
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PIG: PHYSICS-INFORMED GAUSSIANS AS ADAPTIVE
PARAMETRIC MESH REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The approximation of Partial Differential Equations (PDEs) using neural networks
has seen significant advancements through Physics-Informed Neural Networks
(PINNs). Despite their straightforward optimization framework and flexibility
in implementing various PDEs, PINNs often suffer from limited accuracy due
to the spectral bias of Multi-Layer Perceptrons (MLPs), which struggle to ef-
fectively learn high-frequency and non-linear components. Recently, parametric
mesh representations in combination with neural networks have been investigated
as a promising approach to eliminate the inductive biases of neural networks.
However, they usually require very high-resolution grids and a large number of
collocation points to achieve high accuracy while avoiding overfitting issues. In
addition, the fixed positions of the mesh parameters restrict their flexibility, mak-
ing it challenging to accurately approximate complex PDEs. To overcome these
limitations, we propose Physics-Informed Gaussians (PIGs), which combine fea-
ture embeddings using Gaussian functions with a lightweight neural network. Our
approach uses trainable parameters for the mean and variance of each Gaussian,
allowing for dynamic adjustment of their positions and shapes during training.
This adaptability enables our model to optimally approximate PDE solutions, un-
like models with fixed parameter positions. Furthermore, the proposed approach
maintains the same optimization framework used in PINNs, allowing us to benefit
from their excellent properties. Experimental results show the competitive perfor-
mance of our model across various PDEs, demonstrating its potential as a robust
tool for solving complex PDEs.

1 INTRODUCTION

Machine learning techniques have become promising tools for approximating solutions to Par-
tial Differential Equations (PDEs) (Raissi et al., 2017; Yu et al., 2018; Karniadakis et al., 2021;
Finzi et al., 2023; Gaby et al., 2024). A notable example is the Physics-Informed Neural Network
(PINN) (Raissi et al., 2019), which leverages deep neural networks and gradient-based optimization
algorithms. This approach circumvents the need for the time-intensive mesh design prevalent in
numerical methods and allows us to solve both forward and inverse problems within the same opti-
mization framework. With the increased computational power and the development of easy-to-use
automatic differentiation software libraries (Abadi et al., 2015; Bradbury et al., 2018; Innes, 2018;
Paszke et al., 2019), PINNs have successfully tackled a broad range of challenging PDEs Hu et al.
(2024c); Li et al. (2024); Oh et al. (2024).

Although the mesh-free neural network approach shows significant promise in solving PDEs, it has
several limitations. Training PINNs typically requires numerous iterations to converge (Saarinen
et al., 1993; Wang et al., 2021; De Ryck et al., 2023). Despite recent techniques aimed at reducing
computational costs, multiple forward and backward passes of neural networks are still necessary to
compute the PDE residual losses. Furthermore, obtaining more accurate approximations demands
the use of wider and deeper neural networks, which enhances their expressiveness but significantly
increases computational costs (Cybenko, 1989; Baydin et al., 2018; Kidger & Lyons, 2020). In addi-
tion, the inductive bias inherent in neural networks often hinders the accuracy of solution approxima-
tions. A well-known example is the spectral bias, which favors learning low-frequency components
of solution functions and struggles to capture high-frequency or singular behaviors (Rahaman et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Training visualization of the Allen-Cahn equation (200, 600, 1000, 2000 training iter-
ations): Each Gaussian is displayed as the ellipsoids, exhibiting different positions and shapes ac-
cording to the Gaussian parameters, mean and covariance. Since we adopt a causal loss (Wang et al.,
2024c), the solution is gradually approximated from t = 0 to t = 1. Note that the Gaussians are
densely aligned in the locations where the solution changes abruptly.

2019). Although some solutions to this issue have been proposed (Tancik et al., 2020; Sitzmann
et al., 2020), eliminating inductive biases from neural networks remains a challenge.

To address these issues, recent studies have explored combining classical grid-based representations
with lightweight neural networks (Hui et al., 2018; Cao et al., 2023). In this approach, the parametric
grids map input coordinates to intermediate features, which are then processed by neural networks
to produce the final solutions. By relying on high-resolution parametric grids for representational
capacity, this method reduces the impact of neural networks’ inductive biases. Additionally, using
lightweight neural networks significantly reduces computational demands, leading to faster training
speeds compared to traditional neural network-only methods.

While promising, existing methods that combine parametric grids with neural networks face a fun-
damental challenge. The positions of the parameters (the locations of vertices) are predetermined
by the grid resolutions and remain fixed during training. Since the optimal allocation of represen-
tational capacity (determining where to place more vertices) is unknown, these methods typically
use high-resolution grids that uniformly distribute many vertices across the entire input domain to
achieve more accurate solutions. This approach results in using a large set of learnable parameters,
which often leads to overfitting issues, i.e., low PDE residual losses but inaccurate solutions. To
mitigate this problem, a large number of collocation points are sometimes used during training at
the expense of the increased computational costs.

In this work, we introduce a novel representation for approximating solutions to PDEs. Drawing
inspiration from adaptive mesh-based numerical methods (Berger & Oliger, 1984; Seol et al., 2016)
and the recent parametric grid representations (Li & Lee, 2021; Jang et al., 2023), we propose
the Physics-Informed Gaussian (PIG) that learns feature embeddings of input coordinates, using a
mixture of Gaussian functions. For a given input coordinate, PIG extracts a feature vector as the
weighted sum of the feature embeddings held by Gaussians with their learnable parameters (posi-
tions and shapes). They are adjusted during the training process, and underlying PDEs govern this
dynamic adjustment. To update the parameters of all Gaussians, we leverage the well-established
PINNs training framework, which employs numerous collocation points to compute PDE residuals
and uses gradient-based optimization algorithms.

The proposed approach offers several advantages over existing parametric grid methods. PIG dy-
namically adjusts the computational mesh structure and the basis functions (Gaussians) to learn
the feature embeddings. By following the gradient descent directions, the Gaussians move towards
regions with high residual losses or singularities, and this adaptive strategy allows for more effi-
cient and precise solutions than the static uniform grid structures. In addition, Gaussian functions
are infinitely differentiable everywhere, allowing for the convenient computation of higher-order
gradients for PDE residuals, and they can be seamlessly integrated into deep-learning computation
pipelines. The final architecture of the proposed approach, presented in 2-(c), that combines the
learnable Gaussian feature embedding and the lightweight neural network is a new learning-based
PDE solver that can provide more efficient and accurate solution approximations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We have tested the proposed method on an extensive set of challenging PDEs (Krishnapriyan et al.,
2021; Wang et al., 2024c; Cho et al., 2024). The experimental results show that the proposed
PIG achieved competitive accuracy compared to the existing methods that use large MLPs or high-
resolution parametric grids. When the number of Gaussians in our PIG model is comparable to the
number of vertices in previous parametric grids, our method significantly outperformed existing ap-
proaches, demonstrating its superior efficiency. Furthermore, the proposed PIG shows significantly
faster convergence speed than PINNs using large neural networks, demonstrating its effectiveness
as a promising learning-based PDE solver. Our contributions are summarized as follows.

• We introduce Physics-Informed Gaussians, an efficient and accurate PDE solver that uti-
lizes learnable Gaussian feature embeddings and a lightweight neural network.

• We propose a dynamically adaptive parametric mesh representation that effectively ad-
dresses the challenges encountered in previous static parametric grid approaches.

• We demonstrate that our PIG model achieves competitive accuracy and faster convergence
with fewer parameters compared to state-of-the-art methods, establishing its efficacy and
paving the way for new research avenues.

