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ABSTRACT

The original softmax based “all-to-all” attention mechanism in the extremely
successful transformer architecture computes the attention between N tokens
embedded in aD-dimensional head, inO(N2D) time andO(N2) memory. Several
linearly scaling attention mechanisms have been proposed over the seven years
since the transformer algorithm was proposed, to address the quadratic complexity
in N , and these “Linear” algorithms have been shown to achieve reasonable
training performance in the papers they were introduced in. Despite the fact
that most current LLM applications are trending towards processing larger token
sequences in context (increasing N into the millions and beyond), and transformers
have helped create foundational models in diverse domains beyond language (e.g.,
image, video, and audio processing), the proposed linear mechanisms surprisingly
do not find wide usage, and moreover remain restricted to relatively small sized
problems. We address two possible reasons for this. The first is that many of
the proposed mechanisms, despite their linear complexity in N , have practically
a relatively large memory footprint which is quadratic in D, which quickly fills
memory of available GPUs. We show the memory complexity can be reduced
by approaching calculations from a novel perspective in both the forward and
backward passes in training. A second reason is that techniques that accelerate
convergence, such as dropout, cannot be used during training in the current linear
algorithms. This is mitigated via an alternative dropout mechanism. Results and
comparison studies demonstrate the usefulness of the proposed approaches, while
maintaining the linear scaling in N in both wall-clock time and memory usage.

1 INTRODUCTION

Transformers are the single deep learning architecture that underpin many recent successful applica-
tions in diverse fields such as natural language processing, speech, computer vision, biology, and
so on. Transformers incorporate a Softmax-based all-to-all “Attention" mechanism between the
input tokens Vaswani et al. (2017). While this has proven to be extraordinarly effective in learning
tasks, it has a time and memory complexity of O(N2D) and O(N2) respectively, where N is the
number of tokens and D the dimension per attention head. Efficient hardware implementation can
offer constant speedup, and significant memory reduction. A notable example is the widely used
FlashAttention-2 Dao (2023), where the memory complexity is reduced to O(ND), but the time
complexity remains O(N2D). Given how the industrial models are shifting towards ever larger N
(∼ 107 in current implementations), searching for a linearly scaling attention mechanism started
shortly after the introduction of the original paper.

Previous proposals for a linearly scaling attention mechanism used either Sparsified/localized Atten-
tion, or Kernel Separation. In the former, the all-to-all attention, and as a result long-range context
is not captured. In the former approach, all-to-all attention is not captured, resulting in a loss of
long-range context. While this may be effective in certain situations (particularly for approximations
during inference), it compromises the model’s ability to learn from larger sequence, which was the
goal in the first place. Kernel Separation, in contrast, successfully captures all-to-all attention and
has demonstrated promising results on small benchmarks. However, its major drawback is the high
memory consumption of O(ND2). This drawback has hindered its application in large language
models (LLMs), limiting researchers’ ability to study its effectiveness at scale. To put things in
perspective, with a memory consumption of O(ND2), TinyLlama-1.1B Zhang et al. (2024b) would
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require 280GB1 of memory per batch. This makes the Kernel Separation approach impractical on
any production GPU unless the memory consumption is addressed.

We propose a new viewpoint for calculating Linear Attention, and show how the memory consumption
can be reduced to O(ND). Using our method, the memory consumption of TinyLlama-1.1B with
Linear Attention is reduced to 2.2 GB memory. Our work does not introduce a new Attention
mechanism, and our focus is addressing the high memory consumption issue in the many linear
attention mechanisms proposed. Furthermore, since these methods do not explicitly calculate the
attention matrix, dropout cannot be applied. This is problematic given the robustness and accelerated
convergence that dropout offers. To address this, we introduce an alternative mechanism. In summary,
we make the following contributions:

• Reduce the memory consumption of Linear attention from O(ND2) to O(ND) (Section 3).
• Introduce an alternative mechanism to dropout (Section 4).

2 BACKGROUND AND RELATED WORK

Notation: Bolded upper case letters, e.g., X indicate matrices, and bolded lower case letters xi and
xi,j the i-th row and the element at the i-th row and j-th column of X respectively. xT

j denotes the

j-th row of X. Unbolded letters X,x, xi, x
(i)
jkl indicate scalars.

2.1 PRELIMINARIES: COMPUTING “VANILLA" ATTENTION

In vanilla attention, given a sequence of N tokens, model dimension of C, H heads, and dimension
per head of D = C/H , each head takes in three matrices Q,K,V ∈ RN×D, and gives an output
matrix O ∈ RN×D. The output is calculated using a matrix vector product (MVP) of the Attention
A with V as follows:

O = AV, A = Softmax
(
QKT

)
, oi,j=

∑N
n=1 exp(qi.kn/

√
D)vn,j∑N

n=1 exp(qi.kn/
√
D)

=

∑N
n=1 f(qi.kn)vn,j∑N

n=1 f(qi.kn)
(1)

where f(x) is the attention kernel. Therefore, each head has a computational complexity of O(N2D).
The final output is given by concatenating outputs from each head, with a total O(N2C) computation.
We can apply a causal mask by changing Eq. 1 to

O = tril(A)V, tril(A)i,j =

{
ai,j , j ≤ i

0, j > i
, oi,j =

∑i
n=1 f(qi.kn)vn,j∑i

n=1 f(qi.kn)
. (2)

The softmax attention kernel of f(x) = exp(q · k/
√
D) could be changed. Any definite positive

convex function can substitute for the attention kernel, and several functions have been explored in
the literature.

