with strict timeline boundaries.
3520
             ## INPUT DATA
3521
             - **MAIN TOPIC:** <main_topic>
- **MAIN THEME:** <main_theme>
3522
               **MAIN SUBTOPICS:** <main_subtopics>
3523
               **USER PROFILE: ** <user_profile:
               **TOTAL TIMELINE: ** <total timeline>
3524
3525
             ## TIMELINE EXTRACTION (MANDATORY FIRST)
             1. **Extract Core Action**:
3526
                 - Duration from main topic (e.g., "x-day doing Y" = x days)
                 - Action type (trip/project/course/challenge/etc.)
3527
                 - Total timeline span in months
3528
             2. **Calculate Key Dates**:
    - MAIN_ACTION_START: When core action begins
3529
                   MAIN ACTION END: When core action ends
3530
                 - Allocate realistic prep/integration time around core action
3531
             ### Phase Distribution (10 Topics)
- **Topics 0-2**: PREPARATION (before action starts)
3532
3533
               **Topics 3-6**: CORE ACTION (during main action period)
**Topics 7-9**: INTEGRATION (after action ends)
3534
             ### MANDATORY DIVERSITY REQUIREMENTS
3535
             **EACH SUBTOPIC MUST BE UNIQUE: **
               No recycling of themes between subtopics
3536
               Each explores DIFFERENT aspects/challenges
3537
               Progressive complexity within each phase
               Distinct focus areas that don't overlap
3538
             **PREPARATION DIVERSITY (Topics 0-2):*
3539
               Topic 0: Discovery/Research/Initial Planning
3540
               Topic 1: Decision-Making/Resource Gathering/Skill Building
               Topic 2: Final Preparations/Confirmations/Pre-Launch
3541
             **CORE ACTION DIVERSITY (Topics 3-6):**
- Topic 3: Launch/Beginning/Initial Experiences
3542
               Topic 4: Early Challenges/Adaptations/Progress
Topic 5: Peak Performance/Deep Engagement/Mastery
3543
3544
               Topic 6: Final Push/Completion/Transition
3545
             **INTEGRATION DIVERSITY (Topics 7-9): **
               Topic 7: Immediate Reflection/Initial Processing
3546
               Topic 8: Application/Transformation/Sharing
3547
               Topic 9: Long-term Impact/Future Planning/Legacy
3548
             ### Required Structure Per Subtopic
               "| Negarited Structure Fel Subcepts" ("phase name]", "title": "[Unique descriptive title - NO REPETITION]", "theme":

"[Distinct challenge/opportunity - MUST BE DIFFERENT]", "subtopics": ["10 DIVERSE sub-elements - NO

OVERLAP with other topics"], "timeline": "[Date range]", "phase_type": "[preparation/core_action/
3549
3550
                    integration]",
3551
               "action_dates": {"main_action_type": "[type]","main_action_starts": "[date]","main_action_ends": "[date]","
    main_action_duration": "[duration]","current_phase_relation": "[before/during/after]"},

"phase_boundaries": {"can_mention": ["Allowed activities"],"cannot_mention": ["Forbidden activities"],"
3552
               tense_for_main_action": "[future/present/past]"},
"key_milestones": ["3 unique milestones"], "future_references": ["Setup for continuity"], "continuity_hooks":
3553
3554
                      ["Links to next topic"]}
3555
             DIVERSITY ENFORCEMENT CHECKLIST
             [Examples]
3556
3557
             MAIN SUBTOPIC DISTRIBUTION
             Spread the provided main_subtopics across topics you generate strategically:
3558
                                               intermediate
                                                                      advanced
             Show evolution: basic
3559
             Different angles in each phase (planning vs doing vs reflecting)
3560
3561
             Generate ONLY this JSON structure:
json{"main_topic": "[Input]","main_theme": "[Input]","main_subtopics": ["Input array"],"total_timeline": "[
3562
               "Imput", "master_timeline": {"timeline_start": "[Date]","timeline_end": "[Date]","main_action_starts": "[Date]"," main_action_ends": "[Date]","main_action_duration": "[Duration]", "preparation_phase": {"start": "[Date]","end": "[Date]","topics": [0, 1, 2]},
3563
```

```
3564
                "core_action_phase": {"start": "[Date]","end": "[Date]","duration": "[Duration]","topics": [3, 4, 5, 6]},
"integration_phase": {"start": "[Date]","end": "[Date]","topics": [7, 8, 9]),
3565
              "subtopics": [/* 10 UNIQUE subtopic objects */]}
3566
3567
            CRITICAL:
            Each subtopic explores DIFFERENT aspects
3568
            NO thematic repetition across topics
            Progressive narrative arc
3569
            Diverse conversation opportunities
3570
            Output ONLY the JSON. No explanations
3571
```

Listing 29: Ten million hierarchical seed generation prompt

```
3573
           You are a long-form narrative planning specialist creating a COHERENT STORY PLANSET for natural conversational
3574
                   flow. Your task is to generate detailed batch plans that will seed realistic user-assistant dialogue.
3575
3576
             **DOMAIN: ** <domain>
             **TITLE:** <title>
3577
             **THEME: ** <theme>
             **SUBTOPICS:** <subtopics>
**TIMELINE:** <timeline>
3578
3579
             **NUM_BATCHES:** <num_batches> batches
             **LABELS:** cprovided_labels>
**USER PROFILE:** <user_profile>
3580
             **CORE RELATIONSHIPS:** <core_relationships>
3581
             **NEW RELATIONSHIPS: ** < new_relationships>
             3582
             **INCLUDE INTRODUCTION:** <YES/NO>
3583
3584
           Generate <num_batches> distinct, non-repetitive batch plans that form a coherent narrative arc where a real person naturally converses with an AI assistant. Each plan must introduce NEW story elements while
3585
                  maintaining perfect continuity and character consistency.
3586
                                                                 CRITICAL NARRATIVE PERSPECTIVE
3587
           **MANDATORY FIRST-PERSON PERSPECTIVE: ** - ALL content must be written from the USER's perspective (first-
3588
                 person)
             Use first-person perspective throughout but VARY sentence structures - Natural narrative flow - avoid
3589
             starting every bullet with "I" Mix active and passive voice while maintaining first-person perspective
3590
3591
                                                                 CONTINUITY REQUIREMENTS
3592
           **CRITICAL**: If PREVIOUS PLAN is provided, you MUST:
            - **Reference Previous Events** **Maintain Core Character Consistency** **Integrate New Relationships** **Show
3593
                   Temporal Progression**
3594
            **Build Upon Previous Decisions** **Preserve Established Facts** **Continue Relationship Arcs**
3595
                                                                 STRICT TIMELINE ENFORCEMENT
3596
           **CRITICAL TIMELINE PARSING (MANDATORY FIRST STEP):**
3597
           Before generating ANY content, you MUST internally calculate timeline boundaries.
3598
           **STEP 1: Extract and Write Timeline Boundaries**
            **CALCULATE YOUR PARSED DATES:**
3599
3600
           **STEP 2: Create Batch Date Assignments**
           Divide timeline into <num_batches> segments: Days per batch = TOTAL DAYS
                                                                                                   <num batches>
3601
           **ABSOLUTE TIMELINE RULES:** 1. **EVERY date mentioned MUST be between START and END dates** 2. **NO future references beyond TIMELINE END** (no "next month" if timeline ends this month)

