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Abstract

In many real-world optimization problems, we have prior information about what objective
function values are achievable. In this paper, we study the scenario that we have either
exact knowledge of the minimum value or a, possibly inexact, lower bound on its value. We
propose bound-aware Bayesian optimization (BABO), a Bayesian optimization method that
uses a new surrogate model and acquisition function to utilize such prior information. We
present SlogGP, a new surrogate model that incorporates bound information and adapts the
Expected Improvement (EI) acquisition function accordingly. Empirical results on a variety
of benchmarks demonstrate the benefit of taking prior information about the optimal value
into account, and that the proposed approach significantly outperforms existing techniques.
Furthermore, we notice that even in the absence of prior information on the bound, the
proposed SlogGP surrogate model still performs better than the standard GP model in
most cases, which we explain by its larger expressiveness.

1 Introduction

For many real-world black-box optimization problems, evaluating a solution can be computationally expen-
sive, and optimization algorithms thus need to be sample efficient. Bayesian optimization (BO) is a global
optimization method suitable for such problems (Brochu et al., 2010; Shahriari et al., 2015; Garnett, 2023).
Due to its data efficiency, it is widely used in many areas, such as protein design (Stanton et al., 2022), chem-
istry (Folch et al., 2022), robotics design (Calandra et al., 2016) and hyperparameter tuning (Cho et al.,
2020).

While BO typically assumes the objective function f(x) to be a black-box, in some real-world applications,
additional information about the achievable optimal value is available. For instance, in hyperparameter tun-
ing, the error rate of a model is always larger than or equal to 0%. In physical experiments, the temperature
must be greater than or equal to −273.16◦C, and the electric resistance must be greater than or equal to
0 Ω.

Intuitively, exploiting such information should be helpful. The first BO paper that takes such information
into account is Hutter et al. (2009), who point out that a log transformation of positive functions is usually
beneficial. Other recent works that may take output bound information into consideration are Nguyen &
Osborne (2020); Wang et al. (2018); Nguyen et al. (2021); Jeong & Kim (2021).

In this paper, we focus on BO for minimization with a known lower bound f b on the unknown optimal function
value f∗, i.e., f∗ ≥ f b. We propose a new algorithm, bound-aware Bayesian optimization (BABO), which
makes use of this lower bound information to improve efficiency in BO. BABO is based on a novel surrogate
model, Shifted Logarithmic Gaussian Process, or SlogGP, which can take into account prior information
on a lower bound of the objective function. SlogGP is defined as f(x) = eg(x) − ζ, where g(x) is a GP
and ζ is a learnable parameter. As the resulting predictive distribution is no longer normal, we adapt
the well-known expected improvement (EI) acquisition function to SlogGP, resulting in SlogEI. We then
show how SlogEI can be further modified to also take into account the information on the lower bound
of the objective function. We call this new acquisition function Shifted Logarithmic Truncated Expected
Improvement (SlogTEI). Combining SlogGP and SlogTEI, we obtain BABO.
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We find that SlogGP with SlogEI can outperform a standard GP with EI in BO even if there is no information
on the bounds of the objective function, primarily due to its larger expressiveness, where expressiveness refers
to the ability of a model to represent a wide range of functions or patterns in the data. Incorporating lower
bound knowledge into SlogGP and using SlogTEI (BABO) can further enhance its performance. We evaluate
the proposed framework on several synthetic functions as well as two real-world applications. Empirical
results demonstrate that our new method outperforms conventional BO and other algorithms designed for
the case of a known lower bound.

The structure of this paper is as follows. Section 2 gives an introduction to Bayesian optimization and
surveys the literature on BO with lower bound information. In Section 3, we introduce the SlogGP model
and the corresponding acquisition function in the known-bound as well as the unknown-bound case. SlogGP
and SlogTEI together form BABO, our bound aware Bayesian optimization. We also prove that SlogGP is
more flexible than GP, which can explain the superior performance of SlogGP over GP even in the absence
of lower bound information. Section 4 reports on the experimental results, demonstrating the empirical
advantage of using BABO when a lower bound is known. The paper concludes with a summary and some
avenues for future work.

2 Preliminaries

2.1 Bayesian Optimization

Bayesian optimization (BO) is a sequential strategy for global optimization of black-box functions. Given
an objective function f(x) and the feasible set X , the goal of BO is to find an optimal solution x∗ ∈
argminx∈X f(x).

BO consists of two main steps. The first step is to build a surrogate model based on historical observations
{(x1, y1), ..., (xN , yN )}. A common choice for the surrogate model is a GP, though other models have been
proposed, including random forest (Hutter et al., 2011), deep neural network (Snoek et al., 2015) and
Mondrian trees (Wang et al., 2018). For more information on Gaussian processes, we refer to Rasmussen &
Williams (2006) and Schulz et al. (2018).

The second step involves using the surrogate model for selecting the solution to be evaluated next, balancing
the mean and variance predicted by the surrogate model, which is known as the exploration-exploitation
trade-off. In BO, this balance is achieved by optimizing a so-called acquisition function α. A common choice
is Expected Improvement (EI) (Mockus, 1998). The information from the newly evaluated solution is then
added to the set of observations and the surrogate model is updated before the next iteration.

2.2 Acquisition functions for f∗ ≥ f b

If we have prior information that the global minimum f∗ := minx f(x) is at least f b, then we can try
to adjust the acquisition function to make use of the information. For Max-value Entropy Search (MES)
introduced by Wang & Jegelka (2017) this is straightforward and has already been used as baseline in
Nguyen & Osborne (2020) and Wang et al. (2018). MES selects the next solution to evaluate where it
expects the largest reduction in entropy of the predicted distribution of the optimal objective value. It does
not assume prior knowledge about the optimal value, but uses Gumbel Sampling to sample a realization
of f∗ from the posterior. However, according to Wang et al. (2018), given a lower bound f b on the minimum
value f∗, we may calculate MES as αMESb (

x | f b
)

= γ(x,fb)ϕ[γ(x,fb)]
2Φ(γ(x,fb)) − log Φ

(
γ

(
x, f b

))
, where γ

(
x, f b

)
=

µ(x)−fb

σ(x) , ϕ(·) and Φ(·) are the PDF and CDF of the standard normal distribution. Note that this analytical
expression for MES does not require Monte Carlo sampling. In addition, we show in Appendix A.1 that MESb

shares the same maximizer with the acquisition function P(f(x) < f b), i.e. argmaxx∈X αMESb (
x | f b

)
=

argmaxx∈XP(f(x) < f b).
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2.3 Models for f∗ ≥ f b

Besides in acquisition functions, we can attempt to incorporate the information into surrogate models.