2.2 RELATED WORK

The most successful approach to speedup the vanilla attention mechanism that has seen widespread
use is efficient hardware implementation and the use of analytical gradients. The most notable
such mechanism, which offers a constant speedup, and reduces memory consumption to O(ND) is
FlashAttention-2 Dao (2023), Dao (2024).

However, this method does not address the issue of quadratic cost of large context attention. Because
of this there is a lot of research on systems approaches to use multi-GPU systems, e.g., Liu et al.
(2023).

The goal of this paper is to make sub-quadratic attention usable. Two common algorithm-based
approaches proposed in the literature for this are Kernel Separation, and Sparsification.

1Context length N = 2048 tokens, head dimension D = 128, number of heads H = 16, number of levels
l = 22: Memory= N ×H ×D2 × l × 2× 3× 4. The ×2 comes from having to store kernel coefficients for
the Query and Key transformations, the ×3 from the automatic differentiation libraries overhead, and the ×4 is
the Float-32 size in Bytes.
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Kernel Separation In this approach the attention kernel is chosen to be one that allows f(qi.kn)

to be written as g(qi)
Th(kn), where g(x) and h(x) are deliberately chosen RD → RD′

functions.
The output can then be calculated as

oi,j =
g(qi)

T
∑N

n=1 h(kn)vn,j

g(qi)T
∑N

n=1 h(kn)
, (3)

which brings down the calculation complexity to O(ND). Common choices of f(x) are a+ bx (e.g.,
Katharopoulos et al. (2020); Kasai et al. (2021); Zhang et al. (2024a); Choromanski et al. (2020); Qin
et al. (2022b)), a+ bx+ cx2 Keles et al. (2023); Banerjee et al. (2020), with the coefficients either
as the Taylor expansion of the exponential or as learnable parameters. The most widely adopted
attention kernel is f(x) = a+ bx, which is also known as Linear Attention. As previously mentioned,
Linear Attention has a computational complexity of O(ND) and a memory complexity of O(ND2).

Sparsification In this approach, we only calculate the Attention for a fixed number of keys for
each query. Common approaches consider keys with tokens that are spatially close-by to the query’s
token Zaheer et al.; Zhou et al.; Yu et al. (2023a); Beltagy et al. (2020); Han et al. (2023), randomized
sampling Wiegreffe & Pinter (2019), or taking advantage of locality aware hashing Kitaev et al.,
where the query and key vectors are hashed based based on their position in the D−dimensional
space, and attention is only calculated for the keys close to the query with this metric. However,
these approaches contradict the goal of capturing attention for a long sequence, as it only considers
limited token pairs. This is especially problematic for training.

There are works which that combine both of these approaches, where they calculate the exponential-
based kernel for a sparse number of query-key pairs, and separable-based kernel for the rest of the
tokens Qin et al. (2022a).

Other Algorithmic Approaches Other approaches include assuming that the Attention matrix is
numerically low rank and derive a smaller matrix Wang et al., hierarchically packing the tokens Ma
et al. (2021), using the Gaussian function as the Attention kernel and approximating it in linear
time Chen et al. (2021) or calculating the result of the Attention and the value matrix multiplication
using Fast Multipole Methods Nguyen et al. (2021). Despite their novel approaches, these methods
have yet to be used in large context LLMs.

Non-transformer Models New learning architectures are also being proposed as an alternative to
Transformers. Recent ones which have generated considerable interest include Mamba Gu & Dao,
Retentive networks Sun et al., Hyena Poli et al. and CRATE Yu et al. (2023b). These approaches are
complementary to the factored attention kernels which are the focus of this paper.

3 MEMORY REDUCTION

We first discuss factorization of the attention kernel, which is the computational trick enabling
speedup. This enables the time and memory complexity of factorization based kernels can be reduced
both in the forward and backward passes. The derivation of the analytical gradient of the attention
head in this paper is a novel contribution, which allows us to reduce memory consumption. We show
these results for the linear attention kernel f(x) = a+ bx, and demonstrate how to achieve time and
memory complexities of O(ND2) and O(ND). Our method can also be applied to the attention
kernel of f(x) = a+ bx+ cx2, which we show in Appendix A, and results in O(ND3) time and
O(ND) memory complexity.

3.1 SPEEDUP VIA FACTORIZATION

To show how Factorization speeds up computations, consider the MVP[
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

]
×

[
d1
d2
d3

]
=

[
u1
u2
u3

]
. (4)

The naive method of calculating u would be
ui = aib1d1 + aib2d2 + aib3d3, (5)

3
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with a total of 9 multiplications and 6 accumulations. Applying Factorization, we have

x = b1d1 + b2d2 + b3d3, ui = aix, (6)

reducing the operations to 6 multiplications and 2 accumulations. For an M ×M with the same
structure, the number of operations reduces from O(M2) to O(M).