3. **NO past references before TIMELINE START** 4. **Temporal anchors MUST progress chronologically within
3602
3603
                 boundaries** 5. **Final batch MUST conclude naturally before or on END DATE**
3604
            **TEMPORAL ANCHOR REQUIREMENTS:**
3605
             First bullet of EACH batch MUST be temporal anchor

Format: " **Temporal Anchor:** [Month] [Day], [year], [event description]"

Each temporal anchor date MUST be within that batch's assigned date range
3606
             Dates must progress: Batch 2's date > Batch 1's date, etc.
3608
            **TIMELINE VIOLATION EXAMPLES (FORBIDDEN):**
           [Examples]
3609
            *PRE-GENERATION CHECKLIST: **
           [Examples]
3610
3611
                                                                CRITICAL DETAIL REQUIREMENTS
3612
           **MANDATORY SPECIFIC DETAILS:**
           Every batch MUST include numerous concrete, verifiable details that enable single-word or short factual
3613
3614
            **Required Detail Categories (minimum 5-7 per batch):**
3615
             **Exact Numbers:** prices ($X), quantities, percentages, measurements, distances
           [Some categories examples]
3616
           **Detail Distribution Rules:**
3617
             Each bullet must contain AT LEAST one verifiable detail - Avoid vague statements
```

```
3618
                                                                                                            STRUCTURE REQUIREMENTS
3619
                   **1. OUTPUT FORMAT: **
3620
                      Generate exactly <num_batches> plans
Format: 'BATCH X PLAN' headers
3621
                      Each plan contains exactly 30 bullets
3622
                                                        **[LABEL CATEGORY]:[LABEL DESCRIPTION]:** [content]" ( 25 words)
                      NOTE: Each label consists of category and description. Use both for each bullet point. Use only the provided LABELS - no custom categories
3623
                       **MANDATORY**: First bullet MUST be Temporal Anchor with the ONLY date reference in the batch
3624
3625
                   **2. STORY PROGRESSION ARCHITECTURE: **
                   **IF INCLUDE_INTRODUCTION = YES: **
3626
                    **BATCH 1 (Story Foundation):**
- First bullet MUST be: "     **Personal Introduction:**" Establish initial context with SPECIFIC details
3627
                             Introduce all relationships with CONCRETE contexts Set up measurable goals, deadlines, and quantifiable
3628
                             challenges
3629
                   **IF INCLUDE_INTRODUCTION = NO:**
**BATCH 1 (Continuation):** NO personal introduction bullets Begin directly with current topic-related content
3630
                               Reference established character details from PREVIOUS PLAN
3631
                   **BATCHES 2-<num_batches> (Story Evolution): **
3632
                   - Reference user as "I/my/me" (never repeat the full name) Each batch advances the timeline chronologically
                             Build upon ALL previously established elements
3633
                   Show MEASURABLE progression (promotions, relationship milestones, achievement metrics)
3634
                   **3. RELATIONSHIP CONTINUITY SYSTEM:**
3635
                   **Core vs. New Relationship Management:**
                      **\texttt{CORE} \ \texttt{RELATIONSHIPS}**: \\ \hline \texttt{Must} \ \texttt{remain} \ \texttt{consistent} \ \texttt{across} \ \texttt{all} \ \texttt{plans} \ - \ \texttt{same} \ \texttt{names}, \ \texttt{established} \ \texttt{details}, \ \texttt{ongoing} \\ \\ \texttt{ongoing} \ \texttt{names}, \ \texttt{nam
3636
                             dynamics
                       **NEW RELATIONSHIPS**: Introduce naturally based on current topic and life phase **Relationship Integration
3637
3638
                   **Relationship Evolution Mandate:*
3639
                   Every relationship mention MUST include specific interaction details:
3640
                   **Evolution Stages with Required Details:*
                   [Examples]
3641
3642
                                                                                                           CONFLICT & RESOLUTION TRACKING
3643
                   **Mandatory Conflict Elements:**
                   Each batch must include at least 2-3 situations with:
- **Clear Stakes:** what's at risk (money amount, deadline, relationship status)
3644
                   [Examples]
3645
3646
                   **Conflict Types to Rotate: ** Financial decisions with specific amounts Time management with exact deadlines
                             Relationship boundaries with specific incidents
3647
                   Professional choices with concrete options Personal values with specific scenarios
3648
                                                                                                           ANTI-REPETITION VERIFICATION
3649
                   [Examples]
3650
                                                                                                           CONTENT DISTRIBUTION STRATEGY
3651
                   **Per Batch Requirements:**
3652
                      2-3 bullets: Relationship developments with specific incidents (mix of core and new relationships)
                      2-4 bullets: Current situation with measurable metrics
3653
                      1 bullet: Exact temporal anchor (specific date/time) 5-7 bullets: Events with verifiable outcomes
3654
                       3-4 bullets: Decisions/preferences with specific choices
3655
                      Rest: Using remaining labels with concrete details
3656
3657
                      **Early Batches (1-3):** Establish baselines (current salary, relationship status, living situation) **
                             Middle Batches:** Track changes from baselines with specific metrics
3658
                   **Later Batches:** Show cumulative results with before/after comparisons
3659
                                                                                                           NATURAL CONVERSATION FLOW
3660
                   These plans generate conversations where users seek AI assistance for SPECIFIC situations:
3662
                                                                                                           OUALITY STANDARDS
                   **Specificity Checklist:**
3663
                   - Every person has a full name and defined relationship [Other exmaples]
3664
3665
                   **Narrative Depth:**
                      Include prices, percentages, distances, durations
3666
                      Show cause-and-effect with specific triggers and results
Maintain factual consistency (don't change established numbers/dates)
3667
                      Reference past specific events by name and date
3668
3669
                      Prioritize concrete details over abstract descriptions
3670
                      Every bullet should enable at least 2\text{--}3 factual questions Include cultural, financial, and geographic specificity
3671
                      Ensure details are realistic and internally consistent
                      If PREVIOUS PLAN provided, include 3-5 specific references to previous events per batch
```

```
3672
           End immediately after 'BATCH <num_batches> PLAN'
3673
          **FINAL TIMELINE REMINDER:**
3674
           Parse TIMELINE boundaries FIRST
3675
           {\tt EVERY} date must fall within those boundaries
           NO exceptions to timeline limits
3676
           Verify each batch respects the timeline
3677
          Output ONLY the batch plans. No explanations or additional text.
3678
          Begin generation now.
3679
```

Listing 30: Ten million sequential conversation plan generation prompt