Hutter et al. (2009; 2011) find that employing log-transformation as a preprocessing step for positive-valued
functions, combined with a correspondingly adapted EI acquisition function, can enhance the performance of
BO. When shifting the function to be positive given the information about the lower bound, this is similar to
our SlogGP model with a fixed rather than learnable ζ, and we will later show that it performs significantly
worse than our model. Jeong & Kim (2021) propose the objective bound conditional Gaussian process
(OBCGP). OBCGP introduces a parameter xM , and conducts Gaussian process regression conditioned on
(xM , f(xM )) through variational inference. In cases where the lower bound f b is known, we can enforce the
distribution of f(xM ) to adhere to this known bound. Nguyen & Osborne (2020) focus on the case when the
exact value of the optimum f∗ is known, which can be viewed as a special case of known bound. A parabolic
Gaussian process model 1

2 g2(x) − f∗ (Gunter et al., 2014) is used. To guarantee an analytical form of the
posterior distribution, a linearization is applied, so the final model is − 1

2 µ2
g(x) + µg(x)g(x) − f∗. It should

be noted that while the range of the parabolic Gaussian process is [f b, ∞), after linearization, the model
becomes a GP and samples no longer adhere to the bound. Second, the transformation of the GP inflates the
predictive uncertainty at points with low predicted mean, which causes sampling of EI and UCB to be too
greedy. They therefore propose two new acquisition functions: Confidence Bound Minimization (CBM) and
Expected Regret Minimization (ERM). Finally, the acquisition functions can only be used with tight bound
but not with a more general bound, though the latter is more common. To solve this last issue, Nguyen et al.
(2021) extend the model of Gunter et al. (2014) to a case where only a probability distribution for the lower
bound of the objective function is known, and propose a new acquisition function called Bounded Entropy
Search (BES). However, the other issues of linearly approximating the parabolic Gaussian processes remain.

Another candidate surrogate for the case of a known lower bound f b would be a non-negativity GP (Pen-
soneault et al., 2020). This method uses a GP as its model but introduces constraints to the hyperparameter
tuning process, enforcing the probability of each f(x) crossing the known bound to be below 5%. However,
this method faces a couple of challenges. First, it is primarily suitable for low-dimensional problems due to
its computational cost. Second, the range of the non-negativity GP remains (−∞, ∞), which means that
there is still a mismatch with the desired range [f b, ∞) of feasible objective values.

The primary issue of the above-mentioned models is their inability to properly model that the function f is
known to take values in the range [f b, ∞). Jensen et al. (2013) proposed regression models using truncated
distribution (GP-TG) or Beta distribution (GP-BE) that have the desired range but lack an analytical form
for posterior inference. They use a Laplace approximation for the surrogate model. Additionally, Monte
Carlo sampling would be needed for the acquisition function if this model were used in a BO framework.
The method presented in this paper has a closed form and thus does not require costly approximations.

3 Bound-aware Bayesian optimization

In this section, we present the Bound-aware Bayesian optimizer (BABO) and its two key components: the
surrogate model, Shifted Logarithmic Gaussian Process (SlogGP) that can leverage a lower bound f b about
the global minimum f∗ if available, and the corresponding acquisition function Shifted Logarithmic Truncated
Expected Improvement (SlogTEI).

3.1 The SlogGP Surrogate Model

The SlogGP model for an objective function f(·) is:

f(x) = eg(x) − ζ,

where g(x) is a GP and ζ is the shift, a parameter that is learned from data during model fitting.
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This model can also be expressed as ln(f(x) + ζ) = g(x). When training the model, we set the mean of

g(x) to be the mean of the warped observed function values, i.e. the mean of g(x) is
∑N

i=1
ln(yi+ζ)
N and

y = [y1, ...., yN ]T is the observations.

The model can be viewed as a type of warped Gaussian process (Snelson et al., 2003), so we can learn the
hyperparameters and parameters of the model, in particular the hyperparameters of the covariance function
and shift ζ by minimizing the negative log likelihood with respect to y = [y1, ...., yN ]T :

L = 1
2 ln(det K) + 1

2W (y)⊤K−1W (y) −
N∑

i=1
ln

(
N − 1

N
· 1

yi + ζ

)
+ N

2 ln(2π)

where K is the covariance matrix and W (y) = ln(y + ζ) −
∑N

i=1
ln(yi+ζ)
N .

The SlogGP model f(x) = eg(x) −ζ can be viewed as combining aspects of a parabolic GP f(x) = 1
2 g2(x)−ζ

(Gunter et al., 2014; Ru et al., 2018; Nguyen & Osborne, 2020) and a log-transformed GP f(x) = eg(x)

(Hutter et al., 2009; 2011). By integrating these two methods, the SlogGP model offers several advantages.
Specifically, in comparison to log-transformed GPs, SlogGPs can be utilized without requiring any lower
bound information and exhibit greater expressiveness due to the learnable shift parameter ζ. When compared
to parabolic GPs, SlogGPs do not require any approximation and can guarantee an analytical form of the
acquisition function (see Section 3.3). More importantly, as demonstrated in Section 3.2, SlogGPs possess
greater expressiveness than standard GPs, given limited observation, a property that the other two models
lack.

To the best of our knowledge, it is the first time that this model is proposed for handling known lower bound
conditions. Additionally, we find that SlogGP-based BO outperforms GP-based BO even without any bound
information, which we attribute to the enhanced expressiveness of SlogGPs.

3.2 Properties of the SlogGP Model

We begin with the case that we do not have a lower bound f∗ ≥ f b and show that a SlogGP is more general
than a standard GP. In fact, as Theorem 3.1 shows, a SlogGP is reduced to a standard GP under certain
conditions.

Note that a covariance function K can be written as K(x1, x2) = σ2
g · k(x1, x2|θg), where σg is a scaling

hyperparameter called signal variance. θg are other hyperparameters that are independent of σg. For a
noiseless GP, the covariance between x1 and x2 is Cov(x1, x2) = K(x1, x2).
Theorem 3.1. Define a SlogGP f(x) = eg(x)+µg − ζ with g(x) a Gaussian process with zero mean, zero
noise and a covariance function K with signal variance σ2

g and other hyperparameters θg.

Then for any GP h(x) with mean µ̃g, signal variance σ̃g, and other hyperparameters θ̃g, we can have the
SlogGP f(x) converge to h(x) in distribution for any x ∈ X by setting

µg = ln (ζ + µ̃g)
θg = θ̃g

σg = σ̃g

ζ + µ̃g

and letting ζ → ∞, i.e.,
lim

ζ→∞
Pf(x)(z) = Ph(x)(z) ∀z ∈ (−ζ, ∞), ∀x ∈ X ,

where P(·) denotes the probability density function of a random variable.

The proof for Theorem 3.1 can be found in Appendix A.3.