2 RELATED WORK

2.1 PHYSICS-INFORMED NEURAL NETWORKS

PINNs are a class of machine learning algorithms designed to solve PDEs by integrating physical
laws into the learning process. Introduced by Raissi et al. (2019), PINNs leverage neural networks
to approximate the solutions of PDEs while ensuring that the learned solutions respect the under-
lying physics. This is achieved by incorporating the PDE residuals directly into the loss function,
allowing the model to be trained using standard gradient-based optimization methods. PINNs have
gained significant attention for their ability to handle high-dimensional (Wang et al., 2022b; Hu
et al., 2024b;a) and complex problems (Yang et al., 2021; Pensoneault & Zhu, 2024) that are chal-
lenging for traditional numerical methods. They are particularly effective in scenarios where data is
sparse or expensive to obtain, as they can incorporate prior knowledge about the physical system.
Applications of PINNs span various domains, including fluid dynamics, solid mechanics, and elec-
tromagnetics, demonstrating their versatility and effectiveness in solving real-world problems (Cai
et al., 2021; Khan & Lowther, 2022; Bastek & Kochmann, 2023). Key advantages of PINNs in-
clude their mesh-free nature, the ability to easily incorporate boundary and initial conditions, and
their flexibility in handling various types of PDEs. However, they also face challenges, such as the
need for extensive computational resources and the difficulty in training deep networks to achieve
accurate solutions. For example, Wang et al. (2024b) typically uses around 9 hidden layers with 256
hidden units (sometimes up to 18 layers) to achieve high accuracy. This requires massive computa-
tions to run the neural network, which involves multiple forward and backward passes to compute
the gradients for PDE residual loss. Furthermore, it slows down the convergence speed due to the
large number of model parameters.

2.2 PHYSICS-INFORMED PARAMETRIC GRID REPRESENTATIONS

Physics-informed parametric grid representations combine traditional grid-based methods with neu-
ral networks to solve PDEs (Kang et al., 2023; Huang & Alkhalifah, 2024; Wang et al., 2024a;
Shishehbor et al., 2024a). These representations have also been extensively explored in image,
video, and 3D scene representations (Liu et al., 2020; Yu et al., 2021; Fridovich-Keil et al., 2022;
Müller et al., 2022; Chen et al., 2022; Sun et al., 2022; Fridovich-Keil et al., 2023) by training the
models as supervised regression problems. By discretizing the solution domain into a grid and as-
sociating each grid point with trainable parameters, these methods leverage the structured nature of
grids to capture spatial variations effectively. This hybrid approach maintains high accuracy and re-
duces computational costs compared to purely neural network-based methods. Key benefits include
the ability to handle high-resolution representations and integrate boundary conditions efficiently.
However, the fixed grid structure can lead to suboptimal allocation of representational capacity dur-
ing training. Despite this limitation, physics-informed parametric grid representations are promising
for achieving accurate solutions in complex scenarios.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: (a) PINN directly takes input coordinates (four collocation points) as inputs and produces
outputs. (b) Parametric grids first map input coordinates to output feature vectors. Each vertex in the
grids holds learnable parameters, and output features are extracted through interpolation schemes.
(c) The proposed PIG consists of numerous Gaussians moving around within the input domain, and
their shapes change dynamically during training. Each Gaussian has learnable parameters, and a
feature vector for an input coordinate is the weighted sum of the learnable parameters based on the
distance to the Gaussians.

2.3 ADAPTIVE MESH-BASED METHODS

Adaptive mesh-based methods dynamically adjust the computational mesh to minimize the error
between approximated and true solutions. This process involves a posteriori error analysis, which
estimates errors after solving, allowing for targeted mesh refinement. Such adaptivity is crucial
in the numerical analysis as it ensures efficient allocation of computational resources, focusing on
regions with high errors and thus improving overall accuracy and efficiency (Ainsworth & Oden,
1993; 1997).

There are also some studies on non-uniform adaptive sampling methods in the context of PINNs. Lu
et al. proposed a residual-based adaptive refinement method in their work with DeepXDE, aiming
to enhance the training efficiency of PINNs (Lu et al., 2021; Wu et al., 2023). More recently, Yang
et al. (2023b) introduced Dynamic Mesh-based Importance Sampling (DMIS), a novel approach that
constructs a dynamic triangular mesh to efficiently estimate sample weights, significantly improv-
ing both convergence speed and accuracy. Similarly, Yang et al. (2023a) developed an end-to-end
adaptive sampling framework called MMPDE-Net, which adapts sampling points by solving the
moving mesh PDE. When combined with PINNs to form MS-PINN, MMPDE-Net demonstrated
notable performance improvements. While these adaptive methods offer significant benefits, they
also introduce additional complexity into the PINN framework.

2.4 POINT-BASED REPRESENTATIONS

Irregular point-based representations have long been considered promising approaches for repre-
senting, reconstructing, and processing data (Qi et al., 2017; Xu et al., 2022; Zhang et al., 2022).
A recent study in 3D scene representation utilized Gaussians as a graphical primitive and showed
remarkable performance in image rendering quality and training speed (Kerbl et al., 2023). The
combination of Gaussian representation and neural networks has recently been explored in regress-
ing images or 3D signed distance functions, showing its great expressibility (Chen et al., 2023).
While those studies share some architectural similarities with our method, they all primarily focus
on supervised regression problems to reconstruct the visual signals. We developed the architecture
suitable for effective PDE solvers and first showed that the Gaussian features and neural networks
can be trained in an unsupervised manner guided by the physical laws.

3 METHODOLOGY

3.1 PRELIMINARY: PHYSICS-INFORMED NEURAL NETWORKS

Consider an abstract underlying equation,

D[u](x) = f(x), x ∈ Ω ⊂ Rd, (1)

B[u](x) = g(x), x ∈ ∂Ω, (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where D is a differential operator, and B is a boundary operator which could contain the initial
condition. The physics-informed neural network methods try to find an approximate solution by
minimizing

L(θ) =

∫
Ω

|D[uθ](x)− f(x)|2dx+ λ

∫
∂Ω

|B[uθ](x)− g(x)|2dσ(x) (3)

where uθ is a neural network with the set of network parameters θ, λ is a positive real number,
and σ is a surface measure. In practice, integrals are usually estimated via Monte Carlo integration.
PINNs typically utilize automatic differentiation to compute the PDE residuals and ∇θL(θ). For
more details, please refer to the original paper (Raissi et al., 2019).

3.2 PHYSICS-INFORMED GAUSSIANS

In this section, we present the proposed Physics-Informed Gaussian representation (PIG) for ap-
proximating solutions to PDEs. It comprises two stages: Gaussian feature embeddings (3.2.1) and
solution approximation based on these features (3.2.2).

3.2.1 LEARNABLE GAUSSIAN FEATURE EMBEDDING

Let ϕ = {(µi,Σi, fi) : i = 1, . . . , N} be the set of Gaussian model parameters, where µi ∈ Rd is
a position of a Gaussian, and Σi ∈ Rd×d is a covariance matrix and each Gaussian has a learnable
feature embedding fi ∈ Rk. Given an input coordinate x ∈ Rd, the learnable Gaussian feature
embedding FEϕ : Rd → Rk is extracted as follows.

FEϕ(x) =

N∑
i=1

fiGi(x), Gi(x) = e−
1
2 (x−µi)

⊤Σ−1
i (x−µi), (4)

where N is the number of Gaussians and Gi represents the i-th Gaussian function. FEϕ maps an
input coordinate to a feature embedding by a weighted sum of the individual features fi of each
Gaussian. Gaussian features distant from the input coordinates do not contribute to the final feature
embedding, while only neighboring Gaussian features remain significant. Similar to the previous
parametric grid methods, which obtain feature embeddings by interpolating only neighboring ver-
tices, this locality encourages the model to capture high-frequency details by effectively alleviating
spectral bias.

