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ABSTRACT

The approximation of Partial Differential Equations (PDEs) using neural networks
has seen significant advancements through Physics-Informed Neural Networks
(PINNs). Despite their straightforward optimization framework and flexibility
in implementing various PDEs, PINNs often suffer from limited accuracy due
to the spectral bias of Multi-Layer Perceptrons (MLPs), which struggle to ef-
fectively learn high-frequency and non-linear components. Recently, parametric
mesh representations in combination with neural networks have been investigated
as a promising approach to eliminate the inductive biases of neural networks.
However, they usually require very high-resolution grids and a large number of
collocation points to achieve high accuracy while avoiding overfitting issues. In
addition, the fixed positions of the mesh parameters restrict their flexibility, mak-
ing it challenging to accurately approximate complex PDEs. To overcome these
limitations, we propose Physics-Informed Gaussians (PIGs), which combine fea-
ture embeddings using Gaussian functions with a lightweight neural network. Our
approach uses trainable parameters for the mean and variance of each Gaussian,
allowing for dynamic adjustment of their positions and shapes during training.
This adaptability enables our model to optimally approximate PDE solutions, un-
like models with fixed parameter positions. Furthermore, the proposed approach
maintains the same optimization framework used in PINNs, allowing us to benefit
from their excellent properties. Experimental results show the competitive perfor-
mance of our model across various PDEs, demonstrating its potential as a robust
tool for solving complex PDEs.

1 INTRODUCTION

Machine learning techniques have become promising tools for approximating solutions to Par-
tial Differential Equations (PDEs) (Raissi et al., 2017; Yu et al., 2018; Karniadakis et al., 2021;
Finzi et al., 2023; Gaby et al., 2024). A notable example is the Physics-Informed Neural Network
(PINN) (Raissi et al., 2019), which leverages deep neural networks and gradient-based optimization
algorithms. This approach circumvents the need for the time-intensive mesh design prevalent in
numerical methods and allows us to solve both forward and inverse problems within the same opti-
mization framework. With the increased computational power and the development of easy-to-use
automatic differentiation software libraries (Abadi et al., 2015; Bradbury et al., 2018; Innes, 2018;
Paszke et al., 2019), PINNs have successfully tackled a broad range of challenging PDEs Hu et al.
(2024c); Li et al. (2024); Oh et al. (2024).

Although the mesh-free neural network approach shows significant promise in solving PDEs, it has
several limitations. Training PINNs typically requires numerous iterations to converge (Saarinen
et al., 1993; Wang et al., 2021; De Ryck et al., 2023). Despite recent techniques aimed at reducing
computational costs, multiple forward and backward passes of neural networks are still necessary to
compute the PDE residual losses. Furthermore, obtaining more accurate approximations demands
the use of wider and deeper neural networks, which enhances their expressiveness but significantly
increases computational costs (Cybenko, 1989; Baydin et al., 2018; Kidger & Lyons, 2020). In addi-
tion, the inductive bias inherent in neural networks often hinders the accuracy of solution approxima-
tions. A well-known example is the spectral bias, which favors learning low-frequency components
of solution functions and struggles to capture high-frequency or singular behaviors (Rahaman et al.,
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Figure 1: Training visualization of the Allen-Cahn equation (200, 600, 1000, 2000 training iter-
ations): Each Gaussian is displayed as the ellipsoids, exhibiting different positions and shapes ac-
cording to the Gaussian parameters, mean and covariance. Since we adopt a causal loss (Wang et al.,
2024c), the solution is gradually approximated from t = 0 to t = 1. Note that the Gaussians are
densely aligned in the locations where the solution changes abruptly.

2019). Although some solutions to this issue have been proposed (Tancik et al., 2020; Sitzmann
et al., 2020), eliminating inductive biases from neural networks remains a challenge.

To address these issues, recent studies have explored combining classical grid-based representations
with lightweight neural networks (Hui et al., 2018; Cao et al., 2023). In this approach, the parametric
grids map input coordinates to intermediate features, which are then processed by neural networks
to produce the final solutions. By relying on high-resolution parametric grids for representational
capacity, this method reduces the impact of neural networks’ inductive biases. Additionally, using
lightweight neural networks significantly reduces computational demands, leading to faster training
speeds compared to traditional neural network-only methods.

While promising, existing methods that combine parametric grids with neural networks face a fun-
damental challenge. The positions of the parameters (the locations of vertices) are predetermined
by the grid resolutions and remain fixed during training. Since the optimal allocation of represen-
tational capacity (determining where to place more vertices) is unknown, these methods typically
use high-resolution grids that uniformly distribute many vertices across the entire input domain to
achieve more accurate solutions. This approach results in using a large set of learnable parameters,
which often leads to overfitting issues, i.e., low PDE residual losses but inaccurate solutions. To
mitigate this problem, a large number of collocation points are sometimes used during training at
the expense of the increased computational costs.

In this work, we introduce a novel representation for approximating solutions to PDEs. Drawing
inspiration from adaptive mesh-based numerical methods (Berger & Oliger, 1984; Seol et al., 2016)
and the recent parametric grid representations (Li & Lee, 2021; Jang et al., 2023), we propose
the Physics-Informed Gaussian (PIG) that learns feature embeddings of input coordinates, using a
mixture of Gaussian functions. For a given input coordinate, PIG extracts a feature vector as the
weighted sum of the feature embeddings held by Gaussians with their learnable parameters (posi-
tions and shapes). They are adjusted during the training process, and underlying PDEs govern this
dynamic adjustment. To update the parameters of all Gaussians, we leverage the well-established
PINNs training framework, which employs numerous collocation points to compute PDE residuals
and uses gradient-based optimization algorithms.

The proposed approach offers several advantages over existing parametric grid methods. PIG dy-
namically adjusts the computational mesh structure and the basis functions (Gaussians) to learn
the feature embeddings. By following the gradient descent directions, the Gaussians move towards
regions with high residual losses or singularities, and this adaptive strategy allows for more effi-
cient and precise solutions than the static uniform grid structures. In addition, Gaussian functions
are infinitely differentiable everywhere, allowing for the convenient computation of higher-order
gradients for PDE residuals, and they can be seamlessly integrated into deep-learning computation
pipelines. The final architecture of the proposed approach, presented in 2-(c), that combines the
learnable Gaussian feature embedding and the lightweight neural network is a new learning-based
PDE solver that can provide more efficient and accurate solution approximations.
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We have tested the proposed method on an extensive set of challenging PDEs (Krishnapriyan et al.,
2021; Wang et al., 2024c; Cho et al., 2024). The experimental results show that the proposed
PIG achieved competitive accuracy compared to the existing methods that use large MLPs or high-
resolution parametric grids. When the number of Gaussians in our PIG model is comparable to the
number of vertices in previous parametric grids, our method significantly outperformed existing ap-
proaches, demonstrating its superior efficiency. Furthermore, the proposed PIG shows significantly
faster convergence speed than PINNs using large neural networks, demonstrating its effectiveness
as a promising learning-based PDE solver. Our contributions are summarized as follows.

