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X-VILA: The image shows a 
beach with a sandy shore.

Prompt: What is in the image?
Image-Language

X-VILA: A video with people 
enjoying the beach.

Prompt: Can you make a 
similar video with people in it?

Language-Video

X-VILA: This is the requested 
audio.

Prompt: Can you make some 
sound for the video?

Video-Audio

X-VILA: Here is the image.

Prompt: Can you make an 
image based on the video?

Video-Image

Prompt: Generate a video 
following the audio.

Audio-Video

X-VILA: The man starts to ski.

Prompt: What do you think 
is going to happen?

Video-Video

(Girls laughing)
X-VILA:

Prompt: What is in the video?
Video-Language

X-VILA: A man is seen speaking 
to the camera while holding a ski.

Prompt: Can you make a video 
from the image and audio?

Image+Audio-Video

X-VILA:

(Sound of sea)

(Sound of waves)

X-VILA: A large field of 
colorful flowers in a park.

Prompt: What is in the image?
Image-Language

X-VILA: The video shows a 
young girl standing in a field.

Prompt: What about this 
video? What is shown in it?

Video-Language

X-VILA: Here is the video.

Prompt: Can you make a 
video combining them?

X-VILA: Here is the audio.

Prompt: Can you make 
some music for the video?

Video-AudioImage+Video-Video

(Girl speaking)

Figure 1: We introduce X-VILA, a foundation model for cross-modality understanding, reasoning,
and generation in the domains of video, image, language, and audio.

ABSTRACT

We introduce X-VILA, an omni-modality model designed to extend the capabil-
ities of large language models (LLMs) by incorporating image, video, and audio
modalities. By aligning modality-specific encoders with LLM inputs and diffusion
decoders with LLM outputs, X-VILA achieves cross-modality understanding, rea-
soning, and generation. To facilitate this cross-modality alignment, we curate an
effective interleaved any-to-any modality instruction-following dataset. Further-
more, we identify a significant problem with the current cross-modality alignment
method, which results in visual information loss. To address the issue, we pro-
pose a visual alignment mechanism with a visual embedding highway module.
We then introduce a resource-efficient recipe for training X-VILA, that exhibits
proficiency in any-to-any modality conversation, surpassing previous approaches
by large margins. X-VILA also showcases emergent properties across modalities
even in the absence of similar training data. The project will be made open-source.

1 INTRODUCTION

Large language models (LLMs) provide an emerging foundation for enhancing various deep learn-
ing tasks beyond the realm of natural language processing. As an example, research community has
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been quickly extending the fast progress of LLMs (Devlin et al., 2019; Raffel et al., 2020; Dai et al.,
2019; OpenAI, 2023b; Touvron et al., 2023a;b; Taori et al., 2023; Chiang et al., 2023; Karamcheti
et al., 2021; Penedo et al., 2023; Chowdhery et al., 2022; yi, 2023; Bai et al., 2023a) towards the
computer vision (CV) domain (Liu et al., 2024; Alayrac et al., 2022; Driess et al., 2023b; Chen et al.,
2023; Li et al., 2023a; fuy, 2023; Bai et al., 2023b; OpenAI, 2023a; Zhu et al., 2023a). The intro-
duction of LLMs in CV tasks enables vision models to perform many zero/few-shot and in-context
learning tasks that are “promptable” through user questions, potentially empowering reasoning capa-
bilities for the first time. Despite remarkable progress, cross-modality alignment is still a challenging
task as the joint training stage for cross-modality learning requires carefully designed feedback sig-
nal (Wei et al., 2021; Dai et al., 2023) to guide the connected foundation models (Alayrac et al.,
2022; Liu et al., 2024; Li et al., 2023a), backed by cross-modality datasets at scale (Zhu et al.,
2023b; Byeon et al., 2022; Schuhmann et al., 2022). Hence, the majority of existing studies revolve
around a solitary input modality linked to LLMs, with the output being solely text. For example,
Flamingo (Alayrac et al., 2022), LLaVA (Liu et al., 2024), and VILA (Lin et al., 2024) delve into
image input, while Video-LLaMA (Zhang et al., 2023a) and LITA (Huang et al., 2024) specifically
concentrates on video input. Exploring the integration of various modalities into a cohesive frame-
work is a crucial yet relatively unexplored research challenge (Tang et al., 2023; Wu et al., 2023; Lu
et al., 2022) in the domain of multi-modality LLMs.

This study focuses on the development of a systematic approach to integrate multiple modalities,
such as video, image, and audio, into an LLM at both the input and output stages. Our objective
is to facilitate cross-modal conversations in an any-to-any modality (or “X-to-X”) LLM, allowing
for generation in different modalities. To accomplish the ambitious objective, we present a two-
phase alignment mechanism: (i) Textual alignment. We align input and output representations of
different modalities to the textual embedding space of the LLM (Wu et al., 2023). Specifically, in
regard to the input of LLM, we use a unified embedding space that allows for the sharing of features
extracted from encoders across diverse modalities. As for the output of LLM, we employ fine-
tunable modality-specific diffusion models to convert the generated outputs of the LLM into content
that aligns with the respective modalities. (ii) Visual alignment. We observe that the previous
textual alignment alone fails to preserve visual features adequately in vision-to-vision generation
tasks, such as image-to-video and video-to-image generation. This limitation can be attributed to
the loss of information during the projection process from visual encoders to the LLM, as well as the
LLM’s tendency to prioritize common concepts over specific visual details. To address this issue, we
propose a new module named Visual Embedding Highway (VEH). The VEH module facilitates the
direct guidance of visual decoders by enabling visual features to bypass the LLM. By incorporating
VEH, we have observed a notable enhancement in the correspondence of visual content between the
input and output stages of our framework.

On the other hand, the scarcity of cross-modality instruction-following data poses a significant chal-
lenge in the development of any-to-any modality (or “X-to-X”) LLMs. This limitation severely
restricts the progress in creating LLMs that can seamlessly handle multiple modalities in both input
and output ends. Existing datasets provide limited data, mostly in the form of X-to-text or text-to-X.
Therefore, we curate a large-scale X-to-X dataset to facilitate cross-modality interactions between
text, audio, image, and video. Overall, we synthesize more than 1.5M multi-modality conversa-
tions, with each conversation containing at least one cross-modality question-and-answer pair. This
dataset has proven effective in our experiments for training models to achieve any-to-any modality
capabilities.