All Gaussian parameters ϕ are learnable and iteratively updated throughout the training process.
This dynamic adjustment, akin to adaptive mesh-based numerical methods, optimizes the structure
of the underlying Gaussian functions to accurately approximate the solution functions. For example,
the regions with high-frequency or singular behaviors require more computational parameters, and
Gaussians, updated based on the gradients ∂L

∂µi
, will migrate to these regions to reduce the loss

(see Figure 1). Compared to the existing parametric grid approaches, which achieve this goal by
uniformly increasing grid resolution, the proposed method can build a more parameter-efficient and
optimal mesh structure.

3.2.2 GENERATING THE SOLUTION FROM LEARNABLE GAUSSIANS WITH LIGHTWEIGHT
NEURAL NETWORK

Once the features are extracted, a neural network processes the feature to produce the solution out-
puts.

uϕ,θ(x) = NNθ(FEϕ(x)), (5)
where NNθ is a small and lightweight MLP with the parameter θ. We employed a single hidden layer
MLP with a limited number of hidden units, resulting in negligible additional computational costs.
Feature extraction plays a primary role in producing the final solution, while the MLP functions as a
feature refinement mechanism. Even though Gaussian features are already universal approximators
(see 3.3), using a small MLP at the end improved the solution accuracy by a large margin compared
to the method without the MLP, generating the solution directly from Gaussian representations, i.e.,
uϕ(x) = FEϕ(x).

3.2.3 PIG AS A NEURAL NETWORK

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: PIG as a neural network.

The proposed Gaussian feature embedding ad-
mits a form of radial basis function network.
Figure 3 depicts the overall PIG architecture as
a neural network. The first layer contains N
(the number of Gaussians) RBF units, and an
input coordinate passes through all RBF units,
Gi(x), resulting in a N -dimensional vector. A
single fully connected layer processes this vec-
tor to produce a k-dimensional feature vector.
The weight matrix W ∈ Rk×N in this layer
corresponds to the feature vectors held by each
Gaussian, i.e., W:,i ∈ Rk equals fi ∈ Rk.

The extracted feature vector is further processed by a single hidden layer MLP (we used the tanh
activation function) to produce the final output, as depicted in Figure 3. Overall, the proposed PIG
architecture can be interpreted as an MLP with one input layer with N RBF units and two hidden
layers (no activation for the first hidden layer, and tanh for the second hidden layer).

A related study by Bai et al. (2023) has explored solving various PDEs using radial basis function
networks (Park & Sandberg, 1991; Buhmann, 2000) within the framework of physics-informed ma-
chine learning. However, their approach differs from ours in that the positions of the basis functions
are fixed. In contrast, our method allows the positions of the Gaussians to adjust dynamically, mov-
ing in directions that minimize the loss function. In addition, we extract the feature vectors from
neighboring Gaussians and further process them using shallow neural networks while they directly
predict the solution output from the Gaussians.

3.3 UNIVERSAL APPROXIMATION THEOREM FOR PIGS

Here, we present the Universal Approximation Theorem (UAT) for PIGs. A PIG consists of two
functions: FEϕ and NNθ (see equation 5). We will prove the UAT only for FEϕ, as the UAT for PIGs
follows directly from the standard UAT for MLPs. Given our earlier discussion on the relationship
between PIGs and radial basis function networks, we begin with the following UAT specific to radial
basis function networks.

Theorem 1 (Park & Sandberg (1991)) Let K : Rd → R be an integrable bounded function such
that K is continuous and ∫

Rd

K(x) dx ̸= 0. (6)

Then the family SK , defined as linear combinations of translations of K,

SK =

{
n∑

i=1

fiK(x− µi)

∣∣∣∣fi ∈ R, µi ∈ Rd, n ∈ N

}
, (7)

is dense in C(Rd).

However, Theorem 1 does not apply to PIGs, as the feature embedding FEϕ in PIGs takes a slightly
different form:

FEϕ(x) =

n∑
i=1

fiK (x− µi; Σi) , (8)

where the key difference lies in the presence of Σi. Notably, the set

S′
K =

{
n∑

i=1

fiK(x− µi; Σi)

∣∣∣∣fi ∈ R, µi ∈ Rd,Σi ∈ Sd++, n ∈ N

}
, (9)

with S++ denoting the set of positive definite matrices, contains SK . Therefore, S′
K is dense in

C(Rd). We summarize this in the following corollary:

Corollary 1 The scalar-valued, d-dimensional PIGs {NNθ ◦ FEϕ|(θ, ϕ) ∈ Rp1+p2} are dense in
C(Rd).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Methods Allen-Cahn Helmholtz Nonlinear Diffusion Flow Mixing Klein Gordon
PINN - 4.02e-1 9.50e-3 - 3.43e-2
LRA - 3.69e-3 - - -

PIXEL 8.86e-3 8.63e-4 - - -
SPINN - - 4.47e-2 2.90e-3 1.93e-2
JAX-PI 5.37e-5 - - - -

PirateNet 2.24e-5 - - - -
PIG (Ours) 1.04e-4 4.13e-5 2.69e-3 4.51e-4 2.76e-3
± 1std ± 4.12e-5, ± 2.59e-05, ± 6.55e-4, ± 1.74e-4, ± 4.27e-4,

best 5.93e-5 2.22e-5 1.44e-3 2.67e-4 2.36e-3

Table 1: Comparison of relative L2 errors across different methods. Three experiments were con-
ducted using seeds 100, 200, and 300, with the mean and standard deviation presented in the table.
The methods compared include PINN (Raissi et al., 2019), Learning Rate Annealing (LRA) (Wang
et al., 2021), PIXEL (Kang et al., 2023), SPINN (Cho et al., 2024), JAX-PI (Wang et al., 2023),
and Pirate-Net (Wang et al., 2024b). For fair comparisons, we included the reported values from the
respective references and omitted results that were not provided in the original papers.

4 EXPERIMENTS

4.1 EXPERIMENTAL SEUP

To validate the effectiveness of our proposed method, We conducted extensive numerical experi-
ments on various challenging PDEs, including Allen-Cahn, Helmholtz, Nonlinear Diffusion, Flow
Mixing, and Klein-Gordon equations (For more experiments, please refer to the Appendix). We
used the Adam optimizer (Kingma & Ba, 2014) for all equations except for the Helmholtz equation,
in which the L-BFGS optimizer (Liu & Nocedal, 1989) was applied for a fair comparison to the
baseline method PIXEL. For computational efficiency, we considered a diagonal covariance matrix
Σ = diag(σ1, . . . , σd) and we will discuss more in Section 4.3.3.

4.2 EXPERIMENTAL RESULTS

4.2.1 (1+1)D ALLEN-CAHN EQUATION

We compared our method against one of the state-of-the-art PINN methods on the Allen-Cahn equa-
tion, JAX-PI (Wang et al., 2023). For the detailed description, please refer to Appendix A.1.1. As
shown in Figure 4, our method converges significantly faster and achieves competitive final accu-
racy (see Table 1). JAX-PI used a modified MLP architecture and 4 hidden layers with 256 hidden
neurons. Thus, the number of parameters in JAX-PI is more than 250K, while ours used only
around 20K parameters ((N, d, k) = (4000, 2, 1)). Also, note that the L2 error curve in Figure 4
is displayed per iteration, and computational costs per iteration of ours are significantly lower than
JAX-PI, which requires multiple forward and backward passes of the wide and deep neural network.

Figure 4: Allen-Cahn Equation. Reference solution and absolute error maps of PIG and one of
the state-of-the-art methods (JAX-PI) to Allen-Cahn Equation (x-axis: t, y-axis: x). The rightmost
depicts a relative L2 error curve during the training process (x-axis: iterations, y-axis: L2 error).
The experiment was conducted with three different seeds, and the best relative L2 error of PIG is
5.93× 10−5.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: 2D Helmholtz Equation. Reference solution and absolute error maps of PIG and one of
the state-of-the-art methods (PIXEL) to 2D Helmholtz Equation. The rightmost depicts a relative
L2 error curve during the training process and the best relative L2 error of PIG is 2.22× 10−5.

