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Abstract

In decentralized optimization, nodes of a communication network each possess a
local objective function, and communicate using gossip-based methods in order to
minimize the average of these per-node functions. While synchronous algorithms
are heavily impacted by a few slow nodes or edges in the graph (the straggler prob-
lem), their asynchronous counterparts are notoriously harder to parametrize. Indeed,
their convergence properties for networks with heterogeneous communication and
computation delays have defied analysis so far. In this paper, we use a continuized
framework to analyze asynchronous algorithms in networks with delays. Our ap-
proach yields a precise characterization of convergence time and of its dependency
on heterogeneous delays in the network. Our continuized framework benefits from
the best of both continuous and discrete worlds: the algorithms it applies to are
based on event-driven updates. They are thus essentially discrete and hence readily
implementable. Yet their analysis is essentially in continuous time, relying in part
on the theory of delayed ODEs. Our algorithms moreover achieve an asynchronous
speedup: their rate of convergence is controlled by the eigengap of the network
graph weighted by local delays, instead of the network-wide worst-case delay as in
previous analyses. Our methods thus enjoy improved robustness to stragglers.

1 Introduction

We study the following optimization problem:

min
x∈Rd

{
f(x) =

n∑
i=1

fi(x)
}
, (1)

where each individual function fi : Rd → R for i ∈ [n] is held by an agent i. We consider
asynchronous and decentralized optimization methods that do not rely on a central coordinator.
This is particularly relevant in large-scale systems in which centralized approaches suffer from
a communication bottleneck at the central controller. Decentralized optimization is relevant to
supervised learning of models in data centers, but also to more recent federated learning scenarios
where data and computations are distributed among agents that do not wish to share their local data.
We focus on asynchronous operations because of their scalability in the number of agents in the system,
and their robustness to node failures and to stragglers. In the case of empirical risk minimization,
fi represents the empirical risk for the local dataset of node i, and f the empirical risk over all
datasets. Another important example, that plays the role of a toy problem for both decentralized
and/or stochastic optimization is that of network averaging, corresponding to fi(x) = ∥x− ci∥2
where ci is a vector attached to node i. In this case, the solution of Problem (1) reads c̄ = 1

n

∑n
i=1 ci.

We assume that agents are located at the nodes of a connected, undirected graph G = (V,E) with
node set V = [n]. An agent i ∈ V can compute first-order quantities (gradients) related to its
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local objective function fi, and can communicate with any adjacent agent in the graph. Our model
of asynchrony derives from the popular randomized gossip model of [5]. In this model, nodes
update their local values at random activation times using pairwise communication updates. This
asynchronous model makes the idealized assumption of instantaneous communications, and hence
does not faithfully represent practical implementations. To alleviate this drawback, several works
[2, 23, 24, 34, 37, 39] introduce communication and computation delays in either pairwise updates,
or in asymmetric gossip communications. However, all these works provide convergence guarantees
that either require global synchronization between the nodes, or are implicitly determined by an upper
bound on the worst-case delay in the whole graph. Indeed they assume that i) for some kmax > 0, for
all edges (ij) ∈ E, each communication between agents i and j overlaps with at most kmax other
communications in the whole graph, and ii) either agents i or graph edges (ij) are activated for agent
interaction sequentially in an i.i.d. manner. Thus assuming distributed asynchronous operation where
individual nodes schedule their interactions based only on local information, the kmax constraint can
only be enforced by requiring individual nodes to limit their update frequency to 1/(nτmax).

Consequently, the resulting algorithms have temporal convergence guarantees proportional to τmax.
They are thus not robust to stragglers, i.e. slow nodes or edges in the graph that induce large τmax.
To understand the scope for improvement over such methods, recall that for synchronous algorithms
with updates performed every τmax seconds, for L-smooth and σ-strongly convex functions fi, the
time required to reach precision ε > 0 for 1

n

∑
fi is lower-bounded by [32]:

Ω
(
τmaxDiam(G)

√
κ ln(ε−1)

)
, (2)

where κ = L/σ is the condition number of the functions fi and Diam(G) is the diameter of graph
G. In this article we seek better dependency on individual delays in the network. Specifically we
consider the following

Assumption 1 (Heterogeneous delays). There exist τij for (ij) ∈ E and τ comp
i for i ∈ V such that

communications between two neighboring agents i and j in the graph take time at most τij , and a
computation at node i takes time at most τ comp

i .

Under such heterogeneous delay assumptions, how robust to stragglers can decentralized algo-
rithms be? One can adapt the proof of [32] to Assumption 1 to generalize (2) as:

Ω
(
D(τ)

√
κ ln(ε−1)

)
, (3)

where D(τ) = sup(i,j)∈V 2 dist(i, j) for dist(i, j) = inf
{
τ comp
i + τ comp

j +
∑p−1

k=0 τikik+1

}
, where

the inf is taken over all (i = i0, . . . , ip = j) ∈ V p+1 that verify ∀1 ⩽ k ⩽ p, (ik, ik+1) ∈ E.

Here dist(i, j) is the time distance between nodes i and j, and D(τ) is the diameter of graph G for
this distance. D(τ) is the generalization of τmaxDiam(G) to the heterogeneous-delay setting. This
lower bound suggests that robustness to stragglers is possible: indeed if a fraction of the nodes or
edges is too slow (large delay τij), this may not even impact this lower bound, since the shortest path
between two nodes may always take another route. We aim at building decentralized algorithms
with performance guarantees that enjoy such robustness to individual delay bounds. However, since
we focus on fully decentralized algorithms, our performance guarantees will not be expressed in
terms of some diameter D(τ) as in (3) but instead in terms of some spectral characteristics of the
graph at hand1. We thus seek performance guarantees similar to (3) with in place of D(τ) the term
λ2(∆G(ν))

−1 for some parameters νij that depend on delay characteristics local to edge (ij), where
the graph Laplacian ∆G is defined as follows.

Definition 1 (Graph Laplacian). Let ν = (νij)(ij)∈E be a set of non-negative real numbers. The
Laplacian of the graph G weighted by the νij’s is the matrix ∆G(ν) with (i, j) entry equal to −νij if
(ij) ∈ E,

∑
k∼i νik if j = i, and 0 otherwise. In the sequel νij always refers to the weights of the

Laplacian, and λ2(∆G(ν)) denotes this Laplacian’s second smallest eigenvalue.

1Note that similar spectral characteristics (albeit based on a single worst-case delay parameter τmax) appear
in [2, 23, 32, 34, 37, 39].
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2 Contributions and related works

2.1 Contributions

We consider the network averaging problem, for which we introduce Delayed Randomized Gossip in
Section 3. Building on recent works on continuized gradient descent for Nesterov acceleration [12],
we analyze Delayed Randomized Gossip in the continuized framework, that allows a continuous-time
analysis of an algorithm even though the latter is based on discrete, hence practically implementable
operations. Our analysis leads to explicit stability conditions that have the appealing property of
being local, i.e. they require each agent to tune its algorithm parameters to delay bounds in its graph
neighborhood. These conditions ensure a linear rate of convergence determined by λ2

(
∆G(ν)

)
, for

weights of order ν = 1/(
∑

(kl)∼(ij) τkl)
2. This dependency of weights in the Laplacian on local

delay bounds is what we call the asynchronous speedup, since it implies a scaling that is no longer
proportional to τmax.

We provide extensions in Section 4 of the delayed randomized gossip we introduce next, to the more
general decentralized optimization problem defined in Equation (1), and generalize our setup to
capacity constraints, beyond the Poisson point process assumption, in Section 5, that both further
illustrate the generality of our approach. We also highlight a phenomenon reminiscient of Braess’
paradox in Section 6: sparsifying the graph may accelerate convergence speed.