To achieve the cross-modality input-output alignment of LLMs in our X-to-X LLM, we design three
major training phases: (i) A data-effective alignment phase that involves aligning the multi-modality
encoders with the LLM inputs and the multi-modality decoders with the LLM outputs. (ii) An
interleaved multi-modality pre-training phase with interleaved instruction data across modalities for
enhanced in-context learning performance. (iii) An X-to-X cross-modality instruction tuning phase
that includes a two-step alignment process: textual alignment and visual alignment mechanism.
Through our innovative approach to multi-modality alignment, we build a powerful X-to-X multi-
modality LLM with the ability to comprehend and generate multi-modality content. We term our
new model “X-VILA” for cross-modality understanding, reasoning, and generation in the domains
of Video, Image, Language, and Audio. For instance, as shown in Figure 1 and Figure 9, X-VILA
demonstrates its capacity to recognize the subjects in the image, which results from our vision-
language alignment training. Then, it can retrieve its knowledge and make logical deductions to
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Figure 2: X-VILA schematic diagram. X-VILA augments a pretrained LLM towards new modalities
via (i) connecting pretrained encoders to LLM input textual embedding space and (ii) connecting
pretrained diffusion decoders to the LLM output textual embedding space (Section 2.1). The system
is jointly trained via a new cross-modality alignment procedure (Section A).

answer the user’s questions about the content in the image. Last but not least, it can generate aligned
multi-modality output that matches the given context.

In summary, this work makes contributions in three aspects:

• A new family of any-to-any modality chat LLM that is able to conduct multi-modality
conversations by understanding signals from different modalities and generating content in
various formats, including video, audio, image, and text.

• A novel 2-step alignment mechanism that effectively aligns both semantic and visual de-
tails between the input and output spaces. This mechanism ensures a comprehensive and
accurate correspondence between the input and output of our X-to-X LLM.

• The creation of a new X-to-X multi-modality instruction tuning dataset that is proven ef-
fective for cross-modality alignment. This dataset serves as a valuable resource for future
research in the realm of multi-modality foundation models.

2 METHODOLOGY

2.1 X-VILA ARCHITECTURE

We consider four common modalities in this work: text, image, video, and audio. The tenet of
X-VILA is an alignment-based architecture to augment an LLM with the ability to “see/hear/read”
multi-modality inputs and “draw/speak/write” multi-modality outputs, as shown in Figure 2.

Modality-specific encoders. We adopt modality-specific encoders to handle inputs from differ-
ent modalities. This strategy harvests the pre-trained understanding ability of the domain ex-
pert encoders and has been proven successful in many vision-language models (Alayrac et al.,
2022; Li et al., 2023a; Liu et al., 2024). To better align embeddings of different modalities,
we use ImageBind encoders (Girdhar et al., 2023), which unify features from different modali-
ties, including image, video, and audio, into one feature space. Technically, for each modality
m ∈ {‘text’, ‘image’, ‘video’, ‘audio’}, we notate the encoders as Encm. For text modality, the en-
coder is a text tokenizer (Kudo & Richardson, 2018), while for other modalities they are ImageBind
transformers (Girdhar et al., 2023). We then use modality-specific trainable linear layers, notated
as Pin

m, to project Encm output into embedding sequences S in the textual embedding space of the
following LLM. We can formulate this process as:

Sin = {Pin
m(Encm(Xm))}, (1)

where Xm is input from different modalities m ∈ {‘text’, ‘image’, ‘video’, ‘audio’}.

3
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Large language model (LLM). LLM serves as the “brain” of our framework. It processes in-
formation from the textual embedding space and predicts language outputs correspondingly. We
adopt Vicuna-7B-1.5 (Chiang et al., 2023; Touvron et al., 2023b), which demonstrates state-of-the-
art language understanding and generation ability. For easier understanding, we slightly abuse the
annotation and write the autoregressive process of generating output embedding sequence Sout by
the LLM as:

Sout = LLM(Sin). (2)

Visual Highway
Embedding 

Latent 

RB RB RB RBRB

U-Net of Visual
Decoder

Textual Controller
Embedding

Visual Controller
Module (VisCtrl) 

Add Cross-Attention

ZC ZC
ZC

ZC
ZC

ZC Zero-Convolution RB Residual Block

Figure 3: Illustration of the proposed visual embedding
highway in X-VILA. The visual highway embedding
Evis is obtained from the visual encoder. The design
incorporates a visual controller module responsible for
processing Evis and generating control signals. These
signals are then incorporated into various layers of the
U-Net in visual decoders. Etext

m is “textual controller
embedding”, which is the subset of output embedding
sequence Sout corresponding to the generation tokens
of modality m. z(t) is the latent at reverse step t. ϵp is
the predicted noise by U-Net.

Modality-specific decoders. For generat-
ing multi-modality outputs other than text,
we adopt the “modality-specific genera-
tion tokens” designed by (Wu et al., 2023).
Other than common text tokens, there are
three types of modality-specific generation
tokens: image generation tokens {[IMGi],
i ∈ [1, Nimg]}, video generation tokens
{[VIDi], i ∈ [1, Nvid]}, and audio gen-
eration tokens {[AUDi], i ∈ [1, Naud]}.
Nimg , Nvid, and Naud are the numbers
of generation tokens for image, video,
and audio, respectively. These modality-
specific generation tokens are added to the
vocabulary of LLM. The LLM is trained to
predict when to generate these modality-
specific generation tokens, and these gen-
eration tokens will be translated for the
synthesis of image, video, or audio, via
a set of modality-specific decoders (i.e.,
generation models). Technically, we ex-
tract the subset of output embedding se-
quence Sout corresponding to the afore-
mentioned generation tokens of modality
m. We name this subset the generation embedding sequence Sgen

m . We use modality-specific trans-
former layers, denoted as output projection layers Pout

m , to project Sgen
m to the feature space of the

original pre-trained text encoder of the modality-specific decoder. As the resulting embedding will
be used to control the modality-specific decoder via cross-attention, we name the resulting embed-
ding vector as “textual controller embedding” Etext

m . Thus we have:

Etext
m = Pout

m (Sgen
m ). (3)

(Wu et al., 2023) freezes the decoder models and only supervises the Etext
m to be similar to the original

text encoders of the diffusion models. This behavior largely limits the synergy between generation
models and the other parts of the model, as the learning target is essentially to mimic the pre-
trained text encoder of the diffusion models. Differently, we include the modality-specific decoder
models in fine-tuning to better align them with the LLM and other parts of the unified generative
framework. The training details will be discussed in a later section. Specifically, to achieve a better
multi-modality generation ability, we employ state-of-the-art generation models trained on large-
scale data as modality-specific decoders. We adopt VideoCrafter2 (Chen et al., 2024) for video
generation, Stable Diffusion 1.5 (Rombach et al., 2022) for image generation, and AudioLDM (Liu
et al., 2023a) for audio generation.

Visual embedding highway. The weakness of the previously introduced text-space-based align-
ment is the inadequate visual features available at the output end, as can be seen in examples in
Figure 5. Intuitively, this stems from the one-to-many correspondence between text and visual se-
mantic spaces, e.g., “city view” may relate to images varying in illumination and layout.

To address this issue, we propose a visual embedding highway that bridges the visual encoders and
decoders, built to alleviate the information loss when projecting high-dimensional visual content to
the textual embedding space. Specifically, we obtain the layer-wise feature maps from the Image-
Bind visual encoder and add up these features as visual highway embedding Evis. Evis has shape
H ×W ×C, where H and W are height and width of the feature maps, C is the embedding vector.
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Long-Context Cross-Modality Generation

X-VILA: It is a dog.

Prompt: What is in the animal?
Image-Language

X-VILA: The audio is the 
sound of waves crashing.

Prompt: What is in the audio?

Audio-Language

X-VILA: Here is the image.

Prompt: Can you generate 
an image based on the 
image and the audio?

X-VILA: Here is the video.

Prompt: Can you make a 
video based on the image?

Image-VideoImage+Audio-Image

(Sound of waves)

Unseen Cross-Modality Ability
Prompt: Can you show an 
image given the audio?

A
ud

io
-I

m
ag

e

X-VILA: Checkout this image.

(Baby laughing)

Prompt: Generate an audio 
for the image.

Im
ag

e-
A

ud
io

X-VILA: Checkout this audio.

(Bird calling)

Figure 4: We observe emergent abilities of X-VILA without training on similar data: (i) Long-
context cross-modality generation ability. Combine multiple inputs from different modalities and
generate consistent content. (ii) New types of cross-modality ability. Conduct image-to-audio and
audio-to-image generation tasks. Conversations are continuous left-to-right within each green box.

To control the decoder using Evis, we design a light-weight visual controller (VisCtrl) module based
on the philosophy of (Mou et al., 2023; Zhang et al., 2023b) to process Evis. The controller module
comprises 4 stages, where each stage consists of two residual convolutional blocks. These blocks
have cascading spatial dimensions that match the resolution settings in the U-Net encoder (Rom-
bach et al., 2022) of image/video decoders. In each stage, there is an additional convolutional block
initialized with zero weights. This block generates output control signals for the stage, which are
initially zero at the start of the training. These control signals are added to different stages of the U-
Net, as shown in Figure 3. Inspired by (Xiao et al., 2023), we employ a conditioning rate α ∈ [0, 1]
to regulate the proportion of steps conditioned by visual features. Therefore, the noise prediction
process in each reverse step t in the visual decoders can be written as:

ϵp =

{
U-Netm(z(t),VisCtrlm(Evis),Etext

m ) if t < T × α

U-Netm(z(t),Null,Etext
m ) if t ≥ T × α

,m ∈ {‘image’, ‘video’}. (4)

where ϵp is the predicted noise given input latent z(t), T is the number of diffusion steps, U-Netm
is the U-Net of the diffusion decoder for modality m, and VisCtrlm is the visual control module
for modality m.“Null” means no VEH feature is passed to the U-Net at the corresponding timestep.
During instruction tuning process on X-to-X datasets, both the U-Net and the controller modules are
fine-tuned together. This manner ensures a better synergy between decoders and the LLM.

The experimental results introduced in the later sections show that the proposed visual embedding
highway can significantly increase the consistency between the generation results and the visual
context of our multi-modality unified generation model.

2.2 X-VILA TRAINING

The training process of X-VILA is divided into three phases, namely (i) encoder-LLM-Decoder
alignment training, (ii) interleaved data pre-training, and (iii) X-to-X cross-modality instruction
fine-tuning. We describe the details of X-VILA training in Appendix A due to space limit.

3 EXPERIMENTS

3.1 DATASETS AND EVALUATION

Setup. In this work, we utilize different datasets for different training phases. For the first encoder-
LLM-decoder alignment training, the X-text pairs from academic datasets as in prior work of (Liu
et al., 2024; Sharma et al., 2018; Bain et al., 2021; Kim et al., 2019; Mei et al., 2023). During
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Table 1: Statistics of the any-to-any modality SFT dataset MosIT (Wu et al., 2023) and ours. Our X-
to-X dataset has a significantly larger data volume. We will open source the dataset to the academic
community.

Dataset Total IMG2VID VID2IMG VID2VID AUD2VID VID2AUD IMG+AUD2VID
MosIT dataset 5K - - - - - -
X-to-X dataset (ours) 1.6M 509,924 509,924 509,924 32,874 32,874 32,874

the interleaved data pre-training phase, we construct interleaved multi-modality corpus from (Zhu
et al., 2023b; Krishna et al., 2017). Overall our X-text training stage contains 12M pairs in total,
and our interleaved corpus contains 1M samples. We will open source our datasets for the academic
community.

