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Abstract

Stochastic gradient descent (SGD) with polynomially decaying step-sizes has
long underpinned theoretical analyses, yielding a broad spectrum of statistically
attractive guarantees. Yet in practice, such schedules find rare use due to their
prohibitively slow convergence, revealing a persistent gap between theory and
empirical performance. In this paper, we introduce a unified framework that
quantifies the uncertainty of online SGD under arbitrary learning-rate choices. In
particular, we provide the first comprehensive convergence characterizations for
two widely used but theoretically under-examined schemes—cyclical learning
rates and linear decay to zero. Our results not only explain the observed behavior
of these schedules but also facilitate principled tools for statistical inference and
algorithm design. All theoretical findings are corroborated by extensive simulations
across diverse settings.

1 Introduction

Stochastic Gradient Descent (SGD) has gained popularity in modern machine learning since the
seminal work of Robbins and Monro [1951]. While its theoretical foundations are well established,
the literature has largely focused on two standard step-size choices: constant step-sizes, which
provide exponentially fast convergence to a biased stationary distribution and allow straightforward
tuning, and polynomially decaying step-sizes, typically of the form ηt ≍ t−α, which offer statistical
guarantees such as consistency and asymptotic normality [Chung, 1954, Sacks, 1958, Fabian, 1968,
Ruppert, 1988, Polyak and Juditsky, 1992] and extend to many SGD variants [Poljak, 1964, Gadat
and Panloup, 2023, Li et al., 2024b]. However, polynomially decaying schedules converge slowly
in practice, while constant step-sizes require careful calibration to avoid divergence [Bengio, 2012].
Hybrid schemes combining these approaches have gained traction in deep learning [He et al., 2016,
Smith and Topin, 2019], though learning rates are often chosen empirically or via hyper-parameter
tuning over standard schedules [Wu et al., 2018]. This practical reliance leaves a notable gap in
theoretical understanding of general step-size effects on SGD. The critical role of learning rates in
stochastic approximation convergence has long been recognized [Spall, 2003, Nemirovski et al.,
2008], underscoring the need for a unified theoretical framework encompassing a broader range of
step-size strategies.

Recent applications have introduced a variety of learning rate schedules that, despite their empirical
success, lack comprehensive theoretical support. For instance, Smith [2017] proposes several cyclical
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learning rate schemes that perform well in practice across standard neural network architectures.
Another under-theorized category is that of finite-horizon schedules, where the learning rate depends
explicitly on the total number of iterations. In high-dimensional linear regression, for example,
Agrawalla et al. [2023] recommends a schedule of the form ηt,n ∝ logn

n . Among such schedules, the
linearly decaying to zero (Linear-D2Z) learning rate has seen widespread use in training large-scale
architectures. Detailed discussion on the relevant literature – though by no means exhaustive – is
included in Section 1.3. Despite its prevalence, the non-asymptotic behavior of Linear-D2Z and
related finite-horizon step-size policies remains poorly understood from a theoretical standpoint. In
this work, we aim to bridge this theoretical gap by (i) developing a unified framework to show the
non-asymptotic moment convergence, and (ii) explicitly characterizing the non-asymptotic behavior
of the wide class of cyclical learning rates as well as Linear-D2Z.

1.1 SGD preliminaries

Before summarizing the main contributions of this article, we briefly introduce the stochastic gradient
descent (SGD) problem and establish a consistent notational framework for the analysis. Consider
the problem of minimizing a function F : Rd → R, F ∈ C1, given by:

θ⋆ = argmin
θ∈Rd

F (θ),

and the corresponding SGD algorithm:

θt = θt−1 − ηt∇f(θt−1, ξt), θ0 ∈ Rd, (1.1)

where ηt are step-sizes at t-th step, and ξ1, ξ2, . . . , are i.i.d. samples from some unknown distribution
Pξ such that Eξ∼Pξ

[∇f(θt−1, ξt)] = ∇F (θ) for all θ ∈ Rd. With this formulation in place, we now
proceed to outlining the main contributions of this work.

1.2 Main contributions

This article presents a unified framework for deriving the non-asymptotic mean-squared error for
arbitrary learning rate schedules. Our results not only encompass the known theory for polynomially
decaying learning rates as a specific case, but also extend the asymptotic analysis to other commonly
used learning rates that previously lacked theoretical support. Our main contributions are summarized
below.

(1) In our Theorem 2.1, we prove a general bound on the mean error of the SGD iterates, E[|θn−θ⋆|p]
involving the step sizes {ηt}. In particular, under certain regularity conditions, we prove the following.

Theorem 1.1 (Theorem 2.1, informal). If Ss,t =
∑t

j=s+1 ηj for t > s, then it holds that

E[|θn − θ⋆|p] ≲ exp(−cpS1,n)|θ0 − θ⋆|p +
n∑

j=1

η2j exp(−cpSj,n).

This result enables straightforward application to a wide range of learning rate schedules ηt, provided
that the second term,

∑n
j=1 η

2
j exp(−cpSj,n), can be effectively controlled. For example, such

bounds are typically tractable for many "approximately" polynomially decaying learning rates.
Moreover, the result explicitly captures the influence of the initial point on the final error of the SGD
iterates.

(2) A key aspect of Theorem 2.1 is that the step sizes ηj are allowed to depend on the total iteration
count n, thereby accommodating finite-horizon learning rate schedules. Such schedules have rarely
been studied in the context of mean-squared error. We specifically examine the widely used linearly
decaying schedule ηt = η(1− t/n) as a representative case. In Theorem 2.2, we leverage Theorem
2.1 to characterize the non-asymptotic moment convergence of SGD iterates under this step-size rule.
Although this schedule is common in practice, Theorem 2.2 provides, to the best of our knowledge,
its first explicit, rigorous analysis in the online SGD setting. Furthermore, our approach can be readily
extended to a broad class of finite-horizon schedules.

(3) When the learning rate is constant (ηt ≡ η) or cyclical (ηt = ηt mod T ), Theorem 2.1 yields only
an O(1) bound, which offers only limited insight. While it is well established that, in the constant
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case, the SGD iterates converge to a stationary distribution, there is, to the best of our knowledge, no
existing asymptotic theory for the cyclical learning rate setting. In Theorem 2.4, we address this gap
by presenting a novel convergence result for SGD iterates under cyclical learning rate schedules.

