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Abstract

Token embeddings play a crucial role in language modeling but, despite this practi-
cal relevance, their theoretical understanding remains limited. Our paper addresses
the gap by characterizing the structure of embeddings obtained via gradient descent.
Specifically, we consider a one-layer softmax attention model with a linear head for

binary classification, i.e., Softmax(p⊤E⊤
X)EXv =

∑T
i=1 exp(p⊤Exi)E

⊤
xi

v∑T
j=1 exp(p⊤Exj )

, where

EX = [Ex1 , . . . , ExT
]⊤ contains the embeddings of the input sequence, p is the

embedding of the ⟨cls⟩ token and v the output vector. First, we show that, already
after a single step of gradient training with the logistic loss, the embeddings EX

capture the importance of tokens in the dataset by aligning with the output vector
v proportionally to the frequency with which the corresponding tokens appear in
the dataset. Then, after training p via gradient flow until convergence, the softmax
selects the important tokens in the sentence (i.e., those that are predictive of the
label), and the resulting ⟨cls⟩ embedding maximizes the margin for such a selection.
Experiments on real-world datasets (IMDB, Yelp) exhibit a phenomenology close
to that unveiled by our theory.

1 Introduction

The introduction of the attention mechanism [5, 41] marked a paradigm shift in the design of frontier
machine learning models, leading to significant advances such as ChatGPT [2], Claude [3], AlphaFold
[18], CLIP [30] and Dall-E [31]. This success prompted a surge of interest in understanding the
structure and function of attention layers, with their optimization dynamics and inductive biases
being object of extensive theoretical research [1, 7, 10, 23, 37, 42] (see also Section 2). Embeddings
are a crucial component of the attention mechanism [45], especially for downstream adaptation
[13, 16, 19] with some works [20, 45] specifically highlighting their importance. However, despite
the importance of learning embeddings, the existing analyses of transformer-like architectures either
ignore the properties of embeddings by resorting to orthogonal structures [44], or omit embeddings
completely by considering unprocessed inputs [39].

Our paper fills this gap by studying directly the embedding training dynamics. Specifically, we aim
to provide theoretical insight to the following questions:

What is the structure learnt by the embeddings during gradient descent training?
How is this structure related to the statistical properties of the data?

In Figure 1, we investigate these questions by analyzing the embeddings of a two-layer transformer
trained on a sentiment analysis task on IMDB and Yelp reviews. The plots reveal a remarkable
simplicity in the structure of the learned embeddings, which capture the frequency of appearance of
tokens in the dataset. Specifically, the predictive mechanism (overlap with the regression coefficient
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Figure 1: Dot-product of token embeddings with ⟨cls⟩ embedding p (left) and regression coefficients
v (right), as a function of the token-wise difference in posterior probabilities, for IMDB (top row) and
Yelp (bottom row) datasets. We consider the two-layer attention model in (18) with all parameters
trained until convergence.

v) favors the tokens which appear more frequently in the corresponding positive/negative context.
A similar pattern emerges at the selection stage of the attention mechanism (overlap with the ⟨cls⟩
embedding p), i.e., more frequent tokens have a higher attention score.

For the theoretical study of this emergent structure, we focus on a one-layer softmax attention model.
Namely, for an input sequence X = [x1, · · · , xT ], the output of the model is given by

f(X; p,E) = Softmax(p⊤E⊤
X)EXv =

∑T
i=1 exp

(
p⊤Exi

)
E⊤

xi
v∑T

j=1 exp
(
p⊤Exj

) , (1)

where EX = [Ex1 , . . . , ExT
]⊤ contains the embeddings of the input X , p is the embedding of the

⟨cls⟩ token and v is the final regression vector. Our main results are summarized below:

• We show that, already after a single step of gradient training with the standard logistic loss, the
embeddings EX capture the importance of tokens in the dataset by aligning with the output vector
v proportionally to the corresponding empirical frequencies (Lemma 4.1).

• In a setting where each sequence contains a single important token, the ⟨cls⟩ embedding obtained
from gradient flow must select all important tokens. We further characterize all the possible
directions that the ⟨cls⟩ embedding may converge to, which are the max-margin solutions associated
to feasible token selections (Theorem 4.3).

• While in general the ⟨cls⟩ embedding may select irrelevant tokens, we identify sufficient conditions
leading to the selection only of important tokens (Lemmas 4.4 and 4.5).

2 Related work

Implicit bias, margin maximization, attention. The implicit bias literature has been instrumental
in understanding the behavior of neural networks or overparameterized models optimized by gradient
methods [8, 4, 26]. A key phenomenon is that gradient descent on separable data with logistic
loss directionally converges to the max-margin separator [35, 15]. More recently, a series of works
[36, 22, 17, 40, 21, 34, 37, 32] has established an equivalence between the optimization geometry
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of self-attention and a hard-margin SVM problem selecting a subset of tokens via linear constraints
on the outer-products of token pairs. Compared to these works that mostly focus on the training of
single-layer attention weights, we point out two differences. First, we study the role of embeddings
and their joint training with the ⟨cls⟩ token. Second, under our data model, we establish benign
properties of the solution reached at convergence (which may not hold for arbitrary datasets [37]).

Theory of attention. A line of work [23, 24, 27] has explored whether attention-based architectures
can extract causal structure from Markovian inputs. The mechanics of next-token prediction when
training a single self-attention layer is characterized in [21]. Towards understanding how to utilize
structural properties of the data, the behavior of transformers on sparse token selection tasks is
considered in [33, 43]. The study [14] provides a theoretical justification to the tendency of modern
language models to generate repetitive text by showing that the underlying self-attention mechanism
collapses into sampling only a limited subset of tokens. This stands in contrast to the slightly
different setup of [38] where the transformer model does not degrade to a “winner-takes-all” strategy.
The works [10, 11, 9] take a mean-field view to analyze the clustering behavior in transformer
representations that emerges after successive applications of the attention block. Under a random
feature design, it is shown in [6] that softmax attention exhibits a sensitivity property which allows for
a sharp change in attention scores given the perturbation of a single token. The role of the attention
mechanism is also studied in [29] for prompt-tuning and in [12] for test-time-training.

3 Problem setup

Data model. We focus on binary text classification problems. We consider a (context) vocabulary set
S with size |S|, together with a ⟨cls⟩ token for classification. Let (Xi, yi)

n
i=1 be the dataset containing

n context sequences, where yi ∈ {−1, 1} and each context sequence X ∈ Xn := {X1, . . . , Xn}
contains T tokens, i.e., X = [x1, . . . , xT ] with xi ∈ S. Without loss of generality, we let S be the
set of tokens that appears in Xn, as the embeddings of the remaining tokens are not trained and are
not relevant for the problem at hand.

Architecture. We consider a one-layer softmax attention model with a linear head for classification.
First, we append a ⟨cls⟩ token at the end of the sequence X , and then we embed each token into a
vector of dimension d. Namely, after the embedding layer, we have EX = [Ex1

, . . . , ExT
]⊤ ∈ RT×d,

where Es ∈ Rd denotes the embedding of the token s. We let E ∈ R|S|×d be the embedding matrix
of all context tokens and p ∈ Rd the embedding of the ⟨cls⟩ token.

We focus on the architecture defined in (1) where, given a vector a ∈ RT , [Softmax(a)]i :=
exp(ai)∑T

j=1 exp(aj)
for i ∈ {1, . . . , T}. We remark that the same model is also studied in [37, 32]. In prac-

tice, it is common to include the WKQ matrix and consider a model with output f(X; p,WKQ,E) =
Softmax(p⊤WKQE

⊤
X)EXv. Since p⊤WKQ plays the same role as p and one can easily reconstruct

WKQ from p in each gradient update as discussed in [37], we use the model in (1) for simplicity.
We also note that our experiments on two-layer networks with a WKQ matrix reported in Appendix
F.4 do not show any qualitatively different behavior, which further justifies our simplification.

Optimization problem. The output vector v is fixed and all the embedding vectors p,E are trained
with the standard logistic loss:

L(E, p) =
1

n

n∑
k=1

log(1 + exp(−ykf(Xk;E, p))) = Ê [log(1 + exp(−yf(X;E, p)))] , (2)

where the notation Ê is a shorthand for the average over the dataset D = {(Xk, yk)}nk=1.

Empirical statistics of each token in the dataset. The goal of the paper is to characterize the
structure of the embeddings E, p obtained by optimizing the objective (2) via gradient descent,
and we show that such structure is related to the empirical statistics of the tokens in the dataset.
Specifically, after training, the softmax attention learns to select tokens that are more correlated to the
labels based on the dataset. To quantify the correlation between a token s and the label y, we define
the average signed frequency of a token as:

αs :=
1

nT

∑
(X,y)∈D

y

T∑
i=1

1xi=s =
1

T
Ê

[
y

T∑
i=1

1xi=s

]
. (3)
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In words, αs is obtained by taking the number of occurrences of s in sequences with a positive label,
subtracting the number of occurrences of s in sequences with a negative label, and finally dividing by
the total number of tokens nT . As such, it provides an average of the signed frequency of s, where
the sign comes from the label of the sequences in which the token appears.
Definition 3.1 (Positive, negative and irrelevant tokens). We say that a token s is (i) positive if
αs > 0, (ii) negative if αs < 0, and (iii) irrelevant if αs = 0. Moreover, we say that a token s is
completely positive if it appears only in sequences with label 1, and completely negative if it appears
only in sequences with label −1.
In words, a token is positive (negative) when it is more frequently associated to the positive (negative)
label; tokens that appear the same number of times associated to positive and negative labels
are irrelevant. The quantity αs quantifies how positive/negative a token is. Intuitively, if either
αs > αs′ > 0 or αs < αs′ < 0 , then the token s is more relevant than the token s′ for the
classification task and, therefore, we expect that this will be reflected into the structure of the
corresponding embeddings.

4 Main theoretical results

We show that the trained attention model (1) learns to select important tokens from the empirical
statistics of the data. First, in Section 4.1 we prove that training the context embeddings with a single
gradient step suffices to capture the empirical importance of tokens in the dataset; then, in Section 4.2
we characterize the implicit bias of training the ⟨cls⟩ embedding p until convergence, having fixed
the context embeddings after the first gradient step.

4.1 One step of gradient descent learns the importance of the tokens

We start by showing that the first step of gradient descent is already enough to give a correlation
between embeddings and the output vector v. Furthermore, this correlation is proportional to the
average signed frequency defined in (3). We initialize v with any unit-norm vector and E0

s , p
0 i.i.d.∼

N (0, 1
dI) for all s ∈ S. Then, we perform one step of gradient descent with step size η0 on all

trainable embeddings:

p1 = p0 − η0∇pL(E0, p0), E1
s = E0

s − η0∇Es
L(E0, p0), for all s ∈ S. (4)

Lemma 4.1. For any δ > 0, let

d ≥ max

{
256,

(
2 log

|S|2

δ

)2
}
. (5)

Then, after the first step of gradient descent in (4), we have that, for any s ∈ S,

E1
s = E0

s +
η0
2
αsv + errs, p1 = p0 + errp, (6)

where the error terms errs, errp are bounded with probability at least 1− δ as

max{max
s∈S

∥errs∥2, ∥errp∥2} ≤ 11η0d
− 1

4 . (7)

Lemma 4.1 implies that after one step of training, the embedding vector Es of each token s learns the
empirical importance of the tokens by adding a vector in the direction of the output vector v with
magnitude proportional to αs.