3.2 FORWARD PASS

Employing f(x) = a+ bx as Attention kernel, the output matrix O can be broken down to matrix
multiplications in the form of Eq. 4. Specifically,

oi,j =

∑N
n=1 f(q

T
i kn)vn,j∑N

n=1 f(q
T
i kn)

, oi,j =
fi,j
gi
, F ∈ RN×D,G ∈ RN , (7)

where fi,j and gi are elements of F and G. Specifically, F and G are written as

F =

(
a+ b

D∑
m=1

 q1,mk1,m . . .q1,mkN,m

...
. . .

...
qN,mk1,m . . .qN,mkN,m

)V (8)

G =

(
a+ b

D∑
m=1

 q1,mk1,m . . .q1,mkN,m

...
. . .

...
qN,mk1,m . . .qN,mkN,m

)1 (9)

where 1 ∈ RN is a vector of all ones; i.e.,

fi,j=

N∑
n=1

(
a+ b

D∑
m=1

qi,mkN,m

)
vn,j , gi=

N∑
n=1

(
a+ b

D∑
m=1

qi,mkN,m

)
. (10)

Changing the summation orders we get

fi,j = a

N∑
n=1

vn,j + b

D∑
m=1

N∑
n=1

qi,mkN,mvn,j , gi = a

N∑
n=1

1 + b

D∑
m=1

N∑
n=1

qi,mkN,m. (11)

Applying Factorization we get

fi,j = x
(1)
j +

D∑
m=1

qi,mx
(2)
jm, gi = y(1) +

D∑
m=1

qi,my
(2)
m , (12)

where,

x
(1)
j = a

N∑
n=1

vn,j , x
(2)
jm = b

N∑
n=1

kN,mvn,j , y(1) = aN, y(2)m = b

N∑
n=1

kN,m. (13)

We have thus demonstrated how to calculate the forward pass of Linear Attention with a compu-
tational complexity of O(ND2). However, when using a differentiable programming library such
as JAX or PyTorch, all operations must be tracked in the computational graph. Consequently, all
intermediate variables in Eq. 13 need to be stored, resulting in a memory consumption of O(ND2).
See Appendix B on details for how the same memory reduction to the case of a causal mask.

3.3 BACKWARD PASS

By deriving the analytical gradient for linear attention, we can calculate the backward pass manually,
eliminating the need for differentiable programming libraries. As a result, we no longer need to store
intermediate values. However, the backward pass must also be calculated within this same complexity
of O(ND2). Let us denote qi.kj as si,j , and write the attention and output as

oi,j =

N∑
n=1

ai,nvn,j , ai,n =
f(si,j)∑N

m=1 f(si,m)
=
f(si,j)

gi
, f(x) = a+ bx (14)
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Taking the derivative with respect to si,l, we find
∂oi,j

∂si,l
as

∂ai,n
∂si,l

=


b (1− ai,j)∑N
m=1 f(si,m)

, n = l

b (−ai,j)∑N
m=1 f(si,m)

, n ̸= l

(15)

∂oi,j

∂si,l
=

N∑
n=1

∂ai,n
∂si,l

vn,j =
b (vl,j −

∑N
n=1 ai,nvn,j)∑N

m=1 f(si,m)
=

b

gi
(vl,j − oi,j). (16)

We now derive the partial derivative with respect to Q,K,V

∂oi,j

∂qi,r
=

N∑
l=1

∂si,l
∂qi,r

∂oi,j

∂si,l
=

∑N
l=1 bkl,r

gi
(vl,j − oi,j) (17)

∂oi,j

∂kp,r
=
∂si,p
∂kp,r

∂oi,j

∂si,p
=
bqi,r

gi
(vp,j − oi,j) (18)

∂oi,j

∂vp,j
= ai,p =

f(si,p)

gi
. (19)

During the backward pass, given the gradient of the previous layer Ω, the gradient of the Attention
head ∇Ψ is calculated as follows

∇qi,r
Ψ =

D∑
j=1

∂oi,j

∂qi,r
Ωi,j =

D∑
j=1

∑N
l=1 bkl,r

gi
(vl,j − oi,j)Ωi,j (20)

∇kp,r
Ψ =

N∑
i=1

D∑
j=1

∂oi,j

∂kp,r
Ωi,j =

N∑
i=1

D∑
j=1

bqi,r

gi
(vp,j − oi,j)Ωi,j (21)

∇vp,j
Ψ =

N∑
i=1

∂oi,j

∂vp,j
Ωi,j =

N∑
i=1

f(si,p)

gi
Ωi,j (22)

Applying Factorization, the gradients can be calculated as

∇qi,r
Ψ =

D∑
j=1

{αQ
rj − βQ

r oi,j}Ωi,j , ∇ki,r
Ψ =

D∑
j=1

{αK
rj vi,j − βK

rj}, (23)

∇vi,j
Ψ = αV

j +

D∑
j=1

{βV
rj ki,r}. (24)

where the α and β are the factorized coefficients and are defined as

αQ
rj =

N∑
l=1

bkl,r vl,j , βQ
r =

N∑
l=1

bkl,r, (25)