Theorem 1.2 (Theorem 2.4, informal). For a cyclical learning rate η = (η1, . . . , ηT ), if not all of
the ηk’s are too big, then there exists a “cyclostationary” process π such that

θn
w⇒ π, as n → ∞,

where w⇒ denotes the convergence in distribution.

This result highlights a fundamental behavioral difference between SGD with cyclical learning rates
and with constant learning rates. While the latter typically converges to a stationary distribution,
resembling the behavior of a Markov chain, the former converges to a distinct type of non-stationary
distribution exhibiting periodic patterns over time- formally known as cyclostationary distribution.
To aid the reader’s understanding, we also include a brief but formal discussion of cyclostationary
processes.

(4) Our theoretical results are substantiated by extensive numerical exercises. Section 3.2 focuses
on linearly decaying schedules, which empirically demonstrate both fast early convergence and
low final error, consistent with Theorem 2.2, and justifying their practical appeal. On the other
hand, Section 3.3 examines cosine schedules, where the learning rate follows a smooth periodic
pattern; the resulting error exhibits cyclical behavior, particularly in the variance of its estimate, also
complimenting Theorem 2.4. Some additional numerical exercises can be found in Appendix C.
Specifically, Appendix C.6 collects five different learning schedules, and provides a comparative
study that highlights both their behavior in the “transient” (i.e. with respect to initialization) phase, as
well as their asymptotic behavior.

1.3 Related works

There exists a substantial, though primarily empirical, body of literature examining gradient descent
and batched SGD in the context of neural networks. For instance, Wu et al. [2019] investigates a vari-
ety of step-size schedules, including exponentially decaying and time-inverted schemes. Among the
many proposed strategies, our focus is on two broad and widely used classes: cyclical schedules and
linearly decaying schedules. Since the introduction of the “triangular” learning rate by Smith [2017],
periodic learning rate schemes—and their decaying variants such as cosine annealing—have become
influential in training deep architectures like convolutional neural networks (CNNs) [Loshchilov and
Hutter, 2017, Smith, 2023, Wang et al., 2023]. The periodic structure of these schedules allows for
intermittent large steps (which encourage exploration) followed by smaller steps (which promote
convergence), a behavior associated with so-called “super-convergence” as observed in both empirical
and theoretical work Smith and Topin [2019], Oymak [2021].

In parallel, annealing-based strategies have also played a prominent role in optimization [Huang
et al., 2017, Li et al., 2019, Nakkiran, 2020], with certain variants—such as geometrically decaying
step-sizes—proven to be minimax optimal in convex settings [Ge et al., 2019]. Within this context,
the linearly decaying to zero (Linear-D2Z) schedule has gained significant traction in applications
involving highly non-smooth or complex optimization landscapes, including state-space models
[Touvron et al., 2023], large language models [Devlin et al., 2019, Liu et al., 2019, Bergsma et al.,
2025], and vision transformers [Wu et al., 2024]. Notably, several works advocate for a “knee
schedule” [Howard and Ruder, 2018, Hoffmann et al., 2022, Iyer et al., 2023, Defazio et al., 2023,
Hägele et al., 2024, Bergsma et al., 2025], which begins with a large learning rate (a “warm start”)
followed by a Linear-D2Z phase. Despite their widespread adoption, the asymptotic behavior
of both cyclical and Linear-D2Z step-size schedules remains theoretically unexplored—even in
relatively simple convex settings. This lack of theoretical understanding presents a significant barrier
to rigorous statistical inference and uncertainty quantification, underscoring the need for systematic
analysis.

1.4 Notations

In this paper, we denote the set {1, . . . , n} by [n]. The d-dimensional Euclidean space is Rd. For
a vector a ∈ Rd, |a| denotes its Euclidean norm. For a random vector X ∈ Rd and s > 0, we
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denote ∥X∥ :=
√
E[|X|2] and ∥X∥s = (E[|X|s])1/s. We also denote in-probability convergence,

and stochastic boundedness by oP and OP respectively. We write an ≲ bn if an ≤ Cbn for some
constant C > 0, and an ≍ bn if C1bn ≤ an ≤ C2bn for some constants C1, C2 > 0. Often we
denote an ≲ bn by an = O(bn). Additionally, if an/bn → 0, we write an = o(bn).

2 Non-asymptotic moment convergence of SGD iterates with general
step-sizes

This section is devoted to establishing the p-th moment convergence of SGD iterates (1.1) for any
p ≥ 2 with a general choice of learning rate. In particular, we allow for finite-horizon schedules; in
the notation of Section 1.1, we allow ηt ≡ ηt,n. We note that this represents a significant improvement
the existing body of literature that analyzes the statistical properties of SGD and its variants under
different learning rate schedules. Before we discuss our main result, it is imperative to introduce the
crucial technical assumptions behind our result.

2.1 Technical assumptions

We assume the following regularity assumptions.
Assumption 2.1. The function F is µ-strongly convex, i.e. for a µ > 0 and for all x, y ∈ Rd, it holds
that

⟨∇F (x)−∇F (y), x− y⟩ ≥ µ|x− y|2.

The strong-convexity assumption 2.1 can further be relaxed into the strong concordance assumption
as follows:
Assumption 2.2 (Local strong concordance). There exists µ⋆ > 0 such that ∇2F (θ⋆) ⪰ µ⋆Id.
Moreover, there exists a constant C > 0, and compact set Φ ⊆ Rd, such that for all θ1, θ2 ∈ Φ, it
holds that

|φ′′′(u)| ≤ C |θ1 − θ2|φ′′(u), where φ : u 7→ F (θ1 + u (θ2 − θ1)) , u ∈ R.

We remark that adoption of Assumption of 2.2 instead of Assumption 2.1 does not significantly alter
any of our arguments; see Gu and Chen [2024] for details. For simplicity, we stick with Assumption
2.1.
Assumption 2.3. For the noisy gradients ∇f(·, ·) and some p ≥ 2, there exists a constant Lp > 0
such that

E[|∇f(x, ξ)−∇f(y, ξ)|p] ≤ Lp
p|x− y|p, for all x, y ∈ Rd.

In particular, for some constant Mp > 0, it holds that

(E[|∇f(θ⋆, ξ)|p])1/p =: Mp < ∞.