Hence, in the limit, a GP is a special case of a SlogGP. Under the conditions specified in Theorem 3.1,
as ζ → ∞, the lower bound −ζ tends to negative infinity and the skewness converges to zero, causing
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the distribution to converge to a Gaussian distribution. This relationship is unidirectional: while SlogGP
can approximate a GP by setting its skewness parameter near zero, a symmetric GP inherently lacks the
flexibility to approximate a skewed SlogGP distribution.

Figure 1 illustrates Theorem 3.1 by showing 200 samples from SlogGPs and GPs with three different covari-
ance functions: RBF, Matern32 and Brownian. The left column contains samples from GPs. The middle
column contains samples from SlogGPs whose parameters satisfy Theorem 3.1 (considering ζ → ∞ cannot
be achieved numerically, we set ζ to be a large number ζ := 100) to approximate the GPs on the left side.
The right column contains SlogGPs with ζ = 0.5. We can see that the posterior distributions of the left and
the middle are very close. If the shift ζ is not that large, we find that the distribution is more skewed, as is
shown in the right side.
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Figure 1: Example of surrogate models (1D) for (left) a normal GP (center) a SlogGP with the shift ζ := 100
and parameters set according to Theorem 3.1 to match the normal GP, and (right) a SlogGP with with the
shift ζ := 0.5 .

3.3 An adaptation of EI to the SlogGP Model

Expected improvement (EI) is a popular acquisition function. Recall that for a GP model, the posterior
predictive distribution of function values at any particular location x is Gaussian and thus EI has a simple
analytical form. However, for SlogGP, the posterior predictive distribution is no longer Gaussian and hence
we have to adapt EI.

We derive a closed-form expression for Expected Improvement under the proposed surrogate model, which
we term Shifted Logarithmic Expected Improvement (SlogEI):

αSlogEI(x; fmin) = (fmin + ζ) · Φ
(

ln(fmin + ζ) − µ(x)
σ(x)

)
− eµ(x)+ σ2(x)

2 · Φ
(

ln(fmin + ζ) − µ(x) − σ2(x)
σ(x)

)
.

Note that for ζ := 0, SlogEI becomes the acquisition function by Hutter et al. (2011). The calculation of
this acquisition function is detailed in Appendix A.2. Furthermore, when the posterior mean and variance
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of g(x) are differentiable with respect to x, the SlogEI acquisition function inherits this differentiability.
The corresponding gradient calculations are also provided in Appendix A.2, along with an adaptation of the
popular Probability of Improvement acquisition criterion.

In Figure 2, we compare GP+EI and SlogGP+SlogEI empirically on objective functions that are drawn from
a GP model, shown in the left plot, and a SlogGP model as shown in the right one. The hyperparameters
of both methods are fit to data. We observe that both methods perform similarly when the objective
functions are sampled from a GP. When f is sampled from a SlogGP, the performance of GP+EI degrades
substantially. This observation is consistent with the theoretical property shown above that a SlogGP
model can approximate a GP sample, but not vice versa. We also performed a cross-validation test on the
prediction error of the two surrogate models, see Table 1. When the objective function is a GP, SlogGP and
GP are equally good in prediction while when the objective function is a SlogGP, SlogGP achieves a better
cross-validation error. Please see Appendix A.4 for details about the experimental setup.

Table 1: Cross-validation test. The column determines the test function and the row the choice of the
surrogate model. The cells give the prediction error of the surrogate.

GP SlogGP
GP 0.828(±0.0801) 6.21(±1.16)
SlogGP 0.841(±0.0802) 1.414(±0.287)

0 10 20 30 40 50

iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sim
pl

e 
re

gr
et

GP 2D
GP+EI
SlogGP+SlogEI

0 10 20 30 40 50

iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

SlogGP 2D
GP+EI
SlogGP+SlogEI

Figure 2: Within-model Test. The left panel shows the performance of GP+EI and SlogGP+SlogEI on
GP generated functions, while the right panel compares the two algorithms on SlogGP generated functions.
While both models work equally well on GP generated functions, only the SlogGP model works well on the
SlogGP generated functions.

Next we show how the lower bound information f∗ ≥ f b can be incorporated into the SlogGP surrogate
model. Then we present a novel acquisition function called SlogTEI that also leverages the lower bound f b.

3.4 Incorporating a lower bound on the minimum into SlogGP

An advantage of the SlogGP model is that it allows to enforce a lower bound through its parameter ζ. On
the other hand, the skewness introduced may not be a very good fit to the observed data, creating a possible
conflict between setting ζ to a value that best represents the bound information, and setting ζ to a value
that best matches the observed data.

To solve this potential conflict, we use a maximum a posteriori (MAP) estimate for ζ and include the bound
information only as prior. Furthermore, we implemented some mechanisms that allow to quickly reduce the
reliance on the prior if the observed mismatch between prior and fit to the data is very large. The details of
how we choose ζ are explained in the following.
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When the lower bound f b is known, a straightforward way is to set ζ = −f b. However, this method will
suffer when the prior information is not accurate enough or would otherwise lead to a model mismatch. For
instance, suppose that the known objective function is SlogGP f(x) = eg(x) + 10, and the prior information
is f(x) > 0. In this case, the prior information is correct, but if we enforce ζ = 0, there will be a model
mismatch. Thus, any information about the lower bound should only guide, but not dictate ζ. A natural
way is to use a maximum a posteriori probability (MAP) estimate for the parameter ζ. We choose the prior
distribution to be a shifted log-normal distribution to guarantee that −ζ < fmin, where fmin is the current
best value and −ζ is the lower bound of the model, so that the model is well-defined:

ζ ∼ −fmin + eZ ,

where Z ∼ N (ln(fmin − f b), 2 ln(fmin − f b + δ1) − 2 ln(fmin − f b)), and δ1 is a positive hyperparameter. We
set the mean and variance of Z such that the median of −ζ equals the known lower bound f b and the mean
of −ζ equals f b −δ1. The selection of δ1 is flexible, requiring only a small positive value. In our experiments,
we set δ1 = 0.1.

Sometimes, there can be a prior-data conflict, where the prior information is inconsistent with observation
data. Specifically, in SlogGP, prior-data conflict is detected when the estimated lower bound −ζ̂ is distant
from the known lower bound f b. Note that in this paper, we distinguish ζ and ζ̂: ζ is an unknown parameter
while ζ̂ is its estimator. To handle a prior-data conflict, we introduce an uncertainty level and variance
threshold.

When we observe the MAP estimator −ζ̂ is distant from the known bound, we reduce our confidence
through uncertainty level U . Specifically, we use an uncertainty level U to control the variance of Z to
be U2 · 2(ln(fmin − f b + δ1) − ln(fmin − f b)) so that as the uncertainty level increases, the prior bound
information becomes weaker. Thus, the prior distribution ζprior becomes:

ζ ∼ −fmin + eZ

where Z ∼ N (ln(fmin − f b), U2(2 ln(fmin − f b + δ1) − 2 ln(fmin − f b))).