4.2.2 2D HELMHOLTZ EQUATION

Figure 5 illustrates the numerical performance of our proposed PIG method for the 2D Helmholtz
equation, comparing it to PIXEL (Kang et al., 2023), one of the state-of-the-art methods within the
PINN family that uses parametric grid representations. A more detailed description of the experi-
mental setup is available in Appendix A.1.2. The experiments were conducted using three different
seeds, with PIG achieving the best relative L2 error of 2.22 × 10−5 when employing the L-BFGS
optimizer, and a relative L2 error of 2.50× 10−4 with the Adam optimizer (For fair comparison, we
reported the result using L-BFGS since PIXEL used L-BFGS). Notably, the results show that PIG’s
error is four times lower than that of PIXEL, highlighting the efficiency and accuracy of our method.
We did not compare against other state-of-the-art methods, such as JAX-PI or Pirate-Net, as they
did not conduct experiments in this setting. While we could have used their codes, the sensitivity of
PINN variants to hyperparameters complicates fair comparisons.

4.2.3 (2+1)D KLEIN-GORDON EQUATION

Figure 6 presents the predicted solution profile for the Klein-Gordon equation, comparing our results
with SPINN. The best relative L2 error achieved is 2.36 × 10−3, which outperforms SPINN by an
order of magnitude. For further details, please refer to Appendix A.1.3.

4.2.4 (2+1)D NONLINEAR DIFFUSION EQUATION

We evaluated the performance of PIGs on the (2+1) dimensional nonlinear diffusion equation, with
visualizations presented in Figure 19. The relative L2 error achieved is 1.44× 10−3. For details on
the experimental setup, please refer to Appendix A.1.5.

4.2.5 (2+1)D FLOW-MIXING PROBLEM

Figure 7 displays the numerical solutions and absolute errors for the (2+1) flow mixing problem.
Our solutions closely match the reference, with PIG achieving a maximum absolute error of 5.03×
10−3, compared to 2.63× 10−1 for SPINN, underlining the superior performance of PIG. Figure 20
presents solution profiles up to t = 4. Additional details can be found in Appendix A.1.4.

4.3 HYPERPARAMETER ANALYSIS AND ABLATION STUDY

In this section, we present the experimental results to show the effects of each component of the pro-
posed PIG (Using MLP, learnable Gaussian positions, and dense covariance matrices), In addition,
We study the effect of the number of Gaussians, the size of MLP and input dimensions.

4.3.1 THE NUMBER OF GAUSSIANS

In numerical analysis, there is a general trend that the quality of the solution improves as the mesh
is refined. Given our approach of using Gaussians as mesh points, we expect that the accuracy of
PIGs will improve with an increased number of Gaussians. Table 2 illustrates the accuracy improve-
ments of PIGs to the number of Gaussians. Overall, we observe a positive correlation between the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Klein-Gordon Equation. Reference solution and absolute error maps of PIG and one of
the state-of-the-art methods (SPINN) to Klein-Gordon Equation. The rightmost depicts a relative
L2 error curve during the training process and the best relative L2 error of PIG is 2.36× 10−3.

Figure 7: Flow mixing problem. The best relative L2 error of PIG is 2.67×10−4, while its maximum
absolute error is 5.03× 10−3. In comparison, one of the state-of-the-art methods, SPINN achieved
1.93× 10−2 L2 error and showed a maximum absolute error of 2.63× 10−1.

number of Gaussians and improved accuracy. It is important to note that achieving this trend can be
challenging for other PINN-type methods.

Gaussians Flow-Mixing Nonliner-Diffusion Allen-cahn
200 6.07e-03 2.33e-03 1.83e-02
400 3.13e-03 2.22e-03 2.93e-03
600 1.50e-03 2.23e-03 2.75e-03
800 1.44e-03 1.95e-03 1.22e-03

1000 1.31e-03 7.33e-03 4.81e-04
1200 1.03e-03 3.96e-03 3.98e-04

Table 2: The number of Gaussians and approximation accuracy (Flow-Mixing, Nonlinear Diffusion,
and Allen-Cahn). The results indicate that increasing the number of Gaussians typically leads to a
decrease in relative L2 error.

4.3.2 MLP IMPACT AND ADAPTIVE GAUSSIAN POSITIONS

While FEϕ serves as a universal approximator, we found that adding a small MLP NNθ significantly
enhances performance. Additionally, our ablation study explores the effectiveness of allowing adap-
tive Gaussian positions (learnable µ vs. fixed µ). The results in Table 3 illustrate that varying
Gaussian positions µ improve accuracy, particularly when combined with the MLP. We also evalu-
ate the sensitivity of PIGs to the width and input dimensions of the MLP, as summarized in Table 4.
Notably, no clear trend emerges, highlighting the robustness of PIGs to MLP variations.

4.3.3 COVARIANCE MATRICES

Dense covariance matrices can represent the most general form of Gaussians, but they are more
computationally expensive than diagonal covariance matrices. We compared these two types of co-
variance matrices across several equations: the 2D Helmholtz equation, the Klein-Gordon equation,
the Flow-Mixing equation, and the Nonlinear-Diffusion equation. Despite the increased number

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(MLP, µ) Allen-Cahn Helmholtz Nonlinear Diffusion Flow-Mixing Klein-Gordon
(X, Fixed) 4.72e-03 3.97e-04 6.32e-03 4.33e-03 6.44e-02
(O, Fixed) 1.82e-03 2.12e-04 2.10e-03 1.09e-03 2.69e-02
(X, Learn) 7.29e-05 1.86e-04 5.26e-03 7.93e-04 8.51e-03
(O, Learn) 7.27e-05 2.22e-05 1.44e-03 4.51e-04 2.76e-03

Table 3: Ablation study results on MLP and µ across various equations.

MLP input dim (=k)
Hidden units 1 2 3 4

4 7.77e-03 9.60e-03 7.68e-03 9.60e-03
8 8.55e-03 6.44e-03 1.06e-02 8.54e-03
16 8.24e-03 1.06e-02 1.21e-02 6.90e-03
32 7.14e-03 8.06e-03 1.22-02 6.87e-03
64 6.33e-03 7.50e-03 1.09e-02 9.48e-03

128 6.38e-03 6.88e-03 8.48e-03 7.47e-03
256 5.21e-03 6.60e-03 5.22e-03 5.40e-03

Table 4: The performance of different MLP configurations for the Helmholtz equation, displaying
L2 relative errors at iteration 1,000 across various configurations of hidden units and MLP input
dimensions. Overall, the results highlight the robustness to the size of MLP, showing minimal
variation in errors across different settings.

of network parameters and generality associated with dense matrices, both dense and diagonal co-
variance matrices yielded similar error levels, as summarized in Table 5. Note that the number of
Gaussians used in the dense covariance matrices is significantly lower than that in the diagonal ma-
trices, with 50 Gaussians for the dense case compared to 4,000 for the diagonal case, as seen in the
Nonlinear-Diffusion equation. We believe that the advanced training techniques and engineering
would improve the performance of PIG with dense covariance matrices and leave it to future works.

Helmholtz Klein-Gordon Flow-Mixing Nonlinear Diffusion
Dense 5.17e-05 1.81e-03 3.48e-04 3.86e-03

Diagonal 2.22e-05 2.76e-03 4.51e-04 1.44e-03

Table 5: Comparison of error levels between dense and diagonal covariance matrices in PIGs.