• We introduce Physics-Informed Gaussians, an efficient and accurate PDE solver that uti-
lizes learnable Gaussian feature embeddings and a lightweight neural network.

• We propose a dynamically adaptive parametric mesh representation that effectively ad-
dresses the challenges encountered in previous static parametric grid approaches.

• We demonstrate that our PIG model achieves competitive accuracy and faster convergence
with fewer parameters compared to state-of-the-art methods, establishing its efficacy and
paving the way for new research avenues.

2 RELATED WORK

2.1 PHYSICS-INFORMED NEURAL NETWORKS

PINNs are a class of machine learning algorithms designed to solve PDEs by integrating physical
laws into the learning process. Introduced by Raissi et al. (2019), PINNs leverage neural networks
to approximate the solutions of PDEs while ensuring that the learned solutions respect the under-
lying physics. This is achieved by incorporating the PDE residuals directly into the loss function,
allowing the model to be trained using standard gradient-based optimization methods. PINNs have
gained significant attention for their ability to handle high-dimensional (Wang et al., 2022b; Hu
et al., 2024b;a) and complex problems (Yang et al., 2021; Pensoneault & Zhu, 2024) that are chal-
lenging for traditional numerical methods. They are particularly effective in scenarios where data is
sparse or expensive to obtain, as they can incorporate prior knowledge about the physical system.
Applications of PINNs span various domains, including fluid dynamics, solid mechanics, and elec-
tromagnetics, demonstrating their versatility and effectiveness in solving real-world problems (Cai
et al., 2021; Khan & Lowther, 2022; Bastek & Kochmann, 2023). Key advantages of PINNs in-
clude their mesh-free nature, the ability to easily incorporate boundary and initial conditions, and
their flexibility in handling various types of PDEs. However, they also face challenges, such as the
need for extensive computational resources and the difficulty in training deep networks to achieve
accurate solutions. For example, Wang et al. (2024b) typically uses around 9 hidden layers with 256
hidden units (sometimes up to 18 layers) to achieve high accuracy. This requires massive computa-
tions to run the neural network, which involves multiple forward and backward passes to compute
the gradients for PDE residual loss. Furthermore, it slows down the convergence speed due to the
large number of model parameters.

2.2 PHYSICS-INFORMED PARAMETRIC GRID REPRESENTATIONS

Physics-informed parametric grid representations combine traditional grid-based methods with neu-
ral networks to solve PDEs (Kang et al., 2023; Huang & Alkhalifah, 2024; Wang et al., 2024a;
Shishehbor et al., 2024a). These representations have also been extensively explored in image,
video, and 3D scene representations (Liu et al., 2020; Yu et al., 2021; Fridovich-Keil et al., 2022;
Müller et al., 2022; Chen et al., 2022; Sun et al., 2022; Fridovich-Keil et al., 2023) by training the
models as supervised regression problems. By discretizing the solution domain into a grid and as-
sociating each grid point with trainable parameters, these methods leverage the structured nature of
grids to capture spatial variations effectively. This hybrid approach maintains high accuracy and re-
duces computational costs compared to purely neural network-based methods. Key benefits include
the ability to handle high-resolution representations and integrate boundary conditions efficiently.
However, the fixed grid structure can lead to suboptimal allocation of representational capacity dur-
ing training. Despite this limitation, physics-informed parametric grid representations are promising
for achieving accurate solutions in complex scenarios.
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Figure 2: (a) PINN directly takes input coordinates (four collocation points) as inputs and produces
outputs. (b) Parametric grids first map input coordinates to output feature vectors. Each vertex in the
grids holds learnable parameters, and output features are extracted through interpolation schemes.
(c) The proposed PIG consists of numerous Gaussians moving around within the input domain, and
their shapes change dynamically during training. Each Gaussian has learnable parameters, and a
feature vector for an input coordinate is the weighted sum of the learnable parameters based on the
distance to the Gaussians.

2.3 ADAPTIVE MESH-BASED METHODS

Adaptive mesh-based methods dynamically adjust the computational mesh to minimize the error
between approximated and true solutions. This process involves a posteriori error analysis, which
estimates errors after solving, allowing for targeted mesh refinement. Such adaptivity is crucial
in the numerical analysis as it ensures efficient allocation of computational resources, focusing on
regions with high errors and thus improving overall accuracy and efficiency (Ainsworth & Oden,
1993; 1997).

There are also some studies on non-uniform adaptive sampling methods in the context of PINNs. Lu
et al. proposed a residual-based adaptive refinement method in their work with DeepXDE, aiming
to enhance the training efficiency of PINNs (Lu et al., 2021; Wu et al., 2023). More recently, Yang
et al. (2023b) introduced Dynamic Mesh-based Importance Sampling (DMIS), a novel approach that
constructs a dynamic triangular mesh to efficiently estimate sample weights, significantly improv-
ing both convergence speed and accuracy. Similarly, Yang et al. (2023a) developed an end-to-end
adaptive sampling framework called MMPDE-Net, which adapts sampling points by solving the
moving mesh PDE. When combined with PINNs to form MS-PINN, MMPDE-Net demonstrated
notable performance improvements. While these adaptive methods offer significant benefits, they
also introduce additional complexity into the PINN framework.

2.4 POINT-BASED REPRESENTATIONS

Irregular point-based representations have long been considered promising approaches for repre-
senting, reconstructing, and processing data (Qi et al., 2017; Xu et al., 2022; Zhang et al., 2022).
A recent study in 3D scene representation utilized Gaussians as a graphical primitive and showed
remarkable performance in image rendering quality and training speed (Kerbl et al., 2023). The
combination of Gaussian representation and neural networks has recently been explored in regress-
ing images or 3D signed distance functions, showing its great expressibility (Chen et al., 2023).
While those studies share some architectural similarities with our method, they all primarily focus
on supervised regression problems to reconstruct the visual signals. We developed the architecture
suitable for effective PDE solvers and first showed that the Gaussian features and neural networks
can be trained in an unsupervised manner guided by the physical laws.