2.2 Related works

Decentralized Optimization and Gossip Algorithms. Gossip algorithms [5, 9] were initially intro-
duced to compute the global average of local vectors with local pairwise communications only
(no central coordinator), and were generalized to decentralized optimization. Two types of gossip
algorithms appear in the literature: synchronous ones, where all nodes communicate with each other
simultaneously [9, 19, 32, 33], and randomized ones [5, 28]. A third category considers directed (non-
symmetric) communication graphs [2, 40] which are much easier to implement asynchronously. In
the synchronous framework, the communication speed is limited by the slowest node (straggler prob-
lem), whereas the classical randomized gossip framework of [5] assumes communications to happen
instantaneously, and thus does not address the question of how to deal with delays. [2, 23, 34, 37, 39]
introduce delays in the analysis of decentralized algorithms; as mentioned in the introduction, their
analyses and algorithms are not robust to stragglers, relying on a single upper bound on the delays
of all edges. [38] study how sparsifying the communication graph can lead to faster decentralized
algorithm. Their approach is different from ours in Section 6: they do not consider asynchronous
algorithms with physical constraints (delays and capacity), but synchronous algorithms where sequen-
tially matchings are built in the graph. Yet, we observe similar phenomenon as theirs in Section 6.
We refer the reader to [29] for a more complete survey of gossip algorithms.

Handling Asynchrony. The dynamics of asynchronous optimization algorithms are significantly more
complex than their synchronous counterparts. Their study goes back to the monograph of [4], where
asynchrony is modelled through a global ordering of events, providing the formalism classically
used. Most of the recent literature is then derived from a distributed asynchronous variant of SGD
called HOGWILD! [31]. [22, 25] introduce alternative orderings of the iterates (before-read and
after-read) that correspond to different views of the same sequence of updates, and which simplify the
analysis through the use of perturbed or virtual iterates [14, 25, 27, 35, 42], even though proofs and
convergence guarantees under realistic assumptions on the intricacies between iterates, delays and
choices of coordinates, are a challenging problem [7, 36]. We refer the interested reader to [1] for a
more exhaustive survey of advances in asynchrony, both in shared-memory and decentralized models.
In this paper, we deal with asynchrony and delays from a different viewpoint: the analysis is inspired
by time-delayed ODE systems [30], and the assumptions related to delays and asynchrony (such as
Assumption 1) do not need to be translated into discrete-time ones, as in the above references. Finally,
we believe our continuous time framework to be particularly adequate for the study and design of
asynchronous algorithms, in the decentralized setting as in this paper, but also in centralized settings
where it may remove the need to introduce a discrete ordering of events and thus avoid difficulties
that lead to unrealistic assumptions, such as the after/before-read approaches [22].

2We write (ij) ∼ (kl) and say that two edges (ij), (kl) are neighbors if they share at least one node.
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3 Delayed Randomized Gossip for Network Averaging

3.1 Randomized gossip

Let G = (V,E) be a connected graph on the set of nodes V = [n], representing a communication
network of agents. Each agent i ∈ V is assigned a real vector x0(i) ∈ Rd. The goal of the averaging
(or gossip) problem is to design an iterative procedure allowing each agent in the network to estimate
the average x̄ = 1

n

∑n
i=1 x0(i) using only local communications, i.e., communications between

adjacent agents in the network.

In randomized gossip [5], time t is indexed continuously by R+. A Poisson point process [18]
(abbreviated as P.p.p. in the sequel) P = {Tk}k⩾1 of intensity I > 0 on R+ is generated: T0 = 0

and (Tk+1 − Tk)k⩾0 are i.i.d. exponential random variables of mean 1/I . For positive intensities
(pij)(ij)∈E such that

∑
(ij)∈E pij = I , for every k ⩾ 0, at Tk an edge (ikjk) is activated with

probability pikjk/I , upon which adjacent nodes ik and jk communicate and perform a pairwise
update. The P.p.p. assumption implies that edges are activated independently of one another and
from the past: the activation times of edge (ij) form a P.p.p. of intensity pij .

To solve the gossip problem, [5] proposed the following strategy: each agent i ∈ V keeps a local
estimate xt(i) of the average and, upon activation of edge (ikjk) at time Tk ∈ R+, the activated
nodes ik, jk average their current estimates:

xTk
(ik), xTk

(jk) ←−
xTk−(ik) + xTk−(jk)

2
. (4)

Writing f(x) =
∑

(ij)∈E
pij

I fij(x), for fij(x) = 1
2∥x(i)− x(j)∥2 and x = (x(i))i∈V , [12] observe

that local averages (4) correspond to stochastic gradient steps on f :

xTk
←− xTk− −

Kikjk

pikjk
∇fikjk(xTk−) , (5)

for step sizes Kikjk =
pikjk

2 . Yet, this continuous-time model with P.p.p. activations implicitly
assumes instantaneous communications, or some form of waiting. Indeed, the gradient is computed on
the current value of the parameter, which is xTk−. In the presence of (heterogeneous) communication
delays (Assumption 1), a more realistic update uses the parameter xSk

at a previous time Sk < Tk, to
account for the time it takes to compute and communicate the gradient. In this case, the updates write

xTk
←− xTk− −

Kikjk

pikjk
∇fikjk(xSk

) . (6)

3.2 The continuized framework

Our approach uses the continuized framework [12], which amounts to consider continuous-time
evolution of key quantities, with discrete jumps at the instants of Poisson point processes. This gives
the best of both continuous (for the analysis and assumptions) and discrete (for the implementation)
worlds. From now on and for the rest of the paper, we assume that Assumption 1 holds.

Edges (ij) ∈ E locally generate independent P.p.p. Pij of intensity pij > 0 (random activation
times, with i.i.d. intervals, exponentially distributed with mean 1/pij). As mentioned previously,
P =

⋃
(ij)∈E Pij is a P.p.p. of intensity I =

∑
(ij)∈E pij , and noting P = {T1 < T2 < . . .}, at each

clock ticking Tk, k ⩾ 1, an edge (ikjk) is chosen with probability pikjk/I . This time Tk corresponds
to a communication update between nodes ik and jk started at time Tk − τikjk

3. Assumption 1
ensures that the communication started at time Tk − τij takes some time τ (k) ⩽ τikjk and is thus
completed before time Tk so that the update at time Tk is indeed implementable. Consequently, the
sequence (xt)t generated by Algorithm 1 writes as:

xTk
(i) = xTk−(i) if i /∈ {ik, jk} ,

xTk
(ik)← xTk−(ik)−

Kikjk

pikjk

(
xTk−τikjk

(ik)− xTk−τikjk
(jk)

)
,

xTk
(jk)← xTk−(jk)−

Kikjk

pikjk

(
xTk−τikjk

(jk)− xTk−τikjk
(ik)

)
.

3Standard properties of P.p.p. guarantee that the sequence of points of Pij translated by τij is a P.p.p. with
the same distribution.
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Algorithm 1 Delayed randomized gossip, edge (ij)

1: Step size Kij > 0 and intensity pij > 0, Initialization T1(ij) ∼ Exp(pij)

2: for ℓ = 1, 2, . . . do
3: Tℓ+1(ij) = Tℓ(ij) + Exp(pij).
4: end for
5: for ℓ = 1, 2, . . . do
6: At time Tℓ(ij)− τij for, i sends x̂i = xTℓ(ij)−τij (i) to j and j sends x̂j = xTℓ(ij)−τij (j) to i.
7: At time Tℓ(ij),

xTℓ(ij)(i)← xTℓ(ij)−(i)−
Kij

pij

(
x̂i−x̂j

)
, xTℓ(ij)(j)← xTℓ(ij)−(j)−

Kij

pij

(
x̂j−x̂i

)
, (8)

8: end for

Algorithm 1 is the pseudo-code for Delayed Randomized Gossip, from the viewpoint of two adjacent
nodes i and j. The times Tℓ(ij) for ℓ ⩾ 1 denote the activation times of edge (ij). They follow a
P.p.p. of intensity pij , and are sequentially determined by adjacent nodes i and j. Formally, this
decentralized and asynchronous algorithm corresponds to a jump process solution of a delayed
stochastic differential equation. Defining N(dt, (ij)) as the Poisson measure on R+ ×E of intensity
Idt⊗Up where Up is the probability distribution on E proportional to (pij)(ij)∈E (Up((ij)) = pij/I),
we have:

dxt = −
∫
R+×E

Kij

pij
∇fij(xt−τij )dN(t, (ij)) . (7)

3.3 Convergence guarantees

Theorem 1 (Delayed Randomized Gossip). Assume the following bound on Kij , (ij) ∈ E holds,
and let γ > 0 such that:4:

Kij ⩽
pij

1 +
∑

(kl)∼(ij) pkl
(
τij + eτkl

) , γ ⩽ min

(
λ2

(
∆G(ν)