αK
rj =

N∑
l=1

bql,r Ωl,j , βK
rj =

N∑
l=1

bql,r ol,j Ωl,j , (26)

αV
j =

N∑
l=1

aΩl,j , βV
rj =

N∑
l=1

b, ql,r Ωl,j . (27)

Put into words, gradient of the output matrix O can be calculated by storing Q, K, V, O, and G;
resulting in a memory consumption of O(ND) elements. The time complexity is O(ND2) since
we perform O(D) operations for 1 ≤ i ≤ N, 1 ≤ D ≤ D in Eq.s 68-70, which is the same time
complexity of forward pass. To implement custom gradients, we wrote the forward and backward
pass using CUDA. However, since the computations are MVP, and that MVP has a low memory reuse
rate, the calculations are memory bound. Therefore, we had to implement optimization tricks for
improved performance. Appendix C explains these tricks.
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4 ALTERNATIVE MECHANISM TO DROPOUT

Dropout helps with training transformers by randomly dropping out cells of the Attention matrix dur-
ing training, which prevents overfitting by reducing the co-adaptation of token pairs, thus improving
generalization performance on unseen data. However, since the Attention matrix is not explicitly
created in the approaches with linear time complexity, dropout cannot be applied. We propose the
following mechanism as an alternative to achieve the same end. Let us denote O and Õ as the output
with and without dropout applied. Then, we approximate O as

oij ≈ (1− p)õij(1 + ψ), ψ ∼ N (0, p), p : dropout rate. (28)

During the training, we start with some dropout rate p, and gradually decrease it to 0. The intuition
behind this mechanism stems from applying the law of large numbers and the central limit theorem
when Q, K, and V follow a standard Gaussian distribution. For the Softmax-based Attention, dropout
is defined as replacing cells of the QKT Attention matrix with −∞ with probability p, and then
taking the Softmax to derive the Attention matrix. The Attention matrix is then multiplied by V to
calculate O. Specifically, O can be written as

oij =

∑N
n=1 exp(qi.kn/

√
D)vnj −

∑
n∈{drop} exp(qi.kn/

√
D)vnj∑N

n=1 exp(qi.kn/
√
D)−

∑
n∈{drop} exp(qi.kn/

√
D)

=
ηij − ηdrop

ij

γi − γdrop
i

; (29)

ηij =

N∑
n=1

exp(qi.kn/
√
D)vnj, ηdropij =

∑
n∈{drop}

exp(qi.kn/
√
D)vnj, (30)

γi =

N∑
n=1

exp(qi.kn/
√
D), γdropi =

∑
n∈{drop}

exp(qi.kn/
√
D). (31)

As an experiment, let us assume that Q, K and V follow a standard Gaussian distribution, that is

qij ∼ N (0, 1), kij ∼ N (0, 1), vij ∼ N (0, 1). (32)

Lemma 4.1. (Multiplication of Gaussian Variables) Let X and Y be two independent random
variables following standard Gaussian distribution, i.e., X ∼ N (0, 1), Y ∼ N (0, 1). Then,
Z = XY follows a the difference of two Chi-Square distribution with degree of freedom 1.

Proof.

XY =
1

4
((X + Y )2 − (X − Y )2);

X + Y√
2

,
X − Y√

2
∼ N (0, 1); (33)

Z =
1

4
((X + Y )2 − (X − Y )2) = ψ − ϕ; ψ, ϕ ∼ χ2

1. (34)

Furthermore, using the results in Smith et al. (2011), we can write

E[Z] = 0, E[Z2] =
1

2
, Z ∼ Γ(0,

1

2
), (35)

where Γ(µ, σ2) is some symmetric distribution with mean µ and variance of σ2.

Using Lemma 4.1, we write qi.kn as

qi.kn =

D∑
j=1

qijknj =

D∑
j=1

ωj , ωj ∼ Γ(0,
1

2
). (36)

Since ωi are i.i.d and follows a symmetric distribution with a bounded variance, we can apply the
Central Limit Theorem for sufficiently large D, that is

qi.kn√
D

=
1√
D

D∑
j=1

ωj ∼ N (0,
1

2
). (37)

6
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In practice D is 32 for small transformers, and can reach up to 512. Taking the exponential, we end

up with the log-Normal distribution with mean exp(
1

4
) and variance of 1, that is

exp (
qi.kn√
D

) ∼ Log-Normal(0,
1

2
). (38)

Lemma 4.2. (Kolmogorov’s L1 Strong Law of Large Numbers) Let Xi|Ni=1 be a sequence of i.i.d.
random variables with a finite expected value µ. Then,

lim
N−→∞

N∑
i=1

Xi −→ Nµ almost surely. (39)

In practice, the number of tokens ranges from 512 for small benchmarks, and can reach up to 107.
Therefore, we can use Lemma 4.2, to approximate γi, γ

drop
i in Eq. 31 as

γi =

N∑
n=1

exp (
qi.kn√
D

) ≈ N exp (
1

4
), γdropi =

∑
n∈{drop}

exp (
qi.kn√
D

) ≈ Np exp (
1

4
), (40)

where p is the dropout rate. Since V ∼ N (0, I), and that sum of Gaussian variables follows a
Gaussian distribution, we can use Lemma 4.2 to approximate ηij , η

drop
ij in Eq. 31 as

ψinj ∼ N (0, exp (
2qi.kn√

D
)) (41)