Initially, the uncertainty level is set to be U = 1. If Fζprior
(ζ̂) < δ2 or Fζprior

(ζ̂) > 1 − δ2 (Fζprior
is the

cumulative density function of ζprior and δ2 is a hyperparameter) holds, then we interpret this as indication
of a conflict between the prior information and the observed data. In this event, we re-train the surrogate
model by maximum likelihood estimation (MLE) as the MAP depends on the prior information that we
now consider unreliable. In the next iteration, we increase the uncertainty level U by multiplying with
|ϕ−1(Pζprior (ζ = ζ̂))|. In terms of choice of δ2, in this paper, we set δ2 = 0.01.

Additionally, we will not use the prior information when the estimated signal variance is smaller than a
given threshold. While ideally, we would exclude prior information when the estimated lower bound −ζ̃
significantly deviates from the known lower bound f b (i.e., when | − ζ̃ − f b| exceeds a threshold), setting
a universal threshold is challenging due to the varying ranges of objective functions. Instead, we leverage
Theorem 3.1, which establishes that σg = σ̃g/(ζ + µ̃g) → 0 as ζ → ∞. Consequently, we use the estimated
signal variance σ2

g as an indicator for incorporating bound information. Specifically, to prevent prior-data
conflict, we disregard bound information when σ2

g < δ3, where we set δ3 = 0.252 in our experiments.

Figure 3 illustrates the differences between a GP model and a SlogGP model with the prior knowledge of
f∗.

3.5 Incorporating knowledge of f∗ ≥ f b into the acquisition criterion

A potential drawback of SlogEI is that the improvement is calculated over the range (−ζ̂, fmin], where
the estimate −ζ̂ can be smaller than the known lower bound f b. Thus, the Shifted Logarithmic Trun-
cated Expected Improvement (SlogTEI) acquisition criterion truncates any impossible value below f b when
calculating SlogEI:

αSlogTEI(x; fmin, f b) = αSlogEI(x; fmin) − αSlogEI(x; f b).

Note that if the estimate ζ̂ is larger than the known lower bound, i.e −ζ̂ > f b, αSlogTEI(x) becomes αSlogEI(x).
Additionally, SlogTEI is differentiable as it is the difference of two differentiable acquisition functions.
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Figure 3: The predictive posterior distribution of the SlogGP model respects the known lower bound. (l)
shows a GP surrogate model; (r) shows a SlogGP surrogate model with known lower bound.

Algorithm 1 BABO (SlogGPb + SlogTEI)
Initial data points D0 and uncertainty level U = 1
Known lower bound f b

for n = 0 to T do
Set prior distribution ζprior: Eq. 3.4
Train a surrogate model f̂(·) by MAP with Dn and prior distribution ζprior

if Fζprior (ζ̂) < δ2 or Fζprior (ζ̂) > 1 − δ2 then
Train a surrogate model f̂(·) by MLE with Dn

U ∗= |ϕ−1(Pζprior
(ζ = ζ̂))|

end if
if f̂ is trained by MAP and σ̂2

g < δ3 then
Train a surrogate model f̂(·) by MLE with Dn

end if
Find xn+1 = arg maxx∈X {αSlogTEI(x)}
Evaluate the objective function yn+1 = f(xn+1)
Update Dn+1 = Dn ∪ {xn+1, yn+1}

end for

We summarize the BABO method that uses the SlogGPb surrogate and the SlogTEI acquisition criterion in
Algorithm 1, where the superscript b means that the SlogGP is trained with lower bound information.

Note that BABO can be straightforwardly extended to batch acquisition by adapting the qEI idea
from Ginsbourger et al. (2008). The acquisition function value αqSlogTEI(X; fmin, f b) for a batch
of solutions X = (x1, . . . , xq) is calculated by Monte Carlo simulation: αqSlogTEI(X; fmin, f b) =

1
NMC

∑N
i=1 maxj=1,...,q

{
(fmin − ξij)+ −

(
f b − ξij

)+
}

, where (·)+denotes the positive part function, NMC is
the number of samples and ξi ∼ P(f(X) | D).

Similarly, we propose Truncated Expected Improvement (TEI) for vanilla GPs, an adaptation of Expected
Improvement (EI) that uses a lower bound f b on the global minimum. When we know that the lower bound
is f b, we truncate the distribution of f(x) at f b and calculate TEI as

αTEI(x; fmin, f b) =
∫ fmin

fb

(fmin − z) · ϕ

(
z − µ(x)

σ(x)

)
dz

= E[(fmin−f(x))+] − E[(f b−f(x))+]

TEI will serve as a benchmark algorithm in our experiments.
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4 Experiments

In this section, we compare performance of BABO with other benchmark algorithms across various test
functions. The competing methods are:

• Random (Bergstra et al., 2011): randomly choosing the next solution.

• EI (Mockus, 1998): using Expected Improvement (EI) as the acquisition function

• TEI: using Truncated EI, see Section 3.5

• MESb (Wang et al., 2018): adapted max-entropy search, see Section 2.2

• OBCGP (Jeong & Kim, 2021): OBCGP follows the paper by Jeong & Kim (2021). The origi-
nal implementation of Jeong & Kim (2021) lacks version information and depends on deprecated
packages no longer available through pip. We have updated the codJeong & Kim (2021)ebase to
utilize current package versions and fixed existing bugs. We will release our implementation upon
acceptance of this paper.

• ERM (Nguyen & Osborne, 2020): Our parabolic GP+ERM algorithm follows the method of Nguyen
& Osborne (2020) and the code shared by the authors. Initially, we employ the regular GP+EI
until the lower confidence bound (LCB) reaches the known lower bound. Subsequently, we switch
to the transformed GP+ERM algorithm. This ensures a seamless integration between the two
methods, allowing for an effective exploration-exploitation trade-off during the optimization process.
In addition, following their code, if the next evaluation xn+1 is too close to an existing observation
(1-norm distance smaller than 3d · 10−4), we will pick a random x instead. The hyperparameter β
of LCB is set to be

√
ln(N).

We also fix −ζ = f b in BABO to understand the benefit of learning ζ. Note that when −ζ = f b, SlogTEI
will become equivalent to SlogEI, and BABO with fixed ζ can be viewed as an extension of the method in
Hutter et al. (2011) where in a preprocessing step the function is shifted into the positive region based on
the information of the lower bound. We evaluate the algorithms on eight synthetic functions that are widely
used in BO testing as well as two real-world problems. In addition, we compare qBABO with qEI on two
synthetic functions with different batch sizes and the results are shown in Figure 15 in Appendix A.5. We
will publish the code when the paper is accepted.