5 CONCLUSION AND LIMITATIONS

In this work, we introduced PIGs as a novel method for approximating solutions to PDEs. By
leveraging explicit Gaussian functions combined with deep learning optimization, PIGs address the
limitations of traditional PINNs that rely on MLPs. Our approach dynamically adjusts the positions
and shapes of the Gaussians during training, overcoming the fixed parameter constraints of previous
methods and enabling more accurate and efficient approximations of complex PDEs. Experimental
results demonstrated the superior performance of PIGs across various PDE benchmarks, showcasing
their potential as a robust tool for solving high-dimensional and nonlinear PDEs.

Despite the promising results, our approach has certain limitations that warrant further investigation.
Firstly, the dynamic adjustment of Gaussian parameters introduces additional computational over-
head. While this improves accuracy, it may also lead to increased training times, particularly for very
large-scale problems. However, by leveraging the locality of Gaussians, we can limit the evaluations
to nearby Gaussians, which reduces the necessary computations and saves GPU memory. Secondly,
the number of Gaussians is fixed at the beginning of training. Ideally, additional Gaussians should
be allocated to regions requiring more computational resources to capture more complex solution
functions. We believe it is a promising research direction and leave it to future work. Finally, a
complete convergence analysis of the proposed method is not yet available. While empirical results
show improved accuracy and efficiency, a theoretical understanding of the convergence properties
would provide deeper insights and guide further enhancements.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

We are committed to ensuring the reproducibility of our research. All experimental procedures, data
sources, and algorithms used in this study are clearly documented in the paper. We already submit-
ted the codes and command lines to reproduce the part of the results in Table 1 as supplementary
materials. The code and datasets will be made publicly available upon publication, allowing others
to validate our findings and build upon our work.

ETHICS STATEMENT

This research adheres to the ethical standards required for scientific inquiry. We have considered the
potential societal impacts of our work and have found no clear negative implications. All experi-
ments were conducted in compliance with relevant laws and ethical guidelines, ensuring the integrity
of our findings. We are committed to transparency and reproducibility in our research processes.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Mark Ainsworth and J Tinsley Oden. A unified approach to a posteriori error estimation using
element residual methods. Numerische Mathematik, 65:23–50, 1993.

Mark Ainsworth and J Tinsley Oden. A posteriori error estimation in finite element analysis. Com-
puter methods in applied mechanics and engineering, 142(1-2):1–88, 1997.

Jinshuai Bai, Gui-Rong Liu, Ashish Gupta, Laith Alzubaidi, Xi-Qiao Feng, and YuanTong Gu.
Physics-informed radial basis network (pirbn): A local approximating neural network for solving
nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineer-
ing, 415:116290, 2023.

Jan-Hendrik Bastek and Dennis M Kochmann. Physics-informed neural networks for shell struc-
tures. European Journal of Mechanics-A/Solids, 97:104849, 2023.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of machine learning research,
18(153):1–43, 2018.

Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of computational Physics, 53(3):484–512, 1984.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Martin Dietrich Buhmann. Radial basis functions. Acta numerica, 9:1–38, 2000.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based phys-
ical simulation with bi-stride multi-scale graph neural network. In International Conference on
Machine Learning, pp. 3541–3558. PMLR, 2023.

11

https://www.tensorflow.org/
http://github.com/google/jax
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXXII, pp. 333–350. Springer, 2022.

Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi Yu, Junsong Yuan, and Yi Xu. Neurbf: A
neural fields representation with adaptive radial basis functions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4182–4194, October 2023.

Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
Separable physics-informed neural networks. Advances in Neural Information Processing Sys-
tems, 36, 2024.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bézenac. An operator
preconditioning perspective on training in physics-informed machine learning. arXiv preprint
arXiv:2310.05801, 2023.

Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

Marc Finzi, Andres Potapczynski, Matthew Choptuik, and Andrew Gordon Wilson. A sta-
ble and scalable method for solving initial value pdes with neural networks. arXiv preprint
arXiv:2304.14994, 2023.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501–5510, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In CVPR, 2023.

Nathan Gaby, Xiaojing Ye, and Haomin Zhou. Neural control of parametric solutions for high-
dimensional evolution pdes. SIAM Journal on Scientific Computing, 46(2):C155–C185, 2024.

Zheyuan Hu, Zekun Shi, George Em Karniadakis, and Kenji Kawaguchi. Hutchinson trace estima-
tion for high-dimensional and high-order physics-informed neural networks. Computer Methods
in Applied Mechanics and Engineering, 424:116883, 2024a.

Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse
of dimensionality with physics-informed neural networks. Neural Networks, pp. 106369, 2024b.

Zheyuan Hu, Zhongqiang Zhang, George Em Karniadakis, and Kenji Kawaguchi. Score-based
physics-informed neural networks for high-dimensional fokker-planck equations. arXiv preprint
arXiv:2402.07465, 2024c.

Xinquan Huang and Tariq Alkhalifah. Efficient physics-informed neural networks using hash en-
coding. Journal of Computational Physics, 501:112760, 2024. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2024.112760. URL https://www.sciencedirect.com/science/
article/pii/S0021999124000093.

Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Liteflownet: A lightweight convolutional neural
network for optical flow estimation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8981–8989, 2018.

Michael Innes. Don’t unroll adjoint: Differentiating ssa-form programs. CoRR, abs/1810.07951,
2018. URL http://arxiv.org/abs/1810.07951.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Hojun Jang, Minkwan Kim, Jinseok Bae, and Young Min Kim. Dynamic mesh recovery from partial
point cloud sequence. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 15074–15084, 2023.

12

https://www.sciencedirect.com/science/article/pii/S0021999124000093
https://www.sciencedirect.com/science/article/pii/S0021999124000093
http://arxiv.org/abs/1810.07951

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Namgyu Kang, Byeonghyeon Lee, Youngjoon Hong, Seok-Bae Yun, and Eunbyung Park. Pixel:
Physics-informed cell representations for fast and accurate pde solvers. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 8186–8194, 2023.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Aly-Khan Kassam and Lloyd N Trefethen. Fourth-order time-stepping for stiff pdes. SIAM Journal
on Scientific Computing, 26(4):1214–1233, 2005.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

Arbaaz Khan and David A Lowther. Physics informed neural networks for electromagnetic analysis.
IEEE Transactions on Magnetics, 58(9):1–4, 2022.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference
on learning theory, pp. 2306–2327. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural In-
formation Processing Systems, 34:26548–26560, 2021.

Chen Li and Gim Hee Lee. Coarse-to-fine animal pose and shape estimation. Advances in Neural
Information Processing Systems, 34:11757–11768, 2021.

Zhengyi Li, Yanli Wang, Hongsheng Liu, Zidong Wang, and Bin Dong. Solving the boltzmann
equation with a neural sparse representation. SIAM Journal on Scientific Computing, 46(2):C186–
C215, 2024.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. Advances in Neural Information Processing Systems, 33:15651–15663, 2020.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022.

Jaemin Oh, Seung Yeon Cho, Seok-Bae Yun, Eunbyung Park, and Youngjoon Hong. Separable
physics-informed neural networks for solving the bgk model of the boltzmann equation. arXiv
preprint arXiv:2403.06342, 2024.

Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-function net-
works. Neural computation, 3(2):246–257, 1991.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

Andrew Pensoneault and Xueyu Zhu. Efficient bayesian physics informed neural networks for in-
verse problems via ensemble kalman inversion. Journal of Computational Physics, 508:113006,
2024.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Machine learning of linear differential
equations using gaussian processes. Journal of Computational Physics, 348:683–693, 2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Max Rensen, Michael Weinmann, Benno Buschmann, and Elmar Eisemann. Physics-informed gaus-
sian splatting. Master’s thesis, 2024.

Sirpa Saarinen, Randall Bramley, and George Cybenko. Ill-conditioning in neural network training
problems. SIAM Journal on Scientific Computing, 14(3):693–714, 1993.