The proof follows from the structure of the gradient update. In particular, it can be shown that

∇Es
L(E0, p0) = −Ê

yg(X, y)

 T∑
i=1

(
∑
j ̸=i

(1xi=s − 1xj=s)qiqj)(E
0
xi
)⊤vp0 +

T∑
i=1

1xi=sqiv

 ,

(8)

with qi :=
exp((p0)⊤E0

xi
)∑T

j=1 exp
(
(p0)⊤E0

xj

) . Note that, for all xi, (p0)⊤E0
xi

is of order 1/
√
d, due to the

independent Gaussian initialization. Thus, the characterization in (8) implies that the gradient is
roughly η0

2 αsv plus a term that is vanishing in d. The full argument is deferred to Appendix C.1.
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4.2 Gradient flow on p performs max-margin token selection
Lemma 4.1 shows the informative overlap between the output vector v and the context embedding
vectors Es after the first step of gradient descent2. However, (6) also implies that the overlap between
the ⟨cls⟩ embedding vector p and Es does not improve after the first step. Thus, next, we study the
training dynamics of p, characterizing its implicit bias. Specifically, we fix the context embedding
matrix to E1 (obtained after the first gradient step) and train the ⟨cls⟩ embedding vector p with
gradient flow initialized at p1 (obtained after the first gradient step):

d

dt
pt = −∇pL(E1, pt). (9)

We consider gradient flow for technical convenience, and all results in this section can be readily
extended to gradient descent with small enough step size. For the rest of the section and in the related
proofs appearing in the appendix, we will refer to the embeddings in E1 as Es and not E1

s , omitting
the superscript to favor readability.

Max-margin token selection. Given the ⟨cls⟩ embedding p and a sequence X , we denote the set
of tokens in X selected by p as

SX(p) = {s : s = argmax
s∈X

p⊤Es}, (10)

and we define SX(p) = X \ SX(p). Intuitively, given a sequence X, the selected tokens in X have
the largest softmax weight (proportional to exp

(
p⊤Exi

)
). Note that, for p′ ̸= p, we may have that

SX(p′) = SX(p) for all X . Thus, we define the equivalence relation
p ≊ p′ ⇐⇒ SX(p) = SX(p′), for all X ∈ Xn. (11)

Intuitively, two vectors p, p′ are equivalent under the above relation if they select the same tokens for
all the sequences. Given a vector p◦, we denote by Pp◦ its equivalence class, and we define the set of
max-margin directions among all vectors in Pp◦ as

P∗(p◦) =

{
p̂

∥p̂∥2
: p̂ = argmin

p∈Pp◦

∥p∥2

s.t. p⊤(Es − Es′) ≥ 1, ∀s ∈ SX(Pp◦), ∀s′ ∈ SX(Pp◦), ∀X ∈ Xn

}
.

(12)

We first show in Lemma 4.2 (proved in Appendix C.2) that the max-margin problem in (12) always
has a unique solution, i.e., P∗(p◦) is always a singleton. Thus, later on, we will use p̂(p◦) as the
solution to (12), and p∗(p◦) =

p̂(p◦)
∥p̂(p◦)∥2

. We drop the dependency on p◦ when there is no confusion.

Lemma 4.2. For any p◦ ̸= 0, the max margin problem in (12) has a unique solution denoted as p̂.

Implicit bias of gradient flow. While Lemma 4.1 holds for any dataset, we need an extra assumption
on the data to analyze the gradient flow, due to the complex loss landscape caused by softmax attention.
Assumption 1. Each sequence in Xn contains either a single completely positive token or a single
completely negative token, and all remaining tokens are irrelevant.

Assumption 1 implies that all sequences in the dataset contain precisely one relevant token, and the
relevant token also aligns with the label. We remark that datasets containing only one relevant token
have been also considered in prior work, see [36, Theorem 1] and [25]. We further denote by Sc the
set containing all completely positive and all completely negative tokens.
Theorem 4.3. Under Assumption 1, for any δ > 0, let

η0 ≥ 4n2T 2, d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, (88η20 + 111η0 + 2)8, |S|+ 3

}
. (13)

Let pt be the solution of the gradient flow (9). Then, with probability at least 1 − δ, we have that
∥pt∥2 → ∞. Furthermore, assuming that p∞ := limt→+∞

pt

∥pt∥2
exists, the limiting direction p∞

satisfies the following properties with probability at least 1− δ:
2In Appendix F.3, we provide additional numerical evidence that learning all embeddings is essential. This

is corroborated by the fact that the more restrictive one-layer model (1), with untrained orthogonal token
embeddings, fails to catch up with its more flexible counterpart.
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1. p∞ selects all completely positive and completely negative tokens, i.e., Sc ⊆
⋃

X SX(p∞).

2. p∞ is the max-margin direction for such a selection, i.e., p∞ = p∗(p∞).

Theorem 4.3 shows that, if pt converges in direction, it must converge to the max-margin direction
that selects all the completely positive/negative token. A sketch of the argument is given below and
the complete proof is in Appendix C.3.

Proof sketch. We prove the three statements separately. First, we show that ∥pt∥2 → ∞ (Lemma
C.1). To do so, we explicitly construct a vector p̂ such that p̂∇pL(E1, p) < 0 for all p. This means
that there is no stationary point with finite norm, which implies that the norm of the vector obtained
via gradient flow diverges.

Next, we show that, if the directional limit p∞ exists, then it must select all the important tokens
(Lemma C.2). To do so, we note that, after one step, the model approximately selects the important
tokens. This implies that pt selects important tokens for all t, as gradient flow cannot increase the
loss.

Finally, we show that p∞ is the max-margin solution of a feasible selection (Lemma C.6). To do
so, we assume by contradiction that the directional limit is any vector p′ that is not the max-margin
solution of a feasible selection. Then under this assumption, we prove that limt→∞

pt

∥pt∥2
= p∗(p

′),

which is in fact the solution of (12), thus giving a contradiction.

Before proceeding with the characterization of the max-margin solution, we highlight some differ-
ences with respect to the related works [37] and [40] whose setup is similar to ours. Theorem 3 in [37]
shows that gradient descent on p converges to a locally optimal max-margin solution when initialized
in a regime close enough to such solution, and Theorem 4 in [37] shows that the regularization
path can only converge to locally max-margin solutions. However, these results do not exclude the
possibility of the gradient flow converging to directions that are not locally optimal and not the
max-margin direction. In contrast, we characterize all possible directions the gradient flow converges
to, showing that these are max-margin directions that select all completely positive/negative tokens.
Furthermore, we do so neither starting from an initialization that is close enough to such solution,
nor with only one sequence in the dataset. This requires a different proof strategy as compared to
[37]. Finally, [37] does not consider any connections between the directional convergence and the
importance of the tokens, which, in contrast, is our main focus.

Let us now comment on the comparison with [40]. There are two key assumptions crucially needed
in [40] that do not apply to our case. More precisely, [40, Assumption 1] requires that all the tokens
in non-relevant positions are nearly orthogonal to each other, which is critical in their proof. This is
not true in our case, since all the irrelevant tokens appear at least in two sequences (otherwise, the
token would have non-zero average signed frequency). Thus, the global convergence results in [40]
cannot be applied. Furthermore, [40, Assumption 2] requires all the irrelevant tokens in the sequence
to have exactly the same score γs = yE⊤

s v. This assumption leads to the fact that for each sequence,
only the term that involves the relevant tokens contributes to the directional gradient. In our setting,
even though the score differences between different irrelevant tokens are of order 1/

√
d, these errors

matter when the gradient norm is diverging to infinity, and the analysis in [40] cannot be applied.

Characterization of the max-margin solution. Theorem 4.3 gives that, if gradient flow converges
in direction, the limiting direction is the max-margin one that selects all important tokens in each
sentence. However, this does not exclude a-priori the possibility that gradient flow also selects some
irrelevant tokens. To address this point, we now establish if and how many irrelevant tokens can
be selected: in general, it is not possible to select all irrelevant tokens (Lemma 4.4) and, under an
additional assumption, no irrelevant token is selected (Lemma 4.5).

Lemma 4.4. Suppose p̂ selects all the tokens, i.e., SX(p̂) = S. Then, p∞ ̸= p̂.

Proof. If p̂ selects all the tokens, then p̂⊤Exi
= p̂⊤Exj

for all xi, xj ∈ X and for all X ∈ Xn. Thus,
by Lemma A.2, p̂⊤∇pL(E, p) = 0 for any p, which gives the desired result.

Lemma 4.4 shows that the directional limit p∞ (when it exists) cannot select all tokens and, as it
selects all important ones, it must be biased towards them. As an application, consider the case where
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there is only one irrelevant token in the vocabulary. Then, the combination of Theorem 4.3 and
Lemma 4.4 gives that only the completely positive/negative tokens are selected by gradient flow.

Going beyond the case where there is a single irrelevant token, the result below provides a sufficient
condition for gradient flow to select only important tokens.
Lemma 4.5. Under Assumption 1, for any δ > 0, assume that (13) holds. Let p̂ be the solution of the
max-margin problem (12) that only selects the completely positive/negative tokens, i.e.,

p̂ =argmin
p

∥p∥2, s.t. p⊤(EsX∗
− Es) ≥ 1, ∀s ∈ X \ {sX∗ }, ∀X ∈ Xn,

where sX∗ denotes the unique completely positive/negative token in the sequence X . Assume that
p∞ := limt→∞

pt

∥pt∥2
exists and that, for any p̂′ solving (12) with a different selection, ∥p̂∥2 <

(1− µ)∥p̂′∥2 for some constant µ that does not depend d. Then, by further taking

d ≥


(
2816Tn2(1 + 2η0)

µ

)4

,

(
2η0

(
n

√
2 log

|S|2
δ

+ 44n

))4
 ,

we have that p∞ = p̂
∥p̂∥2

with probability at least 1− δ.

The proof of Lemma 4.5 is deferred to Appendix C.4. The sufficient condition of the result above
requires the max-margin direction that does not select irrelevant tokens to have a larger margin
than any other max-margin solution associated to a different token selection. We expect this to be
the case e.g. for datasets where all the completely positive/negative tokens have the same αs. In
fact, given the structure of the context embeddings in (6), the max-margin solution p̂ is expected
to satisfy p̂⊤v ≈ 0, p̂⊤Es ≈ 1, p̂⊤Es′ ≈ 0 for all s ∈ SX(p̂) and s′ ∈ SX(p̂). Since the token
embeddings at initialization are approximately orthogonal to each other, p̂ ≈

∑
s∈SX(p) E

0
s , meaning

that ∥p̂∥2 ≈
√
|SX(p)|, which implies that the sufficient condition holds.

4.3 Additional generalizations of the theoretical results

Multiclass classification. Consider K-class classification, let vk be the k-th classifier and perform
one step of gradient descent on the token embeddings. Then, after some manipulations deferred to
Appendix E, we have

E⊤
s vk ≈ η0

T
Ê

[
T∑

i=1

K − 1

K
1y=ek,xi=s −

1

K
1y ̸=ek,xi=s

]
, (14)

where by using ≈, we hide quantities that have a vanishing order in d. The RHS of (14) is a
generalization of the average signed frequency that indicates the importance of a token with respect
to class k. In particular, if we divide the RHS by (K − 1), the first term is the co-occurrence of token
s with label k and the second term is the average co-occurrence of token s with other labels. Thus,
intuitively, if a token occurs much more frequently with label k than other labels, this token is more
important w.r.t. label k and the correlation with vk is larger. We also conduct experiments on the
Yelp datasets with 4 classes (see Appendix F.5), and we find that E⊤

s k is still increasing with respect
to the importance of the token for each class, as for binary classification.

Training v and EX . If we train v but fix the context embeddings, the implicit bias of p is not
affected in the limit. To see this, we compute

−∇vL(p, v) = Ê

[
yg(X, y)

T∑
i=1

qi(X)Exi

]
≈ Ê

yg(X, y)
∑

xi∈SX(p)

qi(X)Exi

 .