)
2

,
1

τmax

)
, (9)

where νij ≡ Kij , (ij) ∈ E, and τmax = max(ij)∈E τij . For any T ⩾ 0, for (xt)t⩾0 generated with
delayed randomized gossip (Algorithm 1) or equivalently by the delayed SDE in Equation (7), we
have:

E
[
∥x̃T − x̄∥2

]
⩽ e−

γT
2

1 + τmax

T

1− γτmax
, x̃t = γ

∫ t

0
eγsxsds

eγt − 1
. (10)

An essential aspect of Theorem 1 lies in the explicit sufficient conditions for convergence it establishes
for our proposed schemes, and on how they only rely on (upper bounds on) individual delays. We now
discuss the asynchronous speedup obtained by fine-tuning algorithm parameters according to delays.
For many graphs of interest such as grids, hypergrids, trees. . . and bounded edge parameters νij , in
the large network limit n → ∞ one has λ2(∆G(ν)) → 05 and so λ2(∆G) ∧ 1/τmax = λ2(∆G).
The asynchronous speedup consists in having a rate of convergence as the eigengap of the Laplacian
of the graph weighted by local communication constraints: the term λ2(∆G(K)), where each Kij

is impacted only by local quantities. As mentioned in the introduction, this quantity should be
understood as the analogue in decentralized optimization of the squared diameter of the graph (using
time distances) in (3) in centrally coordinated algorithms and as expected, gossip algorithms are
affected by spectral properties of the graph. In Theorem 1, these properties reflect delay heterogeneity
across the graph: here, λ2(∆G(K))−1 the mixing time of a random walk on the graph where
jumping from node i to j takes a time τ̃ij = K−1ij . In contrast, previous analyses (of synchronous or
asynchronous algorithms) involve the mixing time of a random walk with times between jumps set to
a quantity that is linearly dependent on τmax. We coin this discrepancy the asynchronous speedup.

Equation (9) suggests a scaling of pij ≈ 1/τij , giving local weights Kij of order 1/(degreeijτij)
where degreeij is the degree of edge (ij) in the edge-edge graph. On the other hand, syn-
chronous algorithms are slowed down by the slowest node: the equivalent term would be of order

4Note that (ij) ∼ (ij); constant e is exp(1).
5Networks for which this fails are known as expanders.
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λ2(∆G(1/(degreeijτmax)). Indeed, for a gossip matrix W ∈ RV×V (W is a symmetric and stochas-
tic matrix), the equivalent factor in synchronous gossip [9] is λ2(∆G(Wijτmax)), and Wij is usually
set as 1/degreeij in order to ensure convergence. Finally, assume that all τij are equal to τmax, and
set pij = 1/τmax. We then recover λ2(∆G(1/(degreeijτmax)) in the rate of convergence γ, thus
yielding the same rates as synchronous algorithms [9] and asynchronous algorithms that only use a
global upper bound on the delays [2, 23, 24, 34, 37, 39]: albeit being asynchronous, these algorithms
do not take advantage of an asynchronous speedup in their convergence speed.

The same asynchronous speedup is present in the decentralized optimization problem, dealt with
in Section 4, where we generalize our arguments using an augmented-graph approach [15]. This
asynchronous speedup also holds under the presence of capacity constraints (Section 5), where we
replace P.p.p.’s by more general truncated P.p.p.’s.

3.4 A delayed ODE for mean values in gossip

Before proving Theorem 1 in Appendix D, we provide some intuition for its conditions and the
resulting convergence rate. We do this by studying the means of the iterates, that verify a delayed
linear ordinary differential equation, easier to study than the process itself, for which we provide
stability conditions. Denoting yt = E [xt] ∈ Rn×d, for t ⩾ 0, where (xt)t⩾0 is generated using
delayed randomized gossip updates (6), we have:

dyt
dt

= −
∑

(ij)∈E

Kij∇fij(yt−τij ) . (11)

Indeed, for any t ⩾ 0 and dt > 0,

E [xt+dt|xt]− xt = −xt + (1− Idt)xt + o(dt) + dt
∑

(ij)∈E

pij
(
xt −

Kij

pij
∇fij(xt−τij )

)
,

and the right-handside simplifies as −dt
∑

(ij)∈E Kij∇fij(xt−τij ) + o(dt). Taking the mean,
dividing by dt and making dt → 0 leads to the delayed ODE verified by yt = E [xt] . Such delay-
differential ODEs are classical [30] yet their stability properties are notoriously hard to characterize.
This is typically attacked by means of Lyapunov-Krasovskii functionals or Lyapunov-Razumikhin
functions [13]. Alternatively, sufficient conditions for convergence and stability guarantees on (yt) can
be obtained, under specific conditions, by enforcing stability of the original system after linearizing
it with respect to delays [26]. Linearizing in the sense of [26] means making the approximation
yt−τij = yt − τij

dyt

dt . Under this approximation, we have:
dyt
dt

= −
∑

(ij)∈E

Kij

(
∇fij(yt)− τij∇fij(

dyt
dt

)
)
.

For any weights νij and vector z,
∑

ij νij∇fij(z) = ∆G(ν)z. Thus the delay-linearized ODE reads

(I −∆G({Kijτij}))
dyt
dt

= −∆G({Kij})yt . (12)

This delay-linearized ODE (12) provides intuition on the behavior of E [xt]. Indeed, (12) is stable
provided that ρ(∆G({τijKij})) < 1, in which case it has a linear rate of convergence of order
λ2(∆G({Kij}). Even though this stability condition and the rate of convergence are only heuristics,
since (12) is obtained through an approximation of the delayed ODE verified by E [xt] (11), this
stability condition for the delay-linearized system implies stability of the original delayed system
under assumptions on the matrices and delays involved[26], that hold in our case, leading to the
following, proved in Appendix C.
Proposition 1. Assume that the spectral radius of the weighted Laplacian ∆G({τijKij}) verifies
ρ(∆G({τijKij})) < 1. Then the delayed ODE (11) is stable.

Consequently, the stability conditions (necessary conditions on step sizes Kij in Equation (9))
obtained in Theorem 1 are very natural. Indeed, a simple way to enforce ρ(∆G({τijKij}) < 1 based
on local conditions consists in imposing

∑
j τijKij < 1 for all i. This is a weaker condition than the

one stated in Theorem 1, but it only gives stability of the means. Furthermore, the rate of convergence
of delayed randomized gossip in Theorem 1, that takes the form of the eigengap of a weighted graph
Laplacian, is also that of any solution of the delay-linearized ODE (12).
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4 Extension to decentralized optimization

In this section we extend our results to decentralized optimization, going beyond the quadratic
objective functions considered for network averaging.

4.1 Delayed Decentralized Optimization

Consider the decentralized optimization problem (1). We make the following assumptions on the
individual objective functions fi therein :

Each fi, i ∈ V , is σ-strongly convex and L-smooth, (13)

see [6] for definitions. Let f(z) :=
∑

i∈[n] fi(z) for z ∈ Rd and F (x) =
∑

i∈[n] fi(xi) for
x = (x1, · · · , xn) ∈ Rn×d where xi ∈ Rd corresponds to node i ∈ [n].
Definition 2 (Fenchel Conjugate). For any function g : Rp → R, its Fenchel conjugate is denoted by
g∗ and defined on Rp by g∗(y) = supx∈Rp⟨x, y⟩ − g(x) ∈ R ∪ {+∞}.

Our algorithm for delayed decentralized optimization is built on delayed randomized gossip for
network averaging, augmented with local computations. Each node i ∈ V keeps two local variables:
the communication variable xi(t), used to run delayed randomized gossip, and a computation variable
yi(t), used to make local computation updates in the following way.

Local computations. Each node i generates a Poisson point process Pcomp
i =

{T comp
1 (i) < T comp

2 (i), . . .} of intensity pcomp
i . At the clock tickings T comp

k (i), a local compu-
tation update is made corresponding to a computation started at a time T comp

k (i) − τ comp
i , where

τ comp
i is the upper bound on the time to perform an elementary computation at node i, introduced in

Assumption 1. Thus by assumption the computation started at time T comp
k (i)− τ comp

i is completed
by time T comp

k (i) so that the update can be performed at that time. The precise form of this update is
given by Equation (17).