```
3681
               You are a precision narrative architect generating TEMPORALLY COHERENT BATCH PLANS with absolute timeline
3682
                        integrity and phase-appropriate content.
3683
               3684
3685
                        :<core_relationships> | NEW_RELATIONSHIPS:<new_relationships> | ALL_SUBTOPIC_PLANS:<all_subtopic_plans>
                        | PREVIOUS_PLANS_SUMMARY:
| PREVIOUS_PLANS_SUMMAR
3687
                        INCLUDE_INTRODUCTION: <YES/NO>
3688
                Generate <num_batches> distinct, non-repetitive batch plans forming coherent narrative where user naturally
3689
                       converses with AI. Each plan introduces NEW elements while maintaining continuity.
3690
               ## STRUCTURE [MANDATORY]
- Format: 'BATCH X PLAN' headers
3691
                  Exactly 30 bullets per batch
3692
                  Bullet format: " **[LABEL CATEGORY]:[LABEL DESCRIPTION]:** [content]" ( 30 words)
First bullet ALWAYS: " **Temporal Anchor:** [Date], [context]"
3693
                  NO other dates in batch except temporal anchor ALL content in FIRST-PERSON ("I/my/me")
3694
                  Vary sentence structures, avoid starting every bullet with "I"
3695
                ## DETAIL REQUIREMENTS [8-10 per batch minimum]
3696
                  Exact Numbers: prices($X), quantities, percentages, measurements Specific Dates/Times: "Month x yth", "x:y PM/AM"
3697
                [Some other examples]
3698
               Replace vague with specific:
3699
                [Examples]
3700
                ## FACT TRACKING SYSTEM [MAINTAIN THROUGHOUT]
               Track per batch:
3701
                  . Purchases: [Item, Price, Store, Date]
3702
               [Examples]
3703
                Before EVERY bullet:
                - Check if fact exists in registry If similar exists, ADD NEW DIMENSION (consequence/complication/perspective/
3704
                       progression)
3705
                ## PROGRESSION PATTERNS
3706
                **Batches 1-3:** Establish baselines, initial decisions, relationship intros **Batches 4-6:** Show
                consequences, complications, deepen relationships
**Batches 7-8:** Unexpected developments, secondary effects, evolution **Batches 9-10:** Long-term impacts,
3707
3708
                        synthesis, maturity, future implications
3709
                Recurring element progression: 1. First: Basic establishment 2. Second: Add complication 3. Third: Show
                        resolution 4. Fourth: Reveal impact 5. Fifth+: FORBIDDEN unless dramatic change
3710
                ## LABEL ROTATION RULES
3711
                Track usage: Label+Focus combination FORBIDDEN across all batches
3712
               [Examples]
3713
                ## RELATIONSHIP RULES
                **IF INCLUDE INTRODUCTION=YES: ** Batch 1 first bullet: "
                                                                                                              **Personal Introduction: ** Establish context with
3714
                         SPECIFICS (age, location, job, salary) Introduce relationships with context (how long known, where met)
3715
                **NEW RELATIONSHIPS first appearance: ** Include relationship to user + age + context After introduction, refer
3716
3717
               Every relationship mention needs specific interaction: Introduction Development Deepening Maturation
3718
                ## BATCH REQUIREMENTS
3719
                  1 temporal anchor (specific date)
                  2-3 relationship developments
3720
                  3-4 current situation with metrics
                  5-6 events with outcomes
3721
                  4-5 decisions with choices
                  Rest: remaining labels with details
3722
3723
                ## ANTI-REPETITION PROTOCOL
                **THREE-PASS REVIEW:** 1. **Fact Uniqueness:** 2. **Information Advancement:** 3. **Cross-Batch:**
3724
3725
                [Examples]
                ## DATE EXTRACTION
```

```
3726
          Extract from CURRENT_SUBTOPIC_DATA
3727
           ## TEMPORAL BOUNDARIES
3728
          **preparation phase:** [Example]
**core_action phase:** [Example]
3729
           **integration phase:** [Example]
3730
           **ABSOLUTE:** No dates outside [START_DATE, END_DATE] from TIMELINE
3731
           ## CONTENT BOUNDARIES
          Extract from CURRENT_SUBTOPIC_DATA
3732
3733
           **Rules:** ONLY generate from can_mention NEVER generate from cannot_mention ONLY reference current subtopic
                activities Use specified tense for main action
3734
           **Phase Content:** **Preparation:** [Example] **Core Action:** [Example] **Integration:** [Example]
3735
           ## TIMELINE DISTRIBUTION
3736
           1. Calculate: Total Days = END - START + 1 2. IF Days
                                                                    <num_batches>: Sequential dates 3. IF Days < <</pre>
3737
                num_batches>: Group batches per day
3738
           **Same-day differentiation:** Time progression (morning evening) Activity focus shifts Perspective changes
               Depth layers
3739
3740
           ## CONTEXT INTEGRATION

    Review previous plans summary for established facts 2. Continue from previous plan if exists 3. IF
INCLUDE_INTRODUCTION=YES: Introduce naturally

3741
          4. IF NO: Continue without re-introduction 5. Reference prior facts consistently 6. Show progression from
3742
                previous ending
3743
           ## VALIDATION GATES
3744
          [Examples]
3745
          ## EXECUTION 1. Extract/verify dates 2. Write FIRST-PERSON 3. Date ONLY in anchor 4. Maximum detail density 5.
3746
                 Exactly 30 bullets 6. Validate boundaries
3747
          Output ONLY batch plans. End after 'BATCH <num_batches> PLAN'
3748
```

Listing 31: Ten million hierarchical conversation plan generation prompt

```
3750
            You are generating realistic questions that a USER would ask an AI ASSISTANT. Create questions based ONLY on
                  the specific details in the current bullet points.
3751
3752
            ## TITLE: <title>
3753
            ## CURRENT FOCUS AREAS (ONLY SOURCE FOR QUESTIONS): <FOCUSED_BULLETS>
            ## AVOID (ALREADY COVERED): <BATCH_HISTORY
3754
            ## CONTEXT REFERENCE (FOR UNDERSTANDING ONLY): <PREVIOUS_SUB_BATCH_PLANS> <PREVIOUS BATCH PLANS>
3755
             ## CRITICAL RULES:
3756
            ### 1. MANDATORY DETAIL COVERAGE & TRACKING
             **BEFORE GENERATING:** List every detail from CURRENT FOCUS AREAS:
3757
              Names: [extract all names]
              Ages/Numbers: [extract all numbers]
3758
              Locations: [extract all places]
3759
              Facts/Situations: [extract all specific facts]
3760
            **USAGE TRACKING:** Mark each detail as used to prevent repetition within current questions.
3761
            ### 2. ABSOLUTE SOURCE RESTRICTION
            **ONLY ALLOWED SOURCE:** Details explicitly written in CURRENT FOCUS AREAS bullet points
3762
            **COMPLETELY FORBIDDEN: **
            - ANY names, places, facts, or details from CONTEXT REFERENCE sections
- ANY topics or content from BATCH_HISTORY
**CONTEXT REFERENCE RULE:** Use CONTEXT REFERENCE only to understand WHO people are or WHAT things mean when they appear in CURRENT FOCUS AREAS. NEVER generate questions about CONTEXT REFERENCE content.
3763
3764
3765
3766
            ### 3. ZERO REPETITION ENFORCEMENT
            **ABSOLUTE REQUIREMENT:** Each specific detail can ONLY be mentioned ONCE across all questions.
            **ABSOLUTE PROHIBITIONS:**
              Using ANY detail more than once in current guestions
3768
              Mentioning ANY topic/detail from BATCH_HISTORY
              Referencing ANY content from CONTEXT REFERENCE sections
3769
              Asking about broader topics not in current bullets
3770
            **VERIFICATION:** Before each question, confirm it doesn't repeat previous content.
3771
            ### 4. ANTI-REPETITION SYSTEM
            **DETAIL USAGE PATTERN:**
3772
            **DETAIL GOAGE FAITENN:**
- First mention: Use full specific detail from bullet point
- Subsequent references: Use pronouns ("he", "she", "it", "that", "my choice")
**VERIFICATION:** Check each question doesn't repeat:
- Specific names/numbers already used
3773
3774
               Topics from BATCH_HISTORY
3775
              Any details or content from reference sections (CONTEXT REFERENCE)
3776
             ### 5. REALISTIC CONVERSATION STYLE
3777
            **NATURAL LANGUAGE:**
- Contractions: "I'm", "don't", "can't"
3778
              Casual words: "kinda", "sorta", "gonna"
Fillers: "like", "um", "you know"
Informal: "...", "??", "!!"
3779
```