Note that, if p converges in direction, it must select all relevant tokens. This means that yE⊤
s v

will be increasing if s is relevant, and will not move a lot if s is irrelevant, since it appears exactly
the same number of times in positive and negative sequences. While we do not have a theoretical
characterization for jointly training E, p, v, in our experiments the token embeddings E are trained
simultaneously with p. Thus, we expect the token selection to be the same as if we only trained p.
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Figure 2: Dot-product of token embeddings with ⟨cls⟩ embedding p (left) and regression coefficients
v (right), as a function of the token-wise difference in posterior probabilities for synthetic data
sampled according to (16). We consider the one-layer attention model in (1) with all parameters
trained until convergence. The point cloud around zero corresponds to the tokens in the irrelevant set.

5 Numerical experiments
To support our theoretical findings, we showcase the correlation of the embeddings with the ⟨cls⟩
embedding p and the output vector v, having trained all the parameters with gradient descent until
convergence. We consider different datasets (synthetic data in Figure 2; IMDB/Yelp datasets in
Figures 1 and 3) and different architectures (one-layer model (1) in Figures 2 and 3; two-layer model
(18) in Figure 1). Taken together, the experiments display an excellent agreement with our theory
going beyond the one-layer architecture (1) and also beyond the requirements on the data-generating
process. Specifically, the trained embeddings capture the importance of the corresponding tokens: the
dot-product with v is proportional to how frequently the token appears in positive sequences rather
than in negative ones, and the dot-product with p is proportional to the modulus of such frequency.
We detail below the experimental design.

Synthetic data. Let us define the data-generating process for the synthetic experiments in Figure 2.
The data is generated according to a K-level model. Namely, the vocabulary set S is partitioned as

S = S̃ ∪
{
S−1
k

}K
k=1

∪
{
S+1
k

}K
k=1

. (15)

Here, S̃ contains irrelevant tokens appearing in both positive and negative contexts with equal
probability, while S+1

k and S−1
k (for k ∈ {1, . . . ,K}) contain tokens appearing mostly in positive

and negative contexts, respectively. Formally, define the importance levels δ̃, δ1, . . . , δK > 0. Then,
given the sequence label y ∈ {−1,+1} and s ∈ S, we sample the tokens from the vocabulary as

p(s|y) =


1−δ̃
|S̃| , s ∈ S̃,
δ̃(1−δk)∑K
k=1 |Sy

k |
, s ∈ Sy

k ,

δ̃δk∑K
k=1 |S¬y

k | , s ∈ S¬y
k ,

(16)

where ¬ denotes the binary inversion, i.e., ¬(+1) = −1 and ¬(−1) = +1. The law (16) implies the
following posterior distribution:

p(y|s) =


1/2, s ∈ S̃,
1− δk, s ∈ Sy

k ,

δk, s ∈ S¬y
k .

(17)

From (17), it is clear that (i) S̃ contains irrelevant tokens as the posterior is uniform, and (ii) δk
quantifies the importance of the tokens in S±1

k by skewing the posterior to be (δk, 1 − δk). For
the experiments in Figure 2, we select the following hyper-parameters: |S| = 2048, K = 8 and
sequence length T = 256; |S+1

k | = |S−1
k | with |S+1

k | = 4 + 2k−1, and |S̃| = 964; δ̃ = 0.05 and
{δk}Kk=1 = {0.45, 0.35, 0.3, 0.25, 0.2, 0.1, 0.05, 0.02}.

Figure 2 shows a clear separation between positive and negative tokens (right plot with the dot-product
⟨Exi

, v⟩), and the selection mechanism (⟨cls⟩ token) assigns high weights to tokens that have larger
importance δk (left plot with the dot-product ⟨Exi

, p⟩).
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Figure 3: Dot-product of token embeddings with ⟨cls⟩ embedding p and regression coefficients v,
as a function of the token-wise difference in posterior for IMDB dataset (top row) and Yelp dataset
(bottom row). We consider the one-layer attention model in (1) with all parameters trained until
convergence.

IMDB and Yelp datasets. The IMDB dataset3 consists of 50000 reviews of average length 239
words per review, associated to either a positive or a negative sentiment. Yelp reviews4 provide
a much larger selection. To align the data size and sequence length with the IMDB dataset, we
randomly subsample a portion of the Yelp dataset constrained on the sequence length, i.e., we select
reviews which have at least 1000 and not more than 1500 characters. In addition, Yelp reviews
provide a five-star ranking, which we convert to the binary sentiment based on the following rule:
1/2 stars reviews are assigned label −1; 4/5 star reviews are assigned label +1; neutral reviews, i.e.,
3-star score, are removed. We adhere to a typical preprocessing pipeline for both datasets: we start by
cleaning the data from punctuation symbols and omitting the stop-words, followed by an application
of stemming; and we use the Bert tokenizer from Hugging Face5 to tokenize sequences. Tokens that
appear less than 50 times are purged.

The numerical simulations for both datasets are reported in Figure 3, which displays a phenomenology
similar to that obtained for synthetic data in Figure 2. We have also performed an additional
experiment providing evidence that the trained embeddings indeed improve performance on the
classification tasks. In particular, we have fixed context embeddings (randomly initialized) and we
have only trained the ⟨cls⟩ token embedding and the classifier weights. The resulting test accuracy
is around 72% with test error around 0.6, while for the original baseline the test accuracy is around
95% with test error around 0.1. This clearly indicates the importance of training the embeddings.

Two-layer model. We also consider the following two-layer model:

E′
X = LayerNorm(Softmax(EXE⊤

X)EX +EX), f(X; p,E) = Softmax(p⊤(E′
X)⊤)E′

Xv,
(18)

which includes both a skip connection and the layer-norm. We note that, for both IMDB and Yelp
data, the model in (18) achieves significantly smaller loss values at convergence (of the order of 10−5,
in contrast to the order of 10−1 achieved by the model in (1)). However, even if this model is more

3https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
4https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
5https://huggingface.co/google-bert/bert-base-uncased
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complex than the one analyzed in Section 4, the results in Figure 1 are still remarkably similar to
those in Figures 2 and 3.

Finally, we note that all plots consider on the x-axis the difference in posterior probabilities

p(1|Exi)− p(0|Exi) =

∑
(X,y)∈D y

∑T
i=1 1xi=s∑

(X,y)∈D
∑T

i=1 1xi=s

(19)

in place of the quantity αs defined in (3). In fact, while the quantity in (3) appears naturally from
the analysis of gradient descent, the difference in posterior probabilities provides better visuals for
real data (IMDB and Yelp). The difference between (3) and (19) lies in the normalization used:
the posterior difference in (19) is the discrepancy between counts of the token xi in positive and
negative sentences normalized by the total number of occurrences of xi, while the quantity in (19)
normalizes the discrepancy by the total number of tokens nT in the datasets. For synthetic data
sampled according to (16), due to the uniform nature of the sampling procedure, all tokens appear
the same number of times. Thus, both quantities are the same up to a fixed scaling and, thus, they
are equivalent. Additional details on the hyperparameter settings for all the experimental setups are
contained in Appendix D.

Additional numerical results. In Appendix F.1, we consider IMDB and Yelp datasets, train one
full-gradient step on the embeddings (as in the theory) and then fix the context embeddings only
training the ⟨cls⟩ embedding as well as the output vector. As a result, the average standard deviation
over the bins is reduced by roughly 8 times for the inner product with v and by roughly 6 times for
the inner product with p, compared to training all context embeddings until convergence. This gives
evidence that the first step of gradient descent aligns the model with the first-order statistics of the
tokens. With more training, the alignment weakens, i.e., the standard deviation grows. This is due to
the fact that the dataset also contains higher-order statistics that an optimal classifier must capture;
these emerge in the parameters only after additional training.

We have then performed several additional experiments to establish whether the conclusions from
our theoretical analysis continue to hold in more elaborate predictive models. In Appendix F.2, we
show that the presence of the MLP layer does not qualitatively change the token selection mechanism
(overlap with p). Nevertheless, the monotonic behavior of ⟨Exi

, v⟩ becomes less evident. In Appendix
F.4, we inspect two-layer model (18) with key-query matrices W (1)

KQ and W
(2)
KQ in place for both layers.

We identify similar trends in overlaps with the regression vector v and the ⟨cls⟩ token. However, the
latter takes a slightly modified form. In particular, instead of correlating with ⟨Exi , p⟩, the correct
quantity to access in this case is p⊤W (2)

KQExi
. In Appendix F.5, we observe a similar phenomenology

in the multi-class case for overlaps with each class regression vector vk and a certain token-wise
“one-versus-all” statistic.

6 Conclusions and limitations

In this paper, we study how the embedding vectors trained via gradient methods capture the importance
of different tokens in the dataset. We theoretically characterize (i) the context embedding Es after
one gradient step, and (ii) the implicit bias of the ⟨cls⟩ embedding p after training with gradient flow
until convergence. We conduct experiments on synthetic and realistic datasets which demonstrate the
generality of our findings.

A limitation of our work is that the characterization we put forward is only in terms of the first-order
statistics of the tokens (i.e., the frequencies with which they occur in the dataset), and it does not
describe how the model learns the causal structure between tokens. In practice, both first-order
statistics and causal structure are expected to be crucial for the model to “understand” a text. While
our theory assumes a one-layer attention model, the numerical results of Figure 1 suggests that a
similar qualitative picture holds more generally. This prompts us to conjecture that in deeper attention
models with multiple heads, the earlier layers form induction heads [28] which learn the causal
structure between tokens, and later layers perform classification based on the empirical statistics of
the resulting k-tuples. We regard this investigation as an exciting future direction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state the scope of the results in the abstract and introduction part.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We state the assumptions in Assumption 1, and for each Theorem and Lemma,
we state the assumptions under which it holds.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: We state all the training hyperparameters in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We do not find it necessary to release the code. Our experiments concern the
training of rather standard architectures and they can be readily reproduced without needing
to upload the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all hyperparameters for the experiments in D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We give the scatterplots corresponding to all embeddings (together with the
average correlations).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]
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Justification: Our experiments are on shallow attention layers, and they do not require a
large amount of computational resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and conform to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not contain safety issues.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide the link of the datasets we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core results in this paper does not involve LLMs as any important, original,
or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Additional notation. Throughout the appendices, to simplify the notation, we write

ai(X) := p⊤Exi
, qi(X) :=

exp(ai(X))∑T
j=1 exp(aj(X))

, (20)

so that f(X; p,E) =
∑T

i=1 qi(X)E⊤
xi
v. We will drop the dependence on X in ai(X), qi(X) when

there is no confusion. We also denote

γi(X, y) := yE⊤
xi
v, (21)

dropping again the dependency on X, y when there is no confusion. Finally, we define

g(X, y) :=
1

1 + exp(yf(X; p,E))
. (22)

Properties of initialization. By standard concentration inequalities, with probability at least 1− δ,
at initialization we have

max

{
max

s ̸=s′∈S
|E⊤

s Es′ |,max
s∈S

|E⊤
s v|,max

s∈S
|E⊤

s p|, |p⊤v|
}

≤ 1√
d

√
2 log

|S|2
δ

,

max

{
max
s∈S

∥Es∥2, ∥p∥2
}

≤ 2, min
s∈S

∥Es∥2 ≥ 1

2
.

(23)

For all results of the paper holding with probability at least 1− δ, we will be implicitly conditioning
on (23).

A Technical lemmas

Lemma A.1. The gradients of the empirical loss are given by

∇Es
L(E, p) = −Ê

yg(X, y)

 T∑
i=1

(
∑
j ̸=i

(1xi=s − 1xj=s)qi(X)qj(X))E⊤
xi
vp+

T∑
i=1

1xi=sqiv

 ,

∇pL(E, p) = −Ê

yg(X, y)

 T∑
i=1

(
∑
j ̸=i

qi(X)qj(X)(Exi
− Exj

))E⊤
xi
v

 ,

where we have defined g(X, y) = 1
1+exp(yf(X)) .