Assumption 2.3 entails that F is Lp-smooth by Hölder’s inequality; in other words, for all x, y ∈ Rd,
it holds that

|∇F (x)−∇F (y)| ≤ Lp|x− y|.
Assumptions 2.1 and 2.3 are standard features of statistical analysis of convex stochastic optimization,
and have appeared extensively in Ruppert [1988], Polyak and Juditsky [1992], Bottou et al. [2018],
Chen et al. [2020], Zhu et al. [2023], Wei et al. [2023], Li et al. [2024a]. With these standard regularity
assumptions, we can introduce our general result.

2.2 A general moment convergence of SGD iterates

In this section, we introduce our main contribution – an umbrella result that furnishes a ready-made
upper-bound of the SGD iterates (1.1) for any choice of learning rates. In particular, we have the
following result.
Theorem 2.1 (Lp Convergence). Suppose that Assumptions 2.1 and 2.3 hold for some p ≥ 2. Let
c0 > 0 be some constant such that for all t ≥ 1, c0 ≤ min

{
η−1
t , 2µ − (6p − 5)L2

pηt

}
. For the

learning rate schedule ηt satisfies

0 < ηt <
2µ

(6p− 5)L2
p

, (2.1)
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we have for any t ≥ 1,

∥θt − θ⋆∥2p ≤ exp
{
− c0

n∑
k=1

ηk

}
|θ0 − θ⋆|2 + 3(p− 1)M2

p

n∑
j=1

η2j exp
{
− c0

n∑
k=j+1

ηk

}
. (2.2)

Theorem 2.1 is proved in appendix Section A.1. The bound (2.2) highlights the two key terms that the
learning rates contribute in the moment bound. In particular, there is an inherent trade-off between
the potential choices of step-sizes ηt that goes into determining the order of the p-th moment. We
discuss this property in detail in the subsequent two remarks.
Remark 2.1 (Effect of initialization). Firstly, the exp term in (2.2) highlights that in order to neglect
the effect of initialization, one must have

∑n
k=1 ηk → ∞ as n → ∞; in other words, the step-sizes

cannot be too small. For example, Wu et al. [2019] discusses exponentially decaying step-sizes
ηt = γt, whose performance heavily depends on the initial point even for large n, indicating that the
effect of initialization cannot be ignored in this case.

Remark 2.2 (Effect of exploration). The second term
∑n

j=1 η
2
j exp

{
− c0

∑n
k=j+1 ηk

}
encodes the

exploration property of the SGD iterates θt. Intuitively, if ηn → 0 as n → ∞, then this second term
is also o(1). Therefore, this term essentially ensures that ηj has to be decaying, and not all of them
can be too big.

It is instructive to examine specific learning rate choices and their implications as reflected by the
bound in (2.2). For example, with the commonly used polynomially decaying schedule ηt ≍ t−β , the
first term behaves like exp(−t1−β), while the second term is on the order of O(ηt), recovering the
classical mean square error (MSE) rate for this setting. In the following section, we apply Theorem
2.1 to analyze another important and theoretically less-explored finite-horizon schedule: the linearly
decaying to zero (Linear-D2Z) learning rate.

2.3 Linear decaying step-sizes

As an important application of Theorem 2.1, consider the Linear-D2Z learning rate ηt = η(1− t/n).
This learning schedule has recently been at the forefront of training large architectures, and its
optimality properties have been investigated both theoretically [Defazio et al., 2023] and empirically
Bergsma et al. [2025] in different context. Despite this interest, its non-asymptotic convergence rate
remains unknown in the literature. Leveraging the bound in (2.2), we analyze the Lp convergence
behavior of SGD under this learning rate schedule.

Theorem 2.2. Recall θn from (1.1). Under the conditions of Theorem 2.1, we have

∥θn − θ⋆∥2p ≤ |θ0 − θ⋆|2 exp{−c0η(n− 1)

2
}+ C√

n
,

where C > 0 is a universal constant independent with n and θ0.

Remark 2.3. Theorem 2.2 offers a remarkable insight into the behavior of the linearly decaying
learning rate: it effectively combines the advantages of both constant and polynomially decaying
step-sizes by being consistent and forgetting the initial condition at an exponential rate. Specifically,
for any c ∈ (0, 1) and all iterations t ≤ ⌊nc⌋, the step size satisfies ηt ≥ η(1− c); that is, the learning
rate behaves like a constant for a substantial portion of the optimization process, providing a “warm
start” and ensuring exponential decay relative to the initial point. Conversely, when t = ⌈n−c0n

1−c⌉
for some c > 1/2 and c0 > 0, the step size satisfies ηt = ηc0n

−c ≍ t−c, mimicking a polynomially
decaying schedule that yields the MSE of order O(n−1/2). Therefore, by leveraging the strengths of
both constant and polynomially decaying learning rates, the linearly decaying to zero (Linear-D2Z)
schedule achieves a “best-of-both-worlds” effect. This theoretical insight is empirically validated in
Section C.6.

2.4 Asymptotic convergence in distribution of cyclical step-sizes

Note that for constant or cyclical learning rate schemes, Theorem 2.1 can only guarantee an MSE
bound of order O(1). This naturally motivates a deeper investigation into the convergence properties
of these schedules. Specifically, an SGD sequence as defined in (1.1) with a constant step size ηt ≡ η
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can be interpreted as an aperiodic Markov chain. Under standard regularity conditions, it is well-
known that the iterates θt converge weakly to a stationary distribution. However, as discussed, recent
empirical work has highlighted the benefits of periodic or cyclical step-size schedules [Loshchilov and
Hutter, 2017, Smith, 2023, Wang et al., 2023], such as ηt ≡ ηt mod T . In this setting, the time-varying
learning rate breaks the asymptotic stationarity of the SGD chain. Nonetheless, the periodic structure
of the step-size schedule induces a corresponding periodicity in the asymptotic behavior of the iterates.
Such non-stationary processes, characterized by recurring statistical properties over time, are known
as cyclostationary processes, which we briefly introduce below.
Definition 2.3 (Cyclostationary process). A stochastic process {Xt}t∈R is said to be cyclosta-
tionary with period T > 0 if it holds that for all s ∈ [T ], and i ∈ N, {Xi, . . . , Xi+s}

d
=

{Xi+T , . . . , Xi+s+T }.