```
3780
            ### 6. QUESTION VARIETY
3781
            **AVOID REPETITIVE PATTERNS:**
            - Don't start multiple questions the same way
3782
              Vary question length and complexity
            ### 7. OUESTION GENERATION STRATEGY
3784
              **Normal question**
            - **Seek advice**
3785
              **Ask for help*:
              **Request clarification**
              **Get guidance**

**Express emotions**
3787
              **Validate decisions**
3788
              **Process thoughts**
              **Explore options**
3789
            **OUESTION CLUSTERING: **
3790
              Some bullets get 1 question, others get 2-3
3791
              Deep dive into complex situations
Quick questions for simple details
3792
              User introducing himself/herself should be first question
3793
            ## OUTPUT REQUIREMENTS:
3794
            Generate exactly <SUB_BATCH_SIZE> questions that:

    **USE EVERY DETAIL** from current bullet points exactly once
    Sound like genuine human requests for AI help

3795
            3. Focus on specific personal situations mentioned
3796
            4. Avoid all repetition from previous batches
            5. Show realistic emotional responses to bullet situations
3797
            6. Follow natural conversation flow
3798
            7. **NEVER repeat specific details within current questions**
8. **NO repetitive "and" chains** in any message
3799
            **SUCCESS CRITERIA: **
3800
              Every name, age, location, fact from bullets MUST appear and appear ONLY ONCE No repetition of BATCH_HISTORY topics
Questions sound like real people texting for advice
3801
3802
              All questions trace back to specific bullet details
              Subsequent references use pronouns/generic terms only ZERO content from CONTEXT REFERENCE sections
3803
3804
            **OUTPUT FORMAT: **
3805
            For each question, use this exact format:
            [question text] ->-> [bullet_number]
3807
              Each question MUST end with "->-> [number]" where [number] is the bullet point it's based on
              Use bullet numbers 1, 2, 3, etc. as they appear in CURRENT FOCUS AREAS
If a question combines details from multiple bullets, use the primary bullet number
3808
              If the question is not generated from any bulletpoints, put \ensuremath{\text{N/A}}
             Generate exactly <SUB BATCH SIZE> questions
3810
            **Format:** One question per line, natural length, no numbering or extra text.
3811
```

Listing 32: Question general domain prompt

```
3813
3814
             You are generating realistic coding questions that a DEVELOPER would ask an AI ASSISTANT. Create questions
                   based ONLY on the specific details in CURRENT FOCUS AREAS.
3815
3816
              ## CURRENT FOCUS AREAS (STRICT SCOPE - ONLY SOURCE FOR QUESTIONS):
3817
             ## QUESTIONS ALREADY COVERED IN THIS BATCH (AVOID THESE):
3818
3819
             ## CONTEXT REFERENCE (FOR UNDERSTANDING ONLY - DO NOT GENERATE QUESTIONS ABOUT THIS):
3820
             <PREVIOUS SUB BATCH PLANS>
             previous_batch_plans>
3821
             ## BULLET TYPE DETECTION

**MANDATORY FIRST STEP - CHECK EACH BULLET:**

- If bullet contains "**Time Anchor:**" ABSOLUTELY NO CODE, ONLY project/scheduling questions

- The contains "**Personal Introduction:**" ABSOLUTELY NO CODE, ONLY career/personal questions
3822
3824
3825
             ### 1. CURRENT FOCUS AREAS BULLET TYPE IDENTIFICATION - CHECK FIRST
             **BEFORE DOING ANYTHING:** Identify the bullet type in CURRENT FOCUS AREAS:
- **Time Anchor:** bullets (contain "Time Anchor:" in title) NO CODE GENERATI
- **Personal Introduction:** bullets (contain "Personal Introduction:" in title)
                                                                                               NO CODE GENERATION
3827
                                                                                                                            NO CODE GENERATION
               **Technical bullets:** (all others)
                                                                   CODE GENERATION REQUIRED
             ### 2. MANDATORY DETAIL COVERAGE & TRACKING
3829
             **STEP 1 - MANDATORY EXTRACTION:** Before writing ANY questions, you MUST extract and list EVERY SINGLE detail from CURRENT FOCUS AREAS:
3830
             **Extract ALL of these categories:**
3831
              **Names:** [list EVERY name - developer names, company names, project names, client names]
**Numbers/Versions:** [list EVERY version number, date, time, quantity, port, ID, measurement]
3832
             [Other categories examples]
3833
              **STEP 2 - VERIFICATION:** Count total extracted details. You MUST use 100% of them.
             **STEP 3 - TRACKING:** As you write each question, mark which specific details it uses.
```

```
3834
             *STEP 4 - FINAL CHECK:** Before submitting, verify EVERY extracted detail appears in at least one question.
3835
            **ABSOLUTE REQUIREMENT:** Every single extracted detail MUST appear in at least one question across the batch.
                  NO EXCEPTIONS.
3836
            ### 3. ABSOLUTE SOURCE RESTRICTION
            **ONLY ALLOWED: ** Details explicitly written in CURRENT FOCUS AREAS bullet points
3838
            **COMPLETELY FORBIDDEN: **
             ANY content from BATCH_HISTORY
ANY content from CONTEXT REFERENCE sections
3839
              Generic programming questions
             Details not explicitly mentioned in current bullets
3841
            **CONTEXT REFERENCE RULE:** Use only to understand WHAT technologies/components mean when they appear in
3842
                 CURRENT FOCUS AREAS.
3843
            ### 4. DETAIL USAGE PATTERN (ANTI-REPETITION)
             **First mention:** Use full specific detail from bullet point (exact names, versions, error messages)
**Subsequent references:** Use pronouns ("it", "that", "my React app", "the API")
3844
3845
             {\tt \star\star VERIFICATION:\star\star} \ {\tt Each \ specific \ detail \ appears \ ONLY \ ONCE \ across \ all \ questions
3846
             ## 5. MANDATORY COMPLEX CODE GENERATION
           **CRITICAL: 85% of questions MUST include substantial code snippets (20-60+ lines)**
ONLY IF bullet's title in CURRENT FOCUS AREAS is not time anchor or personal introduction
3847
3848
            **ABSOLUTE EXCEPTIONS - NO CODE GENERATION:**
3849
              **Time Anchor:** bullets - NEVER EVER generate any code, programming solutions, or technical implementations
              **Personal Introduction:** bullets - NEVER EVER generate any code, programming solutions, or technical
3850
                 implementations
3851
              **FOR PERSONAL INTRODUCTION BULLETS:** Generate questions FROM the perspective of the person introducing
                 themselves
3852
            The person in the bullet is the USER asking the questions
            These are contextual/personal details, NOT technical coding scenarios
3853
           **STOP AND VERIFY: If the bullet contains "Time Anchor:" or "Personal Introduction:" in the title, you MUST NOT generate ANY code blocks, programming solutions, scripts, or technical implementations. Period.**
3854
3855
            **FOR TIME ANCHOR/PERSONAL INTRODUCTION BULLETS:**
3856
             Focus on project management, scheduling, personal goals
             Ask about deadlines, meeting coordination, project planning NO code blocks, NO programming solutions, NO technical implementations
3857
3858
              Use natural conversation about timing, goals, and context
3859
            **CODE COMPLEXITY REQUIREMENTS (for all other bullets):**
              **Minimum 20-60+ lines per code block*
             **Multiple functions/methods/classes (4-6 minimum) **
              **Realistic imports and dependencies (3-5 minimum) **
3861
             **Proper error handling, validation, edge cases**
3862
             **Complex business logic, database operations, API calls**
              **Production-level structure and realistic variable names**
3863
            **REQUIRED PATTERNS (for coding bullets only):**
3864
              **Debugging (40%):** Generate buggy code with realistic, hard-to-spot errors
             **Code Review (25%):** Generate working but suboptimal code needing improvements **Implementation (20%):** Generate partial implementations with detailed TODOs
3866
             **Optimization (15%):** Generate slow/inefficient but functional code
3867
            **NEVER use simple examples or tutorial-style code - always production-level complexity**
3868
            ### 6. AUTHENTIC DEVELOPER STYLE
           **Language:** Use contractions ("I'm", "don't"), dev slang ("lol", "btw"), fillers ("like", "um"), informal punctuation ("...", "??", "!!")