Proof. We start by taking the gradient of qi as

∇Esqi(X) =
1xi=s exp

(
E⊤

xi
p
)
p
(∑T

j=1 exp
(
E⊤

xj
p
))

−
(∑T

j=1 1xj=s exp
(
E⊤

xj
p
)
p
)
exp
(
E⊤

xi
p
)

(∑T
j=1 exp

(
E⊤

xj
p
))2

=
p
∑T

j=1(1xi=s − 1xj=s) exp
(
E⊤

xj
p
)
exp

(
E⊤

xi
p
)

(∑T
j=1 exp

(
E⊤

xj
p
))2

= p

 T∑
j=1

(1xi=s − 1xj=s)qiqj


= p

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

 ,

20



∇pqi(X) =

(
exp
(
E⊤

xi
p
)
Exi

) (∑T
j=1 exp

(
E⊤

xj
p
))

−
∑T

j=1 exp
(
E⊤

xj
p
)
Exj

exp
(
E⊤

xi
p
)

(∑T
j=1 exp

(
E⊤

xj
p
))2

=

∑T
j=1 exp

(
E⊤

xj
p
)
exp
(
E⊤

xi
p
)
(Exi

− Exj
)(∑T

j=1 exp
(
E⊤

xj
p
))2

=

T∑
j=1

qiqj(Exi
− Exj

)

=
∑
j ̸=i

qiqj(Exi
− Exj

).

Next, we look at the gradient of f(X; p,E):

∇Es
f(X; p,E) =

T∑
i=1

(∇Es
qi)E

⊤
xi
v +

T∑
i=1

1xi=sqiv

=

T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vp+

T∑
i=1

1xi=sqiv,

∇pf(X; p,E) =

T∑
i=1

∑
j ̸=i

qiqj(Exi − Exj )

E⊤
xi
v.

This allows us to conclude that

∇Es
L(E, p) = Ê

[
−y

1 + exp(yf(X; p,E))
∇Es

f(X; p,E)

]

= Ê

[
−y

1 + exp(yf(X; p,E))

( T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qi(X)qj(X)

E⊤
xi
vp

+

T∑
i=1

1xi=sqi(X)v

)]
,

∇pL(E, p) = Ê
[

−y

1 + exp(yf(X; p,E))
∇pf(X; p,E)

]

= Ê

 −y

1 + exp(yf(X; p,E))

 T∑
i=1

∑
j ̸=i

qi(X)qj(X)(Exi − Exj )

E⊤
xi
v

 ,

thus concluding the proof.

Lemma A.2. For any vector p̂, we have

−p̂⊤∇pL(E, p) = Ê

g(X, y)

 T∑
i=1

∑
j>i

(âi(X)− âj(X))qi(X)qj(X)(γi(X, y)− γj(X, y))

 ,

where âi = p̂⊤Exi
for all i ∈ {1, . . . , T}.

Proof. From Lemma A.1, we have

∇pL(E, p) = −Ê

yg(X, y)

 T∑
i=1

∑
j ̸=i

qi(X)qj(X)(Exi
− Exj

)

E⊤
xi
v


= −Ê

g(X, y)

 T∑
i=1

∑
j ̸=i

qi(X)qj(X)(Exi
− Exj

)

 γi(X, y)


= −Ê

[
g(X, y)E⊤

X

(
Diag(qX)− qXq⊤X

)
γ(X, y)

]
,
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where qX = [q1(X), . . . , qT (X)]⊤, γ(X, y) = [γ1(X, y), . . . γT (X, y)]⊤ and Diag(qX) denotes the
diagonal matrix with [Diag(qX)]i,i = qi(X).

Thus, letting â = [â1, . . . , âT ] ∈ RT with âi = p̂⊤Exi
, we have

−p̂⊤∇pL(E, p) = Ê
[
g(X, y)p̂⊤E⊤

X(Diag(qX)− qXq⊤X)γ(X, y)
]

= Ê
[
g(X, y)â⊤(Diag(qX)− qXq⊤X)γ(X, y)

]
= Ê

g(X, y)

 T∑
i=1

âiqi(1− qi)γi −
T∑

i=1

∑
j ̸=i

âiqiqjγj


= Ê

g(X, y)

 T∑
i=1

∑
j ̸=i

âiqiqj(γi − γj)

 (use 1− qi =
∑
j ̸=i

qj)

= Ê

g(X, y)

1

2

T∑
i=1

∑
j ̸=i

âiqiqj(γi − γj) +
1

2

T∑
j=1

∑
i ̸=j

âjqiqj(γj − γi)


= Ê

g(X, y)

1

2

T∑
i=1

∑
j ̸=i

(âi − âj)qiqj(γi − γj)


= Ê

g(X, y)

 T∑
i=1

∑
j>i

(âi − âj)qiqj(γi − γj)

 .

Lemma A.3 (Convergence lemma). Let ∥pt∥2 → ∞ and suppose there exists p̂ such that, for any
ϵ > 0, there is a t̄(ϵ) ensuring

− p̂⊤

∥p̂∥2
∇pL(E, pt) ≥ −(1− ϵ)

p⊤t
∥pt∥2

∇pL(E, pt), for all t ≥ t̄(ϵ). (24)

Then, if limt→∞
pt

∥pt∥2
exists, we have

lim
t→∞

pt
∥pt∥2

=
p̂

∥p̂∥2
.

Proof. By the definition of the gradient flow, (24) is equivalent to

p̂⊤

∥p̂∥2
dpt
dt

≥ (1− ϵ)
p⊤t

∥pt∥2
dpt
dt

.

We note that
p⊤t

∥pt∥2
dpt
dt

=
d

dt
∥pt∥2.

Thus, by integrating both sides from [t̄(ϵ), t], we have:

p̂⊤

∥p̂∥2
(pt − pt̄(ϵ)) ≥ (1− ϵ)(∥pt∥2 − ∥pt̄(ϵ)∥2),

which gives
p̂⊤pt

∥p̂∥2∥pt∥2
≥ (1− ϵ)− (1− ϵ)

∥pt̄(ϵ)∥2
∥pt∥2

+
p̂⊤pt̄(ϵ)

∥p̂∥2∥pt∥2
.

Since pt̄(ϵ), p̂ have finite norm for fixed ϵ, by taking the limit on both sides, we have

lim inf
t→∞

p̂⊤pt
∥p̂∥2∥pt∥2

≥ 1− ϵ.
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As we assume that limt→∞
pt

∥pt∥2
exist and the above argument holds for any ϵ, we conclude

lim
t→∞

pt
∥pt∥2

=
p̂

∥p̂∥2
.

Lemma A.4. Given a sequence X , model parameters E, p, v, and indices i∗, j s.t. xi∗ ∈ SX(p), xj ∈
X \ SX(p), the following results hold.

1. We have
1

T
≤ qi∗ ≤ 1.

2. If there exist τ > 0 such that p⊤(Exi∗
− Exj

) ≥ τ for all xi∗ ∈ SX(p), then we have

qj ≤
1

1 + exp(τ)
.

3. If there exist τ > 0 such that p⊤(Exi∗
− Exj

) ≤ τ for all xi∗ ∈ SX(p), then we have

qj ≥
1

T exp(τ)
.

Proof. The upper bound on qi∗ is trivial. For the lower bound:

qi∗ =
exp
(
p⊤Exi∗

)
exp
(
p⊤Exi∗

)
+
∑

j ̸=i∗
exp
(
p⊤Exj

)
≥

exp
(
p⊤Exi∗

)
T exp

(
p⊤Exi∗

) =
1

T
.

If there exists τ > 0 such that p⊤(Exi∗
− Exj ) ≥ τ for all xi ∈ SX(p), then we have

qj =
1

1 +
∑

i ̸=j exp
(
p⊤(Exi

− Exj
)
)

≤ 1

1 + exp
(
p⊤(Exi∗

− Exj
)
)

≤ 1

1 + exp(τ)
.

If there exists τ > 0 such that p⊤(Exi∗
− Exj

) ≤ τ for all xi∗ ∈ SX(p), then we have

qi∗ =
1

1 +
∑

i ̸=j exp
(
p⊤(Exi

− Exj
)
)

≥ 1

1 + (T − 1) exp
(
p⊤(Exi∗

− Exj )
) (by definition of SX(p))

≥ 1

T exp(τ)
.

B Properties after the first gradient step

Lemma B.1 (Boundedness of the embeddings). For any δ > 0, let

d ≥ max

{
256,

(
2 log

|S|2

δ

)2
}
,

then with probability at least 1− δ,

max
s∈S

∥E1
s∥2 ≤ 2(1 + 2η0), ∥p1∥2 ≤ 2 + 11η0d

− 1
4 .
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Proof. By using (23), we have that

max
s∈S

∥E1
s∥2 ≤ max

s

(
∥E0

s∥2 +
η0
2
∥v∥2 + ∥errs∥2

)
≤ max

s∈S

(
2 +

η0
2

+ 11η0d
− 1

4

)
≤ 2 + 4η0,

and that
∥p1∥2 ≤ ∥p0∥2 + ∥errp∥2 ≤ 2 + 11η0d

− 1
4 . (25)

Lemma B.2 (Upper bound on the loss). For any δ > 0, let

d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, (88η20 + 111η0 + 2)8

}
,

then with probability at least 1− δ,

L(E1, p1) ≤ Ê

[
log

(
1 + exp

(
− 1

T

T∑
i=1

η0
2
yαxi

+
1

22η0

))]
.

Proof. We first lower bound yf(X; p,E) for each pair X, y. After the first step, we have

max
s,s′

|(p1)⊤(E1
s − E1

s′)| = max
s,s′

∣∣(p0)⊤(E0
s − E0

s′) +
η0
2
(αs − αs′)(p

0)⊤v

+ err⊤p (E
1
s − E1

s′) + (errs − errs′)⊤p1
∣∣.

We bound each term separately:

max
s,s′

|(p0)⊤(E0
s − E0

s′)| ≤ 2max
s

|(p0)⊤E0
s | ≤ 2d−

1
4 ,

η0
2
(αs − αs′)|(p0)⊤v| ≤ η0|(p0)⊤v| ≤ η0d

− 1
4 ,

|err⊤p (E
1
s − E1

s′)| ≤ ∥err⊤p ∥2∥E1
s − E1

s′∥2 ≤ 44η0d
− 1

4 (1 + 2η0),

|(errs − errs′)⊤p1| ≤ 2∥p1∥2 max
s

∥errs∥2 ≤ 22η0d
− 1

4

(
2 + 11η0d

− 1
4

)
,

where we have used (23). By picking d ≥ (88η20+111η0+2)8, we get maxs,s′ |(p1)⊤(E1
s −E1

s′)| ≤
d−

1
8 , which implies that, for any X and any i ∈ {1, . . . , T},

1

T
− 2d−

1
8

T
≤ qi(X) ≤ 1

T
+

2d−
1
8

T
.

Thus, we lower bound yf(X; p,E) for each pair (X, y) as

yf(X; p,E) =

T∑
i=1

qi(X)γi(X)

≥ 1

T

T∑
i=1

η0
2
yαxi −

T∑
i=1

2d−
1
8

T

η0
2
αxi +

T∑
i=1

yqi(X)v⊤(E0
xi

+ errxi)

≥ 1

T

T∑
i=1

η0
2
yαxi − d−

1
8 η0 − (1 + 2d−

1
8 )v⊤(E0

xi
+ errxi)

≥ 1

T

T∑
i=1

η0
2
yαxi − d−

1
8 η0 − 3(1 + 11η0)d

− 1
4

≥ 1

T

T∑
i=1

η0
2
yαxi

− 1

22η0
,
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which allows us to conclude that

L(E1, p1) = Ê [log(1 + exp(−yf(X; p,E)))]

≤ Ê

[
log

(
1 + exp

(
− 1

T

T∑
i=1

η0
2
yαxi +

1

22η0

))]
.