Cyclostationary process were introduced as a model of communications systems in Bennett [1958]
and Franks [1969], later finding wide use in econometrics [Parzen and Pagano, 1979] as well as
atmospheric sciences [Bloomfield et al., 1994] – the reader is encouraged to look into [Gardner et al.,
1994, Napolitano, 2016], and the references therein for an introduction and a comprehensive list of
all its applications. In the context of SGD, it is instructive to look at the iterative random function
construction of the cyclostationary process, as introduced by Bonnerjee et al. [2024]:

Xt = g(ϕt,Ft), Ft = σ(εs : s ≤ t), ϕt = ϕt mod T , for some period T ∈ N. (2.3)

This representation suggests an immediate connection to the SGD iterates θt in (1.1), which, in the
case of cyclical learning schedules, can be represented as

θt = Fξt(ηt, θt−1), ηt = ηt mod T , for some period T ∈ N, with Fξ(η, θ) = θ − η∇f(θ, ξ).
(2.4)

Equations (2.3) and (2.4) suggest an immediate connection between the cyclostationary process and
SGD with cyclic learning rate, with the choice ϕt = ηt for t ∈ [T ]. The following result, proved in
appendix Section A.2, makes this connection precise by establishing a novel asymptotic convergence
result.
Theorem 2.4. Suppose that Assumptions 2.1 and 2.3 hold for some p > 2. Let ρp(γ)

p :=
(1 + γLp)

p − pγLp − pµγ, γ ∈ R, where µ and Lp are as in Assumptions 2.1 and 2.3 respec-
tively. Consider a periodic step-size schedule with fixed period T . Then there exist T stationary
processes π1, . . . , πT such that for all η := (η1, . . . , ηT ) ∈ RT satisfying

ρp(η1) . . . ρp(ηT ) < 1, (2.5)

it holds that

θnT+i
w⇒ πi as n → ∞ for all i ∈ [T ]. (2.6)

Moreover, if η further satisfies

min
s

Jp(s) < 1, with Jp(s) =

T∑
k=1

k∏
j=1

ρp(ηs+j)
p, (2.7)

where ηj = ηj mod T for j > T , then there exists a cyclostationary process π, such that

θn
w⇒ π as n → ∞. (2.8)

Remark 2.4. Note that (2.5) ensures that ρp(ηs⋆) < 1 , where s⋆ = argmins Jp(s). In contrast to
the SGD with constant learning rate, none of the conditions (2.5) and (2.7) presupposes that ηi’s
are required to satisfy ρp(ηi) < 1 for each i ∈ [T ]. In particular, at least some of the ηi’s may be
taken to be large, which helps in faster convergence, which is also seen empirically in Figure 4.
This result underpins the flexibility and the resulting popularity of the periodic step-size schedule
over its constant counter-part, guaranteeing convergence under very mild conditions (2.5) and (2.7)
respectively.

3 Simulation

To validate our theoretical analysis, we conduct an empirical study of SGD with various learning rate
schedules. The goal is to assess how different step-size strategies affect convergence behavior and
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mean squared error, and how these compare with the theoretical predictions in Theorems 2.1, 2.2
and 2.4. For simplicity, all experiments use a simple linear regression model with known ground truth
and are repeated across multiple Monte Carlo runs to estimate average performance and variability.
In particular, Section 3.1 provides the model specifications. Section 3.2, we study the linearly
decaying to zero (Linear-D2Z) schedule ηt = η0(1 − t/n), confirming its "best-of-both-worlds"
performance—fast early convergence and diminishing final error—as predicted by Theorem 2.2.
Finally, Section 3.3 examines cosine learning rate schedules of the form ηt = η0(1 + cos(πt/T )),
where we observe periodic error fluctuations that empirically confirm the cyclostationary behavior
predicted by Theorem 2.4. Additional empirical studies can be found in Appendix C, where we also
include a particularly illuminating comparative study between the different schedules in Section C.6.
All the code files are available in GitHub.

3.1 Model specification

All the experiments are based on the following simple linear regression model:

yi = θ(0) + θ(1)xi + εi, εi ∼ N (0, 1) i.i.d., θ⋆ = (θ(0), θ(1))⊤ ∈ R2. (3.1)

where (xi, yi) ∈ R2 denotes the observed data and θ⋆ ∈ R2 is the unknown parameter. The true
parameter vector is fixed at θ⋆ = (2,−3)⊤ throughout all experiments. For all the subsequent
simulation studies, we initialize the SGD chain at (0, 0)⊤, which provides sufficient distance for
meaningful comparisons across different learning rate schedules, while not being so far away from
the ground truth so that it fails to converge and denies us the full picture. Subsequently, we focus
on an empirical evaluation of both the convergence trajectory and the distribution of the final error
across different learning rate strategies.

3.2 Linear-D2Z rate

We consider Linear-D2Z schedules of the form ηt = η0(1− t/n), which, despite their widespread
use, have received comparatively little theoretical attention. Similar to Section 3.3, we let η0 ∈
{0.01, 0.05, 0.1}, and for each experiment, the mean errors are estimated via niter = 500 many
independent repetitions. Firstly, to analyze the non-asymptotic MSE of the end-term SGD iterates,
θn, we run SGD on the same regression task with n ∈ {100, 200, . . . , 104}, using 500 independent
repetitions for each n. Figure 1 displays the terminal squared error, which decays polynomially with
n, in line with Theorems 2.1 and 2.2.

The appeal of the Linear-D2Z schedule lies in its hybrid structure: as explained in Remark 2.3,
early iterations benefit from relatively large step sizes, enabling rapid descent—potentially faster
than a constant-rate scheme. Later, the schedule tapers off, reducing variance and yielding low final
error. We numerically investigate this as follows. For a fixed n = 104, Figure 2 shows the first
100 iterations for η0 ∈ {0.05, 0.1, 0.5}. Across all settings, the error drops sharply, even under the
high-variance η0 = 0.5 case, demonstrating the robustness of the approach. Later in training, as
shown in Figure 3) the error decay appears nearly linear before plateauing, with the stabilization
occurring earlier for larger η0.

Figure 1: Plot of the terminal MSE estimate averaged over 500 SGD runs for n = 100 to n = 104.
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Figure 2: Plot of the MSE estimate averaged over 500 SGD runs for n = 104 iterations under a
Linear-D2Z schedule, observing from step 1 to 100.

Figure 3: Plot of the MSE estimate averaged over 500 SGD runs for n = 104 iterations under a
Linear-D2Z schedule, observing from step 500 onward.