**Emotion:** Show genuine feelings - frustration with bugs, excitement about features
3869
3870
            **Natural Flow:** Mix question lengths, include rambling, thinking out loud
3871
            **Technical Authenticity:** Include actual error messages, file names, version numbers from bullets
3872
            ### 7. CHRONOLOGICAL ORDER
3873
            Process bullet points in exact order provided. Earlier bullet details appear in earlier questions.
3874
           ### 8. CODING QUESTION STRATEGY
- **Implementation:** "Help me build [specific feature from bullet]"
3875
              **Debugging:** "I'm getting this error: [specific error]. How do I fix it?"
3876
             **Code Review:** "Can you review this [specific code] and suggest improvements?"
             **Optimization:** "How can I make [specific implementation] faster?"
            ## OUTPUT REQUIREMENTS:
3878
            Generate exactly <SUB_BATCH_SIZE> questions that:
3879
           1. **MANDATORY: ** Use EVERY SINGLE detail from FOCUSED_BULLETS at least once (names, versions, errors, files,
3880
                 specs, etc.)
            2. **85% MUST include substantial code snippets (20-60+ lines) with production-level complexity**
3881

    Sound like genuine developer requests with realistic technical scenarios
    Follow chronological order of bullet points

3882
           5. **ALWAYS include complete, complex code - NEVER use simple examples**
6. Match one of the four coding patterns with appropriate complexity
3883
            7. Stay strictly within bullet point scope
            8. **MANDATORY VERIFICATION:** Before submitting, confirm every extracted detail appears in the questions
             **CRITICAL: Generate ONLY the developer messages, nothing else**
             Do NOT include question numbers, headers, or organizational text
3887
              **MANDATORY: Separate each complete message with "---MESSAGE_SEPARATOR---"**
             Each message can span multiple lines and include code blocks
```

```
3888
           - **CRITICAL: Each message MUST end with "->-> [number]" where [number] is the bullet point it's based on**
- **MANDATORY: End with "### COMPLETE ###"**
3889
3890
           **REQUIRED FORMAT PATTERN:**
3891
           [Output format example]
3892
           **CRITICAL FORMATTING RULES:**
           [Output formatting rules]
3893
           **CRITICAL VERIFICATION: ** Before each question:
3894
           3895
              - Personal Introduction bullet
                                                    Generate career/personal questions FROM their perspective, ABSOLUTELY NO
3896
                    CODE
              - Technical bullet
                                       Generate coding questions WITH substantial code
3897
           2. Does this use a specific detail from current bullets?
3. Have I included substantial, complex code (not simple examples) for technical bullets?
4. Does this sound like a real developer asking for help?
3899
           5. Am I following one of the four coding patterns correctly for technical bullets?
3900
           **FINAL VERIFICATION BEFORE SUBMITTING: *:
           Count how many extracted details appear in your questions. It MUST be 100% of all details from CURRENT FOCUS
3901
                AREAS.
           \star\star \texttt{Generate} exactly <code><SUB_BATCH_SIZE></code> questions in the format above.**
3903
```

Listing 33: Question generation coding domain prompt

```
3905
           You are generating realistic math questions that a USER would ask an AI ASSISTANT. Create questions based ONLY
3906
                  on the specific details in CURRENT FOCUS AREAS.
3907
            # CURRENT FOCUS AREAS (STRICT SCOPE - ONLY SOURCE FOR QUESTIONS):
3908
           <FOCUSED BULLETS>
3909
              QUESTIONS ALREADY COVERED IN THIS BATCH (AVOID THESE):
           <BATCH HISTORY>
3910
3911
            # CONTEXT REFERENCE (FOR UNDERSTANDING ONLY - DO NOT GENERATE QUESTIONS ABOUT THIS):
           <PREVIOUS SUB BATCH PLANS>
3912
           <PREVIOUS BATCH PLANS>
3913
           ## CRITICAL RULES:
           ### 1. CURRENT FOCUS AREAS BULLET TYPE IDENTIFICATION - CHECK FIRST
           **BEFORE DOING ANYTHING:** Identify the bullet type in CURRENT FOCUS AREAS:
- **Time Anchor:** bullets (contain "Time Anchor:" in title) NO MATHEMA
3915
                                                                                    NO MATHEMATICAL WORK GENERATION
             **Personal Introduction:** bullets (contain "Personal Introduction:" in title)
3916
                 GENERATION
             **Mathematical bullets: (all others)
                                                          MATHEMATICAL WORK GENERATION REQUIRED
3917
3918
           ### 2. MANDATORY DETAIL COVERAGE & TRACKING
            **STEP 1 - MANDATORY EXTRACTION:** Before writing ANY questions, you MUST extract and list EVERY SINGLE detail
3919
                  from CURRENT FOCUS AREAS:
3920
           **Extract ALL of these categories:**
             **Names:** [list EVERY name mentioned - people, places, institutions, etc.]
**Numbers:** [list EVERY number, age, percentage, score, quantity, measurement]
3921
3922
           [Other categories example]
3923
           **STEP 2 - VERIFICATION: ** Count total extracted details. You MUST use 100% of them.
           **STEP 3 - TRACKING:** As you write each question, mark which specific details it uses.
**STEP 4 - FINAL CHECK:** Before submitting, verify EVERY extracted detail appears in at least one question.
3924
3925
           **ABSOLUTE REQUIREMENT: ** Every single extracted detail MUST appear in at least one question across the batch.
3926
                  NO EXCEPTIONS.
           ### 3. ABSOLUTE SOURCE RESTRICTION
3927
           **ONLY ALLOWED:** Details explicitly written in CURRENT FOCUS AREAS bullet points
3928
           **COMPLETELY FORBIDDEN: **
             ANY content from BATCH_HISTORY
             ANY content from CONTEXT REFERENCE sections
             Generic questions about mathematical fields
3930
             Details not explicitly mentioned in current bullets
           **CONTEXT REFERENCE RULE: ** Use only to understand WHO/WHAT things mean when they appear in CURRENT FOCUS
3932
3933
           ### 4. DETAIL USAGE PATTERN (ANTI-REPETITION)
             **First mention:** Use full specific detail from bullet point
**Subsequent references:** Use pronouns ("it", "that", "my homework")
3934
3935
             **VERIFICATION: ** Each specific detail appears ONLY ONCE across all questions
           ### 5. MANDATORY MATHEMATICAL WORK INCLUSION
           **CRITICAL:** When referencing problems, equations, or mathematical work that isn't explicitly provided in
3937
                 bullets, you MUST generate and include the complete mathematical content.
3938
                                     NO MATHEMATICAL WORK GENERATION: **
3939
             \star\star \texttt{Time Anchor} : \star\star \texttt{ bullets - Generate questions about scheduling, deadlines, timing without any MATHEMATICAL }
3940
             **Personal Introduction:** bullets - Generate questions FROM the person introducing themselves about their
             background, career, goals without any MATHEMATICAL WORK