(26)

C Proofs for Section 4

C.1 Proof of Lemma 4.1

For simplicity, in the proof we drop the time dependency in all the variables. By picking

d ≥
(
2 log

|S|2

δ

)2

,

from (23) we have

max

{
max
s∈S

|E⊤
s v|,max

s∈S
|E⊤

s p|, |p⊤v|
}

≤ d−
1
4 ,

max

{
max
s∈S

∥Es∥2, ∥p∥2
}

≤ 2.

Thus, at initialization, we have that, for all s,

exp
(
−d−

1
4

)
≤ exp

(
p⊤Es

)
≤ exp

(
d−

1
4

)
,

which implies that, for any sequence X and any position i,

1

T + 2T
(
d−

1
4

) ≤ 1

1 + (T − 1) exp
(
2d−

1
4

) ≤ qi(X) ≤ 1

1 + (T − 1) exp
(
−2d−

1
4

) ≤ 1

T − 2T
(
d−

1
4

) ,
where we use the fact that for z ∈ [−1, 1], 1− |z| ≤ exp(z) ≤ 1 + |z|.
Furthermore, for d > 256 and for any sequence (X, y), we have

1

T
− 4d−

1
4

T
≤ qi(X) ≤ 1

T
+

4d−
1
4

T
,

and

−2d−
1
4 ≤ −Td−

1
4

T − 2Td−
1
4

≤ yf(X; p,E) ≤ Td−
1
4

T − 2Td−
1
4

≤ 2d−
1
4 .

Then,

g(X, y) ≤ 1

1 + exp
(
−2d−

1
4

) ≤ 1

2− 2d−
1
4

≤ 1

2
+ d−

1
4 ,

and similarly

g(X, y) ≥ 1

2
− d−

1
4 .
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Now we look at the gradient update of the first step. By Lemma A.1, we have

−∇Es
L(E, p) = Ê

yg(X, y)

 T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vp+

T∑
i=1

1xi=sqiv


=

1

2T
Ê

[
y

T∑
i=1

1xi=s

]
v

+
1

2
Ê

[
y

T∑
i=1

1xi=s

(
qi −

1

T

)]
v

+ Ê

yg(X, y)

 T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vp


+ Ê

[
y

(
g(X, y)− 1

2

) T∑
i=1

1xi=sqiv

]
,

−∇pL(E, p) = Ê

yg(X, y)

 T∑
i=1

∑
j ̸=i

qiqj(Exi
− Exj

)E⊤
xi
v

 .

We note that
1

2T
Ê

[
y

T∑
i=1

1xi=s

]
v =

1

2
αsv,

and we bound the remaining error terms.

We have that ∥∥∥∥∥12 Ê
[
y

T∑
i=1

1xi=s

(
qi −

1

T

)]
v

∥∥∥∥∥
2

≤ d−
1
4 ,

and∥∥∥∥∥Ê
[
yg(X, y)

 T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vp


+ y

(
g(X, y)− 1

2

) T∑
i=1

1xi=sqiv

]∥∥∥∥∥
2

≤ 10d−
1
4 .

Furthermore, we also have that
∥∇pL(E, p)∥2 ≤ 8d−

1
4 .

Thus, the desired claim follows.

C.2 Proof of Lemma 4.2

Proof. We first show that, if (12) is feasible, then the solution is unique. Indeed, assume by con-
tradiction that p1, p2 are two different solutions of (12). Clearly, p1 and p2 have the same norm, so

p⊤
1 p2

∥p1∥2∥p2∥2
̸= 1. Then, any convex combination of p1, p2 gives a feasible solution with a strictly

smaller norm, which is a contradiction.

Next, we show that (12) is always feasible. To see this, by definition, there exists some τ such that

p⊤◦ (Es − Es′) ≥ τ, ∀s ∈ SX(p◦), ∀s′ ∈ SX(p◦), ∀X ∈ Xn.

Then, p◦
τ is a feasible solution of (12) which concludes the proof.
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C.3 Proof of Theorem 4.3

We prove each part separately. We first show that limt→∞ ∥pt∥2 = ∞.

Lemma C.1. Under Assumption 1, for any δ > 0, by picking

d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, |S|+ 3

}
,

with probability at least 1− δ, we have limt→∞ ∥pt∥2 = ∞.

Proof. It is sufficient to show that there exists a non-zero finite-norm p̂, such that for any finite norm
p,

p̂⊤∇pL(E1, p) ̸= 0.

Indeed, the above condition means that there is no stationary point for any finite-norm p. For gradient
flow, we have that

lim
t→∞

∇pL(E1, pt) = 0,

which by contradiction implies the desired result.

Now we construct such p̂. Since d > |S|+ 2, we have that with high-probability E0 is full row rank.
Furthermore, E1 = E0 +∆ and each row of ∆ is in the subspace generated by v and p0. Thus, we
can pick p̂ ⊥ v, p0, so that

E1p̂ = E0p̂.

Furthermore, for any fixed v, p0, let u1, u2 be the orthogonormal basis of span(v, p0). Then, with
probability 1 we also have E0

(
I − u1u

⊤
1 − u2u

⊤
2

)
also has full row rank.

Without loss of generality, let x1 be an important token in a positive sequence Xk, i.e., γ1(Xk) ≥ η0

4nT .
Then, we define a ∈ R|S| such that a1 = 1 and ai = 0 for all i ̸= 1. Let

E0
(
I − u1u

⊤
1 − u2u

⊤
2

)
p̄ = a.

As E0
(
I − u1u

⊤
1 − u2u

⊤
2

)
has full row rank, there exists a non-zero p̄ that solves the above equation.

By letting p̂ =
(
I − u1u

⊤
1 − u2u

⊤
2

)
p̄, we know that p̂ ⊥ v, p0, and E0p̂ = a. By Lemma A.2, we

have that, for any p,

−p̂⊤∇pL(E1, p) = Ê

g(X, y)

 T∑
i=1

∑
j>i

(ai − aj)qiqj(γi − γj)


= g(Xk, yk)

∑
j>1

q1(Xk)qj(Xk)
η0
4nT

> 0,

which concludes the proof.

Next, we show that, if the directional limit exists, then it must select all completely positive/negative
tokens.

Lemma C.2. Under Assumption 1, for any δ > 0, by picking

η0 ≥ 4n2T 2, d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, (88η20 + 111η0 + 2)8

}
,

with probability at least 1− δ, if p∞ = limt→∞
pt

∥pt∥2
exists, then p∞ satisfies

sX∗ ∈ SX(p∞), for all X ∈ Xn,

where sX∗ denotes the unique completely positive/negative token in the sequence X .

27



Proof. We prove the lemma by contradiction. W.l.o.g., assume by contradiction that there exists
X ∈ Xn cointaining the important token x1 s.t. x1 /∈ SX(p∞). We show that there exists t̄ such that,
for all t ≥ t̄,

L(E1, pt) > L(E1, p1),

which contradicts the fact that the gradient flow always decreases the loss.

To see this, we first note that by the definition of SX(p∞), there exists some τ > 0 independent of t
such that

min
j ̸=1

p⊤∞(Ex1
− Exj

) = −τ.

W.l.o.g, we assume that x2 is the token that achieves the minimum.

As limt→∞ ∥pt∥2 = ∞ and limt→∞
pt

∥pt∥2
= p∞, we have that, for any µ > 0, R > 0, there exists a

large enough t̄ such that

∥pt∥2 ≥ 2R,

∥∥∥∥ pt
∥pt∥2

− p∞

∥∥∥∥
2

≤ µ, for all t ≥ t̄.

Thus, we have:

p⊤t
∥pt∥2

(Ex1
− Ex2

) = p⊤∞(Ex1
− Ex2

) +

(
pt

∥pt∥2
− p∞

)⊤

(Ex1
− Ex2

)

≤ −τ + 2µ(4η0 + 2)2,

where we have used the result of Lemma B.1. Thus, by picking µ = τ
4(4η0+2)2 , we have

p⊤t
∥pt∥2

(Ex1
− Ex2

) ≤ −τ

2
,

which implies that
p⊤t (Ex1

− Ex2
) ≤ −τR.

Next, we upper bound yf(X; pt,E
1). We first note that

q1
q2

= exp
(
p⊤t (Ex1

− Ex2
)
)
≤ exp(−τR),

which gives
q1 ≤ exp(−τR).

Note that

yf(X; pt,E
1) =

T∑
i=1

qiγi

≤ exp(−τR)γ1 +max
j ̸=1

γj

≤ exp(−τR)
(η0
2

+ (1 + 11η0)d
− 1

4

)
+ (1 + 11η0)d

− 1
4 .

Thus, by picking R ≥ log d
4τ , we have

yf(X; pt,E
1) ≤

(
3

2
+

23

2
η0

)
d−

1
4 ≤ 3

4
d−

1
8 ,

which implies a lower bound on the loss:

L(E1, pt) ≥
1

n
log
(
1 + exp

(
−yf(X; pt,E

1)
))

≥ 1

n
log

(
1 + exp

(
−3

4
d−

1
8

))
≥ 1

2n
, (27)

where we used that d ≥ 256 in the last passage. Under Assumption 1, by Lemma 4.1, we have that
yαxi

≥ 1/(nT ) if xi is either the completely positive or the completely negative token in X , and
otherwise yαxi = 0. Hence, given that each sequence X contains a completely positive or negative
token, we have that

1

T

T∑
i=1

yαxi
≥ 1

nT 2
.
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As η0 > 4n2T 2 >
√
2nT 2/11, by applying Lemma B.2, we obtain

L(E1, p1) ≤ log
(
1 + exp

(
− η0
4nT 2

))
≤ log(1 + exp(−n)) ≤ exp(−n) <

1

2n
,

which gives a contradiction and concludes the proof.

Finally, we show that for each possible selection, if pt converges in direction, it must converge to the
max-margin solution. In particular, we first prove the following lemma which gives an approximation
to the directional gradient of the locally optimal selection. To do so, we define the secondary selection
set and the locally optimal selection as follows:

Definition C.3. Given a vector p, for each sequence X, denote by S2
X(p) the secondary selection set

given by

S2
X(p) = argmax{s : p⊤Es, s /∈ SX(p)}. (28)

We also denote by S<
X(p) the set of tokens that are not chosen in the first and in the second place, i.e.,

S<
X(p) = X \ (SX(p)

⋃
S2
X(p)). (29)

Definition C.4. Given a vector p, we say that p is locally optimal if for every (X, y) pair, we have∑
i∈SX(p)

(γi(X, y)− γj(X, y)) ≥ µ > 0, for all j ∈ S2
X(p),

for some constant µ that does not depends on p.

In the definition above and for the rest of this appendix, to help readability, we will abuse notation by
letting indices (e.g., i, j above) also denote the corresponding tokens (e.g., xi, xj above).