Following the experimental setting in Nguyen & Osborne (2020); Jeong & Kim (2021), we assume noise-free
observations in experiments. Additionally, as discussed in Section 3, the hyperparameters of BABO are set
to be (δ1, δ2, δ3) = (0.1, 0.01, 0.252). Plots show the simple regret (mean ± one standard error) over 100
repetitions for all functions except 50 repetitions for the 10d function. For improved visualization, some
results are presented using logarithmic scales on the y-axis, as indicated by their y-axis scale. Appendix A.4
gives more details of the experimental setup.

4.1 Synthetic Test Functions

We compare the performances on eight synthetic functions with 2 to 10 dimensions where we have an exact
bound on the minimum objective value. The known lower bound is thus set to the minimal value of the
objective function, i.e., f b := f∗, which is also the setting for which ERM was proposed.

Figure 4 summarizes the performances. Dashed lines indicate algorithms that do not use any information
about f∗, whereas solid lines correspond to methods that do leverage bound information. We observe that
BABO (black line) usually achieves substantially better objective values at the same iteration than the other
algorithms. An exception is the Ackley (6D) benchmark where OBCGP achieves better values and BABO
comes in second.
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Figure 4: Experiment Results (Synthetic Functions): We observe that BABO works best except in Ackley
(6D), where OBCGP works better.

4.2 The Skin Segmentation Task

In the Skin Segmentation benchmark (Nguyen & Osborne, 2020), the goal is to optimize six hyperparameters
of an XGBoost model (Chen & Guestrin, 2016) to accurately identify whether given pixels correspond to
skin. The accuracy achieved by a hyperparameter setting on a hold-out dataset gives the objective value,
hence the objective function has a natural upper bound of 100%. The six hyperparameters are min child
weight, colsample bytree, max depth, subsample, alpha, and gamma.

Figure 5(a) shows that BABO obtains better settings at the same iteration and converges to a near optimal
solution more quickly. The runner-up is BABO with fixed ζ. Interestingly, the standard GP+EI approach
that does not use the prior information about f∗ works better than some existing methods that do use it,
i.e. ERM and MESb.

4.3 The Robot Push Problem

The goal of the 4D Robot Push problem (Wang & Jegelka, 2017; De Ath et al., 2021) is to direct a robot
to push a ball towards an unknown target, minimizing the distance between the ball and the target. The
distance is nonnegative and thus implies a lower bound of zero for f∗. The first input variables determine
the initial location of the robot, the third determines the angle of its rectangular hand, and the fourth sets
the number of time-steps that the robot is to move.

Figure 5(b) shows that BABO achieves better solutions at the same iteration and converges more quickly.
The runner-up is TEI that also uses our truncated EI acquisition function but a regular GP surrogate model.

To summarize the experimental results, we ranked the algorithms based on their mean at the final iteration,
as shown in Table 4.3.

5 Investigating the influence of prior information on the optimum

In this section, we study the influence of prior information about f∗. First, we conduct an ablation study
and observe that leveraging prior information about the optimum in model training and acquisition function
is beneficial. Then, we investigate why we need the uncertainty level and variance threshold when using
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Figure 5: An empirical evaluation of BABO and competitors on two real-world benchmarks. We observe
that BABO achieves significantly better solutions throughout the run.

Table 2: Performance Rank
Branin Beale SixHumpCamel Hartmann Rosenbrock Ackley Powell StyblinskiTang Skin Robert Average

BABO 1 1 1 2 1 2 1 1 1 1 1.2
BABO (fixed ζ) 3 2 2 5 5 6 2 2 2 3 3.2

TEI 6 8 5 3 4 4 3 3 5 2 4.3
EI 4 4 4 4 3 5 7 4 3 6 4.4

MESb 5 7 6 1 2 7 4 5 4 5 4.6
ERM 2 3 3 6 6 3 5 6 6 7 4.7

OBCGP 7 5 7 7 7 1 6 7 8 4 5.9
Random 8 6 8 8 8 8 8 8 8 8 7.8

bound information in model training. Finally, we investigate how SlogGPb is influenced by its estimated
lower bound −ζ̃ and lower bound information.

5.1 The Contributions of Different Components

To better understand how different components of BABO contribute to its success, we compare the following
settings:

• SlogGP+SlogEI: Removing the bound information usage in both SlogGP and acquisition function.
This will tell us how helpful the lower bound information really is.

• SlogGPb+SlogEI: Removing bound information from the acquisition function only. This will show
the relative importance of using bound information in the SlogGP model and the acquisition function.

• SlogGP+SlogTEI: Removing bound information from the model only. This will show the relative
importance of using bound information in the SlogGP model and the acquisition function.

Looking at the results on the eight synthetic test functions in Figure 6 and two real-life problems in Figure
8, the full BABO performs best, often followed closely by the version using the bound information only in
the SlogGP model or the version using the bound information only in the acquisition function, and then
the version not using bound information at all. The standard GP+EI usually did quite poorly, except
for the Hartmann 3D function where all methods share similar performance. An additional observation is
that SlogGP+SlogEI (not using bound information) works better than GP+EI, which can be explained by
SlogGP’s larger expressive power, as shown in Theorem 3.1.

We now analyze the estimated shift parameter −ζ̃, with its median values shown in Figure 7 and 9. The
estimated lower bounds corroborate our ablation study findings, as demonstrated in two real-world bench-
marks. For the Skin Segmentation task (Figure 8(a)), SlogGP+SlogEI outperforms GP+EI. This aligns with
our expectations since the estimated lower bound of 0.1% (rather than a highly negative value) indicates
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function skewness, favoring SlogGP over GP. The proximity between this estimate and our known lower
bound (f b := 0%) enables rapid convergence to the optimal lower bound, enhancing BO performance. In
the Robot Push problem (Figure 8(b)), bound information similarly proves advantageous. Figure 9(b) shows
convergence of −ζ̃ to approximately −0.5, close to the known bound f b. This proximity accelerates ζ̃ learn-
ing and improves overall BO performance. The synthetic functions exhibit similar patterns. In the Beale
function, for example, the known lower bound f b = 0 approximates the convergence value of 3, enabling
rapid SlogGP model learning and consequently enhancing BO performance.
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Figure 6: Different Components Comparison (Synthetic Functions): Generally, the complete BABO approach
demonstrates superior performance, suggesting that incorporating bound information in both the modeling
and acquisition function stages is beneficial.

5.2 Using bound information in model training

When the bound information is available, we use MAP to allow use of this information, and uncertainty level
and variance threshold to allow BAO to ignore the bound information if it would lead to a model mismatch.
A possible question is whether it is necessary to handle the prior-data conflict explicitly. To answer this
question, we compare the following settings with SlogTEI:

• Using MAP only

• Using MAP and the uncertainty level

We do experiments on two objective functions: Branin 2D and Ackley 6D. The results are shown in Figure 10.
On the Branin function, their performance is almost identical at the beginning while MAP-only is slightly
worse later on. This is because when we have enough data, we can estimate the underlying lower bound
accurately even if the prior information can be slightly misleading. For the Ackley function, MAP is worse
than MAP+uncertainty level which in turn is worse than BABO. This is because the best fitting −ζ̂ of
SlogGP is very negative (as shown in Figure 7), so f b = 0 conflicts with observation data and not using the
bound information is a better choice.