**FOR PERSONAL INTRODUCTION BULLETS:** Generate questions FROM the perspective of the person introducing
3941
                themselves
```

```
3942
                          The person in the bullet is the USER asking the questions
3943
                          These are contextual/personal details, NOT MATHEMATICAL WORK scenarios
                          **FOR TIME ANCHOR/PERSONAL INTRODUCTION BULLETS:**
                              Focus on study scheduling, academic deadlines, learning goals % \left( 1\right) =\left( 1\right) +\left( 1
3945
                             Ask about exam preparation, study coordination, academic planning NO mathematical equations, NO problem-solving, NO calculations \,
3946
                              Use natural conversation about timing, goals, and academic context
3947
3948
                             **Completely Stuck (40%):** NO work shown, just describe what you're trying to solve **Partially Stuck (30%):** Show ONLY initial 2-4 steps where you got stuck
3949
                              **Need Verification (20%):** Show ONLY final answer/result
3950
                              **Conceptual Confusion (10%):** NO calculations, concept-focused questions
3951
                           **WORK GENERATION REQUIREMENTS:**
                             Match mathematical level mentioned in bullet points
3952
                              Include specific numbers, variables, expressions
                             Create realistic problems users would encounter
**NEVER use placeholders like "... (insert work)" - ALWAYS generate actual mathematical work**
3953
3954
                          ### 6. AUTHENTIC USER STYLE
3955
                          **Language:** Use contractions ("I'm", "don't"), casual slang ("lol", "btw"), fillers ("like", "um"), informal
                          punctuation ("...", "??", "!!")

**Emotion:** Show genuine feelings - confusion, frustration, excitement

**Natural Flow:** Mix question lengths, include rambling, thinking out loud
3956
3957
                          ### 7. CHRONOLOGICAL ORDER
                          Process bullet points in exact order provided. Earlier bullet details appear in earlier questions.
3960
                          ### 8. QUESTION GENERATION STRATEGY
                              **Problem-Solving:**
                                                                                   "Help me solve [specific problem]"
3961
                             **Concept Clarification:** "I don't understand [specific concept]" **Solution Verification:** "Can you check if my solution is correct?"
3962
                              **Method Explanation:** "Why does [specific method] work?"
3963
                          ## OUTPUT REQUIREMENTS:
3964
                          Generate exactly <SUB_BATCH_SIZE> questions that:
3965
                         1. **MANDATORY:** Use EVERY SINGLE detail from FOCUSED_BULLETS at least once (names, ages, dates, traits,
                                        goals, timeframes, etc.)
3966
                          2. **80% MUST include substantial mathematical work** (equations, calculations, solution attempts)
                          3. Sound like genuine user requests with realistic mathematical content
3967
                          4. Follow chronological order of bullet points
3968
                         5. **ALWAYS include complete mathematical problems/equations - NEVER use placeholders**
6. Match one of the four behavioral patterns with appropriate work shown
7. Stay strictly within bullet point scope
3969
                          8. **MANDATORY VERIFICATION: ** Before submitting, confirm every extracted detail appears in the questions
3970
3971
                           **OUTPUT FORMAT: **
                              **CRITICAL: Generate ONLY the user messages, nothing else**
                             **CRITICAL: Generate ONLY the user messages, nothing else**

Do NOT include question numbers, headers, or organizational text

**MANDATORY: Separate each complete message with "---MESSAGE_SEPARATOR---"**

Each message can span multiple lines and include mathematical expressions

**CRITICAL: Each message MUST end with "->-> [number]" where [number] is the bullet point it's based on**
3972
3973
                          **REQUIRED FORMAT PATTERN:**
                          [Output format example]
3976
                          **CRITICAL FORMATTING RULES:**
3977
                          [Output formatting rules]
3978
                          **CRITICAL VERIFICATION:** Before each question:
3979

    Does this use a specific detail from current bullets?
    **Is this a Time Anchor or Personal Introduction bullet? If YES, do NOT include any mathematical work**

3980
                          3. **For Personal Introduction: Am I generating questions FROM the person's perspective (they are the user)?**
                         4. Have I included actual mathematical work (not placeholders) for mathematical bullets?5. Does this sound like a real user asking for help?
3981
3982
                          6. Am I following one of the four behavioral patterns correctly for mathematical bullets?
                          **FINAL VERIFICATION BEFORE SUBMITTING: **
                         Count how many extracted details appear in your questions. It MUST be 100% of all details from CURRENT FOCUS
3984
                                      AREAS.
3985
                          **Generate exactly <SUB_BATCH_SIZE> questions in the format above.**
3986
                                                                                           Listing 34: Question generation math domain prompt
3987
```

```
3989
3989
You will receive an AI assistants reply. Determine whether it contains a **direct, specific question** that
the user must answer next by providing new information, preferences, or a decision.
3991
- **YES** if, and only if, the assistants reply asks for a concrete user response (e.g. Whats your
budget for this trip? , Which option would you prefer? ).
- **NO** for generic or rhetorical prompts (e.g. Any questions? , Would you like to dive deeper? ,
Consider your budget) that do not demand an immediate, specific answer.

AI ASSISTANT RESPONSE:
3995
CRITICAL NOTE: Respond only in English. Do not include any Chinese.
```

4019

```
3996
           Output exactly **YES** or **NO**, nothing else.
3997
                                  Listing 35: Check assistant's response include question prompt
3998
3999
           You are simulating a typical user in conversation. Decide if you would ask a follow-up question after the AI's
4000
                  response.
4001
            **CONVERSATION CONTEXT: **
4002
             DOMAIN: <domain>
             TITLE: <title>
4003
             THEME: <theme>
             SUBTOPICS: <subtopics>
4004
             Recent History: <formatted_history>
             AI's Last Response: <assistant response>
4006
           **ASK FOLLOW-UP ("yes") WHEN:**
1. **Missing Info**: The response lacks details you genuinely need to proceed
4007
               - Specific steps for a process you're trying to follow
              - Key parameters (dates, amounts, requirements) for a decision you're making - Clarification on which option applies to your specific situation
4008
4009
           2. **Genuine Confusion**: Something is unclear or contradictory
   - Technical terms used without explanation that block understanding
4010
4011
               - Conflicting information that affects your next action
               - Ambiguous instructions where the wrong interpretation has consequences
4012
           3. **Incomplete Practical Guidance**: You asked "how to" but can't actually do it yet
4013
              Missing steps in a procedureLacks specifics needed for implementation
4014
               - Assumes knowledge you don't have
4015
           **NO FOLLOW-UP ("no") WHEN: **
4016
           1. **Good Enough to Proceed**: You have what you need
4017
           **OUTPUT:** Only "yes" or "no"
```

Listing 36: Check need for followup prompt