Lemma C.5. Let p be a unit-norm vector and p = Rp for some positive constant R. Suppose p is
a locally optimal direction as defined in Definition C.4 with some µ that does not depends on R.
Moreover, suppose there exists a constant τ1 that may depend on p, η0, n, T, d but not on R, such
that:

min
X

{p⊤(Es − Es′),∀s ∈ SX(p),∀s′ ∈ S2
X(p)} ≥ τ1,

min
X

{p⊤(Es − Es′),∀s ∈ S2
X(p),∀s′ ∈ S<

X(p)} ≥ τ1.
(30)

Then, for any ϵ > 0, for any p̂ ≊ p such that ∥p̂∥2 does not depend on R and

min
X

{p̂⊤(Es − Es′),∀s ∈ SX(p̂),∀s′ ∈ X \ SX(p̂)} ≥ τ2,

there exists R large enough such that:

− p̂⊤∇L(E1, p) ≤ (1 + ϵ)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, p)

 ,

− p̂⊤∇L(E1, p) ≥ (1− ϵ)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, p)

 ,

where âi(X) = p̂⊤Exi
, âj(X) = p̂⊤Exj

and

hi,j(X, y, p) = g(X, y)qi(X)qj(X)(γi(X, y)− γj(X, y)).
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Proof. By Lemma A.2, we can write the directional gradient as follows:

−p̂⊤∇pL(E1, p) = Ê

 T∑
i=1

∑
j>i

(âi(X)− âj(X))hi,j(X, y, p))


= Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, p)

 (B0)

+ Ê

 ∑
i∈SX(p)

∑
j∈S<

X(p)

(âi(X)− âj(X))hi,j(X, y, p))

 (B1)

+ Ê

 ∑
i∈X\SX(p)

∑
j>i:j∈X\SX(p)

(âi(X)− âj(X))hi,j(X, y, p))

 . (B2)

The rest of the proof is to show that
− C1 exp(−τ1R)(B0) ≤ (B1) ≤ C1 exp(−τ1R)(B0),
− C2 exp(−τ1R)(B0) ≤ (B2) ≤ C2 exp(−τ1R)(B0),

for some C1, C2 > 0 that do not depend on R. Then, by taking R large enough, we obtain the desired
result.

First, we simplify (B0). Note that, for all i, i0 ∈ SX(p), we have that âi(X) = âi0(X). Hence, by
switching the order of i, j, we obtain∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, p) =
∑

j∈S2
X(p)

(âi0(X)− âj(X))
∑

i∈SX(p)

hi,j(X, y, p)

= g(X, y)
∑

j∈S2
X(p)

(âi0(X)− âj(X))qi0(X)qj(X)
∑

i∈SX(p)

(γi(X, y)− γj(X, y)),

for any i0 ∈ SX(p). Since p is a locally optimal direction, we have∑
i∈SX(p)

(γi(X, y)− γj(X, y)) ≥ µ, for all j ∈ S2
X(p).

Now, we compare (B1) and (B0). By the exact same reason above, we can rewrite∑
i∈SX(p)

∑
j∈S<

X(p)

(âi(X)− âj(X))hi,j(X, y, p)

= g(X, y)
∑

j∈S<
X(p)

(âi0(X)− âj(X))qi0(X)qj(X)
∑

i∈SX(p)

(γi(X, y)− γj(X, y)),

for any i0 ∈ SX(p), and we compare to (B0) term-by-term. Namely, for any X , j ∈ S2
X(p) and

k ∈ S<
X(p), we have:

|âi0(X)− âk(X)|
âi0(X)− âj(X)

≤
∥p̂∥2∥Exi0

− Exj
∥2

τ2
≤ 2∥p̂∥2 maxs ∥Es∥2

τ2
:= C3, (31)

qk(X)

qj(X)
= exp(ak(X)− aj(X)) ≤ exp(−τ1R), (32)∑

i∈SX(p) |γi(X, y)− γk(X, y)|∑
i∈SX(p)(γi(X, y)− γj(X, y))

≤ 2T maxs |γs|
µ

≤ 2T maxs ∥Es∥2
µ

:= C4, (33)

which implies that, for any X , j ∈ S2
X(p) and k ∈ S<

X(p),

|âi0(X)− âk(X)|qi0(X)qk(X)
∑

i∈SX(p)

|γi(X, y)− γk(X, y)|

≤ exp(−τ1R)C3C4(âi0(X)− âj(X))qi0(X)qj(X)
∑

i∈SX(p)

(γi(X, y)− γj(X, y)).
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Thus, we get that:
|(B1)| ≤ exp(−τ1R)TC3C4|(B0)|.

Next, we compare (B2) and (B0). Take any i′ ∈ X \ SX(p), k > i′ ∈ X \ SX(p), i0 ∈ SX(p), j ∈
S2
X(p). We compare

(âi′(X)− âk(X))hi′,k(X, y, p)

with each term in (B1). We note that the bounds on âi′ (X)−âk(X)
âi0

(X)−âj(X) and |γi′ (X)−γk(X)|∑
i∈SX (p)(γi(X,y)−γj(X,y)) are

the same as those in (31) and (33). Furthermore,
qi′qk
qi0qj

≤ exp(−τ1R),

which gives that
|(B2)| ≤ T 2 exp(−τ1R)C3C4|(B0)|,

thus concluding the proof.

Lemma C.6. Under Assumption 1, for any δ > 0, by picking

η0 ≥ 4n2T 2, d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, (88η20 + 111η0 + 2)8

}
,

with probability ≥ 1− δ over the initialization, if p∞ = limt→∞
pt

∥pt∥2
exists, then p∞ ∈ P∗(p∞).

Proof. We prove the lemma by contradiction. We first assume that there exists p∞ such that
p∞ /∈ P∗(p∞) and p∞ = limt→∞

pt

∥pt∥2
. Then, we show that there exists p̂ ∈ P∗(p∞) such that, for

any ϵ > 0, there is t̄(ϵ) ensuring

− p̂⊤

∥p̂∥2
∇pL(E1, pt) ≥ −(1− ϵ)

p⊤t
∥pt∥2

∇pL(E1, pt), for all t ≥ t̄(ϵ).

As a consequence, by Lemma A.3, we have that p∞ = p̂
∥p̂∥2

, which gives a contradiction.

For the rest of the proof, we fix any ϵ > 0 and denote R = ∥pt∥2. We define pt =
pt∥p̂∥2

∥pt∥2
, and we

equivalently show that:

−p̂⊤∇pL(E1, pt) ≥ −(1− ϵ)pt∇pL(E1, pt). (34)

To prove this, we first note that since p∞ /∈ P∗(p∞), for all p̂
∥p̂∥2

∈ P∗(p∞), there exists τ0
independent of R such that

∥p̂− p∞∥p̂∥2∥2 ≥ τ0.

Thus, by the definition of P∗(p∞), there exists X0 ⊆ Xn such that for each sequence X ∈ X0, we
can find a pair of indices (i, j) with i ∈ SX(p∞), j ∈ X \ SX(p∞) violating the margin, i.e.,

(∥p̂∥2p∞)⊤(Exi − Exj ) ≤ 1− 3τ,

for some τ < 1
6 that does not depend on R. With a slight abuse of notation, we define τ as

τ =
1

3
min{ min

X∈X0

{1− (∥p̂∥2p∞)⊤(Exi − Exj ), i ∈ SX(p∞), j ∈ S2
X(p∞)},

min
X∈Xn

{(∥p̂∥2p∞)⊤(Exi − Exj ), i ∈ SX(p∞), j ∈ S2
X(p∞)},

min
X∈Xn

{(∥p̂∥2p∞)⊤(Exi − Exj ), i ∈ S2
X(p∞), j ∈ S<

X(p∞)}}.

This means that, for all X ∈ Xn and for all (i, j) pairs such that i ∈ SX(p∞), j ∈ S2
X(p∞), we have

(∥p̂∥2p∞)⊤(Exi
− Exj

) ≥ 3τ ;
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for all pairs (i, j) such that i ∈ S2
X(p∞), j ∈ S<

X(p∞), we have

(∥p̂∥2p∞)⊤(Exi
− Exj

) ≥ 3τ ;

and for all X ∈ X0, i ∈ SX(p∞), j ∈ S2
X(p∞), we have

(∥p̂∥2p∞)⊤(Exi − Exj ) ≤ 1− 3τ,

with some τ that does not depend on R.

Now, we compute the overlap with pt. For all X and (i, j), we have

pt
⊤(Exi

− Exj
) = (∥p̂∥2p∞)⊤(Exi

− Exj
) + (pt − ∥p̂∥2p∞)⊤(Exi

− Exj
).

We upper bound

|(pt − ∥p̂∥2p∞)⊤(Exi
− Exj

)| ≤ ∥p̂∥2
∥∥∥∥ pt
∥pt∥2

− p∞

∥∥∥∥
2

∥Ex1
− Ex2

∥2,

and since ∥p̂∥2, ∥Ex1
− Ex2

∥2 are finite, we have

lim
t→∞

|(pt − ∥p̂∥2p∞)⊤(Exi
− Exj

)| = 0.

Thus, we can pick t1, such that for t ≥ t1, we have

|(pt − ∥p̂∥2p∞)⊤(Exi
− Exj

)| ≤ τ,

which implies that, for all X ∈ Xn and for all (i, j) pairs such that i ∈ SX(p∞), j ∈ S2
X(p∞), we

have
pt

⊤(Exi
− Exj

) ≥ τ ;

for all (i, j) pairs such that i ∈ S2
X(p∞), j ∈ S<

X(p∞), we have

pt
⊤(Exi − Exj ) ≥ τ ;

and for all X ∈ X0, i ∈ SX(p∞), j ∈ S2
X(p∞), we have:

pt
⊤(Exi

− Exj
) ≤ 1− τ,

for some τ that does not depend on R.

Next, we show that pt is a locally optimal solution as per Definition C.4. By Lemma C.1, p∞ selects
all the completely positive/negative tokens. Thus, as pt ≊ p∞, pt also selects such tokens, the rest
being irrelevant by Assumption 1. Hence, for any pair (X, y) and for any j ∈ X \ SX(pt), we have:∑

i∈SX(pt)

(γi(X, y)− γj(X, y)) ≥ η0
4nT

,

by picking d large enough (as per the hypothesis of the lemma). By construction, p̂ ≊ pt, ∥p̂∥2 does
not depends on R and, moreover, for any X ,

p̂⊤(Exi
− Exj

) ≥ 1, for all i ∈ SX(p̂), j ∈ X \ SX(p̂).

By applying Lemma C.5 on both p̂ and pt, we have that for any ϵ1 > 0 there exist t2 s.t. for all
t ≥ max{t1, t2}, we have

− p̂⊤∇pL(E1, pt) ≥ (1− ϵ1)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, pt)

 ,

− pt
⊤∇pL(E1, pt) ≤ (1 + ϵ1)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)

 ,

where ai(X), aj(X) are defined analogously to âi(X), âj(X) by replacing p̂ with pt.

32



Now, we further show that, for any ϵ2 > 0, there exist t3 such that for all t ≥ t3,

Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)


≤ (1 + ϵ2)ÊX∈X0

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)

 .

To see this, we use the same idea as in the proof of Lemma C.5. We can write

Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)


= ÊX∈X0

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)

 (A0)

+ ÊX′∈Xn\X0

 ∑
i∈SX′ (p)

∑
j∈S2

X′ (p)

(ai(X
′)− aj(X

′))hi,j(X
′, y′, pt)

 , (A1)

and it is sufficient to show that
(A1) ≤ ϵ2(A0).