Communications. In parallel of these local computations, a Delayed Randomized Gossip is run
on the graph. Dedicated P.p.p. (Pij)(ij)∈E with respective intensities (pij)(ij)∈E are associated
to communication updates of all network edges, and used to perform updates as prescribed by
Equation (8) in Delayed Randomized Gossip.

The resulting Delayed Decentralized Optimization algorithm, or DDO for short, is described in
Algorithm 3 and is a combination of Algorithm 1 for communication updates along edges (ij) ∈ E
with Algorithm 2 for local computation updates at nodes i ∈ V .

4.2 Convergence guarantees

The process (x(t), y(t)) ∈ R2n×d defined by algorithm DDO, Algorithm 3, satisfies the following
convergence guarantees that generalize Theorem 1 to decentralized optimization beyond the case of
quadratic functions.
Theorem 2 (Delayed Decentralized Optimization). Under the regularity assumptions (13), assume
further that for all 1 ⩽ i ∈ V and (ij) ∈ E, we have:

Kij ⩽
pij

1 +
∑

(kl)∼(ij) pkl
(
τij + eτkl

)
Kcomp

i ⩽
pcomp
i

1 +
∑

j∼i pij
(
τ comp
i + eτij

) . (14)

Let τmax := max
(
max(ij)∈E τij ,maxi∈V τ comp

i

)
. Then for γ > 0 such that

γ ⩽ min

(
σ

4L
λ2

(
∆G(K)

)
,

1

τmax

)
, (15)

the process (x(t), y(t)) generated by DDO satisfy∫ T

0
eγtE

[∥∥σ
2x(t)− x̄⋆

∥∥2] dt∫ T

0
eγt
∥∥σ

2x(0)− x̄⋆
∥∥2dt ⩽ e−

γT
2
L

σ

1 + τmax

T

1− γτmax
, (16)
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where x̄⋆ = (x⋆, . . . , x⋆)⊤ ∈ Rn×d for x⋆ minimizer of f =
∑

i fi.

DDO is based on a dual formulation and uses an augmented graph representation introduced in [16]
to decouple computations from communications, as detailed in the proof. The dual gradient compu-
tations in Algorithm 2 can be expensive in general; they could be avoided by using a primal-dual
approach for the computation updates [21].

The convergence guarantees we obtain resemble classical ones: Interpreting γ as the reciprocal of the
time scale for convergence, we recognize in its upper bound (15) an “optimization factor” κ−1comp :=

σ/L, and a “communication factor” κ−1comm = λ2

(
∆G(K)

)
. Our method is non-accelerated, so

the computation factor κcomp, the condition number of the optimization problem, is expected. The
communication factor captures the delay heterogeneity in the graph as in Delayed Randomized
Gossip, leading to the asynchronous speedup discussed in Section 3 after Theorem 1.

Previous approaches have considered accelerating decentralized optimization by obtaining √κcomp

instead of κcomp and/or
√
κ′comm instead of κ′comm for κ′comm a communication factor in the rate of

convergence [15, 20, 32]. Our result yields a speedup of a different nature: we obtain a communication
factor κcomm that can be arbitrarily larger than previously considered κ′comm for networks with huge
delay heterogeneity.

Algorithm 2 Local computations, node i

1: Step size Kcomp
i > 0

2: Initialization x0(i) = y0(i) = 0

3: Initialization T comp
1 (i) ∼ Exp(pcomp

i )
4: for ℓ = 1, 2, . . . do
5: Tℓ+1(ij) = Tℓ(ij) + Exp(pij).
6: end for
7: for ℓ = 1, 2, . . . do
8: At time T comp

ℓ (i)− τ comp
i , node i computes gi = ∇ϕ∗i (yi(T

comp
ℓ (i)− τ comp

i )) (takes a time
less than τ comp

i ) and keeps x̂i = xi(T
comp
ℓ (i)− τ comp

i ) in memory, where ϕi = fi − σ
4 ∥.∥

2.
9: At time T comp

ℓ (i),

yi(T
comp
ℓ (i))

t←−yi(T
comp
ℓ (i)−)−σK

comp
i

pcomp
i

(
gi − x̂i

)
,

xi(T
comp
ℓ (i))

t←−xi(T
comp
ℓ (i)−)−Kcomp

i

2pcomp
i

(
x̂i − gi

)
.

(17)

10: end for

Algorithm 3 DDO

1: Node initializations x0(i) = y0(i) = 0, i = 1, . . . , n
2: for i ∈ V and (ij) ∈ E, asynchronously, in parallel do
3: Communication updates along edge (ij) according to Algorithm 1
4: Local computation updates at node i according to Algorithm 2
5: end for
6: Output: σ

2xi(t) at time t and node i.

5 Handling communication and computation capacity limits

5.1 Communication and computation capacity constraints

A given node or edge in the network may be able to handle only a limited number of communications
or computations simultaneously. In Delayed Randomized Gossip and DDO algorithms, such con-

8



straints could be violated when some P.p.p. generates many points in a short interval. We extend our
algorithms and resulting convergence guarantees to take into account these additional constraints.

In the continuized framework, this constraint can be enforced by truncating the P.p.p. that handles
activations (Definition 3). We formalize communication and capacity constraints in Assumption 2,
and show that asynchronous speedup is still achieved in this setting in Theorem 3.

In the previous sections, step size parameters Kij ,K
comp
i of the algorithms could be tuned to

counterweight the effect of delays for arbitrary intensities pij . With the introduction of capacity
constraints we will see that the local optimizers at every node must also bound the intensities
pij , p

comp
i based on local quantities. The resulting rate of convergence is the same as in Theorems 1

and 2, up to a constant factor of 1/2.

We formalize communication and computation capacity constraints as follows.
Assumption 2 (Capacity constraints). For some qij , qcomm

i , qcomp
i ∈ N∗∪{∞}, i ∈ V and (ij) ∈ E,

1. Computation Capacity: Node i can compute only qcomp
i gradients in an interval of time of

length τ comp
i ;

2. Communication Capacity, edge-wise limitations: Only qij messages can be exchanged
simultaneously between adjacent nodes i ∼ j in an interval of time of length τij;

3. Communication Capacity, node-wise limitations: Node i can only send qcomm
i messages in

any interval of time of length τ comm
i = maxj∼i τij .

Taking into account these constraints in the analysis boils down to replacing P.p.p. processes
(Pij)(ij)∈E , (Pcomp

i )i∈V of intensities (pij), (p
comp
i ) in the DDO algorithm, by truncated Poisson

point processes (P̃ij , P̃comp
i ) (see Definition 3).

More precisely, for every edge (ij) ∈ E (resp. node i ∈ V ), let nij(t) be the number of communica-
tions occurring along (ij) between times t− τij and t (resp. ncomm

i,j the number of communications
node i is involved in between times t and t − τij , ncomp

i the number of computations node i is
involved with between times t and t − τ comp

i ). Without capacity constraints, these quantities are
discrete Poisson random variables (of mean pijτij for nij(t), e.g.).

5.2 Convergence guarantees

As in Section 4, we consider communication and computation update rules as in Algorithm 3 (DDO
algorithm). In the presence of capacity constraints, a communication alongside edge (ij) ∈ E at a
clock ticking t ∈ Pij occurs and does not break the communication capacity constraints if and only if
nij(t) < qij (for edge-wise limitations), ncomm

i,j (t) < qcomm
i and ncomm

j,i (t) < qcomm
j (for node-wise

limitations) are satisfied. The realistic implementation of these truncated Point processes is discussed
in Section 7.

Under capacity constraints, we have the following guarantees for our algorithm, defined as in
Algorithm 3 (Algorithm 1 for communications and Algorithm 2 for local computations), where
communications and computations that violate the capacity constraints are dropped.
Theorem 3. Assume for any i ∈ V and (ij) ∈ E:

cpcomp
i τ comp

i ⩽ qcomp
i ,

cpijτij ⩽ qij ,

c
∑
j∼i

pijτ
comm
i ⩽ qcomm

i ,
(18)

where c = 1/(1 −
√
ln(6)/2) is a numerical constant. Then, if the assumptions of Theorem 2

described in Equation 14 additionally hold, for γ verifying

γ ⩽ min

(
σ

8L
λ2

(
∆G(νij = Kij)

)
,

1

τmax

)
,

we have: ∫ T

0
eγtE

[∥∥σ
2x(t)− x̄⋆

∥∥2] dt∫ T

0
eγt
∥∥σ

2x(0)− x̄⋆
∥∥2dt ⩽ e−

γT
2
L

σ

1 + τmax

T

1− γτmax
.