Yunchang Seol, Wei-Fan Hu, Yongsam Kim, and Ming-Chih Lai. An immersed boundary method
for simulating vesicle dynamics in three dimensions. Journal of Computational Physics, 322:
125–141, 2016.

Mehdi Shishehbor, Shirin Hosseinmardi, and Ramin Bostanabad. Parametric encoding with atten-
tion and convolution mitigate spectral bias of neural partial differential equation solvers. arXiv
preprint arXiv:2403.15652, 2024a.

Mehdi Shishehbor, Shirin Hosseinmardi, and Ramin Bostanabad. Parametric encoding with atten-
tion and convolution mitigate spectral bias of neural partial differential equation solvers. Struc-
tural and Multidisciplinary Optimization, 67(7):128, 2024b.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast con-
vergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5459–5469, 2022.

Panos Tamamidis and Dennis N Assanis. Evaluation of various high-order-accuracy schemes with
and without flux limiters. International Journal for Numerical Methods in Fluids, 16(10):931–
948, 1993.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Haoxiang Wang, Tao Yu, Tianwei Yang, Hui Qiao, and Qionghai Dai. Neural physical sim-
ulation with multi-resolution hash grid encoding. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(6):5410–5418, Mar. 2024a. doi: 10.1609/aaai.v38i6.28349. URL
https://ojs.aaai.org/index.php/AAAI/article/view/28349.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022a.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
physics-informed neural networks. arXiv preprint arXiv:2308.08468, 2023.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learn-
ing with residual adaptive networks. arXiv preprint arXiv:2402.00326, 2024b.

14

https://ojs.aaai.org/index.php/AAAI/article/view/28349

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineering, 421:
116813, 2024c.

Yifan Wang, Pengzhan Jin, and Hehu Xie. Tensor neural network and its numerical integration.
arXiv preprint arXiv:2207.02754, 2022b.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neu-
mann. Point-nerf: Point-based neural radiance fields. In CVPR, pp. 5438–5448, 2022.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: Bayesian physics-informed neu-
ral networks for forward and inverse pde problems with noisy data. Journal of Computational
Physics, 425:109913, 2021.

Yu Yang, Qihong Yang, Yangtao Deng, and Qiaolin He. Mmpde-net and moving sampling physics-
informed neural networks based on moving mesh method. arXiv preprint arXiv:2311.16167,
2023a.

Zijiang Yang, Zhongwei Qiu, and Dongmei Fu. Dmis: Dynamic mesh-based importance sampling
for training physics-informed neural networks. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 37, pp. 5375–5383, 2023b.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz, and Felix Heide. Differentiable point-
based radiance fields for efficient view synthesis. arXiv preprint arXiv:2205.14330, 2022.

A APPENDIX

A.1 DETAILED DESCRIPTION OF EXPERIMENTS

A.1.1 (1+1)D ALLEN-CAHN EQUATION

The Allen-Cahn equation is a one-dimensional time-dependent reaction-diffusion equation that de-
scribes the evolutionary process of phase separation, which reads

ut − 0.0001uxx + 5u3 − 5u = 0, (x, t) ∈ [−1, 1]× [0, 1], (10)

with the periodic boundary condition

u(−1, t) = u(1, t), ux(−1, t) = ux(1, t). (11)

The initial condition for the experiment was u(x, 0) = x2cos(πx). We used the NTK-based loss
balancing scheme (Wang et al., 2022a) to mitigate the ill-conditioned spectrum of the neural tangent
kernel (Jacot et al., 2018). We used N = 4000 Gaussians for training and a diagonal covariance
matrix for parameter efficiency, where the diagonal elements of the initial Σ were set to a constant
value of 0.025. The µi was uniformly initialized following Uniform[0, 2]2. We used shallow MLP
with one hidden layer with 16 hidden units, and the dimension of the Gaussian feature was k = 1.

Reference solution was generated by Chebfun (Driscoll et al., 2014), which utilizes the Fourier col-
location method with N = 4096 Fourier modes with ETDRK4 time stepping (Kassam & Trefethen,
2005) with a fixed time step ∆t = 1/200.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.1.2 2D HELMHOLTZ EQUATION

The Helmholtz equation is the eigenvalue problem of the Laplace operator ∆ = ∇2. We consider
the manufactured solution

u(x, y) = sin(a1πx) sin(a2πy), (a1, a2) = (4, 1), (12)

to the two-dimensional Helmholtz equation with the homogeneous Dirichlet boundary condition
given by

∆u+ k2u = q, (x, y) ∈ [−1, 1]2, k = 1, (13)
where

q(x, y) = k2 sin (a1πx) sin (a2πy)− (a1π)
2 sin (a1πx) sin (a2πy)− (a2π)

2 sin (a1πx) sin (a2πy)
(14)

can be extracted from the solution u.

We used N = 3000 Gaussians in this experiment. The weights and scales of Gaussians were initial-
ized following Uniform[−1, 1] and 0.1, respectively. The feature size of Gaussians was fixed at 4.
The shallow MLP has 16 hidden nodes, and its network parameters were initialized by Glorot nor-
mal. The inputs for the Gaussians were rescaled into [0, 1]2, therefore the positions were initialized
following Uniform[0, 1]2.

A.1.3 (2+1)D KLEIN-GORDON EQUATION

The Klein-Gordon equation is a relativistic wave equation, which predicts the behavior of a particle
at high energies. We consider the manufactured solution

u(x, y, t) = (x+ y) cos(2t) + xy sin(2t) (15)

to the (2+1) dimensional inhomogeneous Klein-Gordon equation

utt −∆u+ u2 = f, (x, y, t) ∈ [−1, 1]2 × [0, 10], (16)

where the forcing f , initial condition, and Dirichlet boundary condition are extracted from the man-
ufactured solution u. In this experiment, we employed N = 100 Gaussians and a shallow MLP
whose input dimension is 4 and hidden layer size is 16. The network parameters for the shal-
low MLP were initialized by Glorot Normal. Every weight of Gaussian was initialized following
Normal(0, 0.012). The scale parameter σi’s were initialized with a constant value of 0.5. Instead
of direct usage of the computational domain [−1, 1]2 × [0, 10], we used linearly rescaled values
∈ [0, 2]3 for the inputs of Gaussians. Accordingly, position parameters of Gaussians were initialized
following Uniform[0, 2]3.

A.1.4 (2+1)D FLOW-MIXING PROBLEM

A mixing procedure of two fluids in a two-dimensional spatial domain could be described in the
following equation

ut + aux + buy = 0, (x, y, t) ∈ [−4, 4]2 × [0, 4], (17)

a(x, y) = − vt
vt,max

y

r
, b(x, y) =

vt
vt,max

x

r
, (18)

vt = sech2(r)tanh(r), (19)

r =
√
x2 + y2, vt,max = 0.385. (20)

The analytic solution is u(x, y, t) = − tanh
(
y
2 cos(wt)−

x
2 sin(wt)

)
, where w = vt/(rvt,max);

see e.g., Tamamidis & Assanis (1993). The initial condition can be extracted from the analytic
solution.

To predict the solution to the PDE, we used N = 4000 Gaussians. The weights and scales were
initialized to Normal(0, 0.012) and 0.1, respectively. The size of Gaussian features was fixed at
4. MLP had 16 hidden nodes, and its parameters were initialized by Glorot normal. Inputs for
the Gaussians were rescaled to [0, 2]3, hence the positions of Gaussians were initialized following
Uniform[0, 2]3.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.1.5 (2+1)D NONLINEAR DIFFUSION EQUATION

The diffusion equation is a parabolic PDE describing the diffusion process of a physical quantity,
such as heat. We consider a nonlinear diffusion equation for our benchmark, which reads

ut = 0.05
(
∥∇u∥2 + u∆u

)
, (x, y, t) ∈ [−1, 1]2 × [0, 1], (21)

u0(x) = 0.25g

(
x; 0.2, 0.3,

1√
10

)
+ 0.4g

(
x;−0.1,−0.5,

1√
15

)
+ 0.3g

(
x;−0.5, 0,

1√
20

)
,

where
x = (x, y) and g(x, y; a, b, σ) = e−

(x−a)2+(y−b)2

σ2 .