In the final X-to-X cross-modality instruction tuning, we create a new X-to-X dataset to enhance
cross-modality alignment. We synthesize conversation samples in 6 types based on the modalities
in input and output ends: video-to-image, video-to-video, image-to-video, video-to-audio, audio-
to-video, image&audio-to-video. Statistically, we construct 0.5M image-to-video, 0.5M video-
to-image, 0.5M video-to-video, 32 audio-to-video, 32K video-to-audio, and 32K image+audio-to-
video conversations. Each conversation contains more than one pair of cross-modality Q&A pairs.
The overall statistics are shown in Table 1. Some conversation examples are shown in Figure 10.
We blend our X-to-X dataset with SFT datasets from LLaVA (Liu et al., 2024), VideoChat (Li et al.,
2023b), NextGPT-instructions (Wu et al., 2023), and Alpaca (Taori et al., 2023).

TA + VEH
(X-VILA)

Textual 
Alignment (TA)

Visual 
Reference

Figure 5: Effectiveness of the proposed visual
embedding highway network. Given the visual
reference image/video, we prompt the model with
“Please generate an image similar
to the semantics in the input.”
Compared to textual alignment only (TA), our
visual embedding highway (VEH) helps preserve
visual details from the visual inputs.

Evaluation. For benchmarking the X-to-X
alignment ability of different models, we ran-
domly curate a validation subset from (Bain
et al., 2021) and (Krishna et al., 2017)
to build the cross-modality conversations for
evaluation. Overall the evaluation set con-
tains 200 video-to-image, 200 image-to-video,
200 video-to-video, 62 audio-to-video, 62
image+Audio-to-video, and 62 audio-to-video
conversations for evaluation. We will also open
source the validation benchmark for academic
community. In order to evaluate the similarity
between ground-truth annotations and model
predictions across different modalities, we in-
troduce a metric called the “X-to-X Alignment
Score (X2A Score)”. To compute this score,
we employ the ImageBind transformer (Gird-
har et al., 2023) to extract embedding vectors
from the audio, video, and image predictions as
well as the corresponding ground truths. We
then calculate the cosine similarity scores be-
tween these vectors. The resulting scores are
presented as percentages, ranging from 0 to
100. Finally, we average the scores across all
validation samples to obtain the X2A scores for each type of data.

Baseline methods. We conduct a comparison between our model and Next-GPT (Wu et al., 2023),
a recently introduced instruction-following LLM designed for multi-modality understanding and
generation. Their method is restricted to textual alignment exclusively.

3.2 QUANTITATIVE ANALYSIS AND ABLATION STUDY

Effectiveness of Visual Embedding Highway. We compute the aforementioned X2A scores of
different models on the X-to-X alignment benchmarks built upon (Krishna et al., 2017) and (Bain
et al., 2021), and present the results in Table 2 and Table 3 separately. Specifically, we study the X2A
scores of Next-GPT and different versions of our X-VILA model. We investigate the performance
of our model under different scenarios: (i) utilizing only textual alignment, (ii) incorporating visual

6
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Table 2: Ablations on X-VILA training strategies with reference to prior work for visual feature
enhancements. “w/ X2X text” denotes using our X-to-X dataset for textual alignment only. “VEH
(img)” denotes using the proposed visual embedding highway (VEH) for image decoder, while
“VEH (img+vid)” denotes using VEH for both image and video decoders. We observe that image
generation task is significantly improved after using VEH (img), and the video generation tasks are
boosted after using VEH on video decoder.

Method VID2IMG (↑) VID2VID (↑) IMG2VID (↑)

Next-GPT (Wu et al., 2023) ICML’24 27.85 10.47 13.08

X-VILA w/ X2X text 36.09 46.18 45.93
X-VILA w/ X2X text + VEH (img) 44.06 46.68 45.94
X-VILA w/ X2X text + VEH (img+vid) – final design 43.95 49.76 48.81

Table 3: Ablations on X-VILA training strategies with reference to prior work considering all modal-
ities for inputs and outputs. “w/ X2X text” denotes using our X-to-X dataset for textual alignment
only. “VEH (img)” denotes using the proposed visual embedding highway (VEH) for image de-
coder, while “VEH (img+vid)” denotes using VEH for both image and video decoders. The effec-
tiveness of visual embedding highway is solid for image and video generation.

Method VID2IMG (↑) IMG+AUD2VID (↑) VID2AUD (↑) IMG2VID (↑) VID2VID (↑) AUD2VID (↑)

Next-GPT (Wu et al., 2023) ICML’24 15.31 44.63 8.17 38.23 31.81 37.13

X-VILA w/ X2X text 53.82 49.54 22.79 42.94 44.42 42.23
X-VILA w/ X2X text + VEH (img) 67.40 48.64 23.53 42.66 43.04 42.04
X-VILA w/ X2X text + VEH (img+vid) – final design 67.94 59.71 23.87 57.01 57.39 49.44

alignment through the proposed visual embedding highway (VEH) on the image decoder, and (iii)
extending VEH to both the image and video decoders.

Table 4: X-VILA demonstrates comparable per-
formance to domain experts when evaluated on
targeted sub-modality tasks image-to-text bench-
marks.

Method VQAv2 (↑) VisWiz (↑) MMMU-val (↑)

BLIP-2 13B (Li et al., 2022) 65.0 19.6 -
InstructBLIP 13B (Dai et al., 2023) - 33.4 -
Qwen-VL-Chat 7B (Bai et al., 2023b) 78.2 38.9 35.9
LLaVA 1.5 7B (Liu et al., 2023b) 78.5 50.0 36.4

X-VILA 7B (ours) 72.9 50.9 33.9

Table 5: Extra comparison on audio and
video benchmarks with AudioCaps (audio) and
MSRVTT (video) validation sets.

Method Audio SPIDEr (↑) Audio CIDEr (↑) Video METEOR (↑)

Next-GPT Wu et al. (2023) 10.13 14.53 19.60

X-VILA 7B (ours) 12.99 16.61 22.49

Our findings indicate that even by utilizing
textual alignment alone with our carefully cu-
rated X-to-X datasets, our model demonstrates
a substantial performance advantage over Next-
GPT. Moreover, as we progressively intro-
duce the visual embedding highway to the im-
age and video decoders, we observe consis-
tent and significant improvements in visual un-
derstanding and generation tasks. In sum-
mary, our X-VILA demonstrates significantly
stronger cross-modality understanding, reason-
ing, and generation ability on all types of con-
versation data. These results suggest the effec-
tiveness of our X-to-X alignment strategy and
the proposed visual embedding highway de-
sign. Notably, both Next-GPT and X-VILA are
based on the ImageBind model, making it fair
to use ImageBind scores for both models.