3 METHODOLOGY

3.1 PRELIMINARY: PHYSICS-INFORMED NEURAL NETWORKS

Consider an abstract underlying equation,

D[u](x) = f(x), x ∈ Ω ⊂ Rd, (1)

B[u](x) = g(x), x ∈ ∂Ω, (2)
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where D is a differential operator, and B is a boundary operator which could contain the initial
condition. The physics-informed neural network methods try to find an approximate solution by
minimizing

L(θ) =

∫
Ω

|D[uθ](x)− f(x)|2dx+ λ

∫
∂Ω

|B[uθ](x)− g(x)|2dσ(x) (3)

where uθ is a neural network with the set of network parameters θ, λ is a positive real number,
and σ is a surface measure. In practice, integrals are usually estimated via Monte Carlo integration.
PINNs typically utilize automatic differentiation to compute the PDE residuals and ∇θL(θ). For
more details, please refer to the original paper (Raissi et al., 2019).

3.2 PHYSICS-INFORMED GAUSSIANS

In this section, we present the proposed Physics-Informed Gaussian representation (PIG) for ap-
proximating solutions to PDEs. It comprises two stages: Gaussian feature embeddings (3.2.1) and
solution approximation based on these features (3.2.2).

3.2.1 LEARNABLE GAUSSIAN FEATURE EMBEDDING

Let ϕ = {(µi,Σi, fi) : i = 1, . . . , N} be the set of Gaussian model parameters, where µi ∈ Rd is
a position of a Gaussian, and Σi ∈ Rd×d is a covariance matrix and each Gaussian has a learnable
feature embedding fi ∈ Rk. Given an input coordinate x ∈ Rd, the learnable Gaussian feature
embedding FEϕ : Rd → Rk is extracted as follows.

FEϕ(x) =

N∑
i=1

fiGi(x), Gi(x) = e−
1
2 (x−µi)

⊤Σ−1
i (x−µi), (4)

where N is the number of Gaussians and Gi represents the i-th Gaussian function. FEϕ maps an
input coordinate to a feature embedding by a weighted sum of the individual features fi of each
Gaussian. Gaussian features distant from the input coordinates do not contribute to the final feature
embedding, while only neighboring Gaussian features remain significant. Similar to the previous
parametric grid methods, which obtain feature embeddings by interpolating only neighboring ver-
tices, this locality encourages the model to capture high-frequency details by effectively alleviating
spectral bias.

All Gaussian parameters ϕ are learnable and iteratively updated throughout the training process.
This dynamic adjustment, akin to adaptive mesh-based numerical methods, optimizes the structure
of the underlying Gaussian functions to accurately approximate the solution functions. For example,
the regions with high-frequency or singular behaviors require more computational parameters, and
Gaussians, updated based on the gradients ∂L

∂µi
, will migrate to these regions to reduce the loss

(see Figure 1). Compared to the existing parametric grid approaches, which achieve this goal by
uniformly increasing grid resolution, the proposed method can build a more parameter-efficient and
optimal mesh structure.

3.2.2 GENERATING THE SOLUTION FROM LEARNABLE GAUSSIANS WITH LIGHTWEIGHT
NEURAL NETWORK

Once the features are extracted, a neural network processes the feature to produce the solution out-
puts.

uϕ,θ(x) = NNθ(FEϕ(x)), (5)
where NNθ is a small and lightweight MLP with the parameter θ. We employed a single hidden layer
MLP with a limited number of hidden units, resulting in negligible additional computational costs.
Feature extraction plays a primary role in producing the final solution, while the MLP functions as a
feature refinement mechanism. Even though Gaussian features are already universal approximators
(see 3.3), using a small MLP at the end improved the solution accuracy by a large margin compared
to the method without the MLP, generating the solution directly from Gaussian representations, i.e.,
uϕ(x) = FEϕ(x).

3.2.3 PIG AS A NEURAL NETWORK

5
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Figure 3: PIG as a neural network.

The proposed Gaussian feature embedding ad-
mits a form of radial basis function network.
Figure 3 depicts the overall PIG architecture as
a neural network. The first layer contains N
(the number of Gaussians) RBF units, and an
input coordinate passes through all RBF units,
Gi(x), resulting in a N -dimensional vector. A
single fully connected layer processes this vec-
tor to produce a k-dimensional feature vector.
The weight matrix W ∈ Rk×N in this layer
corresponds to the feature vectors held by each
Gaussian, i.e., W:,i ∈ Rk equals fi ∈ Rk.

The extracted feature vector is further processed by a single hidden layer MLP (we used the tanh
activation function) to produce the final output, as depicted in Figure 3. Overall, the proposed PIG
architecture can be interpreted as an MLP with one input layer with N RBF units and two hidden
layers (no activation for the first hidden layer, and tanh for the second hidden layer).

A related study by Bai et al. (2023) has explored solving various PDEs using radial basis function
networks (Park & Sandberg, 1991; Buhmann, 2000) within the framework of physics-informed ma-
chine learning. However, their approach differs from ours in that the positions of the basis functions
are fixed. In contrast, our method allows the positions of the Gaussians to adjust dynamically, mov-
ing in directions that minimize the loss function. In addition, we extract the feature vectors from
neighboring Gaussians and further process them using shallow neural networks while they directly
predict the solution output from the Gaussians.

3.3 UNIVERSAL APPROXIMATION THEOREM FOR PIGS

Here, we present the Universal Approximation Theorem (UAT) for PIGs. A PIG consists of two
functions: FEϕ and NNθ (see equation 5). We will prove the UAT only for FEϕ, as the UAT for PIGs
follows directly from the standard UAT for MLPs. Given our earlier discussion on the relationship
between PIGs and radial basis function networks, we begin with the following UAT specific to radial
basis function networks.

Theorem 1 ( Park & Sandberg (1991)) Let K : Rd → R be an integrable bounded function such
that K is continuous and ∫

Rd

K(x) dx ̸= 0. (6)

Then the family SK , defined as linear combinations of translations of K,

SK =

{
n∑

i=1

fiK(x− µi)

∣∣∣∣fi ∈ R, µi ∈ Rd, n ∈ N

}
, (7)

is dense in C(Rd).