5.3 The influence of lower bound information in SlogGP-based BO

We first test how different known lower bound information f b influences BABO performance. We test on
three objective functions: Branin, Beale and Hartmann. Our experimental results in Figure 11 demonstrate
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Figure 7: Estimated Lower Bound (Synthetic Functions): The estimated lower bound plots align with
performance across functions. For functions like Ackley and Hartman, where bounds are highly negative
relative to the objective range, SlogGP behaves similarly to GP since the lower bound provides little guidance.
However, for functions like Beale where the estimated bound converges near the true minimum, this additional
bound information proves more beneficial.
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Figure 8: Different Components Comparison (Real-world Benchmarks): Generally, the complete BABO
approach demonstrates superior performance, suggesting that incorporating bound information in both the
modeling and acquisition function stages is beneficial.

that BABO’s performance consistently improves as the known lower bound f b converges toward the true
minimum value f∗.
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Figure 9: Estimated Lower Bound (Real-world Benchmarks): Prior information helps to reduce the gap
between −ζ̂ and its convergence value in both Skin Segmentation problem and Robot Push problem.
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Figure 10: Ablation Study on How to Use Prior Information: For the Branin function, where the known
lower bound is quite accurate, all methods (MAP, MAP+Uncertainty Level, BABO) demonstrate comparable
performance. In contrast, for the Ackley function, the optimal fitted value of −ζ̃ is substantially negative,
creating a significant prior-data conflict with the known lower bound f b = 0. In this case, disregarding the
prior bound information in the surrogate model leads to superior performance.
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Figure 11: BABO with different f b: BABO’s performance improves as the known lower bound f b approaches
the minimum value f∗.

14



Under review as submission to TMLR

BABO consists of two parts: SlogGPb and SlogTEI. Although it is clear that the closer f b and f∗, SlogTEI
should be better, it is not that obvious how the prior information influences the surrogate model. The
influence of a given lower bound in SlogGP on BABO performance is clear when there is no model mismatch:
when f b is close to the underlying −ζ, the prior information of the lower bound can help to learn the model
lower bound quickly. On the other hand, when f b is far away from the best fitting −ζ, this information can
be misleading, which is why we reduce the impact of the prior information if a large gap is found.

If there is model mismatch (which is common in practice), the influence of lower bound information on the
surrogate model is less clear. However, we found that the estimated parameter −ζ̂ influences the balance
between exploitation and exploration. Specifically, a higher value of −ζ̂ corresponds to a greater emphasis
on exploitation, as the current best value in the underlying GP model gmin = ln(fmin + ζ̂) will be more
negative as −ζ̂ increases. Hence, BO is more likely to search in close proximity to xmin, focusing more on
exploitation. Conversely, if ζ̂ is lower and far away from fmin, then BO will do more exploration.

In order to demonstrate this effect, we study the relationship between −ζ̂ and the properties of the next
sample chosen. Our base model is SlogGPb with −ζ̂ = fmin − 1.

Figures 12(a)-(c) show that the gap between the mean of the next evaluation value and fmin, i.e.
E[fbase(xn+1)] − fmin increases as −ζ̂ is lowered. Similarly, Figures 12(d)-(f) show that the predicted
variance of fbase(xn+1) increases as −ζ̂ is lowered.

Finally, Figures 12(g)-(i) present the relationship between Euclidean distance ||xn+1 − xmin|| and −ζ̂. A
more local search near xmin in case of larger −ζ̂ is an indication of more exploitation in BO.
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Figure 12: Exploitation and Exploration Analysis: When −ζ̂ is higher (towards the left of each figure),
BABO prefers more exploitation; When −ζ̂ is lower, BABO prefers more exploration. Top row shows
E[fbase(xn+1)] − fmin, middle row shows variance at next sample location, and bottom row shows distance
of new sample location from current best.

6 Conclusion

We proposed BABO, a Bayesian Optimization algorithm that is able to leverage prior information about
the optimal value f∗ to achieve better solutions and a higher sample-efficiency. BABO uses the tailored
surrogate model SlogGP and the acquisition criterion Shifted Logarithmic Truncated Expected Improvement
(SlogTEI), which is an extension of Expected Improvement that takes the prior information into account.
Experimental results demonstrate that BABO benefits from the prior information and outperforms previous
approaches. Moreover, we find that even without prior information about f∗, the SlogGP model often
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performs better than the commonly used GP model when combined with EI. For future work, we will
investigate the potential of the SlogGP model further for a wider range of scenarios.

We observe that BABO sometimes chooses a large absolute value for the parameter ζ of the SlogGP model,
which means that the modeled function is ‘pushed away’ from the known lower bound on the optimal value.
This is because the parameter fitting trades off model fit with using the prior information about f∗. Although
this effect is mitigated by incorporating the information about f∗ also in the acquisition criterion SlogTEI,
we wonder if there is a more suitable way of jointly modeling the unknown objective and the bound on its
optimal value.
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A Appendix

A.1 αMESb (
x | f b

)
shares the same maximizer with P(f(x) < f b)

MESb shares the same maximizer with the acquisition function P(f(x) < f b), i.e.
argmaxx∈X αMESb (

x | f b
)

= argmaxx∈XP(f(x) < f b). See examples in Figure 13.
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Figure 13: MESb and P(f(x) < f b)

Proof. For simplicity, we use γ to represent γ
(
x, f b

)
= µ(x)−fb

σ(x) for the following analysis.

Firstly, P(f(x) < f b) = Φ( fb−µ(x)
σ(x) ) = 1 − Φ(γ), so it is monotonically decreasing with γ.