3.3 Cosine learning rate

As an example of the cyclical learning rate, we employ the widely-used cosine scheduling. Specifi-
cally, we employ the schedule:

ηt = η0

(
1 + cos

(
2πt

T

))
, (3.2)

where η0 is the base learning rate and T denotes the period.

To assess the behavior induced by such schedules, we perform online SGD for n = 104 iterations with
η0 ∈ {0.01, 0.05, 0.1} and T = 3, averaging results over niter = 500 independent trials. Figure 4
presents the resulting mean squared error (MSE) trajectories. Across all settings, the MSE exhibits
an exponentially fast decay from the initial points before exhibiting persistent fluctuations about a
steady-state level. The periodicity, as predicted by Theorem 2.4 is not apparent from this plot. To
further probe this structure, we examine the standard deviation of the MSE across runs over the
final 100 iterations in Figure 5. Despite autocorrelation between estimates (due to small step sizes),
periodicity remains visible in the standard deviation curves. Even for η0 = 0.01, where the process
converges slowly, the periodicity of order 3 is easily discernible on the plot. This empirically confirms
Theorem 2.4: despite the huge auto-correlation between successive iterations, with cyclical learning
rates SGD iterates θt do not settle but oscillate periodically, reflecting the learning rate’s structure. The
oscillation’s amplitude and frequency depend on η0, with larger values causing stronger fluctuations
and faster initial progress. This nuanced behavior highlights the balance between exploration and
convergence enabled specifically by periodic schedules. For comparison, Figure 6 shows standard
deviation curves under constant learning rates, which lack periodicity, confirming that the patterns in
Figure 5 arise from the cosine schedule.
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Figure 4: MSE estimates over 500 SGD runs (104 steps) with cosine learning rates, observing from
step 500 onward. Periodic error fluctuations are evident, indicating cyclostationary dynamics.

Figure 5: Standard deviation of the MSE over the final 100 iterations (across 500 runs) with cosine
learning rates. Periodic fluctuation is clearly observed, even at a small η0.

Figure 6: Standard deviation of the MSE over the final 100 iterations with constant learning rates. No
periodicity is observed.

4 Conclusion

Sharp theoretical MSE bounds offer critical insights into the behavior of SGD for given learning rate
schedules, yet most prior work has focused on polynomially decaying step sizes, often sacrificing
convergence speed for statistical tractability. To the best of our knowledge, this paper is the first
to systematically develop a unified framework that provides explicit MSE upper bounds for a
broad class of learning rates. In particular, we establish novel convergence guarantees for cyclical
and linearly decaying to zero (Linear-D2Z) learning rates—two popular but previously under-
theorized choices—shedding light on their strong empirical performance. Our results motivate further
exploration beyond the convex setting into non-convex and non-smooth landscapes, with an emphasis
on understanding the statistical behavior of these schedules, including the potential for central limit
theorems and refined uncertainty quantification. In this context, this work provides new insights into

9



the practically important yet theoretically underexplored area of learning rate selection, and serves
as a foundation for bridging practical success and theoretical understanding of SGD across diverse
learning schedules regimes.
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A Postponed Proofs

A.1 Proof of Theorem 2.1

Proof of Theorem 2.1. By recursively applying Lemma B.2, we have

∥θn − θ⋆∥2p ≤
n∏

k=1

(1− c0ηk)|θ0 − θ⋆|2 + 3(p− 1)M2
p

n∑
j=1

η2j

n∏
k=j+1

(1− c0ηk).

The proof is completed by noting that
n∏

k=1

(1− c0ηk) ≤ exp
{
− c0

n∑
k=1

ηk

}
.

A.2 Proof of Theorem 2.4

Proof of Theorem 2.4. Suppose FX,γ(θ) = θ − γ∇f(θ, ξ) encodes the iterative random function
governing the SGD trajectory (1.1). Fix i ∈ [T ]. For (2.6), observe that

θnT+i = F i
(ξ(n−1)T+i+1,...,ξnT+i)

(θ(n−1)T+i,η),

where, for X = (X1, . . . , XT ), we define F i
X(θ,η) := FX1,ηi+1

◦ . . . ◦ FXT ,ηi+T
(θ), with ηi+s =

ηi+s mod T with slight abuse of notation. Applying Theorem 2.2 of Li et al. [2024a] successively on
the function compositions of F i, it holds that

∥F i
X(θ,η)− F i

X(θ′,η)∥ ≤ ρp(η1) . . . ρp(ηT ),

from which, (2.6) follows in light of (2.5) and Theorem 2.2 of Li et al. [2024a]. To ensure (2.8), note
that if π is a cyclostationary process with period T defined on Rd, then X ∼ π iff (X1, . . . , XT ) ∼ π̃
for some stationary process π on Rd×T . Therefore, it is enough to show

(θnT+s : . . . : θ(n+1)T+s) → π̃ (A.1)

for some stationary process π̃ on Rd×T , and some s ∈ [T ]. Choose s = s⋆ such that

s⋆ = arg min
s∈[T ]

T∑
k=1

k∏
j=1

ρp(ηs+j)
p.

Define

F̃X(Θ,η) = (FX1,ηs+1
(θt), FX2,ηs+2

◦ FX1,ηs+1
(θt), . . . , FXT ,ηs+T

◦ · · · ◦ FX1,ηs+1(θt)),

where
Θ = (θ1, . . . , θT ) ∈ Rd×T .

Clearly, one derives

∥F̃X(Θ,η)− F i
X(Θ′,η)∥pp =

T∑
k=1

∥∥FXk,ηs+k
◦ · · ·FX1,ηs+1

(θt)− FXk,ηk
◦ · · ·FX1,η1

(θ′t)∥pp

≤ ∥θt − θ′t∥pp
T∑

k=1

k∏
j=1

ρp(ηs+j)
p. (A.2)

Writing (1.1) as

(θnT+s+1,...,θ(n+1)T+s
) = F̃ξnT+s+1,...,ξ(n+1)T+s

((θ(n−1)T+s+1,...,θnT+s
),η), n ≥ 1

yet another application of Theorem 2.2 of Li et al. [2024a] yields (A.1) in light of (A.2) and (2.7).
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A.3 Proof of Corollary 2.2

Proof of Corollary 2.2. When ηt = η(1 − t/n), the first term in (2.2) becomes exp{−c0η(n −
1)/2}|θn − θ⋆|2. For the second term, set m = n− j. Then m = 0, 1, . . . , n− 1, and

ηj = η
n− j

n
= η

m

n
,

n∑
k=j+1

ηk =

m−1∑
k=0

η
k

n
=

η

n

(m− 1)m

2
=

η

2n
(m2 −m).