However, Theorem 1 does not apply to PIGs, as the feature embedding FEϕ in PIGs takes a slightly
different form:

FEϕ(x) =

n∑
i=1

fiK (x− µi; Σi) , (8)

where the key difference lies in the presence of Σi. Notably, the set

S′
K =

{
n∑

i=1

fiK(x− µi; Σi)

∣∣∣∣fi ∈ R, µi ∈ Rd,Σi ∈ Sd++, n ∈ N

}
, (9)

with S++ denoting the set of positive definite matrices, contains SK . Therefore, S′
K is dense in

C(Rd). We summarize this in the following corollary:

Corollary 1 The scalar-valued, d-dimensional PIGs {NNθ ◦ FEϕ|(θ, ϕ) ∈ Rp1+p2} are dense in
C(Rd).
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Methods Allen-Cahn Helmholtz Nonlinear Diffusion Flow Mixing Klein Gordon
PINN - 4.02e-1 9.50e-3 - 3.43e-2
LRA - 3.69e-3 - - -

PIXEL 8.86e-3 8.63e-4 - - -
SPINN - - 4.47e-2 2.90e-3 1.93e-2
JAX-PI 5.37e-5 - - - -

PirateNet 2.24e-5 - - - -
PIG (Ours) 1.04e-4 4.13e-5 2.69e-3 4.51e-4 2.76e-3
± 1std ± 4.12e-5, ± 2.59e-05, ± 6.55e-4, ± 1.74e-4, ± 4.27e-4,

best 5.93e-5 2.22e-5 1.44e-3 2.67e-4 2.36e-3

Table 1: Comparison of relative L2 errors across different methods. Three experiments were con-
ducted using seeds 100, 200, and 300, with the mean and standard deviation presented in the table.
The methods compared include PINN (Raissi et al., 2019), Learning Rate Annealing (LRA) (Wang
et al., 2021), PIXEL (Kang et al., 2023), SPINN (Cho et al., 2024), JAX-PI (Wang et al., 2023),
and Pirate-Net (Wang et al., 2024b). For fair comparisons, we included the reported values from the
respective references and omitted results that were not provided in the original papers.

4 EXPERIMENTS

4.1 EXPERIMENTAL SEUP

To validate the effectiveness of our proposed method, We conducted extensive numerical experi-
ments on various challenging PDEs, including Allen-Cahn, Helmholtz, Nonlinear Diffusion, Flow
Mixing, and Klein-Gordon equations (For more experiments, please refer to the Appendix). We
used the Adam optimizer (Kingma & Ba, 2014) for all equations except for the Helmholtz equation,
in which the L-BFGS optimizer (Liu & Nocedal, 1989) was applied for a fair comparison to the
baseline method PIXEL. For computational efficiency, we considered a diagonal covariance matrix
Σ = diag(σ1, . . . , σd) and we will discuss more in Section 4.3.3.

4.2 EXPERIMENTAL RESULTS

4.2.1 (1+1)D ALLEN-CAHN EQUATION

We compared our method against one of the state-of-the-art PINN methods on the Allen-Cahn equa-
tion, JAX-PI (Wang et al., 2023). For the detailed description, please refer to Appendix A.1.1. As
shown in Figure 4, our method converges significantly faster and achieves competitive final accu-
racy (see Table 1). JAX-PI used a modified MLP architecture and 4 hidden layers with 256 hidden
neurons. Thus, the number of parameters in JAX-PI is more than 250K, while ours used only
around 20K parameters ((N, d, k) = (4000, 2, 1)). Also, note that the L2 error curve in Figure 4
is displayed per iteration, and computational costs per iteration of ours are significantly lower than
JAX-PI, which requires multiple forward and backward passes of the wide and deep neural network.

Figure 4: Allen-Cahn Equation. Reference solution and absolute error maps of PIG and one of
the state-of-the-art methods (JAX-PI) to Allen-Cahn Equation (x-axis: t, y-axis: x). The rightmost
depicts a relative L2 error curve during the training process (x-axis: iterations, y-axis: L2 error).
The experiment was conducted with three different seeds, and the best relative L2 error of PIG is
5.93× 10−5.
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Figure 5: 2D Helmholtz Equation. Reference solution and absolute error maps of PIG and one of
the state-of-the-art methods (PIXEL) to 2D Helmholtz Equation. The rightmost depicts a relative
L2 error curve during the training process and the best relative L2 error of PIG is 2.22× 10−5.

4.2.2 2D HELMHOLTZ EQUATION

Figure 5 illustrates the numerical performance of our proposed PIG method for the 2D Helmholtz
equation, comparing it to PIXEL (Kang et al., 2023), one of the state-of-the-art methods within the
PINN family that uses parametric grid representations. A more detailed description of the experi-
mental setup is available in Appendix A.1.2. The experiments were conducted using three different
seeds, with PIG achieving the best relative L2 error of 2.22 × 10−5 when employing the L-BFGS
optimizer, and a relative L2 error of 2.50× 10−4 with the Adam optimizer (For fair comparison, we
reported the result using L-BFGS since PIXEL used L-BFGS). Notably, the results show that PIG’s
error is four times lower than that of PIXEL, highlighting the efficiency and accuracy of our method.
We did not compare against other state-of-the-art methods, such as JAX-PI or Pirate-Net, as they
did not conduct experiments in this setting. While we could have used their codes, the sensitivity of
PINN variants to hyperparameters complicates fair comparisons.

4.2.3 (2+1)D KLEIN-GORDON EQUATION

Figure 6 presents the predicted solution profile for the Klein-Gordon equation, comparing our results
with SPINN. The best relative L2 error achieved is 2.36 × 10−3, which outperforms SPINN by an
order of magnitude. For further details, please refer to Appendix A.1.3.

4.2.4 (2+1)D NONLINEAR DIFFUSION EQUATION

We evaluated the performance of PIGs on the (2+1) dimensional nonlinear diffusion equation, with
visualizations presented in Figure 19. The relative L2 error achieved is 1.44× 10−3. For details on
the experimental setup, please refer to Appendix A.1.5.

4.2.5 (2+1)D FLOW-MIXING PROBLEM

Figure 7 displays the numerical solutions and absolute errors for the (2+1) flow mixing problem.
Our solutions closely match the reference, with PIG achieving a maximum absolute error of 5.03×
10−3, compared to 2.63× 10−1 for SPINN, underlining the superior performance of PIG. Figure 20
presents solution profiles up to t = 4. Additional details can be found in Appendix A.1.4.