The next step is to prove that MESb is also decreasing with γ. We look at αMESb (
x | f b

)
= γϕ(γ)

2Φ(γ) −log (Φ (γ)).
For simplicity, we denote it by M(γ). The derivative of M(γ) is:

M ′(γ) = 1
2 ·

(
ϕ(γ)
Φ(γ) + γ · ϕ′(γ)

Φ(γ) − γ · ϕ(γ)2

Φ(γ)2

)
− ϕ(γ)

Φ(γ)

= 1
2 ·

(
− ϕ(γ)

Φ(γ) + γ · ϕ′(γ)
Φ(γ) − γ · ϕ(γ)2

Φ(γ)2

)
= 1

2 ·
(

− ϕ(γ)
Φ(γ) + γ · −γϕ(γ)

Φ(γ) − γ · ϕ(γ)2

Φ(γ)2

)
= 1

2 ·
(

− ϕ(γ)
Φ(γ) − γ2 · ϕ(γ)

Φ(γ) − γ · ϕ(γ)2

Φ(γ)2

)
= −ϕ(γ)

2 ·
(

1
Φ(γ) + γ2

Φ(γ) + γ · ϕ(γ)
Φ(γ)2

)
= − ϕ(γ)

2Φ(γ)2 · (Φ(γ)(1 + γ2) + γ · ϕ(γ))

To determine the monotonicity of M(γ), we need to determine whether D(γ) = (Φ(γ)(1 + γ2) + γ · ϕ(γ)) is
positive or negative. It is easy to calculate D′(γ) = 2ϕ(γ) + 2γΦ(γ). Given D′′(γ) = 2Φ(γ) > 0, D′(γ) is an
increasing function in (−∞, ∞) and the minimal value is achieved when γ → −∞:

lim
γ→−∞

D′(γ) = lim
γ→−∞

2(ϕ(γ) + γΦ(γ))

= 2 · lim
γ→−∞

γΦ(γ)

= 2 · lim
γ→−∞

Φ′(γ)
( 1

γ )′

= 2 · lim
γ→−∞

−ϕ(γ)γ2

= 0
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Hence, D′(γ) > 0 for γ ∈ (−∞, ∞), so D(γ) is an increasing function. Similarly, D(γ) → 0 when γ → −∞,
so D(γ) > 0 for γ ∈ (−∞, ∞). Hence, the derivative of M(γ) is negative, i.e. M(γ) is a decreasing function
of γ.

Considering γ is a function of x, P(f(x) < f b) and αMESb (
x | f b

)
share the same monotonicity with respect

to x, they share the same maximizer.

Figure 14 shows the decreasing relationship between γ and MESb. Consider MESb and P(f(x) < f b) are
both decreasing with γ, they share the same maximizer γ∗.
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Figure 14: MESb is decreasing with γ. As MESb and P(f(x) < f b) are both decreasing with γ, they share
the same maximizer γ∗

A.2 Adapting the acquisition functions EI and PI for the SlogGP model

In the following section, we propose two adaptations of popular acquisition functions to the SlogGP model,
Shifted Logarithmic Probability of Improvement (SlogPI) and Shifted Logarithmic Expected Improvement
(SlogEI). If the current best value is denoted by fmin, SlogPI is

αSlogPI(x; fmin) = P(f(x) ≤ fmin)

= Φ
(

ln(fmin + ζ) − µ(x))
σ(x)

)
.

The calculation process is shown as follows.

For a solution x and the current minimal observation fmin, we denote the predicted mean of g(x) as µ and
variance of g(x) as σ2. Due to the normal distribution of g(x), eg(x) (denoted by Z) follows a log-normal
distribution. Hence, SlogPI can be calculated as follows:

αSlogPI(x; fmin) = P(f(x) ≤ fmin)
= P(Z − ζ ≤ fmin)
= P(Z ≤ fmin + ζ)

= Φ( ln(fmin + ζ) − µ(x)
σ(x) )
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In terms of SlogEI, we firstly calculate E[(η − Z)+] using the definition of the log-normal distribution, where
η is a constant and (·)+denotes the positive part function:

E[(η − Z)+] =
∫ ∞

0
(η − Z)+ · 1

zσ(x)
√

2π
e

− (ln(z)−µ(x))2

2σ(x)2 dz

=
∫ η

0
(η − z) · 1

zσ(x)
√

2π
e

− (ln(z)−µ(x))2

2σ(x)2 dz +
∫ ∞

η

0 · 1
zσ(x)

√
2π

e
− (ln(z)−µ(x))2

2σ(x)2 dz

=
∫ η

0
(η − z) · 1

zσ(x)
√

2π
e

− (ln(z)−µ(x))2

2σ2(x) dz

= η ·
∫ η

0

1
zσ(x)

√
2π

e
− (ln(z)−µ(x))2

2σ(x)2 dz −
∫ η

0
z · 1

zσ(x)
√

2π
e

− (ln(z)−µ(x))2

2σ(x)2 dz

= ηΦ
(

ln(η) − µ(x)
σ(x)

)
−

∫ η

0
z · 1

zσ(x)
√

2π
e

− (ln(z)−µ(x))2

2σ(x)2 dz

The last equality simply uses the definition of the CDF of the lognormal distribution. The second term is
the partial expectation, so ∫ η

0
z · 1

zσ(x)
√

2π
e− (ln(z)−µ(x))2

2σ2 dz

= eµ(x)+ σ(x)2
2 · Φ

(
ln(η) − µ(x) − σ(x)2

σ(x)

)
Hence,

E[(η − Z)+] = ηΦ
(

ln(η) − µ(x)
σ(x)

)
− eµ(x)+ σ(x)2

2 · Φ
(

ln(η) − µ(x) − σ(x)2

σ(x)

)
Setting η = fmin + ζ, we obtain the formula of E[(fmin − (Z − ζ))+}], i.e. SlogEI:

αSlogEI(x; fmin) = (fmin + ζ) · Φ
(

ln(fmin + ζ) − µ(x)
σ(x)

)
− eµ(x)+ σ2(x)

2 · Φ
(

ln(fmin + ζ) − µ(x) − σ2(x)
σ(x)

)
.

SlogEI is differentiable with x if ∂µ
xi

and ∂σ
xi

exist. The partial derivative is

∂αSlogEI

∂xi
= ∂αSlogEI

∂µ
· ∂µ

∂xi
+ ∂αSlogEI

∂σ
· ∂σ

∂xi
.

where
∂αSlogEI

∂µ
= − (fmin + ζ)

σ(x) · ϕ

(
ln(fmin + ζ) − µ(x)

σ(x)

)

+ eµ(x)+ σ2(x)
2

σ(x) · ϕ

(
ln(fmin + ζ) − µ(x) − σ2(x)

σ(x)

)
− eµ(x)+ σ2(x)

2 · Φ
(

ln(fmin + ζ) − µ(x) − σ2(x)
σ(x)

)
and

∂αSlogEI

∂σ
= − (fmin + ζ)

σ2(x) · ϕ

(
ln(fmin + ζ) − µ(x)

σ(x)

)
· (ln(fmin + ζ) − µ(x))

+ eµ(x)+ σ2(x)
2 · ϕ

(
ln(fmin + ζ) − µ(x) − σ2(x)

σ(x)

)
· ( ln(fmin + ζ) − µ(x)

σ2(x) + 1)

− σ(x)eµ(x)+ σ2(x)
2 · Φ

(
ln(fmin + ζ) − µ(x) − σ2(x)

σ(x)

)
.
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A.3 Proof of Theorem 3.1

For convenience, we repeat Theorem 3.1 first before stating the proof.

Theorem 3.1. Define a SlogGP f(x) = eg(x)+µg − ζ with g(x) a Gaussian process with zero mean, zero
noise and a covariance function K with signal variance σ2

g and other hyperparameters θg.