Influence of conditioning rates. We present
the X2A scores plotted with varying conditioning rates α (Equation 4) in VEH (image), as depicted
in Figure 8. Our observations indicate that an increase in α, corresponding to more reverse steps
exposed to VEH features during image sampling, leads to improved multi-modality alignment. This
outcome aligns with our intuitive expectations.

Extra multi-modality benchmarks. To further evaluate the multi-modality understanding capabili-
ties of X-VILA, we perform zero-shot experiments on several multi-modality VQA benchmarks, in-
cluding VQAv2 (Goyal et al., 2017), VisWiz (Gurari et al., 2018), and MMMU-val (Yue et al., 2024).
The results in Table 4 indicate that X-VILA is competitive with the leading domain-expert VLMs,
while possessing the X-to-X capability. We also compare the performance with Next-GPT (Wu
et al., 2023) on the audio understanding task using the AudioCaps validation split, as well as on
the video understanding task using the MSRVTT validation set in Table 5. X-VILA demonstrates
significantly better multi-modality understanding ability.
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Next-GPT (Wu et al., 2023) X-VILA (ours)CoDi (Tang et al, 2023)Ground-Truth GPT-4o (2024)

Figure 6: Visual comparison to the recent any-to-any modality LLMs including Next-GPT (Wu
et al., 2023), CoDi (Tang et al., 2023), and GPT-4o (OpenAI, 2024) on the cross-modality alignment
task to generate a video similar to the input image context. X-VILA demonstrates good generation
quality and better visual cross-modality consistency. GPT-4o is only able to generate images but not
videos.

Figure 7: Visual comparison to the recent work CoDi (Tang et al., 2023) on cross-modality alignment
for image input to video generation task. X-VILA demonstrates largely improved generation quality
and cross-modality consistency.

3.3 QUALITATIVE ANALYSIS AND ABLATION STUDY

Qualitative X-to-X alignment measurement. We provide a qualitative comparison to the state-
of-the-art any-to-any LLMs, namely Next-GPT (Wu et al., 2023), CoDi (Tang et al., 2023), and
GPT-4o (OpenAI, 2024) on visual cross-modality alignment tasks in Figure 6 and Figure7. We
assess their performance by supplying an image to the models and prompting “Please generate a
video (or an image in the case of GPT-4o which cannot generate video) similar to the semantics in
the input.” X-VILA demonstrates significant improvements in visual correspondence over previous
methods, thanks to the integration of the Visual Embedding Highway (VEH) into output diffusion
models.

Emergent X-to-X ability. During our experiments, we observe highly promising emergent abilities
displayed by X-VILA following its training on our X-to-X datasets. As depicted in Figure 4, we
have identified two key capabilities that have surfaced:
(i) Long-context cross-modality generation. X-VILA exhibits an impressive capacity for compre-
hending and combining diverse concepts from multiple iterations of input. Consequently, it produces
natural and coherent output, as suggested by the users.
(ii) Unseen cross-modality ability. Remarkably, X-VILA showcases the ability to perform image-
to-audio and audio-to-image tasks without any explicit training on similar data. This newfound com-
petence emerges organically through the model’s exposure to our comprehensive X-to-X dataset.
These remarkable emergent abilities underscore the efficacy of our meticulously curated X-to-X
dataset. Not only does it enable the model to excel in the specified data types as suggested in
Section 3.2, but it also facilitates generalization across a wide range of multi-modality interactions
between users and the model.
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Eval Data - Krishna et al., 2021

⍺ ⍺

Eval Data - Bain et al., 2021

Text-Aligned 
DecodingGround-Truth Text-Embed-Aligned 

Decoding
Text-Embed-Aligned 
Decoding with VEH

Video-to-Image

Image-to-Video

Figure 8: (left, middle) X2A scores when using different conditioning rates α in VEH (image) on
evaluation data generated from (Krishna et al., 2017) and (Bain et al., 2021). Higher conditioning
rates brings generally better X-to-X alignment. (right) An in-depth comparison of varying design
choices of X-VILA on cross-modality alignment tasks. We observe that both Text-Aligned Decoding
and Text-Embed-Aligned Decoding fall short in effectively capturing semantic details from visual
inputs. However, with the incorporation of our Visual Embedding Highway (VEH), we witness a
substantial improvement in visual consistency.

More insights on varying design choices on decoder alignment. We next present our findings
when aligning LLM output end to the modality-specific decoders. We study different ways to
bridge LLM output and the diffusion models: (i) “Text-Aligned Decoding”: LLM generates text
description for the expected image/video/audio predictions and then feeds the text description into
pre-trained image/video/audio decoders. (ii) “Text-Embed-Aligned Decoding”: LLM generates
modality-specific generation tokens and then we use the corresponding high-dimensional textual
embeddings to control the modality-specific decoders (as described in Section 2.1). (iii) “Text-
Embed-Aligned Decoding with VEH”: Building upon method (ii), we introduce the Visual Em-
bedding Highway (VEH) to align the visual feature between encoders and decoders. We conduct
experiments on video-to-image and image-to-video cross-modality alignment tasks, and show the
results on the right side of Figure 8.

The findings suggest that conveying specific details such as visual style, object appearance, and
precise human actions from the input to the output is challenging for Text-Aligned Decoding. This
difficulty arises due to the low-dimensional nature of pure text descriptions, which limits the amount
of information they can contain. On the other hand, Text-Embed-Aligned Decoding offers a signifi-
cantly greater “bandwidth” in the textual embedding space between the LLM and modality-specific
decoders. Consequently, Text-Embed-Aligned Decoding is capable of generating more consistent
outcomes. Nevertheless, Text-Embed-Aligned Decoding alone is still not good enough for captur-
ing visual details, as a substantial amount of visual information is lost during the projection from
encoders to the LLM. This is where our Visual Embedding Highway demonstrates its performance
and aids X-VILA in attaining notably enhanced visual consistency.