To prove this, we compare term-by-term. Let X ∈ X0, X
′ ∈ Xn \X0, j ∈ S2

X(pt), j
′ ∈ S2

X(pt), and
recall that:∑

i∈SX(pt)

(ai(X)− aj(X))hi,j(X, y, pt)

= g(X, y)(ai0(X)− aj(X))qi0(X)qj(X)
∑

i∈SX(pt)

(γi(X, y)− γj(X, y)),

∑
i∈SX′ (pt)

(ai(X
′)− aj′(X

′))hi,j′(X
′, y′, pt)

= g(X ′, y′)(ai1(X
′)− aj′(X

′))qi1(X
′)qj′(X

′)
∑

i∈SX′ (pt)

(γi(X
′, y′)− γj′(X

′, y′)),

for any i0 ∈ SX(pt), i1 ∈ SX′(pt). Note that

g(X ′, y′)

g(X, y)
≤ maxX,y g(X, y)

minX,y g(X, y)
≤ max

X,y
(1 + exp(yf(X))) ≤ (1 + exp(η0)) := C5. (35)

By using the same argument as in (31) and (33), we have

ai1(X
′)− aj′(X

′)

ai0(X)− aj(X)
≤ C3,∑

i∈SX′ (pt)
(γi(X

′, y′)− γj′(X
′, y′))∑

i∈SX(pt)
(γi(X, y)− γj(X, y))

≤ C4.

Finally, we need to upper bound:
qi1(X

′)qj′(X
′)

qi0(X)qj(X)
.

We note that

ai1(X
′)− aj′(X

′) ≥ R/∥p̂∥2,
ai0(X)− aj(X) ≤ (1− τ)R/∥p̂∥2,
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where ai(X) = p⊤t Exi . Thus by Lemma A.4, we have:

qi0(X) ≥ 1

T
, qj(X) ≥ 1

T exp((1− τ)R/∥p̂∥2)
, qi1(X

′) ≤ 1, qj′(X
′) ≤ 1

exp(R/∥p̂∥2)
,

which implies that
qi1(X

′)qj′(X
′)

qi0(X)qj(X)
≤ T 2 exp(−τR/∥p̂∥2).

Thus, for each X ∈ X0, X
′ ∈ Xn \ X0, j ∈ S2

X(pt), j
′ ∈ S2

X(pt), we have∑
i∈SX′ (p)

(ai(X
′)−aj′(X

′))hi,j′(X
′, y′, pt) ≤ C6 exp(−τR/∥p̂∥2)

∑
i∈SX(p)

(ai(X)−aj(X))hi,j(X, y, pt).

Thus by picking large enough t3 which gives large enough R, we have:

(A1) ≤ ϵ2(A0).

This allows us to conclude that

−p̂⊤∇pL(E1, pt) ≥ (1− ϵ1)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, pt)


≥ (1− ϵ1)ÊX∈X0

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, pt)

 ,

−pt
⊤∇pL(E1, pt) ≤ (1 + ϵ1)(1 + ϵ2)ÊX∈X0

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)

 .

Note that, for each X ∈ X0,

âi(X)− âj(X) ≥ 1, ai(X)− aj(X) ≤ 1− τ,

which gives that

−p̂⊤∇pL(E1, pt) ≥ − 1− ϵ1
(1 + ϵ1)(1 + ϵ2)(1− τ)

pt
⊤∇pL(E1, pt).

Since ϵ1, ϵ2 can be arbitrarily small, the proof is complete.

C.4 Proof of Lemma 4.5

We first prove two auxiliary lemmas showing that for any max-margin solution, at least one constraint
must be tight.
Lemma C.7. Consider the max-margin problem in (12), and let p̂ be the solution. Then, there exist
X ∈ Xn, s ∈ SX(p), s′ ∈ X \ SX(p) such that:

p̂⊤(Es − Es′) = 1.

Proof. Assume by contradiction that for all X ∈ Xn, s ∈ SX(p), s′ ∈ X \ SX(p),

p̂⊤(Es − Es′) > 1.

Define
τ = min

X∈Xn,s∈SX(p),s′∈X\SX(p)
p̂⊤(Es − Es′),

and we know that τ > 1. Then, p̂′ = p̂
τ is also a feasible solution to (12) with ∥p̂′∥2 < ∥p̂∥2, which

contradicts to the fact that p̂ is the solution to the max-margin problem.

Lemma C.8. Under the same condition on d in Lemma 4.5, let p̂ be the unique solution of the
max-margin problem in (12) that only selects the completely positive and negative tokens. Then we
have:

∥p̂∥2 ≤ 4n.
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Proof. By the definition of the max-margin problem, it is sufficient to construct a feasible p with
∥p∥2 ≤ 4n, which implies that:

∥p̂∥2 ≤ ∥p∥2 ≤ 4n.

Since p̂ only selects completely positive and negative tokens, we know that
(
⋃

X SX(p̂))
⋂
(
⋃

X SX(p̂)) = ∅. We let

p = 2
∑

s∈
⋃

X SX(p̂)

E0
s ,

and by (23) we know that ∥p∥2 ≤ 4n, since there are at most n completely positive and negative
tokens.

It remains to show that p is feasible with high probability. To see this, for s ∈
⋃

X SX(p̂), we have

p⊤E1
s = 2 +

∑
s′∈SX(p̂):s′ ̸=s

(E0
s )

⊤E0
s′ +

η0
2
αsp

⊤v + p⊤errs

≥ 2− η0
2
αs

n√
d

√
2 log

|S|2
δ

− 22
√
2nη0d

− 1
4 ,

≥ 2− η0
2

n√
d

√
2 log

|S|2
δ

− 22
√
2nη0d

− 1
4

where the first inequality follows from (23) and Lemma 4.1. Similarly, for s ∈
⋃

X SX(p̂),

p⊤E1
s ≤ η0

2

n√
d

√
2 log

|S|2
δ

+ 22
√
2nη0d

− 1
4

Thus, by picking

d ≥

(
2η0

(
n

√
2 log

|S|2
δ

+ 44
√
2n

))4

,

we have p⊤(E1
s −E1

s′) ≥ 1, with s ∈
⋃

X SX(p̂), s′ ∈
⋃

X SX(p̂), which indicates the feasibility of
p and finishes the proof.

Proof of Lemma 4.5. Let p̂′ be the max-margin solution of (12) with a different selection. By
Theorem 4.3, we have that, for all X, sX∗ ∈ SX(p̂′). We denote by iX∗ the index of sX∗ . Assume
by contradiction p∞ = p̂′

∥p̂′∥2
. We will now show that this implies the following statement: for any

ϵ > 0, there is a t(ϵ) ensuring

− p̂⊤

∥p̂∥2
∇pL(E, pt) ≥ −(1− ϵ)

p⊤t
∥pt∥2

∇pL(E, pt), for all t ≥ t(ϵ). (36)

Then, by Lemma A.3, we have that p∞ = p̂
∥p̂∥2

, which gives a contradiction.

As in the proof of Lemma C.6, we define pt =
pt

∥pt∥2
∥p̂∥2. Thus, (36) is equivalent to

−p̂⊤∇pL(E, pt) ≥ −(1− ϵ)pt
⊤∇pL(E, pt).

First of all, since p̂, p̂′ are two max-margin solutions, by the definition of max-margin solution and
Lemma C.7, we have:

p̂⊤(EsX∗
− Es) ≥ 1, ∀s ∈ X \ sX∗ ,∀X ∈ Xn

(p̂′)⊤(Es − Es′) = 1, ∃X ∈ Xn, s ∈ SX(p̂′), s′ ∈ X \ SX(p̂′),

which implies that

p̂′⊤∥p̂∥2
∥p̂′∥2

(Es − Es′) =
∥p̂∥2
∥p̂′∥2

= 1− µ < 1, ∃X ∈ Xn, s
′ ∈ X \ SX(p̂′), ∀s ∈ SX(p̂′).
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For simplicity, we define S◦
X(p̂′) ⊆ X \ SX(p̂′) such that

(p̂′)⊤(Es − Es′) = 1, ∀X ∈ Xn, s
′ ∈ S◦

X(p̂′), s ∈ SX(p̂′),

and note that S◦
X(p̂′) can be empty for some X. Also define

τ0 = min
X∈Xn,s∈SX(p̂′),s′∈SX(p̂′)\S◦

X(p̂′)
(p̂′)⊤(Es − Es′)− 1.

As limt→∞ pt =
p̂′∥p̂∥2

∥p̂′∥2
, for any ϵ1 ∈ (0, µ) small enough, there exists a t1 ensuring the following

for all t ≥ t1:

pt
⊤(Es − Es′) ≤ 1− µ+ ϵ1 < (1− µ)(1 + τ0)− ϵ1, ∀X ∈ Xn, s ∈ SX(p̂′), s′ ∈ S◦

X(p̂′),

pt
⊤(Es − Es′) ≥ (1− µ)(1 + τ0)− ϵ1, ∀X ∈ Xn, s ∈ SX(p̂′), s′ ∈ SX(p̂′) \ S◦

X(p̂′),
(37)

which implies that S2
X(pt) ⊆ S◦

X(p̂′), if S◦
X(p̂′) ̸= ∅.

By applying Lemma C.5 to pt, we obtain that, for any ϵ2 > 0, there exists a t2 ensuring that, for all
t ≥ t2,

−pt
⊤∇pL(E1, pt) ≤ (1 + ϵ2)Ê

g(X, y)
∑

i∈SX(pt)

∑
j∈S2

X(pt)

(ai(X)− aj(X)qi(X)qj(X)(γi(X)− γj(X)))


≤ (1 + ϵ2)Ê

g(X, y)
∑

i∈SX(pt)

∑
j∈S2

X(pt)

(ai(X)− aj(X))qi(X)qj(X)|γi(X)− γj(X)|


(C1)

Now we further approximate (C1). For simplicity, we define X◦ ∈ Xn such that, for all X ∈ X◦,
S◦
X(p̂′) ̸= ∅. We show that for any ϵ3 > 0, there exists t3 ensuring that, for all t ≥ max{t1, t2, t3},

(C1) ≤ (1+ϵ2)(1+ϵ3)
1

n

∑
X∈X◦

g(X, y)
∑

i∈SX(pt)

∑
j∈S2

X(pt)

(ai(X)−aj(X))qi(X)qj(X)|γi(X)−γj(X)|

To see this, for any ϵ3 > 0, we show that for t ≥ max{t1, t2, t3} and any X ∈ X◦, X
′ ∈ Xn \ X◦,

g(X ′, y)
∑

i∈SX(pt)

∑
j∈S2

X(pt)

(aiX′
∗
(X ′)− aj(X

′))qiX′
∗
(X ′)qj(X

′)(γiX′
∗
(X ′)− γj(X

′)))

≤ 1

n
ϵ3g(X, y)

∑
i∈SX(pt)

∑
j∈S2

X(pt)

(aiX∗ (X)− aj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X))).
(38)

Indeed, using the same methods as in (31), (33), (35), we have
ai(X

′)− aj(X
′)

ai(X)− aj(X)
≤ C3, ∀i ∈ SX(pt)

γi(X
′)− γj(X

′))

γi(X)− γj(X))
≤ C4, ∀i ∈ SX(pt)

g(X ′, y′)

g(X, y)
≤ C5,

where C3, C4, C5 are constants that do not depend on R. It remains to upper bound qi(X
′)qj(X

′)
qi(X)qj(X) ,

which is equivalent to
q
iX

′
∗

(X′)qj(X
′)

qiX∗
(X)qj(X) as all i ∈ SX(pt) has the same qi.

By Lemma A.4 together with (37), we have:

qiX′
∗
(X ′)qj(X

′) ≤ exp(−((1− µ)(1 + τ0)− ϵ1)R),

qiX∗ (X)qj(X) ≥ 1

T 2
exp(−(1− µ+ ϵ1)R),
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where for simplicity we denote R = ∥pt∥2. This implies

qiX′
∗
(X ′)qj(X

′)

qiX∗ (X)qj(X)
≤ T 2 exp(−((1− µ)τ0 − 2ϵ1)R).