4.3 HYPERPARAMETER ANALYSIS AND ABLATION STUDY

In this section, we present the experimental results to show the effects of each component of the pro-
posed PIG (Using MLP, learnable Gaussian positions, and dense covariance matrices), In addition,
We study the effect of the number of Gaussians, the size of MLP and input dimensions.

4.3.1 THE NUMBER OF GAUSSIANS

In numerical analysis, there is a general trend that the quality of the solution improves as the mesh
is refined. Given our approach of using Gaussians as mesh points, we expect that the accuracy of
PIGs will improve with an increased number of Gaussians. Table 2 illustrates the accuracy improve-
ments of PIGs to the number of Gaussians. Overall, we observe a positive correlation between the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Klein-Gordon Equation. Reference solution and absolute error maps of PIG and one of
the state-of-the-art methods (SPINN) to Klein-Gordon Equation. The rightmost depicts a relative
L2 error curve during the training process and the best relative L2 error of PIG is 2.36× 10−3.

Figure 7: Flow mixing problem. The best relative L2 error of PIG is 2.67×10−4, while its maximum
absolute error is 5.03× 10−3. In comparison, one of the state-of-the-art methods, SPINN achieved
1.93× 10−2 L2 error and showed a maximum absolute error of 2.63× 10−1.

number of Gaussians and improved accuracy. It is important to note that achieving this trend can be
challenging for other PINN-type methods.

# Gaussians Flow-Mixing Nonliner-Diffusion Allen-cahn
200 6.07e-03 2.33e-03 1.83e-02
400 3.13e-03 2.22e-03 2.93e-03
600 1.50e-03 2.23e-03 2.75e-03
800 1.44e-03 1.95e-03 1.22e-03

1000 1.31e-03 7.33e-03 4.81e-04
1200 1.03e-03 3.96e-03 3.98e-04

Table 2: The number of Gaussians and approximation accuracy (Flow-Mixing, Nonlinear Diffusion,
and Allen-Cahn). The results indicate that increasing the number of Gaussians typically leads to a
decrease in relative L2 error.

4.3.2 MLP IMPACT AND ADAPTIVE GAUSSIAN POSITIONS

While FEϕ serves as a universal approximator, we found that adding a small MLP NNθ significantly
enhances performance. Additionally, our ablation study explores the effectiveness of allowing adap-
tive Gaussian positions (learnable µ vs. fixed µ). The results in Table 3 illustrate that varying
Gaussian positions µ improve accuracy, particularly when combined with the MLP. We also evalu-
ate the sensitivity of PIGs to the width and input dimensions of the MLP, as summarized in Table 4.
Notably, no clear trend emerges, highlighting the robustness of PIGs to MLP variations.

4.3.3 COVARIANCE MATRICES

Dense covariance matrices can represent the most general form of Gaussians, but they are more
computationally expensive than diagonal covariance matrices. We compared these two types of co-
variance matrices across several equations: the 2D Helmholtz equation, the Klein-Gordon equation,
the Flow-Mixing equation, and the Nonlinear-Diffusion equation. Despite the increased number
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(MLP, µ) Allen-Cahn Helmholtz Nonlinear Diffusion Flow-Mixing Klein-Gordon
(X, Fixed) 4.72e-03 3.97e-04 6.32e-03 4.33e-03 6.44e-02
(O, Fixed) 1.82e-03 2.12e-04 2.10e-03 1.09e-03 2.69e-02
(X, Learn) 7.29e-05 1.86e-04 5.26e-03 7.93e-04 8.51e-03
(O, Learn) 7.27e-05 2.22e-05 1.44e-03 4.51e-04 2.76e-03

Table 3: Ablation study results on MLP and µ across various equations.

MLP input dim (=k)
# Hidden units 1 2 3 4

4 7.77e-03 9.60e-03 7.68e-03 9.60e-03
8 8.55e-03 6.44e-03 1.06e-02 8.54e-03
16 8.24e-03 1.06e-02 1.21e-02 6.90e-03
32 7.14e-03 8.06e-03 1.22-02 6.87e-03
64 6.33e-03 7.50e-03 1.09e-02 9.48e-03

128 6.38e-03 6.88e-03 8.48e-03 7.47e-03
256 5.21e-03 6.60e-03 5.22e-03 5.40e-03

Table 4: The performance of different MLP configurations for the Helmholtz equation, displaying
L2 relative errors at iteration 1,000 across various configurations of hidden units and MLP input
dimensions. Overall, the results highlight the robustness to the size of MLP, showing minimal
variation in errors across different settings.

of network parameters and generality associated with dense matrices, both dense and diagonal co-
variance matrices yielded similar error levels, as summarized in Table 5. Note that the number of
Gaussians used in the dense covariance matrices is significantly lower than that in the diagonal ma-
trices, with 50 Gaussians for the dense case compared to 4,000 for the diagonal case, as seen in the
Nonlinear-Diffusion equation. We believe that the advanced training techniques and engineering
would improve the performance of PIG with dense covariance matrices and leave it to future works.

Helmholtz Klein-Gordon Flow-Mixing Nonlinear Diffusion
Dense 5.17e-05 1.81e-03 3.48e-04 3.86e-03

Diagonal 2.22e-05 2.76e-03 4.51e-04 1.44e-03

Table 5: Comparison of error levels between dense and diagonal covariance matrices in PIGs.

5 CONCLUSION AND LIMITATIONS

In this work, we introduced PIGs as a novel method for approximating solutions to PDEs. By
leveraging explicit Gaussian functions combined with deep learning optimization, PIGs address the
limitations of traditional PINNs that rely on MLPs. Our approach dynamically adjusts the positions
and shapes of the Gaussians during training, overcoming the fixed parameter constraints of previous
methods and enabling more accurate and efficient approximations of complex PDEs. Experimental
results demonstrated the superior performance of PIGs across various PDE benchmarks, showcasing
their potential as a robust tool for solving high-dimensional and nonlinear PDEs.