ηij =

N∑
n=1

exp (
qi.kn√
D

)vnj =

N∑
n=1

ψinj ∼ N (0,

N∑
n=1

exp (
2qi.kn√

D
)) ≈ N (0, N exp (1)) (42)

ηdropij =
∑

n∈{drop}

exp (
qi.kn√
D

)vnj =
∑

n∈{drop}

ψinj ∼ N (0,
∑

n∈{drop}

exp (
2qi.kn√

D
)). (43)

With these results acquired, we will now write the output with dropout oij and without dropout õij as

oij =
ηij − ηdrop

ij

γi − γdrop
i

, õij =
ηij
γi
. (44)

Given õij , we write oij as

oij =
γi õij

γi − γdropi

ηij − ηdrop
ij

ηij
=

γi õij

γi − γdropi

(1−
ηdrop
ij

ηij
) ≈ (1− p)õij(1 + ψ); (45)

ψ ∼ N (0, p). (46)
This mechanism can be viewed as adding noise to improve learning by preventing the model from
getting stuck in local minima, achieving a result similar to dropout. The concept of adding noise
to aid optimization is not new and has been widely employed in various areas. For instance, noise
is introduced in environment simulations for reinforcement learning Pinto et al. (2017); Peng et al.
(2018), in diffusion probabilistic models Sohl-Dickstein et al. (2015), and in deep networks in general,
where adding noise during gradient descent has been suggested to be beneficial Neelakantan et al.
(2015); Hu & Gerber (2024).

5 EXPERIMENTS

The main contributions of the paper are reducing the memory consumption of Linear Attention and
an alternative mechanism to dropout. The expressibility of Linear Attention has been studied in
previous works Zhang et al. (2024a); Qin et al. (2022a); Wang et al.; Katharopoulos et al. (2020);
Kasai et al. (2021); Qin et al. (2022b); Tay et al.. To confirm the scaling of time and memory of our
method, we perform the following experiments: i) We measure the time and memory for a single
forward pass of an attention layer in Section 5.1, and ii) for training an LLM in Section 5.2; iii) To
assess our alternative mechanism to dropout, we perform an ablation study using two benchmarks
in Section 5.3. Our results are for the attention kernel of f(x) = a + bx with a, b = 1, but our
implementation supports any choice of a, b. We use an Nvidia RTX A6000 with 48 GB of memory
for all of our experiments, and the implementation details can be found in Appendix D.
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5.1 TIME AND MEMORY SCALING

We refer to our implementation of Linear Attention as “Ours”, and the Kernel Separation approach
as “Kern. Sep.”. Figure 1 shows the time and memory for a single forward pass for batch size of 32,
H = 16, D = 32, and 1e3 ≤ N ≤ 3e5. The results are averaged over 1000 runs, and we’ve included
FlashAttention-2 Dao (2023) as a point of comparison with the quadratic conventional algorithm. The
plots are in log-log scale, and the slopes show the order of dependency. Both the Kernel Separation and
our approach have time and memory scaling of O(N), whereas FlashAttention-2 scales with O(N2).
However, it can be seen that our implementation has D× less memory consumption compared to the
Kernel Separation.
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Figure 1: Time and memory scaling on A6000 based on number of tokens. The "X" indicate OOM.

Figure 2 shows the time and memory under the same setting but with N = 2000 and 32 ≤ D ≤ 5000.
Both the Kernel Separation and our approach have a time scaling of O(D2), and FlashAttention-2 has
a scaling of O(D). As for the memory, Kernel Separation scales with O(D2), whereas our approach
and FlashAttention-2 scales with O(D). In conclusion, our implementation has a time and memory
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Figure 2: Time and memory scaling on A6000 based on dimension per head. The "X" indicate OOM.

scaling linear with N and D, whereas Kernel Separation has a memory scaling quadratic with D.
Our implementation can practically scale to larger contexts.

5.2 TRAINING AN LLM

To demonstrate that our claims hold in practice, we train an LLM on a small dataset. We chose Pythia-
14M Biderman et al. (2023) as our LLM, with a token length of N = 4096, and Tiny Stories Eldan
& Li (2023) as our dataset. We train the model using our implementation of Linear Attention, and
FlashAttention-2. The hyperparameters used are the same for our method and FlashAttention-2, and
more implementation details can be found in Appendix D. Figure 3 shows the learning curves for
training loss. Our method has faster convergence, which can be attributed to its linear time scaling of
O(N), compared to FlashAttention-2’s quadratic scaling of O(N2). In conclusion, by reducing the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

memory cost, our method makes the use of Linear Attention in LLMs and large transformers feasible
while maintaining the O(N) time scaling.