9



The same guarantees as without the capacity constraints thus hold, up to a constant factor 1/2 in the
rate of convergence. The conditions on the activation intensities (18) suggest that graph sparsity is
beneficial: for qcomm

i small, 2
∑

j∼i pijτ
comm
i ⩽ qcomm

i translates into pij scaling with the inverse
of the edge-degree of (ij), so large degrees thus slow down the convergence. The new conditions (18)
are easily enforced with the natural choice of intensities pij (resp. pcomp

i ) of order 1/τij (resp.
τ comp
i ).

Taking qcomm
i = 1, we recover the behavior of loss networks [17], where a node cannot concurrently

communicate with different neighbors. Gossip on loss networks was previously studied in [11], to
obtain some form of asynchronous speedup. Comparatively, our present algorithms are structurally
simpler and their analysis in the continuized framework yields faster convergence speeds.

6 Braess’s Paradox and Experiments

In this section, we investigate how the local step sizes Kij and Poisson intensities pij used in
Theorems 1, 2 and 3 should be tuned for a fixed choice of communication delays. Consider the
line graph with constant delays τi,i+1 = τ . Add edge (1, n) in order to close the line, with a delay
τ1n = τ ′ with arbitrarily large τ ′. If the added Poisson intensity p1n satisfies τ1np1n → ∞, then
according to Theorem 1, we have K12 → 0 and Kn−1,n → 0. Consequently, since γ = O(∆G(K),
we have γ → 0: the weighted graph becomes close to disconnected. By adding an edge to the graph,
the convergence speed of delayed randomized gossip is degraded.

In order to alleviate the phenomenon, we would need to virtually delete the edge, by setting p1n = 0.
Figure 1 illustrates this phenomenon in the more general setting: one can sparsify the communication
graph by solving a regularized optimization problem over the pij in order to maximize λ2(∆G(K))
(K being a function of p), leading to both faster consensus and smaller communication complexity
(and thus lower energy footprint).

In road-traffic, removing one or more roads in a road network can speed up the overall traffic flow.
This phenomenon, called Braess’s paradox [10], also arises in loss networks [3]. In our problem, this
translates to removing an edge (ij) with a non-negligible Poisson intensity pij . We take G1 a dense
Erdős-Rényi random graph (Figure 1(a)) of parameters n = 30, p = 0.75. Delays τij are taken equal
to 0.01 with probability 0.9, and to 1 with probability 0.1. Initially, intensities are set as p(1)ij = 1/τij .
Maximizing:

λ2

(
∆G

( pij
1 +

∑
kl∼ij pkl(τij + eτkl)

))
−ω

∑
(ij)∈E

pijτij

over (pij)ij , we obtain intensities p(2) and a graph G2 (Figure 1(b)), sparser than G1: we delete
edges that have a null intensity (i.e. such that p(2)ij = 0). We then run our delayed gossip algorithm
for initialization x0 a Dirac mass (x0(i) = Ii=i0 ), on G1 (blue curves) and G2, for the choice of Kij

as in Theorem 1. The green curve is the synchronous gossip algorithm [9] on G1, to illustrate the
asynchronous speedup, where each iteration takes a time τmax = 1. In Figure 1(c), the error to the
consensus is measured as a function of the continuous time, while it is measured in terms of number
of updates in Figure 1(d) and in terms of energy (defined as

∑
k:Tk<t τikjk at time t: the energy

consumed by a communication is assumed to be proportional to the time the communication took) in
Figure 1(e).

As expected, in terms of number of updates in the whole graph and energy spent, the sparser graph
is more effective: slow and costly edges were deleted. Perhaps more surprising, but supported by
our theory (Theorem 2) and the resulting Braess’s paradox, this also holds in Figure 1(c): even
though in the same amount of time, less updates are made in the sparser graph G2 than in G1,
delayed randomized gossip is still faster on G2 than G1. Making less updates and deleting some
communications make all other communications more efficient.

We believe that this phenomenon could be exploited for efficient design of large scale networks,
beyond the maximization the spectral gap regardless of physical constraints as in [41] for instance.
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(a) Graph G1 (E-R) (b) Graph G2 (after sparsifica-
tion)

(c) Continuous time

(d) Number of updates in the whole graph (e) Energy spent

Figure 1: Experiments and Braess’s paradox.

7 Decentralized generation of truncated Poison point processes

7.1 Practical Implementation and Limitations of Algorithm 3 (DDO)

In order for DDO (or Delayed Randomized Gossip) to be implemented (with or without truncated
P.p.p.), some conditions are required, leading to some limitations that we discuss below. Communica-
tion steps at some time t are of the form −ηij(xi(t− τij)− xj(t− τij)) (on node i): the (delayed)
iterates of local variables xi and xj for this update are required to have the exact same delay. This
comes from our dual formulation. Secondly, it is not clear who has the initiative of communications
in our algorithm, since we treat delays and communications edge-wise. However, we propose here a
practical implementation of DDO, taking into account all these limitations: nodes have the initiative
of communications and delayed variables are enforced to have the same constant delays (equal to an
upper-bound on these delays).

Computation Updates at node i let N comp
i (t) be the number of computations launched at node i

between times t and t− τ comp
i . Initialize Pcomp

i as {t0} where t0 is a random time of exponential
law of parameter pcomp

i . At any time t ∈ Pcomp
i :

1. Compute a random time T of exponential law of parameter pcomp
i , and add t+ T to Pcomp

i ;
2. Computation: at time t, if N comp

i (t) < qcomp
i , i computes ∇g∗icomp(y

comp
i (t)) and saves

into memory node-variable xi(t);
3. Update: at time t + τ comp

i , the computation is finished, and the computation update (17)
can be performed.

Communication Updates at node i let N comm
i (t) and Nij(t) for j ∼ i respectively be the

number of communications started by node i between times t and t − τ comm
i and the number of

communications started between nodes i and j in [t− τij , t]. Initialize Pcomm
i as {t0} where t0 is a

random time of exponential law of parameter
∑

j∼i pij/2. At any time t ∈ Pcomm
i :

1. Compute a random time T of exponential law of parameter
∑

j∼i pij/2, and add t+ T to
Pcomm
i ;

11



2. Local synchronization: at time t, if N comm
i (t) < qcomm

i , i chooses an adjacent node j
with probability pij/

∑
k∼i pik, and sends a ping (smallest message possible). We assume

that sending a ping takes a time upper-bounded by τpingij . Upon reception of this ping, if
N comm

j (t) < qcomm
j , j returns the same ping to i. i and j are thus synchronized at time

t+ 2τpingij . Until the return of the feedback by node j, i assumes in its request list that this
communication will happen.

3. Communication: if Nij(t+ 2τpingij ) < qij , i sends xi(t) to j and j sends xj(t) to i, while
each agent keeps in memory the vector sent. For this to be possible, at a time s, node i

needs to keep in memory its local values at times between s−maxj∼i τ
ping
ij and s (a small

number of values usually, so that is not too restrictive).

4. Update: at time t+ 2τpingij + τij , update (8) can thus be performed.

The induced process has the same law as the one studied and analyzed thanks to the classical property
that a P.p.p. with intensity p has its distribution unchanged after translation of all its points by some
constant τij . The communication/computation scheme above emphasizes the fact that quantities
τij , τ

comp
i are upper bounds on the delays of local communication/computations. The delay is here

τij + 2τpingij instead of simply τij yet these are of the same order since τpingij ⩽ τij .

Conclusion

We introduced a novel analysis framework for the study of asynchronous algorithms in the presence of
delays, establishing that an asynchronous speedup can be achieved in the network averaging problem,
and in decentralized optimization. Our results hold for explicit choices of algorithm parameters based
on local network characteristics. They derive from the continuous-time analysis and assumptions
handled in our continuized framework. The explicit conditions and convergence rates we obtain allow
us to further discuss counter-intuitive effects akin to the Braess paradox, such as the possibility to
speed up convergence by suppressing communication links.
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A Discussion of our assumptions

Continuous time clocks Implicitly we have assumed that agents in the networks share a continuous-
time clock.