Conversation examples. To thoroughly investigate the performance of our any-to-any modality
LLM, we conducted extensive testing on X-VILA examining many use cases. We present con-
versation examples of X-VILA across varying tasks in Figure 1 and Figure 9. It can be observed
that X-VILA provides users with a comprehensive set of multi-modality responses leveraging the
encoders for perception, LLM for understanding and reasoning, and decoders for multi-modality
content generation. As shown in Figure 14, X-VILA not only exhibits its understanding of the vi-
sual input, including the scene and objects, but also predicts the actions of the person depicted in the
image. This capability is a result of training on our extensive X-to-X dataset. Based on the visual
input, it generates outputs visually consistent with the input, e.g., the snow mountain and red ski suit
are presented in the generation output correctly.

4 RELATED WORK

The era of Large Language Models (LLM) arguably started with the introduction of transform-
ers (Vaswani et al., 2017) and a series of works that scaled them. Particularly, OpenAI introduced
the Generative Pre-trained Transformer (GPT) models (Radford et al., 2019), (Brown et al., 2020),
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Prompt: Hey X-VILA, I am temporarily moving to Seattle for 
the summer, do you know any nice place in Seattle?
X-VILA: Absolutely! Seattle is 
a city full of rich history and 
cultural gems. One of the 
most famous places in 
Seattle is the Space Needle. 
It's an iconic structure that 
offers breathtaking views of 
the city and the surrounding 
area. The needle was built for 
the 1962 World's Fair and has 
become an beloved symbol 
of Seattle. Another famous 
place to visit is the Pike Place 
Market, a bustling hub of 
activity with various shops, 
restaurants, and cafes. Enjoy 
your new home in Seattle!

Prompt: I see. I am there for leisure. Could you please 
display a captivating image featuring one renowned 
dish of Seattle?
X-VILA: Here's an image 
showcasing one of the 
most iconic dishes 
associated with Seattle: 
salmon bakes. This 
delectable dish is made 
with perfectly cooked 
salmon fillets that are 
generously topped with a 
savory brown sugar and 
rustic spice blend. 
Served with a side of wild 
rice and steamed 
broccoli, it's a true 
representation of the 
city's culinary heritage.

Prompt: I heard that Seattle is a dream city for hiking. 
What is the most famous mountain in Seattle? Can you 
show a video of it?
X-VILA: The most 
famous mountain in 
Seattle is 
undoubtedly Mount 
Rainier. It's the 
highest peak in the 
Cascades and offers 
breathtaking views 
of the surrounding 
landscape. Here's a 
video showcasing 
the majestic beauty 
of Mount Rainier, 
one of the most 
popular peaks in the 
United States.

Figure 9: Examples of X-VILA performing a multi-turn any-to-any modality conversation. Prompts
are given left to right in a multi-round manner. Best viewed in color.

from GPT-2 (1.5B parameters) to GPT-4 (OpenAI, 2023a) (1.76T), and showed that parameter scal-
ing, together with more high-quality data, can generate coherent and contextually relevant text across
various domains. BERT (Devlin et al., 2019) introduced a paradigm of bidirectional text process-
ing enabling stronger context understanding and boosted question answering. T5 (Raffel et al.,
2020) converted language problem into a text-to-text format advancing translation and summariz-
ing. Transformer-XL (Dai et al., 2019) demonstrated the capability of extending the context window
allowing for a better understanding of longer text. The application era of LLM was kickstarted by
ChatGPT (OpenAI, 2023b) which showcased the unprecedented ability of LLM chatbots.

Current Vision-Language Models (VLM) benefited from the development of ViT (Dosovitskiy et al.,
2021) that offers a unified way for vision models to communicate with other transformers from
different modalities. Rapid progress has been shown in three streams (Awais et al., 2023): (i)
textually prompted models that accept image and text as input (CLIP (Radford et al., 2021),
Frozen (Tsimpoukelli et al., 2021), BLIP (Li et al., 2023a), PaLI (Chen et al., 2023), LLaVa (Liu
et al., 2024), VILA (Lin et al., 2024), miniGPT4 (Zhu et al., 2023a)); (ii) visually prompted models
(CLIPSeg (Lüddecke, 2021), SAM (Kirillov et al., 2023)); and (iii) multi-modal input-output mod-
els (Painter (Wang et al., 2022), ImageBind (Girdhar et al., 2023), Palm-E (Driess et al., 2023a),
Video ChatGPT (Maaz et al., 2023), RegionGPT (Guo et al., 2024), mPLUG-owl (Ye et al., 2023),
PandaGPT (Su et al., 2023), CoDi (Tang et al., 2023), NextGPT (Wu et al., 2023), Unified-IO (Lu
et al., 2022; 2023)). Among the first, Frozen (Tsimpoukelli et al., 2021) demonstrated that VLM
can be constructed by linear projection of ViT features into LLM and only tuning ViT on image-text
captioning data. They are the first that discover the few-shot capabilities of VLM without instruc-
tion. Flamingo (Alayrac et al., 2022) used cross-attention for vision language binding, and for a
first time demonstrated surpassing state-of-the-art finetuned models for multiple tasks. PALI (Chen
et al., 2023) created a universal model that can do vision and language tasks separately, they scaled
ViT to 4B and demonstrated the importance of adding language-only data to the pretraining stage.
Overall, VLM follows the pipeline of taking a pretrained LLM; adding a pretrained vision encoder;
learning feature alignment at scale via a projector or cross-attention; followed by instruct-tuning (In-
structBLIP (Dai et al., 2023), FLAN (Wei et al., 2021)). In close relation to our research, Next-GPT
introduces an LLM that possesses the capability to comprehend multi-modality inputs and gener-
ate corresponding multi-modality outputs through textual alignment, yet it cannot effectively handle
visual details present in the input.

5 CONCLUSION

This paper presents X-VILA, an any-to-any modality LLM that is able to understand, infer, and
generate multi-modality contents. This ability is achieved through any-to-any modality alignment,
for which we curate a dataset for any-to-any modality instruction tuning. We further identify a
significant drawback in the previous textual alignment method that leads to the loss of crucial visual
details. Accordingly, we propose an innovative visual alignment mechanism that incorporates a
visual feature highway module. This solution helps preserve essential visual details from the input.
The experimental results, both quantitative and qualitative, indicate the effectiveness of our data and
methodology. X-VILA’s performance can be further enhanced across various VLM benchmarks.
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ETHICS STATEMENT

Our proposed method does not involve the creation or introduction of any new image/video/audio
content other than open sourced datasets used by prior academic work. All data used in this project
is intended exclusively for academic research purposes and will not be used for any commercial
applications.