Despite the promising results, our approach has certain limitations that warrant further investigation.
Firstly, the dynamic adjustment of Gaussian parameters introduces additional computational over-
head. While this improves accuracy, it may also lead to increased training times, particularly for very
large-scale problems. However, by leveraging the locality of Gaussians, we can limit the evaluations
to nearby Gaussians, which reduces the necessary computations and saves GPU memory. Secondly,
the number of Gaussians is fixed at the beginning of training. Ideally, additional Gaussians should
be allocated to regions requiring more computational resources to capture more complex solution
functions. We believe it is a promising research direction and leave it to future work. Finally, a
complete convergence analysis of the proposed method is not yet available. While empirical results
show improved accuracy and efficiency, a theoretical understanding of the convergence properties
would provide deeper insights and guide further enhancements.
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A APPENDIX

A.1 DETAILED DESCRIPTION OF EXPERIMENTS

A.1.1 (1+1)D ALLEN-CAHN EQUATION

The Allen-Cahn equation is a one-dimensional time-dependent reaction-diffusion equation that de-
scribes the evolutionary process of phase separation, which reads

ut − 0.0001uxx + 5u3 − 5u = 0, (x, t) ∈ [−1, 1]× [0, 1], (10)

with the periodic boundary condition

u(−1, t) = u(1, t), ux(−1, t) = ux(1, t). (11)

The initial condition for the experiment was u(x, 0) = x2cos(πx). We used the NTK-based loss
balancing scheme (Wang et al., 2022a) to mitigate the ill-conditioned spectrum of the neural tangent
kernel (Jacot et al., 2018). We used N = 4000 Gaussians for training and a diagonal covariance
matrix for parameter efficiency, where the diagonal elements of the initial Σ were set to a constant
value of 0.025. The µi was uniformly initialized following Uniform[0, 2]2. We used shallow MLP
with one hidden layer with 16 hidden units, and the dimension of the Gaussian feature was k = 1.

Reference solution was generated by Chebfun (Driscoll et al., 2014), which utilizes the Fourier col-
location method with N = 4096 Fourier modes with ETDRK4 time stepping (Kassam & Trefethen,
2005) with a fixed time step ∆t = 1/200.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.1.2 2D HELMHOLTZ EQUATION

The Helmholtz equation is the eigenvalue problem of the Laplace operator ∆ = ∇2. We consider
the manufactured solution

u(x, y) = sin(a1πx) sin(a2πy), (a1, a2) = (4, 1), (12)

to the two-dimensional Helmholtz equation with the homogeneous Dirichlet boundary condition
given by

∆u+ k2u = q, (x, y) ∈ [−1, 1]2, k = 1, (13)
where

q(x, y) = k2 sin (a1πx) sin (a2πy)− (a1π)
2 sin (a1πx) sin (a2πy)− (a2π)

2 sin (a1πx) sin (a2πy)
(14)

can be extracted from the solution u.

We used N = 3000 Gaussians in this experiment. The weights and scales of Gaussians were initial-
ized following Uniform[−1, 1] and 0.1, respectively. The feature size of Gaussians was fixed at 4.
The shallow MLP has 16 hidden nodes, and its network parameters were initialized by Glorot nor-
mal. The inputs for the Gaussians were rescaled into [0, 1]2, therefore the positions were initialized
following Uniform[0, 1]2.

A.1.3 (2+1)D KLEIN-GORDON EQUATION

The Klein-Gordon equation is a relativistic wave equation, which predicts the behavior of a particle
at high energies. We consider the manufactured solution

u(x, y, t) = (x+ y) cos(2t) + xy sin(2t) (15)

to the (2+1) dimensional inhomogeneous Klein-Gordon equation

utt −∆u+ u2 = f, (x, y, t) ∈ [−1, 1]2 × [0, 10], (16)

where the forcing f , initial condition, and Dirichlet boundary condition are extracted from the man-
ufactured solution u. In this experiment, we employed N = 100 Gaussians and a shallow MLP
whose input dimension is 4 and hidden layer size is 16. The network parameters for the shal-
low MLP were initialized by Glorot Normal. Every weight of Gaussian was initialized following
Normal(0, 0.012). The scale parameter σi’s were initialized with a constant value of 0.5. Instead
of direct usage of the computational domain [−1, 1]2 × [0, 10], we used linearly rescaled values
∈ [0, 2]3 for the inputs of Gaussians. Accordingly, position parameters of Gaussians were initialized
following Uniform[0, 2]3.

A.1.4 (2+1)D FLOW-MIXING PROBLEM

A mixing procedure of two fluids in a two-dimensional spatial domain could be described in the
following equation

ut + aux + buy = 0, (x, y, t) ∈ [−4, 4]2 × [0, 4], (17)

a(x, y) = − vt
vt,max

y

r
, b(x, y) =

vt
vt,max

x

r
, (18)

vt = sech2(r)tanh(r), (19)

r =
√
x2 + y2, vt,max = 0.385. (20)

The analytic solution is u(x, y, t) = − tanh
(
y
2 cos(wt)−

x
2 sin(wt)

)
, where w = vt/(rvt,max);

see e.g., Tamamidis & Assanis (1993). The initial condition can be extracted from the analytic
solution.

To predict the solution to the PDE, we used N = 4000 Gaussians. The weights and scales were
initialized to Normal(0, 0.012) and 0.1, respectively. The size of Gaussian features was fixed at
4. MLP had 16 hidden nodes, and its parameters were initialized by Glorot normal. Inputs for
the Gaussians were rescaled to [0, 2]3, hence the positions of Gaussians were initialized following
Uniform[0, 2]3.
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A.1.5 (2+1)D NONLINEAR DIFFUSION EQUATION

The diffusion equation is a parabolic PDE describing the diffusion process of a physical quantity,
such as heat. We consider a nonlinear diffusion equation for our benchmark, which reads

ut = 0.05
(
∥∇u∥2 + u∆u

)
, (x, y, t) ∈ [−1, 1]2 × [0, 1], (21)

u0(x) = 0.25g

(
x; 0.2, 0.3,

1√
10

)
+ 0.4g

(
x;−0.1,−0.5,

1√
15

)
+ 0.3g

(
x;−0.5, 0,

1√
20

)
,

where
x = (x, y) and g(x, y; a, b, σ) = e−

(x−a)2+(y−b)2

σ2 .

There are three peaks at the initial time and the peaks spread out as time goes on.

We employed N = 4000 Gaussians. The weights and scales of Gaussians were initialized to
Normal(0, 0.012) and 0.1, respectively. The size of Gaussian features was 4. The hyperbolic tan-
gent MLP had only a single hidden layer with 16 nodes, and its parameters were initialized by Glorot
normal. The inputs for the Gaussians were rescaled into [0, 1]3. Correspondingly, the positions of
Gaussians were initialized following Uniform[0, 1]3.

A.2 ADDITIONAL EXPERIMENTS

Here, we compare PIGs to PIRBNs (Bai et al., 2023). Two equations in the PIRBN paper are chosen
as benchmarks.