We now discuss how critical this assumption is. One may wonder if clock skews, drifts or shifts
between agents could lead to unwanted behavior (instability). First, computer clocks are synchronized
via Network Time Protocol (NTP) or other more recent and more robust protocols, justifying the
assumption of a common shared clock. However, failures in these protocols could lead to slight
skews, that need to be addressed. Looking at our algorithm, it in fact appears that, using timestamps,
nodes do not need to be perfectly synchronized, as long as time in each local clock passes at the same
speed. Shifts in time-synchronization thus do not appear to be the core practical difficulty: clock
drifts (clocks that do not have the same frequency and where time thus passes at a different speed)
are the remaining issue. However, this can be dealt with simply by augmenting pairwise delays to
take that into account.

Local upper bounds of the local delays Our rates depend on local upper bounds of the local delays,
that need to be known in order to tune the coefficients. The drawback is thus that, if a node/edge has
an erratic behavior (fast but rarely slow), we only use the upper-bound on the delays, which can lead
to slower convergence. However, we believe that this is a drawback of most (if not all) asynchronous
algorithms, where delays are dealt with by diminishing step sizes. These step sizes are tuned using
upper bounds on the delays. Even if we did not artificially force the delays to be equal to the local
upper bound τij , we would have to tune Kij based on these upper bounds, resulting in the same rates
of convergence. A natural extension would be to consider whether step sizes can be adapted to the
physical delay as in [27] for asynchronous SGD, therefore obtaining an asynchronous speedup and
guarantees without requiring any knowledge on the delay upper bounds.

B Delayed coordinate gradient descent in the continuized framework

Let G be a σ-strongly convex function on RD. For k = 1, ...,m, let Ek be a subspace of Rd, and
assume that:

Rd =

n⊕
k=1

Ek . (19)

For x ∈ RD, let xk denote its orthogonal projection on Ek and let ∇kG := (∇G)k, and assume that
the subspaces E1, ..., Em are orthogonal. For k, ℓ ∈ [m], we say that k and ℓ are adjacent and we
write k ∼ ℓ if and only if ∇k∇ℓG is not identically constant equal to 0. This induces a symmetric
graph structure on the coordinates k ∈ [m]. In the context of gossip network averaging, m = |E| and
each subspace Ek corresponds to an edge ek = (ikjk) of the graph; in that context, we have k ∼ ℓ if
and only if edges ek and eℓ share a node.

In the network averaging problem previously described, the function G used is g(λ) = 1
2∥Aλ∥ for

λ ∈ RE×d the edge variables. Subspaces are Eij of dimension d for (ij) ∈ E (and m = |E|)
corresponding to variables of λ associated to edge (ij).

B.1 Algorithm and assumptions

B.1.1 Continuized delayed coordinate gradient descent algorithm

For k ∈ [m], let Pk be a P.p.p. of intensity pk denoting the times at which an update can be performed
on subspace Ek. For t ∈ Pk let εk(t) ∈ {0, 1} be the indicator of whether the update is performed or
not. Let also ηk be some positive step size for k ∈ [m]. Consider then the following continuous-time
process X(t), where Xk(t) (the projection of X(t) on Ek) evolves according to:

dXk(t) = −εk(t)ηk∇kG((X(t− τk))Pk(dt) , (20)

where Pk(dt) corresponds to a Dirac at the points of the P.p.p. Pk. In words, (X(t))t⩾0 is a
jump process that takes coordinate gradient descent steps along subspaces (Ek)k∈[m] at the times
of independent Poisson point processes (Pk)k∈[m]. We introduced variables (εk(t))k∈[m],t∈Pk

with
values in {0, 1} to represent capacity constraints: εk(t) = 0 if the update at time t ∈ Pk cannot be
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performed due to some constraint saturation; these variables εk(t) will be essential in our treatment
of communication and computation capacity constraints in Section 5.

B.1.2 Regularity assumptions

G is σ-strongly convex, and Lk-smooth on Ek for k ∈ [m]. Furthermore, there exist non-negative
real numbers Mk,ℓ and Mℓ,k for k ∼ ℓ such that for all k = 1, ...,m and x, y ∈ RD, we have:

∥∇kG(x)−∇kG(y)∥ ⩽
∑
ℓ∼k

Mk,ℓ∥xℓ − yℓ∥ . (21)

When G is Lk smooth on Ek as we assume, the above condition is verified by the choice Mi,j = Lj ,
i ∼ j. If ∇kG is Mk-Lipschitz, Condition (21) is verified by the choice Mk,ℓ = Mk. Assumption
(21) however allows for more freedom, and is particularly well suited for our analysis. In particular
for decentralized optimization, it will be convenient to take Mkℓ =

√
LkLℓ.

B.1.3 Assumptions on variables εk(t), t ∈ Pk

For t ∈ Pk, random variable εk(t) is σ
(
Pℓ ∩ [t − τk, t), ℓ ∈ [m])-measurable, and there exists a

constant εk > 0 such that:
E [εk(t)] ⩾ εk ,

Furthermore, we assume that εk(t) is negatively correlated with each quantity Nℓ(t − τk, t) =
|Pℓ ∩ [t− τk, t]|, i.e. that for all k, ℓ ∈ [m],

E [εk(t)Nℓ(t− τk, t)] ⩽ E [εk(t)]E [Nℓ(t− τk, t)] . (22)
In our subsequent treatment of communication and capacity contraints, we shall see that the above
assumptions are verified for ϵk(t) the indicator that t is a point a truncated P.p.p. P̃k defined as
follows:
Definition 3 (Truncated P.p.p.). Let (Pk)1⩽k⩽m be P.p.p. of respective intensities (pk)1⩽k⩽m,
(τk)1⩽k⩽m non-negative delays. Let Nk be the Poisson point measures associated to Pk, k ∈ [m].
For (Cr)1⩽r⩽M subsets of [m], we define the truncated Poisson point measures (Ñ)1⩽k⩽m of
intensities (pk)1⩽k⩽m and parameters (τk)k, (qk,r)k∈[m],r∈[M ] as:

dÑk(t) = 1{⋂1⩽k⩽M {
∑

ℓ∈Cr
Nℓ([t−τk,t))⩽qk,r}}dNk(t) , (23)

and we let P̃k be the point process associated to this point measure.

B.2 Convergence guarantees and analysis

The main result of this Section is the following
Theorem 4 (Delayed Coordinate Gradient Descent). Under the stated assumptions on regularity of
G and on variables ϵk(t), assume further that the step sizes ηk are given by ηk = Kk

pkLk
where for all

k ∈ [m],
Kk ⩽

pk

1 +
∑

ℓ∼k pℓ

(
τkMk,ℓ+eτℓMℓ,k√

LkLℓ

) , (24)

and let γ ∈ R+ be such that:

γ < min

(
σmin

k

εkKk

Lk
,

1

τmax

)
, (25)

where τmax := maxk∈[m] τk. Then for any T > 0 the solution X(t) to Equation (20) verifies∫ T

0
eγtE [G(X(t))−G(x⋆)] dt∫ T

0
eγt
(
G(X(0))−G(x⋆)

)
dt

⩽ e−
γT
2

1 + τmax

T

1− γτmax
· (26)

Proof. We proceed in three steps. The first step consists in upper bounding, for t ⩾ 0, the quantity
dE[G(X(t))]

dt . We then introduce in Step 2 a Lyapunov function inspired by the Lyapunov-Krasovskii
functional [13]), and by using the result proved in the first step, we show that it verifies a delayed
ordinary differential inequality. The last step then consists in deriving the desired result from this
delayed differential inequality.
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Step 1 To bound dE[G(X(t))]
dt , we study infinitesimal increments between t and t+ dt for dt→ 0.

This approach is justified by results on stochastic ordinary differential equation with Poisson jumps,
see [8]. For t ⩾ 0, let Ft be the filtration induced by Pk ∩ [0, t), k ∈ [m] i.e., the filtration up to time
t. By convention, for non-positive t, we write X(t) = X(0). The following inequalities are written
up to o(dt) terms, that we omit to lighten notations. Finally, we write

gk,t = ∇kG(X(t)) , k ∈ [m], t ⩾ 0 .