REPRODUCIBILITY STATEMENT

The project will be open-source to help the research community to reproduce. We elaborate on
our model design in Section 2.1. Additionally, we outline the training and implementation details,
including the training hyperparameters in Section A and C in the appendix.
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A X-VILA TRAINING

The training process of X-VILA is divided into three phases, namely (i) encoder-LLM-Decoder
alignment training, (ii) interleaved data pre-training, and (iii) X-to-X cross-modality instruction
fine-tuning.

A.1 ENCODER-LLM-DECODER ALIGNMENT TRAINING PHASE.

As the first step, we align the output of modality-specific encoders and the input of modality-specific
decoders to the textual embedding space of LLM, as detailed in Wu et al. (2023). To achieve this
goal, we only train the input projection layers, output projection layers, and the vocabulary embed-
ding layer of LLM, while keeping all other parameters frozen. We use corpus with “X”-text pairs to
train the model, where “X” is one of the video, image, or audio modalities.

For this stage, we design two primary tasks to train the projection layers: X-to-text generation and
text-to-X generation.

(a) X-to-text generation includes video, image, and audio captioning tasks. The model is supervised
to generate text based on the multi-modality inputs. During this process, the input projection layers
are trained to align the output embedding of modality-specific encoders and the textual embedding
space of pre-trained LLM.

(b) Text-to-X generation aims at aligning the output textual embedding space of LLM and the input
end of modality-specific decoders. We use video, image, and audio generation tasks to train the
model, where only the output projection layers are optimized. As previously mentioned, the train-
ing objective here is pure textual alignment: minimizing the feature distance between the textual
controller embedding Etext

m generated by the output projection layers and the embedding generated
by the original pre-trained text encoder of diffusion model. This training strategy ensures that Etext

m
shares a distribution similar to that of the pre-trained text encoder in the diffusion model. After train-
ing, Etext

m replaces the diffusion text encoder feature to control the U-Nets of the modality-specific
decoders via cross-attention.

A.2 INTERLEAVED DATA PRE-TRAINING PHASE.

Interleaved data training has been proven to be an effective strategy for vision-language models in
alleviating the catastrophic forgetting issue after training on only visual-text pairs, and obtaining
long-context understanding ability Lin et al. (2024); Awadalla et al. (2023). Therefore, we introduce
a dedicated phase for pre-training X-VILA using a multi-modality interleaved corpus.

In addition to interleaved image-text pairs as in MMC4 Zhu et al. (2023b), we further construct
a new dataset from ActivityNet Captions Krishna et al. (2017). The main idea is to exploit the
nature of video that contains sequential flow of text (e.g., captions), audio, short video, and image.
This enables us to put the images/videos and texts in an interleaved manner, and use the corpus to
pre-train X-VILA.

Specifically, we construct interleaved multi-modality data sequences from each target video clip as:

{<img. 1>, <aud. 1>, <vid. 1>, <txt 1>}︸ ︷︷ ︸
sampled from video chunk 1

, ..., {<img. n>, <aud. n>, <vid. n>, <txt n>}︸ ︷︷ ︸
sampled from video chunk n

,

where the video chunks are sampled from an entire video clip that offers natural sources of inter-
leaved cross-modality data structure. Once constructed, the modalities are sampled during training
to align varying targets for gradient computation and network projector alignment. In this work,
we observe the even sampling method and n = 3 are sufficient for the task, namely constructing
cross-modality tasks for the beginning, middle stage, and ending of video clips. During this stage,
we jointly train the input and output projection layers, and use LoRA Hu et al. (2021) on LLM for
fine-tuning.
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A.3 X-TO-X CROSS-MODALITY INSTRUCTION TUNING PHASE.

After the previous two phases, we have textually aligned different components of X-VILA in a
unified framework. However, the model is still not ready for understanding and generating multi-
modality content in a proper manner. To achieve this goal, we curate a comprehensive “X-to-X
dataset” for cross-modality generation instruction tuning. Our X-to-X dataset features six dif-
ferent types of cross-modality generative conversations, namely video-to-image, video-to-video,
image-to-video, video-to-audio, audio-to-video, and image+audio-to-video. We show examples
of different types of conversations in Figure 10. Each conversation contains one or more rounds of
cross-modality conversation. More details about the X-to-X dataset are described in the experiment
section.

We further divide the X-to-X cross-modality instruction tuning phase into two distinct steps, each
based on different alignment methods: textual alignment and visual alignment.

(a) To achieve textual alignment, we first project the multi-modality inputs into the textual embed-
ding space of LLM. Then, LLM generates textual embeddings that are subsequently converted into
the corresponding modality’s content. We follow a process similar to phases (i) and (ii). Firstly, for
image, video, or audio outputs, we generate embeddings using the text encoders of corresponding
diffusion models. We then optimize the distance between these embeddings and the Etext

m generated
by our model. During this step, we keep all the decoder weights frozen and train the input projec-
tion layers, output projection layers, and vocabulary embedding layer as well as LoRA parameters
of LLM. For training data, we blend our X-to-X dataset with common SFT datasets used by other
VLM models Liu et al. (2024); Wu et al. (2023) (more details in the experiment section).

(b) As mentioned earlier, relying solely on textual alignment is inherently insufficient to retain the
visual details of the input when generating visual outputs. To address such an issue, we design a
novel visual alignment method. We propose a visual embedding highway (VEH) module as intro-
duced in Section 2.1, which is utilized for the image and video decoders when there is a visual
modality in the input. During training, we update the parameters of the visual decoders and the vi-
sual controller module. Meanwhile, we keep all other network parameters fixed, including the input
and output projection layers and LLM. In this way, the model’s ability to conduct tasks in other
modalities is not influenced by the visual alignment process.

B MORE QUALITATIVE RESULTS

B.1 EXAMPLES OF OUR X-TO-X DATASET.