Equation (15) in Bai et al. (2023):

∂2

∂x2
u(x− 100)− 4µ2π2 sin(2µπ(x− 100)) = 0, (22)

and u(100) = u(101) = 0. The exact solution is u(x) = − sin(2µπ(x − 100)). We considered
µ = 4.

Equation (30) in Bai et al. (2023):

∂2

∂x2
u(x) = −2π(22− x) cos(2πx) + 0.5 sin(2πx)− π2(22− x)2 sin(2πx)

+ 16π(x− 20) cos(16πx) + 0.5 sin(16πx)− 64π2(x− 20)2 sin(16πx),

(23)

and u(20) = u(22) = 0. The exact solution is u(x) =
(
22−x

2

)2
sin(2πx) +

(
x−20

2

)2
sin(16πx).

Referring to the numbers in 6, PIGs achieved error levels by two orders of magnitude smaller than
PIRBNs. This improvement could be attributed to the introduction of a tiny MLP and letting posi-
tions move during training.

Equation 22 Equation 23
PIRBNs 6.87e-03 ± 3.70e-04 1.47e-02 ± 9.16e-03

PIGs 1.79e-05 ± 3.80e-06 1.14e-04 ± 1.19e-05

Table 6: Results of the comparison study between PIGs and PIRBNs for Equations 22 and 23. PIGs
achieve lower errors than PIRBNs, highlighting their superior performance in both equations.

A.3 SEPARABLE PIGS

Separable PINNs have shown excellent performance across various PDEs (Cho et al., 2024; Oh
et al., 2024). When mesh points are tensor products of 1D grids, the number of network forward
passes of SPINNs scale linearly O(Nd), in contrast to the exponential scaling O(Nd) of traditional
PINNs, which adopt a single MLP.

Here, we provide a proof-of-concept for combining SPINNs and PIGs. Separable PIGs (SPIGs)
might have the following form:

u(x1, . . . , xd) ≈
R∑

r=1

d∏
i=1

PIGr(xi; θi) (24)
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Figure 8: Klein-Gordon equationA.1.3. The relative L2 error of SPIG is 3.68× 10−4.

where PIGr is the r-th component of the output vector.

2D L-shaped Poisson equation the two-dimensional Poisson equation defined on an L-shaped do-
main. Despite the non-tensor-product nature of the computational domain, SPINNs can deal with
such complex domains by masking outputs. Please refer to (Cho et al., 2024) for the description of
this benchmark problem. A SPIG achieved 1.89 × 10−2 relative L2 error for this problem, while
SPINN solution was 3.22× 10−2.

(2+1)D Klein-Gordon equation SPIG achieved 3.68 × 10−4 relative L2 error. PIG’s best relative
L2 error was 2.36× 10−3. Please refer to A.1.3 for a description of PDE. SPIG used modified MLP
with 2 layer and 16 hidden features. The weights and scales were initialized to Normal(0, 0.012)
and 0.1, respectively. position parameters of Gaussians were initialized following Uniform[0, 2]3.
2500 Gaussians are used.

(3+1)D Klein-Gordon equation SPIG achieved 2.88 × 10−4 relative L2 error. SPINN’s relative
L2 error was 1.20 × 10−3. Please refer to (Cho et al., 2024) for the description of this benchmark
problem. SPIG used modified MLP with 2 layer and 16 hidden features. The weights and scales
were initialized to Normal(0, 0.012) and 0.25, respectively. position parameters of Gaussians were
initialized following Uniform[0, 2]3. 2500 Gaussians are used.

Figure 9: 3D Helmholtz equation A.3. The relative L2 error of SPIG is 1.50× 10−3.

3D Helmholtz equation SPIG achieved 1.50 × 10−3 relative L2 error. SPINN’s relative L2 error
was 3.00 × 10−2. Please refer to (Cho et al., 2024) for the description of this benchmark problem.
SPIG used modified MLP with 2 layers and 16 hidden features. The weights and scales were initial-
ized to Normal(0, 0.012) and 0.05, respectively. position parameters of Gaussians were initialized
following Uniform[0, 2]3. 2500 Gaussians are used.

A.4 INVERSE PROBLEM

With observation data, the PINN framework can estimate unknown equation parameters by letting
them be learnable. Here we consider (1+1)D Allen-Cahn equation

ut − 10−4uxx + λu3 − 5u = 0,

18
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with an unknown coefficient λ. Other conditions are the same with Section A.1.1. We estimated λ
using reference solution as observation data. Figure 10 presents estimated λ over iterations, clearly
showing PIG’s faster convergence.

Figure 10: Allen-Cahn Inverse problem. The experiment was conducted on five different seeds (100,
200, 300, 400, 500). PIG showed better performance than PINN.

A.5 HIGH DIMENSIONAL EQUATIONS

Hu et al. introduced stochasticity in the dimension during the gradient descent (SDGD) to efficiently
handle high-dimensional PDEs within the PINN framework Hu et al. (2024b). PIGs can utilize
SDGD to tackle extremely high dimensional PDEs, e.g., 100D Allen-Cahn, and Poisson equation.
Specifically, let d = 100 and Bd = {x ∈ Rd : ∥x∥2 ≤ 1} be the domain. We consider a function

uexact =
(
1− ∥x∥22

)(d−1∑
i=1

ci sin (xi + cos(xi+1) + xi+1 cos(xi))

)
,

as our exact solution, where ci ∼ Normal(0, 12). Our benchmark problems are the Poisson equation
and the Allen-Cahn equation, which read

∆u = g (Poisson) and ∆u+ u− u3 = g (Allen-Cahn)

where g is induced from the exact solution.

Figure 11 presents relative L2 error curves over iterations. Note that global polynomial-based meth-
ods cannot handle such high dimensional equations due to the curse of dimensionality.

Figure 11: Relative L2 error curves for two high dimensional PDEs. Left: 100D Allen-Cahn equa-
tion. Right: 100D Poisson equation. PIGs achieved 8.88× 10−3, and 8.42× 10−3, respectively.
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A.6 LID-DRIVEN CAVITY

To further illustrate the effectiveness of PIGs over traditional parametric mesh methods, we chose
the PGCAN Shishehbor et al. (2024b) as our baseline and considered the lid-driven cavity problem
presented in the paper. The domain is [0, 1]2. The homogeneous Dirichlet boundary condition
is imposed except for the lid {(x, 1) : x ∈ [0, 1]}. The governing equation is a 2D stationary
incompressible Naiver-Stokes equation,

∇ · u = 0
ρ(u · ∇)u = −∇p+ µ∇2u

where the boundary conditions are given as follows:

u(0, y) = u(1, y) = (0, 0),
u(x, 0) = (0, 0),
u(x, 1) = (A sin(πx), 0),
p(0, 0) = 0.