We have, using local smoothness properties of G and the fact that for a P.p.p. P of intensity p,
P(P ∩ [t, t+ dt] = ∅) = 1− pdt+ o(dt) and P(#P ∩ [t, t+ dt] = 1) = pdt+ o(dt):

E [G(X(t+ dt))−G(X(t))|Ft]

dt

=

m∑
k=1

pk

(
G

(
X(t)− εk(t)Kk

pkLk
gk,t−τk

)
−G(X(t))

)

⩽
m∑

k=1

pk

(
− Kk

pkLk
⟨εk(t)gk,t−τk , gk,t⟩+

Lk

2

∥∥∥∥εk(t) Kk

pkLk
∇kgk,t−τk

∥∥∥∥2
)

.

First, we rewrite − εk(t)Kk

pkLk
⟨gk,t−τk , gk,t⟩ as

−εk(t)Kk

pkLk
∥gk,t−τk∥

2 − εk(t)Kk

pkLk
⟨gk,t−τk , gk,t − gk,t−τk⟩,

and bound the second term there by

− εk(t)Kk

pkLk
⟨gk,t−τk ,gk,t−gk,t−τk⟩

⩽
εk(t)Kk

pkLk
∥gk,t−τk∥∥gk,t−gk,t−τk∥

⩽
Kk

pkLk
∥εk(t)gk,t−τk∥

∑
ℓ∼k

Mk,ℓ∥Xℓ(t)−Xℓ(t−τk)∥ ,

where we used the Cauchy-Schwarz inequality and then local Lipschitz property (21) of ∇kG.
Writing

∥Xℓ(t)−Xℓ(t− τk)∥

=

∥∥∥∥∥
∫ t

(t−τk)+

εℓ(s)Kℓ

pℓLℓ
gℓ,s−τℓNℓ(ds)

∥∥∥∥∥ ,
where Nℓ is the Poisson point measure associated to Pℓ, we have (where we use a triangle inequality
for integrals):

KkMk,ℓ

pkLk
E [∥εk(t)gk,t−τk∥∥Xℓ(t)−Xℓ(t−τk)∥]

⩽E

[∫ t

(t−τk)+
Mk,ℓ

εk(t)Kkεℓ(s)Kℓ

LkpkpℓLℓ
∥gk,t−τk∥∥gℓ,s−τℓ∥Nℓ(ds)

]

⩽ E

[∫ t

(t−τk)+

1

2

(
K2

kMk,ℓ

p2kLk

√
LkLℓ

∥εk(t)gk,t−τk∥
2
+

K2
ℓMk,ℓ

p2ℓLℓ

√
LkLℓ

∥εℓ(s)gℓ,s−τℓ∥
2

)
Nℓ(ds)

]
.

For the first term, since both εk(t) and Nℓ(ds) for s in the integral are independent from X(t− τk)
(and thus from gk,t−τk ), and where we write Nℓ(u, v) the number of clock tickings of Pℓ in the
interval [u, v), we obtain:

E

[∫ t

(t−τk)+

1

2

K2
kMk,ℓ

p2kLk

√
LkLℓ

∥εk(t)gk,t−τk∥
2

]

=
E [Nℓ(t− τk, t)εk(t)]

2

K2
kMk,ℓ

p2kLk

√
LkLℓ

E
[
∥gk,t−τk∥

2
]
.
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Furthermore, using our negative correlation assumption, E [Nℓ(t− τk, t)εk(t)] ⩽
E [Nℓ(t− τk, t)]E [εk(t)] = pℓτkE [εk(t)], and since εk(t) and gk,t−τk are independent,

E [εk(t)]E
[
∥gk,t−τk∥

2
]
= E

[
εk(t)∥gk,t−τk∥

2
]
.

For the second term, since the process (εℓ(s)gℓ,s−τℓ)s is predictable (in the sense that it is independent
from Nu(ds) for all u), we have

E

[∫ t

(t−τk)+

K2
ℓMk,ℓ

2p2ℓLℓ

√
LkLℓ

∥εℓ(s)gℓ,s−τℓ∥
2
Nℓ(ds)

]

=

∫ t

(t−τk)+

K2
ℓMk,ℓ

2p2ℓLℓ

√
LkLℓ

E
[
∥εℓ(s)gℓ,s−τℓ∥

2
]
E [Nℓ(ds)]

=

∫ t

(t−τk)+

K2
ℓMk,ℓ

2p2ℓLℓ

√
LkLℓ

E
[
∥εℓ(s)gℓ,s−τℓ∥

2
]
pℓds .

Hence,
KkMk,ℓ

pkLk
E [∥εk(t)gk,t−τk∥∥Xℓ(t)−Xℓ(t−τk)∥]

⩽
pℓτkK

2
kMk,ℓ

2p2kLk

√
LkLℓ

E
[
∥εk(t)gk,t−τk∥

2
]

+

∫ t

(t−τk)+

K2
ℓMk,ℓ

2p2ℓLℓ

√
LkLℓ

E
[
∥εℓ(s)gℓ,s−τℓ∥

2
]
pℓds .

Combining all our elements and taking dt→ 0, we hence have:

dE [G(X(t))]

dt
⩽ −

m∑
k=1

Kk

Lk

(
1− Kk

2pk

)
E
[
∥εk(t)gk,t−τk∥

2
]

+

m∑
k=1

∑
ℓ∼k

pℓτkK
2
kMk,ℓ

2pkLk

√
LkLℓ

E
[
∥εk(t)gk,t−τk∥

2
]

+

m∑
k=1

∑
ℓ∼k

∫ t

(t−τk)+

pkK
2
ℓMk,ℓ

2pℓLℓ

√
LkLℓ

E
[
∥εℓ(s)gℓ,s−τℓ∥

2
]
ds .

(27)

Step 2 Now, introduce the following Lyapunov function:

Lγ
T =

∫ T

0

eγtE [G(X(t))−G(x⋆)] dt ,

that we wish to upper-bound by some constant, where γ is as in (25). We have:

dLγ
T

dT
= G(X(0))−G(x⋆) + γLγ

T +

∫ T

0

eγt
dE [G(X(t))]

dt
dt .

Integrating the bound (27) on dE[G(X(t))]
dt , we obtain, using

∫ T

0

∫ t

(t−τ)+ h(u)dudt ⩽ τ
∫ T

0
h(t)dt for

non-negative h:

dLγ
T

dT
⩽ G(X(0))−G(x⋆) + γLγ

T

−
m∑

k=1

Kk

Lk

(
1− Kk

2pk

) ∫ T

0

eγtE
[
∥εk(t)gk,t−τk∥

2
]
dt

+

m∑
k=1

Ak

∫ T

0

eγtE
[
∥εk(t)gk,t−τk∥

2
]
dt ,

where

Ak =
K2

k

2pkLk

∑
ℓ∼k

pℓτkMk,ℓ√
LkLℓ

+ eγτℓ
pℓτℓMℓ,k√

LkLℓ

.
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Remark now that we have
K2

k

2pkLk
+Ak ⩽

Kk

2Lk
, k ∈ [m]. (28)

Indeed, (28) is equivalent to

Kk ⩽
pk

1 +
∑

ℓ∼k

(
pℓτkMk,ℓ√

LkLℓ
+ eγτℓ

pℓτℓMℓ,k√
LkLℓ

) ,

which follows from the assumed bounds (24) on Kk and the fact that γ ⩽ 1/τmax, assumed
in (25). we then have, using (28) and the fact that, by strong convexity, G(X(t)) − G(x⋆) ⩽
1
2σ∥∇G(X(t))∥2 = 1

2σ

∑m
k=1 ∥∇gk,t∥

2:

dLγ
T

dT
⩽ G(X(0))−G(x⋆) + γLγ

T

−
m∑

k=1

Kk

2Lk

∫ T−τk

0

eγ(t+τk)E
[
∥εk(t+ τk)gk,t∥2

]
dt

⩽ G(X(0))−G(x⋆) + γLγ
T

− min
k∈[m]

(Kkεke
γτk

2Lk

)∫ T−τmax

0

eγtE

[
m∑

k=1

∥gk,t∥2
]
dt

⩽ G(X(0))−G(x⋆)+γ
(
Lγ
T − L

γ
T−τmax

)
,

where we used the assumption (25) that γ ⩽ σmink∈[m]

(
Kkεk
Lk

)
.