```
4020
            You must respond only in English. Never switch to Chinese or any other language mid-sentence. All responses
4021
           should be entirely in English.
Respond to the users message by either:
Fully answering their question
4022
              . Provide a comprehensive answer
4023
                  Answering plus asking at most ONE follow-up question if you need more detail
4024
           Always honor these rules:
4025
            1. Do NOT ask questions the user already answered.
            2. Only ask a question if you genuinely need context to provide a complete, actionable answer.
3. Keep your main answer clear and comprehensive before you ask.
4026
4027
            4. Use the following system inputs:
4028
           DOMAIN: <domain>
           TITLE: <title>
THEME: <theme>
4029
           SUBTOPICS: <subtopics>
PREVIOUS PLANS SUMMARY: <previous_plans_summary>
4030
            PREVIOUS BATCHES OF THIS PLAN: cprevious_batches>
4031
            CURRENT HISTORY: <current_batch_messages>
4032
           CRITICAL NOTE: Respond only in English. Do not include any Chinese.
4033
           **Output**
4034
           Return exactly what youd say to the userno tags, no internal notes.
4035
```

Listing 37: Assistant LLM answer generation prompt

```
4037
          You are role-playing as a real user haying an authentic conversation with an AI chat assistant.
4038
          The AI assistant has just asked you a question, and you need to provide a natural, human-like response.
          #### Input Context You'll Receive:
4040
            **Current Batch Message History**: The conversation flow leading to the AI's question
           **Domain, Title, Theme & Subtopics**: The main subject of this conversation
**Previous Plans**: Summary of earlier conversation contexts for continuity
4041
            **Current Plan**: The overarching narrative direction for this conversation batch
4042
            **AI's Question**: The specific question the assistant asked that requires your response
4043
          #### INPUTS:
4044
          **Current Batch Message History**: <current batch messages>
          **DOMAIN: <domain>
4045
          **TITLE: <title>
**THEME: <theme>
4046
          **SUBTOPICS: <subtopics>
4047
          4048
            *Current Plan**: <current_plan>
          **AI's Question**: <ai_last_message>
4049
          #### CRITICAL: Keep Responses SHORT and Natural
```

```
4050
            **Real users give brief, to-the-point answers to AI questions**
4051
            #### Your Role & Behavior:
4052
            You are a real human user with:
4053
             Personal experiences, opinions, and emotions
              Natural speech patterns and conversational habits
4054
              Realistic knowledge limitations and curiosity
              Consistent personality traits across the conversation
4055
            **Language Authenticity:**
4056
             *Language Authenticity:**
Use lots of contractions: "I'm", "don't", "can't", "it's", "that's"
Include casual slang: "lol", "btw", "tbh", "kinda", "sorta", "gonna", "wanna"
Add filler words: "like", "um", "you know", "I mean", "so", "well"
Use informal punctuation: multiple periods "...", question marks "??", exclamation points "!!"
4057
4058
            **Imperfect Natural Speech:
             Include minor typos and informal grammar Add rambling elements: "I mean, ..."
4060
4061
              Include thinking out loud: "hmm", "actually", "oh", "maybe"
4062
            **Emotional Authenticity:**
             Show genuine feelings: excitement, frustration, uncertainty, hope
4063
              Use emotional language
4064
              Add personal reactions: "ugh", "omg", "yay", "oof", "blah"
4065
            #### Response Guidelines:
            **STEP 1
                      - Check Plans for Existing Information**:
4066
             **First**, carefully review the Current Plan and Previous Plans for any information that answers the AI's
4067
                  question
              **Tf
                    found in plans**: Base your response on that established information to maintain story continuity
4068
             **If not found in plans**: Create a new answer that aligns with the topic, theme, and existing storyline
4069
            **STEP 2 - Answer the AI's Question Directly**:
             Keep your reply focused on answering; do **not** introduce new questions.
4070
              Give a direct answer to what the AI asked
4071
             Don't over-explain or provide unnecessary details Answer like you would in a real text conversation
4072
              Include personal context or examples when natural
              **CRITICAL**: Ensure your answer doesn't contradict anything established in previous or current plans
4073
4074
            **Stay Consistent with Context**:
             Maintain the same personality and circumstances throughout Keep your responses aligned with the current topic and theme
4075
4076
            **Response Characteristics**:
             **Tone**: Match the conversation's emotional tone and your established personality
**Authenticity**: Sound like a real person, not an AI trying to sound human
4077
4078
4079
              **Be concise** - Real people don't write long in chat
              Keep your reply focused on answering; do **not** introduce new questions.
4080
              **ALWAYS check plans first** - Look for any information that answers the AI's question before creating new
4081
                 details
              **Maintain consistency** - Never contradict information established in current or previous plans
4082
              **Fill gaps naturally** - If plans don't have the answer, create responses that fit the established
                  storyline
4083
              ONLY provide your response as the user - no meta-commentary
            - Stay in character as a human user throughout
- Answer the question but don't feel obligated to ask a question back (the AI asked YOU)
4084
4085
```

Listing 38: User LLM answer generation prompt

```
4087
           You must respond **only in English**. Do not include any Chinese characters or phrases in your response
4088
          You are a real person having a conversation with an AI assistant. Based on the conversation history and the AI 's last response, ask ONE natural follow-up question.
4089
4090
           ## CONTEXT:
           **Current Batch Message History**: <current_batch_messages>
**DOMAIN: <domain>
4091
          **TITLE: <title>
**THEME: <theme>
4092
           **SUBTOPICS: <subtopics>
           **Previous Plans Summary**: 
4094
           **Previous Batches of This Plan**: 
           **Current Plan**: <current_plan>
4095
           **AI's Response**: <ai_last_message>
4096
           ## YOUR TASK
4097
          Ask a follow-up question (10-20 words) that a real person would naturally ask after receiving the AI's
4098
           ## CRITICAL RULES TO PREVENT REPETITION
4099
          Before generating your question:
1. **Scan the Current Batch Message History** for all topics already discussed
4100
           . **Check Previous Batches** for questions already asked
4101
          3. **Never ask about something already covered**
4102
          If you notice your question seeks information already provided in the conversation history, STOP and generate
4103
                a completely different question.
           ## HOW REAL PEOPLE ASK FOLLOW-UPS
```

4140

```
4104
             ### Natural conversation starters:
- "oh wait..." / "hmm..." / "actually..." / "btw..." / "ok but..."
- "that's cool but..." / "makes sense, though..." / "yeah but what about..."
4105
4106
4107
              ### Authentic reaction patterns:
              **Building on the last ai response:**
4108
                Ask about a specific topic not yet covered
               Connect it to your personal situation from the Current Plan
4109
              **Showing genuine reactions:**
4110
             - If AI gave good news
[Other examples]
                                                  "nice! but does that mean..."
4111
4112
             ### Question types that feel natural:
- **Practical concerns**: "how long does that usually take?"
4113
              [Other types]
4114
              ## NATURAL SPEECH PATTERNS
             "# NATURAL STEECH FAILENES