Then for any GP h(x) with mean µ̃g, signal variance σ̃g, and other hyperparameters θ̃g, we can have the
SlogGP f(x) converge to h(x) in distribution for any x ∈ X by setting

µg = ln (ζ + µ̃g)
θg = θ̃g

σg = σ̃g

ζ + µ̃g

and letting ζ → ∞, i.e.,
lim

ζ→∞
Pf(x)(z) = Ph(x)(z) ∀z ∈ (−ζ, ∞), ∀x ∈ X ,

where P(·) denotes the probability density function of a random variable.

Proof. Given a SlogGP f(x) = eg(x)+µg − ζ with g(x) a Gaussian process with zero mean, zero noise and
a covariance function K with signal variance σ2

g and other hyperparameters θg. We set σg, θg, µg such that
the following equations: 

µg = ln (ζ + µ̃g)
θg = θ̃g

σg = σ̃g

ζ + µ̃g

are satisfied for some constants (σ̃g, µ̃g, θ̃g) ∈ Θ.

According to the definition ex =
∑∞

k=0
xk

k! , we have

f(x) = eµg eg(x) − ζ

= eµg · (1 + g(x) + 1
2g2(x) + 1

6g3(x)) + ...) − ζ

= eµg g(x) + eµg − ζ + eµg (1
2g2(x) + 1

6g3(x)) + ...).

In the formula, we distinguish three different parts: eµg g(x), eµg − ζ and eµg ( 1
2 g2(x) + 1

6 g3(x) + ...).

In terms of the first part, g(x) is a Gaussian process with zero noise, zero mean and kernel with signal
variance σ2

g and other hyperparameters θg. Hence, eµg g(x) is a Gaussian process with zero noise, zero mean
and kernel with signal variance e2µg σ2

g and other hyperparameters θg.

The second part eµg − ζ is the constant µ̃g as we set µg = ln (ζ + µ̃g).

For the third part, we first look at eµg g2(x). We have eµg g2(x) = (e
µg
2 g(x))2, so eµg g2(x) is the square of a

Gaussian process with signal variance eµg σ2
g and mean 0. When ζ → ∞, we have eµg σ2

g → 0, so ∀x

lim
ζ→∞

P
(∣∣eµg g2(x) − 0

∣∣ > ε
)

= 0.

For other terms eµg gk(x) in the third part, we can view them as (e
µg
k g(x))k, so similarly, we have

limζ→∞ P
(∣∣eµg gk(x) − 0

∣∣ > ε
)

= 0 for k ≥ 3, ∀x and ∀ε.

Therefore, for ∀x and ∀ε,
lim

ζ→∞
P (|f(x) − g̃(x)| > ε) = 0,
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where g̃(x) = eµg g(x) + eµg − ζ is a Gaussian process with mean µ̃g, zero noise and covariance function K
with signal variance σ̃2

g and other hyperparameters θ̃g.

Therefore, we have
lim

ζ→∞
Pf(x)(z) = Pg̃(x)(z) ∀z ∈ (−ζ, ∞), ∀x ∈ X ,

where P(·) denotes the probability density function of a random variable.

Given that g̃ and h share the same parameters, they share the same posterior distribution, i.e.

Pg̃(x)(z) = Ph(x)(z) ∀z ∈ (−ζ, ∞), ∀x ∈ X ,

Hence, we have
lim

ζ→∞
Pf(x)(z) = Ph(x)(z) ∀z ∈ (−ζ, ∞), ∀x ∈ X ,

A.4 Experimental Settings (Within-model Test, Synthetic Function Test and Real-world Benchmark
Test)

The experimental setting is as follows. For each d-dimensional test function, we sample 4d initial points from
a Latin hypercube design. The input domain is scaled to [0, 1]d. For GP-based methods, function values
are standardized (scaled and centralized) and for SlogGP-based methods, function values are scaled and
the centralizing is done in model training. As kernel we use the squared exponential kernel: K (xa, xb) =
σ2 exp

(
− ∥xa−xb∥2

2ℓ2

)
. For acquisition function optimization, we use restart L-BFGS-B in scipy. The restart

time and initial samples (restart number 3d and initial sample 30d) and L-BFGS-B options are the same for
all acquisition functions. We compare the performance of BABO with other benchmark algorithms across
various test functions. The benchmark algorithms we consider are Random, EI, TEI, MESb, OBCGP and
ERM.

We consider a noiseless setting in our theoretical analysis. In practice, a small positive noise variance is
typically introduced to ensure numerical stability. Since the estimated signal variance σ̂2

g in SlogGP can vary
substantially, ranging from near-zero to several hundred, we adopt an adaptive noise variance proportional
to the estimated signal variance: σ2

noise = 10−5 · σ̂2
g,n−1 The initial noise variance is set to 6 · 10−6. We

maintain these noise parameter settings across all comparative methods to ensure fair comparison.

Details of test functions are shown in the table below.

Table 3: Test Function Information
Test Function Optimal Value Search Space

GP-generated functions (2D) - [0., 1.]2
SlogGP-generated functions (2D) - [0., 1.]2

Beale (2D) 0 [−4.5, 4.5]2
Branin (2D) 0.397887 [[−5., 10.], [0., 15.]]

SixHumpCaml (2D) -1.0316 [[−3., 3.], [−2., 2.]]
Levy (2D) 0 [[−10., 10.], [−10., 10.]]

Hartmann (3D) -3.86278 [0., 1.]d
DixonPrice (4D) 0 [−10., 10.]d
Rosenbrock (4D) 0 [−2.048, 2.048]d

Ackley (6D) 0 [−32.768, 32.768]d
Powell (8D) 0 [−4., 5.]d

StyblinskiTang (10D) -391.6599 [−5., 5.]d
Robot Push (4D) 0 [[−5., 5.], [−5., 5.], [0., 2π], [0., 300.]]

Skin Segmentation (6D) 99.7 [[0., 10.], [0., 10.], [5., 15.], [1., 20.], [0.5, 1.], [0.1, 1.]]
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In addition, in terms of within-model in Section 3.4, for GP-generated functions, signal variance σ2
g = 2,

lengthscale l = 0.1 and mean 0. For SlogGP-generated functions, signal variance σ2
g = 1.2, lengthscale

l = 0.1, shift ζ = 30 and mean 0.5.

We also had a cross-validation test for GP and SlogGP. The repetition number is 50. In each experiment, 40
initial training points are sampled randomly. We test the gap between model prediction mean at a random
x and its value f(x).

A.5 More experiments: batched BABO
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Figure 15: Batched BO: We evaluated the performance across varying batch sizes (q = 1, 5, and 10) for both
test problems. The experimental results demonstrate that qBABO consistently outperforms qEI across all
batch size configurations.
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