There are three peaks at the initial time and the peaks spread out as time goes on.

We employed N = 4000 Gaussians. The weights and scales of Gaussians were initialized to
Normal(0, 0.012) and 0.1, respectively. The size of Gaussian features was 4. The hyperbolic tan-
gent MLP had only a single hidden layer with 16 nodes, and its parameters were initialized by Glorot
normal. The inputs for the Gaussians were rescaled into [0, 1]3. Correspondingly, the positions of
Gaussians were initialized following Uniform[0, 1]3.

A.2 ADDITIONAL EXPERIMENTS

Here, we compare PIGs to PIRBNs (Bai et al., 2023). Two equations in the PIRBN paper are chosen
as benchmarks.

Equation (15) in Bai et al. (2023):

∂2

∂x2
u(x− 100)− 4µ2π2 sin(2µπ(x− 100)) = 0, (22)

and u(100) = u(101) = 0. The exact solution is u(x) = − sin(2µπ(x − 100)). We considered
µ = 4.

Equation (30) in Bai et al. (2023):

∂2

∂x2
u(x) = −2π(22− x) cos(2πx) + 0.5 sin(2πx)− π2(22− x)2 sin(2πx)

+ 16π(x− 20) cos(16πx) + 0.5 sin(16πx)− 64π2(x− 20)2 sin(16πx),

(23)

and u(20) = u(22) = 0. The exact solution is u(x) =
(
22−x

2

)2
sin(2πx) +

(
x−20

2

)2
sin(16πx).

Referring to the numbers in 6, PIGs achieved error levels by two orders of magnitude smaller than
PIRBNs. This improvement could be attributed to the introduction of a tiny MLP and letting posi-
tions move during training.

Equation 22 Equation 23
PIRBNs 6.87e-03 ± 3.70e-04 1.47e-02 ± 9.16e-03

PIGs 1.79e-05 ± 3.80e-06 1.14e-04 ± 1.19e-05

Table 6: Results of the comparison study between PIGs and PIRBNs for Equations 22 and 23. PIGs
achieve lower errors than PIRBNs, highlighting their superior performance in both equations.

A.3 SEPARABLE PIGS

Separable PINNs have shown excellent performance across various PDEs (Cho et al., 2024; Oh
et al., 2024). When mesh points are tensor products of 1D grids, the number of network forward
passes of SPINNs scale linearly O(Nd), in contrast to the exponential scaling O(Nd) of traditional
PINNs, which adopt a single MLP.

Here, we provide a proof-of-concept for combining SPINNs and PIGs. Separable PIGs (SPIGs)
might have the following form:

u(x1, . . . , xd) ≈
R∑

r=1

d∏
i=1

PIGr(xi; θi) (24)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: Klein-Gordon equationA.1.3. The relative L2 error of SPIG is 3.68× 10−4.

where PIGr is the r-th component of the output vector.

2D L-shaped Poisson equation the two-dimensional Poisson equation defined on an L-shaped do-
main. Despite the non-tensor-product nature of the computational domain, SPINNs can deal with
such complex domains by masking outputs. Please refer to (Cho et al., 2024) for the description of
this benchmark problem. A SPIG achieved 1.89 × 10−2 relative L2 error for this problem, while
SPINN solution was 3.22× 10−2.

(2+1)D Klein-Gordon equation SPIG achieved 3.68 × 10−4 relative L2 error. PIG’s best relative
L2 error was 2.36× 10−3. Please refer to A.1.3 for a description of PDE. SPIG used modified MLP
with 2 layer and 16 hidden features. The weights and scales were initialized to Normal(0, 0.012)
and 0.1, respectively. position parameters of Gaussians were initialized following Uniform[0, 2]3.
2500 Gaussians are used.

(3+1)D Klein-Gordon equation SPIG achieved 2.88 × 10−4 relative L2 error. SPINN’s relative
L2 error was 1.20 × 10−3. Please refer to (Cho et al., 2024) for the description of this benchmark
problem. SPIG used modified MLP with 2 layer and 16 hidden features. The weights and scales
were initialized to Normal(0, 0.012) and 0.25, respectively. position parameters of Gaussians were
initialized following Uniform[0, 2]3. 2500 Gaussians are used.

Figure 9: 3D Helmholtz equation A.3. The relative L2 error of SPIG is 1.50× 10−3.

3D Helmholtz equation SPIG achieved 1.50 × 10−3 relative L2 error. SPINN’s relative L2 error
was 3.00 × 10−2. Please refer to (Cho et al., 2024) for the description of this benchmark problem.
SPIG used modified MLP with 2 layers and 16 hidden features. The weights and scales were initial-
ized to Normal(0, 0.012) and 0.05, respectively. position parameters of Gaussians were initialized
following Uniform[0, 2]3. 2500 Gaussians are used.

A.4 INVERSE PROBLEM

With observation data, the PINN framework can estimate unknown equation parameters by letting
them be learnable. Here we consider (1+1)D Allen-Cahn equation

ut − 10−4uxx + λu3 − 5u = 0,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

with an unknown coefficient λ. Other conditions are the same with Section A.1.1. We estimated λ
using reference solution as observation data. Figure 10 presents estimated λ over iterations, clearly
showing PIG’s faster convergence.

Figure 10: Allen-Cahn Inverse problem. The experiment was conducted on five different seeds (100,
200, 300, 400, 500). PIG showed better performance than PINN.

A.5 HIGH DIMENSIONAL EQUATIONS

Hu et al. introduced stochasticity in the dimension during the gradient descent (SDGD) to efficiently
handle high-dimensional PDEs within the PINN framework Hu et al. (2024b). PIGs can utilize
SDGD to tackle extremely high dimensional PDEs, e.g., 100D Allen-Cahn, and Poisson equation.
Specifically, let d = 100 and Bd = {x ∈ Rd : ∥x∥2 ≤ 1} be the domain. We consider a function

uexact =
(
1− ∥x∥22

)(d−1∑
i=1

ci sin (xi + cos(xi+1) + xi+1 cos(xi))

)
,

as our exact solution, where ci ∼ Normal(0, 12). Our benchmark problems are the Poisson equation
and the Allen-Cahn equation, which read

∆u = g (Poisson) and ∆u+ u− u3 = g (Allen-Cahn)

where g is induced from the exact solution.

Figure 11 presents relative L2 error curves over iterations. Note that global polynomial-based meth-
ods cannot handle such high dimensional equations due to the curse of dimensionality.

Figure 11: Relative L2 error curves for two high dimensional PDEs. Left: 100D Allen-Cahn equa-
tion. Right: 100D Poisson equation. PIGs achieved 8.88× 10−3, and 8.42× 10−3, respectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.6 LID-DRIVEN CAVITY

To further illustrate the effectiveness of PIGs over traditional parametric mesh methods, we chose
the PGCAN Shishehbor et al. (2024b) as our baseline and considered the lid-driven cavity problem
presented in the paper. The domain is [0, 1]2. The homogeneous Dirichlet boundary condition
is imposed except for the lid {(x, 1) : x ∈ [0, 1]}. The governing equation is a 2D stationary
incompressible Naiver-Stokes equation,

∇ · u = 0
ρ(u · ∇)u = −∇p+ µ∇2u

where the boundary conditions are given as follows:

u(0, y) = u(1, y) = (0, 0),
u(x, 0) = (0, 0),
u(x, 1) = (A sin(πx), 0),
p(0, 0) = 0.