Let Sn =
∑n

j=1 η
2
j exp

{
− c0

∑n
k=j+1 ηk

}
, then since m ≤ n,

Sn =

n−1∑
m=0

(
η
m

n

)2

exp
{
−c0

η

2n
(m2 −m)

}
≤ η2 exp(

c0η

2
)

n−1∑
m=0

m2

n2
exp

{
−c0ηm

2

2n

}
.

The sum can be further bounded by the integration. Since the function x2 exp{c0ηx2/2} is eventually
decreasing with x, we have

n−1∑
m=0

m2

n2
exp

{
−c0ηm

2

2n

}
≤ C ′

√
n

∫ ∞

0

x2 exp
{
−c0ηx

2

2

}
dx = O(1/

√
n)

where C ′ is a universal constant, and the inequality above is obtained by substituting x = m2/n.
This completes the proof.

B Auxiliary Section

In this section we collect two crucial auxiliary results that contribute towards the proof of Theorem
2.1.
Lemma B.1 (Rio’s inequality [Rio, 2009]). Let X ∈ Rd and Y ∈ Rd be two random vectors such
that E|X|p < ∞ and E|Y |p < ∞ for some p ≥ 2. Then we have

∥X + Y ∥2p ≤ ∥X∥2p + (p− 1)∥Y ∥2p.
Lemma B.2. Consider the SGD iterates {θt}t≥1 in (1.1). Suppose that Assumptions 2.1 and 2.3 for
p ≥ 2. Then, for some constant c0 > 0 such that for all t ≥ 1,

c0 ≤ min
{ 1

ηt
, 2µ− (6p− 5)L2

pηt

}
,

we have, for all t ≥ 1,
∥θt − θ⋆∥2p ≤ (1− c0ηt)∥θn−1 − θ⋆∥2p + 3(p− 1)η2tM

2
p .

B.1 Proof of Lemma B.2

Proof of Lemma B.2. Since ξt, for t ≥ 1, are i.i.d. random samples, it follows from the tower rule
that

E[∇f(θn−1, ξn)−∇F (θn−1) | θn−1] = 0.

Therefore, by applying Rio’s inequality in Lemma B.1, for p ≥ 2, we have
∥θn − θ⋆∥2p ≤ ∥θn−1 − θ⋆ − ηn∇F (θn−1)∥2p + (p− 1)η2n∥∇f(θn−1, ξn)−∇F (θn−1)∥2p

=: I1 + I2.
We shall bound the two parts I1 and I2 separately. For the first part I1, note that ∇F (θ⋆) = 0 and by
the triangle inequality, we have

I1 = ∥θn−1 − θ⋆ − ηn∇F (θn−1)∥2p
=

∥∥∥〈θn−1 − θ⋆, θn−1 − θ⋆
〉
− 2ηn

〈
θn−1 − θ⋆,∇F (θn−1)−∇F (θ⋆)

〉
+ η2n

〈
∇F (θn−1)−∇F (θ⋆),∇F (θn−1)−∇F (θ⋆)

〉∥∥∥
p/2

≤
∥∥∥〈θn−1 − θ⋆, θn−1 − θ⋆

〉
− 2ηn

〈
θn−1 − θ⋆,∇F (θn−1)−∇F (θ⋆)

〉∥∥∥
p/2

+ η2n
∥∥∇F (θn−1)−∇F (θ⋆)

∥∥2
p
.
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By applying Assumption 2.1 to the first term and Assumption 2.3 to the second term, we can obtain

I1 ≤ (1− 2ηnµ+ η2nL
2
p)∥θn−1 − θ⋆∥2p.

Regarding the second part I2, since ∇F (θ⋆) = 0, we have

∥∇f(θn−1, ξn)−∇F (θn−1)∥p
≤ ∥∇f(θn−1, ξn)−∇f(θ⋆, ξn)∥p + ∥∇F (θn−1)−∇F (θ⋆)∥p + ∥∇f(θ⋆, ξn)∥p.

Hence, by Assumption 2.3, we can achieve

∥∇f(θn−1, ξn)−∇F (θn−1)∥2p ≤ 6L2
p∥θn−1 − θ⋆∥2p + 3∥∇f(θ⋆, ξn)∥2p.

Combining results from I1 and I2, we can obtain

∥θn − θ⋆∥2p ≤ (1− 2ηnµ+ (6p− 5)η2nL
2
p)∥θn−1 − θ⋆∥2p + 3(p− 1)η2n∥∇f(θ⋆, ξn)∥2p.

This can directly lead to the desired inequality.

C Additional simulations

In this section, we collect some additional simulation studies, complimenting the numerical exercises
of Section 3. In particular, in Appendix C.1, we begin with constant learning rates (ηt ≡ η), which
serve as a baseline and exhibit the expected bias-variance tradeoff, with final error scaling linearly
in η. Appendix C.2 turns to polynomially decaying learning rates, ηt = η0t

−β , and demonstrates
how different values of β ∈ (1/2, 1) influence the tradeoff between fast initial descent and long-run
variance control, consistent with the structure of Theorem 2.1. Moreover, Appendix C.3 examines
alternating schedules that interleave two polynomial decay rates or combine a constant rate with a
decaying one, highlighting how the more aggressive schedule tends to dominate long-run behavior.
Finally, Appendix C.6 includes a detailed comparison study of the different step-sizes considered
in this paper, with particular focus into the initial phase, as well as asymptotic behavior upon
convergence.

C.1 Constant learning rate

To ground our analysis, we start with the familiar case of constant learning rates—long favored for
their simplicity, but known to encode a fundamental tradeoff. We test three fixed values, η = 0.1, 0.05,
and 0.01, and track their performance over 104 SGD iterations. The patterns are predictable but
instructive: larger step sizes yield faster initial progress, yet settle into higher-variance regimes;
smaller ones move more cautiously, but converge closer to the optimum with lower final error.