Include these elements to sound human:

- Contractions: "don't", "can't", "won't", "that's"

- Casual words: "kinda", "sorta", "gonna", "like"

- Emotional reactions: "ugh", "hmm", "oh", "yikes"

- Informal punctuation: "..." or "??" or "!"
4115
4116
4117
4118
              ## CONVERSATION FLOW AWARENESS
4119
              Based on where you are in the Current Batch Message History:
             Ask broader exploratory questions
4120
              Ask for specific details or comparisons
4121
             Ask about implementation or next steps
4122
              ## AUTHENTICITY CHECKLIST
4123
4124
             CRITICAL NOTE: Respond only in English. Do not include any Chinese.
4125
              ## YOUR RESPONSE:
             [Generate only the follow-up question, nothing else]
4126
```

Listing 39: User LLM ask followup question prompt

```
4129
           I provide you with a text. Your task it to identify all the details stated in the text,
           and output that in key: value format.
          Key 1: Value 1,
Key 2: Value 2,
4131
           Key 3: Value 3,
4132
4133
           Also at the end, I want you to provide a brief summary of what this text was about in this format: Summary: '
4134
                summarized text
4135
          Note: only output key-values and the summary. DO NOT provide any explanation before or after that. Note: Do not output Key 1, Key 2, \dots
4136
4137
           **Previous Context:**
           {history}
4138
           text: {text}
4139
```

Listing 40: Key-value extraction prompt

```
4142
            You are a highly analytical AI assistant. Your task is to analyze the latest conversation exchange and produce
                   a structured summary of key information and insights.
4143
4144
            **Your Internal Process: **
            To ensure maximum accuracy, you must first think step-by-step.
4145
             . **Analyze:** Break down the user's latest message

    **Identify:** Pinpoint all facts, instructions, and updates.
    **Deduce:** Reason about the implications of the new information in the context of the conversation

4146
           history. What is the user's underlying goal or state?
4. **Format:** After completing your internal analysis, format the conclusions into the 'Extracted Facts'
4147
4148
4149
            **Crucial Instruction:** Your final output must **ONLY** be the 'Extracted Facts' block. **DO NOT** include
                  your step-by-step reasoning or any other text in your response. Strictly follow the format shown in the
4150
                  example's output.
4151
4152
            **EXAMPLE**
4153
            **Conversation Context:**
             **Recent Conversation History:**
4154
                USER: Hey, I need some help with the "Project Phoenix" launch plan.
4155
                ASSISTANT: Of course. What do you need?
USER: The launch date is set for September 15th, 2025. I'm responsible for the marketing materials.
4156
                        Exchange to Analyze: **
                USER: Okay, the final budget for the social media campaign is $7,500. The client, Innovate Corp, just approved it. Please find me three case studies of successful B2B SaaS launches by tomorrow, August
4157
                       28th. And don't include any of our direct competitors in the examples.
```

4211

```
4158
               ASSISTANT: Understood. I will find three case studies of successful B2B SaaS launches, excluding
4159
                      competitors, and have them for you by tomorrow, August 28th. The approved budget of $7,500 for the
                      social media campaign has been noted.
4160
           **Example of Correct Final Output:**

* The client's name is "Innovate Corp".
4161
4162
               * The project is related to a "B2B SaaS launch".
               * The final budget for the social media campaign is \$7,500.
* A deadline is set for "tomorrow, August 28th".
4163
               * User intends to review three case studies for the project.
4164
               * Instruction: Find three case studies.
* Constraint: Do not include direct competitors in the examples.
4165
               \star The budget for the social media campaign has been approved by the client.
4166
               \star The user is under a deadline and needs the case studies urgently to inform their work on the marketing
                     materials.
4167
4168
           **ACTUAL TASK**
4169
            *Recent Conversation History: **
4170
           {history}
4171
            *Latest Exchange to Analyze: **
4172
           USER: {latest_user_message}
           ASSISTANT: {latest_assistant_message}
4173
           **Extracted Facts:**
4174
```

Listing 41: Scratchpad creation prompt

```
You are tasked with summarizing and compressing scratch pad content to fit within a specific token limit.
4177
           **Input Content:**
4178
4179
           **Target Length:** {tokens_limit} tokens
4180
           **Your Task:**
           Compress this content by clustering related information, removing redundancy, and prioritizing the most
4181
4182
4183

    **Cluster**: Group related information by topic, entity, or theme

    **Deduplicate**: Remove redundant or repetitive information
    **Prioritize**: Keep the most important and contextually relevant details

4185
           4. **Compress**: Condense while maintaining essential meaning and context
4186
           Return ONLY the compressed content organized as:
4187
           **KEY ENTITIES & RELATIONSHIPS:**
4188
            [Most important people, organizations, systems mentioned]
4189
           **CORE DECISIONS & PREFERENCES:**
4190
            [Critical decision points, requirements, constraints]
4191
           **PROCESSES & WORKFLOWS: **
4192
           - [Essential procedural information and methodologies]
4193
           **USER PREFERENCES: **
            [User's stated likes, dislikes, preferred methods, settings, choices]
4194
4195
           **USER INSTRUCTIONS: **
            [Specific directions, commands, or quidance provided by the user]
4196
           **IMPORTANT DATES: **
4197
            [Deadlines, milestones, scheduled events, time-sensitive information]
4198
           **CRITICAL CONTEXT: **
4199
            - [Background information necessary for understanding]
4200
           **ACTIONABLE ITEMS:**
            [Next steps, pending actions, deadlines]
           **IMPORTANT DEVELOPMENTS: **
4202
             [Significant events, changes, milestones]
4203
            *Requirements: **
4204
             Stay within {tokens_limit} tokens
            Eliminate redundancy while preserving essential information Eliminate older values when there is newer and updated value for a thing
4205
4206
             Maintain chronological context where important
             Prioritize information with ongoing relevance
4207
           **CRITICAL LENGTH REQUIREMENT:**
4208
           - Your response should be approximately {tokens_limit} tokens
- If your draft is significantly shorter than {tokens_limit} tokens, ADD MORE DETAIL
4209
4210
```

Listing 42: Scratchpad summarization prompt

I provide you with a user query and a text chunk.

```
You need to decide if the text chunk is nesseccery for answering user question.

If we need the text chunk to answer the user question, or if the text chunk is part of the answer to user question return 'yes'

If the text chunk is noise and not relevant to user question, return 'no'.

Output format: Return only 'yes' or 'no', without any explantion before or after that.

User query: {query} \n\n

Text chunk: {doc_text}
```

Listing 43: Scratchpad noise filtering prompt

```
4219
           You are an assistant that MUST answer questions using ONLY the information provided in the context below.
4220
           STRICT INSTRUCTIONS:
4221

    Answer ONLY based on the provided context
    Do NOT use your internal knowledge

4222
4223
           CONTEXT:
           <context>
4224
4225
           QUESTION:
           <question>
4226
           ANSWER REQUIREMENTS:
4227
            - Be direct and concise
            Only output the answer to the question without any explanation
4228
4229
           RESPONSE:
```

Listing 44: Answer generation with RAG prompt

H LLM USAGE

We used ChatGPT⁴ as a writing assistant. Specifically, we first drafted the paper and then employed ChatGPT to refine the text/assist with rephrasing and grammar. The suggestions were manually reviewed and edited before inclusion in the final version.

⁴https://chatgpt.com