We used 2000 Gaussians. Covariance matrices were diagonal and initialized at 0.1 and positions
were initialized following Uniform[0, 2].

Figure 12 depicts numerical results. PIG shows excellent agreement with the reference solution.
Figure 13 illustrates faster convergence of PIGs compared to the baseline method PGCAN.

Figure 12: Lid-driven cavity flow problem. PIG achieved 4.04× 10−4 relative L2 error whereas the
baseline parametric grid method PGCAN resulted in 1.22× 10−3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 13: Relative L2 error curve of the lid-driven cavity problem. PIG achieved 4.04× 10−4 and
PGCAN which used the parametric grid method achieved 1.22× 10−3.

A.7 EXAMPLE FOR SPECTRAL BIAS

Figure 14 illustrates PIG’s ability to approximate high-frequency functions. We considered 2D
Helmholtz equation (see Section A.1.2) with a high wavenumber (a1, a2) = (10, 10) for a bench-
mark problem.

Figure 14: 2D Helmholtz equation with a high wavenumber (a1, a2) = (10, 10). PIG achieved a
relative L2 error of 7.09 × 10−3, while the parametric fixed grid method PIXEL reached a relative
L2 error of 7.47× 10−2. PINN failed to converge.

A.8 THE HISTOGRAM OF VARIANCES AND DISTANCES OF GAUSSIANS

Figure 15 shows the histograms of the Gaussian parameters for the two benchmark problems dis-
cussed in Section 4.2.5 and Section 4.2.3. Readers may observe that the Gaussians in the right panels
are more global and, therefore, more sparsely distributed compared to those in the left panels.

A.9 COMPARISON BETWEEN PIG AND SIREN

In this section, we compare the performance of PIG with SIREN Sitzmann et al. (2020). PIG is
composed of a feature embedding FEϕ and a lightweight neural network NNθ. Here, we investigate
the effectiveness of SIREN when used either as a feature embedding or as a lightweight neural
network.

When used as FEϕ, SIREN is implemented as an MLP with 4 layers, each containing 256 units, and
sin(3x) as the activation function. As NNθ, SIREN is a shallow MLP with 16 units and sin(30x)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 15: Histograms of the Gaussian parameters for the flow-mixing equation and the Klein-
Gordon equation. The upper panels display histograms of the minimum distances between the
Gaussian centers, where distances > 0 indicate the absence of mode collapse. The lower panels
show histograms of the Gaussian variances, highlighting the non-degeneracy of the Gaussians.

activation function. It is worth noting that using sin(30x) as the activation function for the feature
embedding FEϕ did not yield effective results.

FEϕ + NNθ Helmholtz Flow-Mixing Klein-Gordon
SIREN + Id 1.68e-03 ± 2.02e-03 1.22e-02 ± 4.17e-03 1.18e-01 ± 4.88e-02

SIREN + tanh 1.31e-03 ± 8.26e-04 2.80e-02 ± 2.50e-02 1.04e-01 ± 8.61e-02
PIG + SIREN 1.37e-05 ± 1.64e-06 1.28e-03 ± 1.09e-04 2.37e-02 ± 4.62e-03

PIG + tanh 4.13e-05 ± 2.59e-05 4.51e-04 ± 1.74e-04 2.76e-03 ± 4.27e-04

Table 7: Comparison of PIG and SIREN performance. For all cases except the Helmholtz equation,
the original PIG + tanh formulation outperformed other methods. The improved performance of
PIG + SIREN on the Helmholtz equation may be attributed to the functional form of its exact solu-
tion.

The results, summarized in Table 7, indicate that SIREN as FEϕ did not perform notably well.
However, when SIREN was employed as NNθ, it demonstrated excellent performance in solving
the Helmholtz equation discussed in Section 4.2.2. This improvement is likely due to the structural
similarity between the SIREN activation and the functional form of the exact solution (equation 12).

A.10 COMPARISON WITH PHYSICS-INFORMED GAUSSIAN SPLATTING

We conducted several experiments to compare PIGs with physics-informed Gaussian splatting (PI-
GS) proposed by Rensen et al. (2024).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(2+1)D Burgers equation (1) (2+1)D Burgers equation (2) (2+1)D Diffusion equation
PIG 7.68× 10−4 (0.28s/it) 1.08× 10−3 (0.29s/it) 9.04× 10−3 (0.1s/it)

PI-GS 1.62× 10−1 (1.5s/it) 2.61× 10−1 (1.68s/it) 3.97× 10+0 (4.2s/it)

Table 8: Performance comparison of PIG and PI-GS across different equations. Results include
relative L2 errors and computation times per iteration (s/it). Benchmarks are conducted on two
variations of the (2+1)D Burgers equation and the (2+1)D Diffusion equation.

Figure 16: Comparison results for the (2+1)D Burgers equation. PIG achieved a relative L2 error of
7.68×10−4, with a computation time of 0.28 seconds per iteration. In contrast, the Physics-Informed
Gaussian Splatting model attained a relative L2 error of 1.62 × 10−1, requiring 1.50 seconds per
iteration.

A.11 ADDITIONAL FIGURES

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 17: Prediction Results of Our Model for the (2+1)D Burgers Equation. Our model achieved
the relative L2 error of 1.08 × 10−3. Our model takes 0.29 seconds per iteration. The relative L2

error of the Physics-Informed Gaussian Splatting model is 2.61 × 10−1, and it takes 1.68 seconds
per iteration.

Figure 18: Prediction Results of Our Model for the (2+1)D Burgers Equation. Our model achieved
the relative L2 error of 9.04 × 10−3. Our model takes 0.10 seconds per iteration. The relative L2

error of the Physics-Informed Gaussian Splatting model is 3.97 × 10+0, and it takes 4.20 seconds
per iteration.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 19: Non-linear diffusion equation 4.2.4. The experiment was conducted on three different
seeds (100, 200, 300). The best relative L2 error is 1.44× 10−3.

Figure 20: Flow mixing equation 4.2.5. The experiment was conducted on three different seeds
(100, 200, 300). The best relative L2 error is 2.67× 10−4.

25

	Introduction
	Related Work
	Physics-Informed Neural Networks
	Physics-Informed Parametric Grid Representations
	Adaptive Mesh-based Methods
	Point-based Representations

	Methodology
	Preliminary: Physics-Informed Neural Networks
	Physics-Informed Gaussians
	Learnable Gaussian Feature Embedding
	Generating the Solution from Learnable Gaussians With Lightweight Neural Network
	PIG as a Neural Network

	Universal Approximation Theorem for PIGs

	Experiments
	Experimental Seup
	Experimental Results
	(1+1)D Allen-Cahn Equation
	2D Helmholtz Equation
	(2+1)D Klein-Gordon Equation
	(2+1)D Nonlinear Diffusion Equation
	(2+1)D Flow-Mixing Problem

	Hyperparameter Analysis and Ablation Study
	The Number of Gaussians
	MLP Impact and Adaptive Gaussian Positions
	Covariance Matrices

	Conclusion and Limitations
	Appendix
	Detailed description of experiments
	(1+1)D Allen-Cahn Equation
	2D Helmholtz Equation
	(2+1)D Klein-Gordon Equation
	(2+1)D Flow-Mixing Problem
	(2+1)D Nonlinear Diffusion Equation

	Additional Experiments
	Separable PIGs
	red Inverse Problem
	red High Dimensional Equations
	red Lid-Driven Cavity
	red Example for Spectral Bias
	red The histogram of variances and distances of Gaussians
	red Comparison between PIG and SIREN
	red Comparison with Physics-Informed Gaussian Splatting
	Additional Figures