Because the early dynamics often involve rapid error reduction—sometimes several orders of magni-
tude—we focus the MSE plot on later stages: starting from t = 100 for η = 0.1 and 0.05, and from
t = 500 for η = 0.01. This lets us zoom in on the asymptotic behavior, where the long-term effects
of each learning rate become more clearly visible.

Figure 7: MSE estimates over 500 SGD runs (104 steps) with constant learning rates.

The empirical trajectories in Figure 7 reflect this tradeoff. Larger learning rates lead to faster early
reduction in error but exhibit higher variance and stabilize farther from the optimum. In contrast,
smaller learning rates result in slower progress but achieve significantly lower terminal error.
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To complement this, Figure 8 plots the final mean squared error against a dense grid of fixed learning
rates ranging from η = 0.01 to η = 0.1. The trend is unmistakable: terminal MSE scales linearly
with η, matching the O(η) variance bound predicted by theory. This reinforces the fundamental
tension in fixed-rate SGD: speed comes at the cost of noise, and there’s no single value of η that
avoids the tradeoff entirely.

Figure 8: Plot of the terminal MSE estimate averaged over 500 SGD runs for 104 steps, for constant
values for η between 0.01 and 0.1.

C.2 Polynomially decaying learning rate

We now turn to the classical regime of polynomially decaying learning rates. These schedules take the
form ηt = η0t

−β , where η0 > 0 and β ∈ (0, 1] controls the rate of decay. The general non-asymptotic
error bound given in Theorem 2.1 applies to this setting directly, and allows us to capture the tradeoffs
these schedules induce. In particular, when β > 1

2 , the sum
∑∞

t=1 η
2
t converges, ensuring that

variance contributions decay to zero; whereas the condition β < 1 guarantees
∑∞

t=1 ηt = ∞, which
is necessary for the bias to vanish. These facts jointly imply that SGD with β ∈ ( 12 , 1) is consistent
and convergent, with error rates depending sensitively on the balance between the two terms in the
bound.

To explore these effects empirically, we simulate SGD with learning rates of the form ηt = η0t
−β

using two values of β: 0.505 and 0.75, each tested with base rates η0 = 0.1, 0.05, 0.01. Figure 9
shows the mean squared error over time for these settings, averaged over 500 independent runs. The
results highlight the central tradeoff: smaller values of β yield faster initial descent but larger long-run
fluctuations, while larger β dampen early progress but reduce terminal error. This qualitative pattern
matches the structure of Theorem 2.1, in which the exponential forgetting term dominates early on,
and the variance accumulation term becomes decisive in the long run.

Because the early dynamics often involve rapid error reduction—sometimes several orders of mag-
nitude—we focus the MSE plot on later stages: starting from t = 1000 for η = 0.1, β = 0.505,
t = 4000 for η = 0.05, β = 0.505 and t = 5000 for β = 0.75. This lets us zoom in on the
asymptotic behavior, where the long-term effects of each learning rate become more clearly visible.

An interesting feature of these experiments is the relative importance of β compared to η0. While
smaller base rates do modestly influence early error and variance, the dominant effect stems from
the decay exponent. The case β = 0.505, being just above the variance threshold, achieves a strong
balance between speed and consistency—converging faster than β = 0.75 while eventually achieving
comparably low error. This behavior reflects the non-asymptotic structure predicted by Theorem 2.1,
which separates the error into two components: a bias decay term, of the form exp(−c

∑n
t=1 ηt),

and a cumulative variance term, of the form
∑n

j=1 η
2
j exp(−c

∑n
t=j+1 ηt). For polynomial learning

rates, the bias term vanishes polynomially in n, and the variance term converges to zero if β > 1
2 , but

only slowly. These dynamics explain the empirical behavior observed: β = 0.505 gives faster early
convergence due to slower bias decay, while β = 0.75 leads to more effective long-run averaging,
with reduced variance. The simulations thus concretely illustrate the tension between forgetting and
fluctuation that the theory encodes, and validate the asymptotics of polynomial decay schedules as
captured by Theorem 2.1.
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Figure 9: MSE estimates over 500 SGD runs (104 steps) with polynomially decaying learning rates.

C.3 Alternating polynomially decaying learning rate

Building on our observations from the previous experiments, we explore combining the strengths of
both polynomially decaying and cyclical approaches. In particular, the cyclical schedules demonstrate
superior initial convergence through their ability to take larger steps early in optimization, while
polynomial decay provides better asymptotic properties and lower final error. To this end, we tried
two forms of dual schedules:

1. Set a base rate η0 and alternate between two polynomial decay rates or a polynomial decay
rate and a constant rate. Using two values for η0 (0.1, 0.05), a constant rate and two
exponents for polynomial decay rates β = 0.505, 0.75 gives us six total combinations. In all
of these cases, we present the plots for the mixture of a decay schedule and a constant rate
from t = 500 and for the mixture of two polynomial decay schedules from t = 1000, again
to observe the general trend rather than the initial decay by several orders of magnitude in a
short amount of time.

2. Set a fixed polynomial decay rate and alternate between two base rates, a "large" one and a
"small" one. Plotted from t = 2000 for the same consideration as above.

Figure 10: Plot of the MSE estimate averaged over 500 SGD runs for 104 steps.

For both η0 = 0.1 and η0 = 0.05, if the constant learning rate schedule is one of the two included,
the process seems to behave in the same way over the long run. However, when we alternate between
β = 0.505 and β = 0.75, we get an outcome more similar to just selecting β = 0.505. In all of
these cases, the larger learning rate plays the dominant role in determining the convergence rate and
terminal error of the process.
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Figure 11: Plot of the MSE estimate averaged over 500 SGD runs for 104 steps.

Figure 12: Plot of the MSE estimate averaged over 500 SGD runs for 104 steps.

The two plots look almost identical and even have error rates that seem to scale sublinearly with η0.
Compared with the earlier plots in this section and our observations in section 3.3, we have empirical
evidence that in polynomial decay and mixed polynomial decay regimes, the choice of the rate of
decay β is far more important than the choice of the base rate η0.

C.4 Linear regression with randomly initialized coefficients

In addition to the experiments outlined above, we present the results of another simulation, with
n = 105, θ∗ = (0, 0) and θ0 initialized randomly. The other settings remain as they were in the
paper:

yi = θ(0) + θ(1)xi + εi, εi ∼ N (0, 1) i.i.d., θ∗ = (θ(0), θ(1))⊤ ∈ R2,

where (xi, yi) ∈ R2 denotes the observed data and θ∗ ∈ R2 is the unknown parameter. Results are
averaged over 500 SGD runs. We summarize results from iterations 500− 5000 within each SGD
run in the table below. Mean SE SD in the table is taken over the last 100 iterations.