Since ∥pt∥2 → ∞, and C3, C4, C5 do not depend on R, we can pick t3 large enough such that:

nT 2C3C4C5 exp(−((1− µ)τ0 − 2ϵ1)R) ≤ ϵ3,

which implies (38). Thus, we have

−pt
⊤∇pL(E1, pt)

≤ (1 + ϵ2)(1 + ϵ3)
1

n

∑
X∈X◦

g(X, y)
∑

i∈SX(pt)

∑
j∈S2

X(pt)

(ai(X)− aj(X))qi(X)qj(X)|γi(X)− γj(X)|

= (1 + ϵ2)(1 + ϵ3)
1

n

∑
X∈X◦

g(X, y)
∑

j∈S2
X(pt)

(aiX∗ (X)− aj(X))qiX∗ (X)qj(X)|γiX∗ (X)− γj(X)|

+ (1 + ϵ2)(1 + ϵ3)
1

n

∑
X∈X◦

g(X, y)
∑

i∈SX(pt):i ̸=iX∗

∑
j∈S2

X(pt)

(ai(X)− aj(X))qi(X)qj(X)|γi(X)− γj(X)|

(39)

We then compute by Lemma A.2 that

−p̂⊤∇pL(E1, pt) = Ê

g(X, y)
∑

j∈SX(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))



(D1)

+ Ê

g(X, y)
∑

i∈SX(pt),i̸=iX∗

∑
j∈SX(pt)

(âi(X)− âj(X))qi(X)qj(X)(γi(X)− γj(X)))


(D2)

+ Ê

g(X, y)
∑

i∈SX(pt)

∑
j∈SX(pt):j>i

(âi(X)− âj(X))qi(X)qj(X)(γi(X)− γj(X)))

 .

(D3)

We show that by picking

d ≥
(
2816Tn2(1 + 2η0)

µ

)4

,

we have

|(D2)| ≤ µ

2
(D1),

and for any ϵ4 > 0, there exists t4 such that for all t ≥ t4,

|(D3)| ≤ ϵ4(D1).

To show |(D2)| ≤ µ
2 (D1), it suffices to note that, for any j ∈ SX(pt),

âiX∗ (X)− âj(X) ≥ 1,

|âi(X)− âj(X)| ≤ 16n(1 + 2η0), ∀ i,
|γi(X)− γj(X)| ≤ 22η0d

−1/4, ∀ i ̸= iX∗ ,

γiX∗ (X)− γj(X) ≥ η0
4nT

,
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where the second inequality follows from Lemma C.8 and Lemma B.1. To show |(D3)| ≤ ϵ4(D1),
we use again the inequalities above and the same strategy as in Lemma C.5.

Thus we obtain that:

−p̂⊤∇pL(E1, pt)

≥
(
1− µ

2
− ϵ4

)
Ê

g(X, y)
∑

j∈SX(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))


≥
(
1− µ

2
− ϵ4

) 1

n

∑
X∈X0

g(X, y)
∑

j∈S2
X(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X))),

where in the last inequality we use that all the summand are non-negative.

Note that

âiX∗ (X)− âj(X) = 1, aiX∗ (X)− aj(X) ≤ 1− µ+ ϵ1, ∀X ∈ X0.

Thus, it remains to show that
µ

4n

∑
X∈X0

g(X, y)
∑

j∈S2
X(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X))

≥(1 + ϵ2)(1 + ϵ3)
1

n

∑
X∈X◦

g(X, y)
∑

i∈SX(pt):i ̸=iX∗

∑
j∈S2

X(pt)

(ai(X)− aj(X))qi(X)qj(X)|γi(X)− γj(X)|

(40)

We have that

âiX∗ (X)− âj(X) ≥ 1, ai(X)− aj(X) ≤ 1− µ+ ϵ1, ∀ i ∈ SX(pt), ∀X ∈ X0.

Furthermore,

|γi(X)− γj(X)| ≤ 22η0d
−1/4, ∀ i ̸= iX∗ , γiX∗ (X)− γj(X) ≥ η0

4nT
.

As d ≥
(

2816Tn2(1+2η0)
µ

)4
≥
(

176n2T (2−µ)
µ

)4
, (40) holds and the proof is complete.

D Details of numerical experiments

For all numerical simulations, we use the AdamW optimizer from torch.optim, and we reduce the
learning rate in a multiplicative fashion by a factor γ = 0.1 at epochs 100 and 200, i.e.,

LRnew = LRold · γ.

We adhere to the batch size of 128 and fix the embedding dimension to 2048.

IMDB and Yelp datasets. The hyperparameters do not differ between the two-layer model and the
one-layer model. We set the number of training epochs to 500, the learning rate to 0.01, and the
weight decay to 10−8.

Synthetic data. We set the number of training epochs to 196, the learning rate to 10−4, and the
weight decay to 10−4.
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E One-step analysis for multi-class classification

We consider there are K classes. The sequence X is defined as usual, and the label y ∈ Rk is the
one-hot vector indicating the corresponding class. The new model becomes

f(X) = V XSoftmax(X⊤p) ∈ RK ,

where V = [v1, . . . , vK ]⊤ ∈ RK×d.

We consider the standard cross-entropy loss:

Ln(p, V ) = Ê

[
− log

exp
(
y⊤f(X)

)∑K
k=1 exp

(
e⊤k f(X)

)] ,
and compute the gradient as:

∂f(X)Ln(p,E) =
−
∑K

k=1 exp
(
e⊤k f(X)

)
(y − ek)∑K

k=1 exp
(
e⊤k f(X)

) ,

∇Es [f(X)]k =

T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vkp+

T∑
i=1

1xi=sqivk,

∇Es
Ln(p,E) = Ê

[
K∑

k=1

∂[f(X)]k∇Es
[f(X)]k

]

= Ê

[
K∑

k=1

(
−
∑

ℓ̸=k exp
(
e⊤k f(X)

)∑K
k=1 exp

(
e⊤ℓ f(X)

) 1y=ek +
exp
(
e⊤k f(X)

)∑K
k=1 exp

(
e⊤k f(X)

)1y ̸=ek

)

·

 T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vkp+

T∑
i=1

1xi=sqivk

 .

Thus, at the initial step, we have:

∇Es
Ln(p,E) ≈ 1

T
Ê

[
K∑

k=1

(
−(K − 1)

K
1y=ek +

1

K
1y ̸=ek

) T∑
i=1

1xi=s

]
vk.

Consequently, after one gradient step, we obtain the correlation

E⊤
s vk ≈ η0

T
Ê

[
T∑

i=1

K − 1

K
1y=ek,xi=s −

1

K
1y ̸=ek,xi=s

]
.

Here, by using ≈, we hide quantities that have a vanishing order in d, and these passages could be
made rigorous with a more involved technical analysis.

F Additional numerical experiments

F.1 Variance of one-step gradient descent

In this section, we numerically validate the optimization procedure, which is more in line with the
theoretical model of “one-step” analysis presented in the main body. More precisely, we perform
one full-gradient step on the embeddings (as in our theoretical analysis), and we then fix the context
embeddings, only training the ⟨cls⟩ embedding as well as the output vector v till convergence. The
results for the one-layer model (1) on IMDB data are shown in Figure 4. In this case, both overlap
statistics display similar behavior to the one in Figures 1 and 3. However, the average standard
deviation over the bins is reduced by roughly 8 times for the inner product with v and by roughly 6
times for the inner product with p.

We attribute the larger variance of full training dynamics (i.e., with all parameters optimized si-
multaneously) to both the longer training time for context embeddings and the dataset itself. The
dependence on the longer training of the embeddings is indicated in the experiments in Figure 4, and
the dependence on the dataset is apparent by comparing Figure 2 (synthetic datasets, small variance)
with Figures 1 and 3 (real datasets, large variance).
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Figure 4: Dot-product of token embeddings with ⟨cls⟩ embedding p (left) and regression coefficients
v (right), as a function of the token-wise difference in posterior probabilities, for IMDB dataset under
the “one-step” procedure.

Figure 5: Dot-product of token embeddings with ⟨cls⟩ embedding p (left) and regression coefficients
v (right), as a function of the token-wise difference in posterior probabilities, for IMDB dataset for
one-layer attention with MLP head.

F.2 The effect of MLP layer

In this section, we identify how the presence of the extra MLP head after the attention layer in (1)
affects the phenomenology described in the main body. Namely, we consider the MLP block which
processes input x ∈ Rd as follows:

x1 = ReLU(W1x+ b1), W1 ∈ Rd×d, b1 ∈ Rd,

x2 = ReLU(W2x+ b2), W2 ∈ Rd×d, b2 ∈ Rd.

Then, the output of the self-attention in (1), i.e.,

Softmax(p⊤E⊤
X)EX ∈ Rd,

is treated as an input for the MLP block. Afterwards, the MLP output is multiplied with the final
regression vector v. The correlation analysis for the architecture above is displayed in Figure 5. It is
clear that the behavior of E⊤

s p is mostly unchanged, while the monotonicity of E⊤
s v is less evident.

This indicates that the model will still select important tokens using E⊤
s p, but the interaction between

the embeddings and the output vector v is more complicated due to the presence of the MLP layer.

F.3 Frozen orthogonal embeddings

In this section, we address if training embeddings in model (1) is indeed necessary. Namely, we
consider fixing token embeddings to their (almost) orthogonal configuration at initialization and
training only ⟨cls⟩ embedding and the output regression vector v. The resulting test accuracy is
around 72% with test error around 0.6. This is a significant downgrade from the original baseline:
the test accuracy is around 95% with test error around 0.1. This clearly indicates the importance of
training the embeddings in the self-attention model (1).
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Figure 6: Dot-product of token embeddings with ⟨cls⟩ embedding p and key-query matrix of the
second attention layer W (2)

KQ (left) and regression coefficients v (right), as a function of the token-wise
difference in posterior probabilities, for IMDB dataset and two-layer attention model (18) with
key-query matrices.

Figure 7: Dot-product of token embeddings with the corresponding regression coefficients vk (left:
k = 2; right: k = 4), as a function of the token-wise multi-class statistic for Yelp dataset. The token
statistic Tk on the x-axis is defined as per (41).

F.4 Influence of key-query matrix

In this section, we explore if the presence of key-query matrices in the self-attention mechanism
changes the qualitative implications of our results. For our experimental setup, we consider a two-
layer model (18) with key-query matrices in both instances of softmax operator. We present our
findings in Figure 6. First, observe that the behavior of the overlap with the regression vector v
remains unchanged. Second, we note that adding W

(2)
KQ in the second layer should not make a

qualitative difference. In particular, W (2)
KQ · p plays the same role as p , which is corroborated by the

results in Figure 6. Besides, one can recover the dynamics of key-query matrices given the dynamics
of p (cf., Lemma 1 in [37]).

F.5 Multi-class simulations

Given the analysis in Section E, we consider a modified version for the token-wise statistic. Namely,
we focus on the following “one-versus-all” score:

Tk(Es) =
1

T
· E

 T∑
j=1

K − 1

K
· 1y=k,xi=s −

1

K
· 1y=k,xi ̸=s

 . (41)

The RHS of (41) can be viewed as a generalization of the average signed frequency (3) that indicates
the importance of a token s with respect to class k. In particular, if we divide the RHS of (3) by a
factor of K − 1 the first term becomes the co-occurrence of token s with label k, and the second term
is the average co-occurrence of token s with other labels. Thus, intuitively, if a token s occurs much
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more frequently with label k than other labels, this token is more important with respect to label k
and the RHS of (41) will be larger.

For the multi-class dataset, we consider Yelp reviews. We use the 5-star rating directly and disregard
the middle-ground rating of 3 (4 classes in total). We train the one-layer model (1) on this data. The
results for two classes are presented in Figure 7. Namely, it is clear that E⊤

s vk is still increasing with
respect to the importance of the token s for each class k, which aligns with the previous observations
for binary classification.
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