To provide an intuitive understanding of the six types of conversations in our curated X-to-X dataset,
we visualize the conversation samples of the dataset in Figure 10. The design of the dataset focuses
on building any-to-any modality connection through various conversation templates.

B.2 HUMAN-MODEL INTERACTION DEMONSTRATION.

To conduct a comprehensive assessment of our any-to-any modality LLM’s performance, we under-
take more testing on X-VILA, meticulously examining different use cases. We present a collection
of human-model conversation examples in Figure11, 12, 13 and 14, showcasing the versatility of
X-VILA across diverse tasks. These results demonstrate the effectiveness of X-VILA in addressing
the needs of users by offering comprehensive and generative multi-modality capabilities.

C MORE IMPLEMENTATION DETAILS

As introduced in Section A, X-VILA training is separated into three phases. (i) In the initial phase,
referred to as encoder-LLM-decoder alignment training, the model undergoes 20,000 iterations us-
ing an Adam optimizer. The base learning rate is set to 4 × 10−4, and a learning rate warm-up
strategy is employed. The batch size for this phase is set to 200. (ii) During the second phase,
known as interleaved data pre-training, a batch size of 192 is utilized. The base learning rate is set
to 1 × 10−4, and the training is conducted for 10,000 iterations. (iii) The final phase, called cross-
modality instruction tuning, involves separate training for textual and visual alignment. For textual
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Prompt: What is shown in the image?

Target: A man was sitting inside a room.

Prompt: Can you show me what will happen next in the 
scene using a video?

Target: The man is likely savoring the 
taste of the broth.

Image to Text / Video Data

Prompt: Create a captivating video 
montage using elements from this 
audio.

Target: Of course. This is the video.

Audio to Video Data

Prompt: Can you generate a video
by animating this image and audio?

Target: Here's the generated video. 
Enjoy!

Image + Audio to Video Data

Prompt: Given this video, could you 
generate a similar image?

Target: Of course. This is the 
image.

Video to Image Data

Prompt: Please create the audio 
component for this video.

Target: Sure! Here is the requested 
audio.

Video to Audio Data

Prompt: What is he doing in the video?

Target: He is holding a bowl of noodles and broth.

Prompt: Can you predict what will happen next in the 
video?

Target: Here is a video showing the 
man savor the broth.

Video to Text / Video Data

Figure 10: Examples of different types of conversations in our X-to-X dataset. They cover six types
of cross-modality understanding and generation tasks.

alignment, a batch size of 192 is maintained, and the model is trained for 30,000 iterations using a
base learning rate of 1 × 10−4. Regarding visual alignment, both the Visual Embedding Highway
(VEH) and modality-specific decoders are trained for 20,000 iterations. The batch size for this phase
is set to 64, and the learning rate is adjusted to 1× 10−6. For data amount, Our training pipeline is
highly efficient compared to many previous vision-language models Alayrac et al. (2022); Bai et al.
(2023b); Chen et al. (2023). We utilize a total of 4 NVIDIA A100 80GB server nodes in the training
process.
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Prompt: Who is the man on the left?

X-VILA: The man on the left is Albert Einstein, a renowned physicist.

Prompt: What is he famous for?

X-VILA: He is famous for his contributions to the field of modern physics, particularly his 
theory of relativity. 

Prompt: Wow, do you know any of his hobbies after work?

X-VILA: He was known for pursuing various interests like playing the violin.

Prompt: I see. Can you show me the sound of violin?

X-VILA: Here is an audio clip of a person playing a violin. Enjoy!

(Violin playing)

Figure 11: Example of X-VILA performing cross-modality chat. X-VILA shows strong multi-
understanding and generation ability.
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Prompt: I am going to travel in Paris, how does it look like?

X-VILA: Here's a video showcasing the beauty of Paris, the city of romance. You'll get to see its 
iconic landmarks, charming cafes, and the vibrant atmosphere that makes it so special. Enjoy 
the virtual tour!

Prompt: Does Paris have any special music genre?

X-VILA: Absolutely! Paris is known for its diverse and vibrant music culture. Some of the 
most popular styles include French pop, jazz, and classical music. You can also find a wide 
range of modern and experimental musicians in the city's bustling music scenes. 

Prompt: Wow, can you show me an audio of French Jazz?

X-VILA: Sure! Here's an audio clip that captures the lively and vibrant sounds of French Jazz. 
Enjoy the rhythmic beats and harmonious melodies that make this genre so enjoyable. 

Figure 12: Example of X-VILA performing cross-modality chat. X-VILA shows strong multi-
understanding and generation ability.
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Prompt: The summer is coming, where do you think is a good place for summer vacation?

X-VILA: There are many great places to visit for a summer vacation. Some popular options 
include beaches, national parks, and mountain resorts. Beaches offer a chance to relax and 
soak up the sun, while national parks provide opportunities for hiking, camping, and exploring 
nature. Mountain resorts offer a range of outdoor activities such as golfing, hiking, and 
climbing, as well as a variety of cultural events and attractions. Ultimately, the best 
destination for your summer vacation will depend on your personal interests and travel 
preferences.

Prompt: Thanks. I would like to go to the beach, do you have any recommendations? Please 
show me a video.
 

X-VILA: Certainly! There are many beautiful beaches around the world that would make for a 
great summer vacation. Here is a video showcasing some of them. Enjoy!

Prompt: Cool. I am actually a businessman. What do you think sell well on the beach? Can 
you show an image example?

X-VILA: As a businessman, you may be interested in selling products or services that cater 
to the needs and desires of beachgoers during their summer vacation. Here is an image of a 
delicious summer picnic on the beach, complete with a variety of fresh and delicious food 
items like fruits, vegetables, sandwiches, and more. 

Figure 13: More examples of X-VILA performing cross-modality chatting.
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Prompt: Can you tell me what is shown in the image?

X-VILA: The man is standing on a snowboard.
 

Prompt: What is going to happen? Can you show a video of it?

X-VILA: The man is snowboarding down the hill. 

Figure 14: Conversation examples of X-VILA performing cross-modality conversation. X-VILA
demonstrates a remarkable capability to comprehend the visual input and perform reasoning based
on it. Our proposed visual alignment technique plays a crucial role in establishing visual consistency
between the input and output.
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