We used 2000 Gaussians. Covariance matrices were diagonal and initialized at 0.1 and positions
were initialized following Uniform[0, 2].

Figure 12 depicts numerical results. PIG shows excellent agreement with the reference solution.
Figure 13 illustrates faster convergence of PIGs compared to the baseline method PGCAN.

Figure 12: Lid-driven cavity flow problem. PIG achieved 4.04× 10−4 relative L2 error whereas the
baseline parametric grid method PGCAN resulted in 1.22× 10−3.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 13: Relative L2 error curve of the lid-driven cavity problem. PIG achieved 4.04× 10−4 and
PGCAN which used the parametric grid method achieved 1.22× 10−3.

A.7 EXAMPLE FOR SPECTRAL BIAS

Figure 14 illustrates PIG’s ability to approximate high-frequency functions. We considered 2D
Helmholtz equation (see Section A.1.2) with a high wavenumber (a1, a2) = (10, 10) for a bench-
mark problem.

Figure 14: 2D Helmholtz equation with a high wavenumber (a1, a2) = (10, 10). PIG achieved a
relative L2 error of 7.09 × 10−3, while the parametric fixed grid method PIXEL reached a relative
L2 error of 7.47× 10−2. PINN failed to converge.

A.8 THE HISTOGRAM OF VARIANCES AND DISTANCES OF GAUSSIANS

Figure 15 shows the histograms of the Gaussian parameters for the two benchmark problems dis-
cussed in Section 4.2.5 and Section 4.2.3. Readers may observe that the Gaussians in the right panels
are more global and, therefore, more sparsely distributed compared to those in the left panels.

A.9 COMPARISON BETWEEN PIG AND SIREN

In this section, we compare the performance of PIG with SIREN Sitzmann et al. (2020). PIG is
composed of a feature embedding FEϕ and a lightweight neural network NNθ. Here, we investigate
the effectiveness of SIREN when used either as a feature embedding or as a lightweight neural
network.

When used as FEϕ, SIREN is implemented as an MLP with 4 layers, each containing 256 units, and
sin(3x) as the activation function. As NNθ, SIREN is a shallow MLP with 16 units and sin(30x)
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Figure 15: Histograms of the Gaussian parameters for the flow-mixing equation and the Klein-
Gordon equation. The upper panels display histograms of the minimum distances between the
Gaussian centers, where distances > 0 indicate the absence of mode collapse. The lower panels
show histograms of the Gaussian variances, highlighting the non-degeneracy of the Gaussians.

activation function. It is worth noting that using sin(30x) as the activation function for the feature
embedding FEϕ did not yield effective results.

FEϕ + NNθ Helmholtz Flow-Mixing Klein-Gordon
SIREN + Id 1.68e-03 ± 2.02e-03 1.22e-02 ± 4.17e-03 1.18e-01 ± 4.88e-02

SIREN + tanh 1.31e-03 ± 8.26e-04 2.80e-02 ± 2.50e-02 1.04e-01 ± 8.61e-02
PIG + SIREN 1.37e-05 ± 1.64e-06 1.28e-03 ± 1.09e-04 2.37e-02 ± 4.62e-03

PIG + tanh 4.13e-05 ± 2.59e-05 4.51e-04 ± 1.74e-04 2.76e-03 ± 4.27e-04

Table 7: Comparison of PIG and SIREN performance. For all cases except the Helmholtz equation,
the original PIG + tanh formulation outperformed other methods. The improved performance of
PIG + SIREN on the Helmholtz equation may be attributed to the functional form of its exact solu-
tion.

The results, summarized in Table 7, indicate that SIREN as FEϕ did not perform notably well.
However, when SIREN was employed as NNθ, it demonstrated excellent performance in solving
the Helmholtz equation discussed in Section 4.2.2. This improvement is likely due to the structural
similarity between the SIREN activation and the functional form of the exact solution (equation 12).

A.10 COMPARISON WITH PHYSICS-INFORMED GAUSSIAN SPLATTING

We conducted several experiments to compare PIGs with physics-informed Gaussian splatting (PI-
GS) proposed by Rensen et al. (2024).
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(2+1)D Burgers equation (1) (2+1)D Burgers equation (2) (2+1)D Diffusion equation
PIG 7.68× 10−4 (0.28s/it) 1.08× 10−3 (0.29s/it) 9.04× 10−3 (0.1s/it)

PI-GS 1.62× 10−1 (1.5s/it) 2.61× 10−1 (1.68s/it) 3.97× 10+0 (4.2s/it)

Table 8: Performance comparison of PIG and PI-GS across different equations. Results include
relative L2 errors and computation times per iteration (s/it). Benchmarks are conducted on two
variations of the (2+1)D Burgers equation and the (2+1)D Diffusion equation.

Figure 16: Comparison results for the (2+1)D Burgers equation. PIG achieved a relative L2 error of
7.68×10−4, with a computation time of 0.28 seconds per iteration. In contrast, the Physics-Informed
Gaussian Splatting model attained a relative L2 error of 1.62 × 10−1, requiring 1.50 seconds per
iteration.

A.11 ADDITIONAL FIGURES
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Figure 17: Prediction Results of Our Model for the (2+1)D Burgers Equation. Our model achieved
the relative L2 error of 1.08 × 10−3. Our model takes 0.29 seconds per iteration. The relative L2

error of the Physics-Informed Gaussian Splatting model is 2.61 × 10−1, and it takes 1.68 seconds
per iteration.

Figure 18: Prediction Results of Our Model for the (2+1)D Burgers Equation. Our model achieved
the relative L2 error of 9.04 × 10−3. Our model takes 0.10 seconds per iteration. The relative L2

error of the Physics-Informed Gaussian Splatting model is 3.97 × 10+0, and it takes 4.20 seconds
per iteration.
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Figure 19: Non-linear diffusion equation 4.2.4. The experiment was conducted on three different
seeds (100, 200, 300). The best relative L2 error is 1.44× 10−3.

Figure 20: Flow mixing equation 4.2.5. The experiment was conducted on three different seeds
(100, 200, 300). The best relative L2 error is 2.67× 10−4.
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