Table 1: Final and Minimum MSE for Cosine Learning Rate Schedules on Simulation Data
Schedule Final MSE Min MSE Final SE SD Mean SE SD
0.1 · (1 + cos(2πt/3)) 0.1713 0.1103 0.1743 0.2334
0.05 · (1 + cos(2πt/3)) 0.0805 0.0484 0.0777 0.0912
0.01 · (1 + cos(2πt/3)) 0.0158 0.0101 0.0136 0.0144

19



C.5 Testing on MNIST

To demonstrate the validity of our empirical evaluation beyond elementary linear regression cases,
we conducted additional experiments on the MNIST dataset using a high-dimensional classification
task. Specifically, we trained a multiclass logistic regression model via stochastic gradient descent
(SGD) under both the cosine and Linear-D2Z learning rate schedules. The goal of this evaluation
is to assess whether our theoretical insights carry over to practical settings involving real-world,
high-dimensional data. Each MNIST image is flattened into a vector x ∈ R784 and paired with
a one-hot encoded label y ∈ {0, 1}10. Given this input-target pair, we minimize the sigmoid loss
L(x, y; θ), where θ ∈ R784×10 denotes the model parameters. This setup is equivalent to minimizing
a sum of binary logistic regression losses across classes in a one-vs-rest fashion. For the cosine
schedule ηt = η0(1 + cos(2πt/3)), we ran SGD for n = 5000 iterations, anticipating convergence
to a cyclostationary distribution. The outcome was indeed cyclostationary in nature, similarly to what
was observed in Figure 4.

For the Linear-D2Z schedule ηt = η0(1− t/n), we ran SGD in increments of 500 iterations, from
n = 500 to n = 5000. Performance was evaluated in terms of both the average sigmoid loss and
the classification accuracy (i.e., the proportion of correctly classified digits under argmaxj θ

⊤x).
Results are presented in the table below.

Table 2: Sigmoid loss Estimate for the Linear-D2Z schedule on the MNIST dataset
Number of Iterations MSE Standard Deviation

500 0.0059 0.0046
1000 0.0042 0.0020
1500 0.0041 0.0015
2000 0.0034 0.0018
2500 0.0034 0.0013
3000 0.0035 0.0012
3500 0.0033 0.0011
4000 0.0032 0.0011
4500 0.0032 0.0012
5000 0.0031 0.0011

C.6 Comparison of different learning rates

In this section, we numerically investigate the comparative performance of the different learning rate
schedules analyzed in this paper. Specifically, we plot the estimates of E[|θ∗ − θn|2] against n for
n = 104, and five different learning rate schedules corresponding to Sections 2.3-3.3, along with the
additional studies in the appendix C. For careful comparison of both the effect of initialization as
well as behavior at convergence, we investigate the MSE of θn for the initial 100 iterates, in Figure
13, as well as the final 100 iterates, in Figure 14.

Figure 13: Plot of the evolution of the MSE estimate for the first 100 SGD iterations for five learning
rate schedules.
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Figure 14: Plot of the evolution of the MSE estimate for the last 100 SGD iterations for five learning
rate schedules.

In the early stages of the process, the models that have a non-decaying rate (constant learning rate and
cosine schedule), as well as the Linear-D2Z model, which as discussed in Sections 2.3-3.3, exhibits
superlinear convergence speed away from initialization, while the polynomial decay and mixed
polynomial decay model both move more slowly. This is almost reversed in the later stages of the
process - while all five models have converged to a small error, Linear-D2Z and the two polynomial
decay-based models end up with a far smaller error estimate compared to the constant learning
rate and the cosine schedule, which demonstrate a consistent bias. This demonstrates well-known
theoretical results - larger learning rates converge faster but at the cost of a larger terminal bias.
Linear-D2Z manages to reach an acceptably small error rather quickly and also enjoys a small
terminal error due to being defined in a way that starts off with large step sizes that then taper off
quickly, reinforcing its view as a “best-of-both-worlds” learning schedule.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims of the paper are accurately reflected in both the abstract
and introduction. The paper proposes a general framework to theoretically derive the MSE
of SGD iterates for a general class of learning schedules. All claims are theoretically proven
and empirically validated throughout the work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: All theoretical assumptions underlying the SGD setting are explicitly stated
and discussed in detail in Section 2.1. These sections also elaborate on the limitations of
the asymptotic analysis, particularly in relation to the two specific learning rate schedules
examined in greater depth. These limitations are highlighted through dedicated remarks
following the main theorems. Additional commentary on open questions and potential
extensions is provided in the conclusion (Section 4).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the assumptions can be found in the theorem statements, and are discussed
in main paper. All the proofs can be found in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The complete model specifications along with parameters, are provided in
Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the codes to reproduce the results can be found anonymously in github as
well as in the supplemental material.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are provided in Section 3.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, whenever the MSE of the SGD iterates is reported, an estimate of their
variability/error-bars is reported in the form of a shade.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The experiments are lightweight and run quickly on a modern laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research follows all ethical guidelines. No human data or ethically
sensitive content is involved.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Since our work is theoretical in nature, we do not anticipate any negative
impacts, and as such the paper does not include a dedicated speculative discussion of broader
societal impacts in a separate section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any models or datasets with high risk of misuse.
All released components are synthetic and pose no privacy or safety risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All baseline methods are standard, and citations to prior work are provided
with proper attribution and licensing notices.
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• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces novel techniques to derive MSE of SGD iterates with any
step-size choice, which are theoretically validated with extensive proofs. Moreover, it char-
acterizes the convergence behavior for two widely-used, but theoretically less-understood
learning schedules. All the accompanying empirical evidence is documented and released
via a GitHub repository in anonymized form. Hyperparameters, dependencies, and usage
instructions are all included.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: The paper does not involve crowdsourcing or human subject research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [No]
Justification: No human subjects are involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: No large language models (LLMs) were used to produce, analyze, or verify
the scientific content of this paper. All methods and results are original and independently
verified using rigorous mathematical analysis and custom code.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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