5.3 DROPOUT ABLATION STUDY

To test the effectiveness of our alternative dropout mechanism introduced in Section 4, we perform
an ablation study using the Linear Attention on the Long Range Arena (LRA) Tay et al. and Tiny
Stories Eldan & Li (2023) datasets. The LRA benchmark is a suite of tasks designed to evaluate
the performance of Transformer models on sequences of extreme length. It includes a diverse set
of challenges such as text classification, document retrieval, and mathematical reasoning. The Tiny
Stories benchmark is a dataset designed to evaluate language models’ ability to generate coherent,
child-friendly short stories with simple vocabulary and structure. As shown in Table 1, adding noise
to mimic dropout has helped to improve expresivity of Lienar Attention in all cases. We’ve included
the results for Softmax-based attention (FlashAttention-2) with 0.2 dropout as a point of reference.
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Learning Curve of Pythia-14M
Flash Attention
Ours

Softmax Linear Linear
(alt. drop.)

L
R

A
ListOps 38.37 28.55 42.76

Text 61.95 61.55 63.25
Retrieval 80.69 65.38 78.21

Image 40.57 38.47 42.76
Pathfinder 65.26 50.04 66.67

Tiny
Stories 3.59 3.74 3.66

Figure 3 & Table 1: Figure 3 (left) shows the learning curve of training the Pythia-14M LLM using our method
and FlashAttetion-2. Table 1 (right) presents an ablation study comparing our proposed mechanism alternative
to dropout for Linear Attention, with Softmax-based attention results included as a benchmark. Our mechanism
improves the score in all cases. The score in LRA is accuracy%, and cross-entropy in Tiny Stories.

6 CONCLUSION

Transformers use a Softmax-based mechanism known as Attention, which has a quadratic scaling
with number of tokens taken in context. Many approaches have proposed subquadratic mechanisms
for both training and inference. This problem is particularly important since the current applications
are moving towards higher number of tokens, and training can only be done in large datacenter
scale systems. The search for a linearly scaling attention mechanism has become an important and
active area of research. One of the promising approaches is Linear Attention (Kernel Separation).
However, current implementations had very high memory consumption of O(ND2), where N is
the number of tokens and D the model dimension per head. This memory consumption makes
kernel separation impractical since even small transformers would require a high amount of memory
per batch. We present a solution to reduce the memory scaling of Linear Attention to O(ND). In
summary, we derive the analytical format of the attention layer gradient and calculate it in linear
time. By implementing this approach instead of relying on a differentiable programming library,
we eliminate the need to store the variables for the backward pass, and bring down the memory
consumption to O(ND). We provide the details of how to implement the forward and backward pass
using Factorization, and confirm the time and memory scaling of our implementation in context of an
attention layer and training an LLM. Furthermore, since Linear Attention does not directly compute
the attention matrix, dropout cannot be applied. Therefore, we have also introduced an alternative
mechanism to dropout, to mimic its effect, and confirmed our mechanism’s effectiveness through an
ablation study.
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A POLYNOMIAL ATTENTION KERNEL

In Section 3 we showed how to calculate the forward and backward pass with O(ND2) computations
and O(ND) memory for the attention kernel of f(x) = a+ bx (Linear Attention). In here we show
how to calculate the forward and backward pass for the attention kernel of f(x) = a+ bx+ cx2 with
O(ND3) computations and O(ND) memory.

A.1 FORWARD PASS

Employing f(x) = a+ bx+ cx2 as the attention kernel, the output matrix can be broken down to
matrix multiplications in the form of Eq. 4. Specifically,

oi,j =

∑N
n=1 f(q

T
i kn)vn,j∑N

n=1 f(q
T
i kn)

, oi,j =
fi,j
gi
, F ∈ RN×D,G ∈ RN , (48)

where fi,j and gi are elements of F and G. Specifically, F and G are written as

F =

(
a+ b

D∑
m=1

 q1,mk1,m . . .q1,mkN,m

...
. . .

...
qN,mk1,m . . .qN,mkN,m

+
c

D∑
m,l=1

 q1,mk1,mq1,lk1,l . . .q1,mkN,mq1,lkN,l

...
. . .

...
qN,mk1,mqN,lk1,l . . .qN,ikN,iqN,jkN,j

)V (49)

G =

(
a+ b

D∑
m=1

 q1,mk1,m . . .q1,mkN,m

...
. . .

...
qN,mk1,m . . .qN,mkN,m

+
c

D∑
m,l=1

 q1,mk1,mq1,lk1,l . . .q1,mkN,mq1,lkN,l

...
. . .

...
qN,mk1,mqN,lk1,l . . .qN,ikN,iqN,jkN,j

)1 (50)

where 1 ∈ RN is a vector of all ones; i.e.,

fi,j=

N∑
n=1

a+ b

D∑
m=1

qi,mkN,m + c

D∑
m,l=1

qi,mkN,mqi,lkN,l

vn,j , (51)

gi=

N∑
n=1

a+ b

D∑
m=1

qi,mkN,m + c

D∑
m,l=1

qi,mkN,mqi,lkN,l

 . (52)

Changing the summation orders we get

fi,j = a

N∑
n=1

vn,j + b

D∑
m=1

N∑
n=1

qi,mkN,mvn,j + c

D∑
m,l=1

N∑
n=1

qi,mkN,mqi,lkN,lvn,j , (53)

gi = a

N∑
n=1

1 + b

D∑
m=1

N∑
n=1

qi,mkN,m + c

D∑
m,l=1

N∑
n=1

qi,mkN,mqi,lkN,l. (54)

Applying Factorization we get

fi,j = x
(1)
j +

D∑
m=1

qi,mx
(2)
jm +

D∑
m,l=1

qi,mqi,lx
(3)
jml, gi = y(1) +

D∑
m=1

qi,my
(2)
m +

D∑
m,l=1

qi,mqi,ly
(3)
ml ,

(55)
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where,

x
(1)
j = a

N∑
n=1

vn,j , x
(2)
jm = b

N∑
n=1

kN,mvn,j , x
(3)
jml = c

N∑
n=1

kN,mkN,lvn,j , (56)

y(1) = aN, y(2)m = b

N∑
n=1

kN,m, y
(3)
ml = v

N∑
n=1

kN,mkN,l. (57)

See Appendix B for details on how to apply causal mask.

A.2 BACKWARD PASS

Let us denote qi.kj as si,j , and write the attention and output as

oi,j =

N∑
n=1

ai,nvn,j , ai,n =
f(si,j)∑N

m=1 f(si,m)
=
f(si,j)

gi
, f(x) = a+ bx+ cx2 (58)

Taking the derivative with respect to si,l, we find
∂oi,j

∂si,l
as

∂ai,n
∂si,l

=


b+ 2c si,l∑N
m=1 f(si,m)

(1− ai,j), n = l

b+ 2c si,l∑N
m=1 f(si,m)

(−ai,j), n ̸= l

(59)

∂oi,j

∂si,l
=

N∑
n=1

∂ai,n
∂si,l

vn,j =
b+ 2c si,l∑N
m=1 f(si,m)

(vl,j −
N∑

n=1

ai,nvn,j) =
b+ 2c si,l

gi
(vl,j − oi,j). (60)

We now derive the partial derivative with respect to Q,K,V

∂oi,j

∂qi,r
=

N∑
l=1

∂si,l
∂qi,r

∂oi,j

∂si,l
=

∑N
l=1(b+ 2c si,l)kl,r

gi
(vl,j − oi,j) (61)

∂oi,j

∂kp,r
=
∂si,p
∂kp,r

∂oi,j

∂si,p
=

(b+ 2c si,p)qi,r

gi
(vp,j − oi,j) (62)

∂oi,j

∂vp,j
= ai,p =

f(si,p)

gi
. (63)

(64)

During the backward pass, given the gradient of the previous layer Ω, the gradient of the Attention
head ∇Ψ is calculated as follows

∇qi,r
Ψ =

D∑
j=1

∂oi,j

∂qi,r
Ωi,j =

D∑
j=1

∑N
l=1(b+ 2c si,l)kl,r

gi
(vl,j − oi,j)Ωi,j (65)

∇kp,r
Ψ =

N∑
i=1

D∑
j=1

∂oi,j

∂kp,r
Ωi,j =

N∑
i=1

D∑
j=1

(b+ 2c si,p)qi,r

gi
(vp,j − oi,j)Ωi,j (66)

∇vp,j
Ψ =

N∑
i=1

∂oi,j

∂vp,j
Ωi,j =

N∑
i=1

f(si,p)

gi
Ωi,j (67)
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Applying Factorization, the gradients will be calculated as

∇qi,r
Ψ =

D∑
j=1

{αQ
rj − βQ

r oi,j +

D∑
m=1

(γQrjm − ζQrm oi,j)qi,m}Ωi,j (68)

∇ki,r
Ψ =

D∑
j=1

{αK
rj vi,j − βK

rj +

D∑
m=1

(γKrmj vi,j − ζKrmj)ki,m} (69)

∇vi,j
Ψ = αV

j +

D∑
j=1

{βV
rj ki,r +

D∑
m=1

γVrmj ,ki,r,ki,m}. (70)

where the α, β, γ and ζ are the factorized coefficients and are defined as

αQ
rj =

N∑
l=1

bkl,r vl,j , βQ
r =

N∑
l=1

bkl,r, (71)

γQrmj =

N∑
l=1

2ckl,rkl,mvl,j , ζQrm =
N∑
l=1

2ckl,rkl,m (72)

αK
rj =

N∑
l=1

bql,r Ωl,j , βK
rj =

N∑
l=1

bql,r ol,j Ωl,j , (73)

γKrmj =

N∑
l=1

2cql,r ql,m Ωl,j , ζKrmj =

N∑
l=1

2cql,r ql,m ol,j Ωl,j (74)

αV
j =

N∑
l=1

aΩl,j , βV
rj =

N∑
l=1

b, ql,r Ωl,j , γVrmj =

N∑
l=1

2cql,r ql,m Ωl,j (75)

B APPLYING CAUSAL MASK

For the sake of space, we only show the process for applying causal mask for the attention kernel of
f(x) = a+ bx+ cx2. To apply the causal mask for Linear Attention (f(x) = a+ bx), we merely
need to set c = 0 in the equations below.

To apply causal mask, we change Eq. 48 to

oi,j =

∑i
n=1 f(q

T
i kn)vn,j∑i

n=1 f(q
T
i kn)

, oi,j =
fi,j
gi
, F ∈ RN×D,G ∈ RN , (76)

where F and G are

fij =

i∑
n=1

(a+ b

D∑
m=1

qimknm + c

D∑
m,l=1

qimknmqilknl)vnj , (77)

gi =

i∑
n=1

(a+ b

D∑
m=1

qimknm + c

D∑
m,l=1

qimknmqilknl), (78)

where we changed the first summation range. Changing the summation orders and applying Factor-
ization we get

fij = x
(1)
j +

D∑
m=1

qimx
(2)
jm +

D∑
m,l=1

qimqilx
(3)
jml, (79)

gi = y(1) +

D∑
m=1

qimy
(2)
m +

D∑
m,l=1

qimqily
(3)
ml , (80)
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where,

x
(1)
1j = av1j , x

(1)
ij = x

(1)
i−1j + avij ,

x
(2)
1jm = bk1mv1j , x

(2)
ijm = x

(2)
i−1jm + bkimvij ,

x
(3)
1jml = ck1mk1lv1j , x

(3)
ijml = x

(3)
i−1jml + ckimkilvij , (81)

y
(1)
i = a i, y

(2)
1m = bk1m, y

(2)
im = y

(2)
i−1m + bkim,

y
(3)
1ml = ck1mk1l, y

(3)
iml = y

(3)
i−1ml + ckimkil. (82)

C CUDA IMPLEMENTATION

To implement custom gradients, we wrote the forward and backward pass of the Attention head in
CUDA. As a reminder, the matrices Q,K,V,O are 4-dimensional tensors with dimensions batch,
Attention heads, tokens, and dimension per head. We parallelized our code within the batch, heads,
and dimension per head, meaning we lunch a total of B ×H × D threads. For a CUDA code to
be efficient, the number of threads should be either an integer multiple of number of CUDA cores
(hardware dependant), or be much bigger. For small benchmarks, we have B ≥ 32, H ≥ 8, D ≥ 32
resulting in launching 8, 192 threads. For comparison, the NVIDIA A100 GPU has 6, 912 CUDA
cores, meaning this method of parallelization is sufficient for reaching maximum parallelization, even
for small benchmarks. Note that it is not efficient for the calculations to be parallelized within the
tokens dimensions, since in the case of Attention with casual mask, the factorized coefficients for
each token is calculated with respect to the previous token’s, as shown in Eq. 8182.

Since the computations are MVP, and that MVP has a low memory reuse rate, the calculations are
memory bound. To alleviate this issue, we take advantage of shared memory. Shared memory, is
cache-like memory, which means it has a much lower read/write time but has a very limited capacity
(in order of 100 KB for each thread-block). As the name suggests, shared memory is shared between
the threads within each thread-block. The first trick we implement is to use all of the threads within
a thread-block to fill the shared memory, and then each thread can use all of the loaded data. To
elaborate, assume we have thread-block of n threads, and c variables are needed by each thread.
Assume accessing the global and shared memory takes tg and ts seconds for each variable, where
tg >> ts. Without the trick, the time needed would be c × tg since each thread accesses global
memory c times for the calculations. However, using the trick, the time will be

c

n
× tg +(c+

c

n
)× ts

since each thread accesses the global and shared memory
c

n
times to fill the shared memory, and

accesses the shared memory c times for the calculations.

Even by using shared memory, the calculation are memory bound. Therefore, we shape the calcula-
tions in a way to take advantage of the available registers within each thread. Registers have a much
lower read/write time compared to shared memory memory, but has limited availability (less than 1
KB per thread). Registers are useful when a variable needs to be updated many times within each
thread. Instead of accessing this variable from shared memory, the thread stores and updates it locally,
and writes it in shared memory when done. To elaborate, assume accessing the shared memory and
register takes ts and tr seconds for each variable, where ts >> tr, and that a variable needs to be
updated d times. The time without and with using this trick will be d× ts and ts+d× tr respectively.

D EXPERIMENT IMPLEMENTATION DETAILS

D.1 DETAILS OF SECTION 5.2

We have used the LitGPT AI (2023) framework to implement and train our Pythia-14M LLM Bi-
derman et al. (2023). The training was done using the Tiny Stories dataset Eldan & Li (2023) with
FlashAttention-2 ? (Softmax-based attention) and our method (Linear Attention). The token length is
4096, and the hyperparamters are the same for both of the implementations, and both implementations
use RoPE Su et al. (2024). The precision is Float-32, and the learning rate is 1e−3. The epoch count
and batch size is 1 and 25, and dropout rate is 0.2 (see Section 4 for details on how we mimic dropout
for Linear Attention).
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D.2 DETAILS OF SECTION 5.3

The Softmax is implemented using FlashAttention-2, and dropout is applied.

Benchmark Embedding
Dimension

Num
Layers

Num
Heads

Learning
Rate

Dropout
Rate

LRA 64 2 2 7e−4 0.1
Tiny Stories 128 6 4 1e−3 0.2

Table 2: We used the standard LRA model configuration (number of layers, embedding dimension, etc.) as
required for each of the LRA tests. For Tiny Stories, we used Pythia-14M.
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