Step 3 The proof is then concluded by using the following lemma, to control solutions of this
delayed ordinary differential inequality.

Lemma 1. Let h : R→ R+ a differentiable function such that:

∀t ⩽ 0 , h(t) = 0 ,

∀t ⩾ 0 , h′(t) ⩽ a+ b(h(t)− h(t− τ)) ,

for some positive constants a, b, τ verifying τb < 1. Then:

∀t ∈ R , h(t) ⩽
a(t+ τ)

1− τb
.

Proof. Let δ(t) = h(t)− h(t− τ). For any t ⩾ 0, we have:

δ(t) =

∫ t

t−τ
h′(s)ds

⩽
∫ t

t−τ
(a+ bδ(s))ds

⩽ τ(a+ b sup
s⩽t

δ(s)).

Let c = τa
1−τb (solution of x = τ(a+ bx)) and t0 = inf{t > 0|δ(t) ⩾ c} ∈ R ∪ {∞}. Assume that

t0 is finite. Then, by continuity, δ(t0) = c and:

c ⩽ τ(a+ b sup
s⩽t0

δ(s)) < τ(a+ bc) < c,

as for all s < t0, δ(s) < c. This is absurd, and thus t0 is not finite: ∀t > 0, δ(t) < c, giving us
h(t) ⩽ c(t+ τ)/τ for all t ⩾ 0.

To conclude the proof of Theorem (4), we apply Lemma 1 to h(T ) = Lγ
T with a = G(X(0))−G(x⋆),

b = γ and τ = τmax to obtain that for all T > 0,

Lγ
T ⩽

(
G(X(0))−G(x⋆)

) T + τmax

1− τmaxγ
·
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The result of Theorem 4 follows by dividing this inequality by
∫ T

0
eγtdt = eγT−1

γ :∫ T

0
eγtE [G(X(t))−G(x⋆)] dt∫ T

0
eγt
(
G(X(0))−G(x⋆)

)
dt

⩽
γ

eγT − 1

T + τmax

1− τmaxγ

=
γT

eγT − 1

1 + τmax/T

1− τmaxγ

⩽ e−γT/2 1 + τmax/T

1− τmaxγ
,

where we used that for x ⩾ 0, ex−1
x ⩾ ex/2.

C Proof of Proposition 1

First, we explain how the updates of randomized gossip can also be derived from coordinate gradient
descent steps. Let A ∈ RV×E be such that for all (ij) ∈ E, Aeij = µij(ei−ej) for arbitrary µij ∈ R,
where (eij)(ij)∈E and (ei)i∈V are the canonical bases of RE and RV . Then, let g(λ) = 1

2∥Aλ∥2

for λ ∈ RE×d, so that the coordinate gradient ∇ijg(λ) writes ∇ijg(λ) = µij((Aλ)i − (Aλ)j).
Thus, provided that for some λTk− ∈ RE×d, xTk− − x̄ = AλTk−, the local averaging defined in
Equation (4) is equivalent to xTk

− x̄ = AλTk
, where λTk

= λTk− −
Kikjk

pikjk
µ2
ikjk

∇ikjkg(λTk−) for

Kikjk =
pikjk

2 . Hence, the gossip algorithm of [5] can be viewed as a simple block-coordinate
gradient descent on variables λ ∈ RE×d indexed by the edges of the graph instead of the nodes.

Proof of Proposition 1. For A ∈ RV×E as defined in Section 3.1 for non-null weights µij , define
the following delayed ODE:

dλt

dt
= −

∑
(ij)∈E

Kij

µ2
ij

e⊤ijA
⊤Aλt−τij . (29)

For (yt) solution of (11), if there exists λ0 such that Aλ0 = y0, then yt = Aλt for all t, where λt

is solution of (29) initialized at the value λ0. Then, since AA⊤ is the Laplacian of graph G with
weights µ2

ij > 0, A is of rank n− 1. For all λ, Aλ is in the orthogonal of R1 (1 ∈ RV is the vector
with all entries equal to 1), so that Im(A) is exactly the orthogonal of R1. Finally, since for (yt) a
solution of (11), yt − (1⊤y0)1 is also solution of (11) and takes values in the orthogonal of R1, it is
sufficient to prove stability of (29).

To that end, we use Theorem 1 of [26]. For z ∈ RE , let D(z) ∈ RE×E be the diagonal matrix with
diagonal equal to z. Let M = D(K

µ2 )A
⊤A. Then, the delayed ODE (29) writes as:

dλt(ij)

dt
= −

∑
(kl)∈E

M(ij),(kl)λt−τij (kl) , (ij) ∈ E ,

and ODE that takes the same form as Equation (7) in [26], for D←(ij) = τij , D→(ij) = 0 and D(ij) = τij ,
R = E and with our matrix M . In order to ensure that M is symmetric and positive semi-definite, we
take µ2

ij = Kij , to have M = A⊤A. The assumptions of Theorem 1 of [26] are verified, so that the
delayed ODE (29) is table if ρ(D(τ)M) < 1. We then write ρ(D(τ)M) = ρ(D(

√
τ)A⊤AD(

√
τ) =

ρ(AD(
√
τ)(AD(

√
τ))⊤), and notice that AD(

√
τ)(AD(

√
τ))⊤ is the Laplacian of graph G with

weights µ2
ijτij = Kijτij , concluding the proof.

D Proof of Theorem 1

In the proof, we use the assumed bounds τij on actual delays in our algorithm to ensure that
communications between i and j started at a time t− τij induce communication updates at time t.
Our algorithms thus behave exactly as if individual communication delays coincide with these upper
bounds τij , which allows us to analyze algorithms with constant, albeit heterogeneous delays.
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In contrast an analysis in discrete time would use a global iteration counter, and discrete-time delays
would not be constant,making the analysis either much more involved or unable to capture the
asynchronous speedup described above.

Proof. Theorem 1 is obtained by applying a general result on delayed coordinate descent in the
continuized framework that we detail in Section B.

Specifically, we consider the function:

g(λ) =
1

2
∥Aλ∥2 λ ∈ RE×d

for some A ∈ RV×E such that Aeij = µij(ei − ej) for all (ij) ∈ E, where we let µij = −µji by
convention. As in Section 3.4, there exists λ ∈ RE×d such that x0− x̄ = Aλ. Let (λt)t⩾0 be defined
with λ0 = λ, and the delayed coordinate gradient steps at the clock tickings of the P.p.p.’s:

λTk
← λTk− −

Kikjk

pikjk
∇ikjkg(λTk−τikjk

) .

For all t ⩾ 0, we then have xt = x̄+Aλt, where we recall that the process (xt) follows the delayed
randomized gossip updates (8) of Algorithm 1. Then, for all t ⩾ 0, we have g(λt) =

1
2∥Aλt∥2 =

1
2∥xt − x̄∥2.

The result of Theorem 1 follows from a control of E [g(λt)] that is a direct consequence of Theorem 4
in next section with the specific choices m = |E| and coordinate blocks corresponding to edges. The
assumptions of Theorem 4 are verified with Lij = 2µ2

ij , M(ij),(kl) =
√
LijLkl, and strong convexity

parameter λ2(∆G(νij = µ2
ij)) for the specific choice µ2

ij = Kij , as is shown in Lemmas ??, ??, ??
in the Appendix, giving us exactly Theorem 1.

Corollary 1. Under the same assumptions as Theorem 1, for (xt)t⩾0 generated with delayed
randomized gossip, define (x̃t)t⩾0 as the exponentially weighted averaging along the trajectory of
(xt):

x̃t = γ

∫ t

0
eγsxsds

eγt − 1
.

Then, for all T ⩾ 0,

E
[
∥x̃T − x̄∥2

]
⩽ e−

γT
2 ∥x0 − x̄∥2

1 + τmax

T

1− γτmax
.

E Proof of Theorem 2

Proof. Following the augmented graph approach [16], for each “physical” node i ∈ V , we associate
a “virtual” node icomp, corresponding to the computational unit of node i. We then consider the
augmented graph G+ = (V +, E+), where V + = V ∪ V comp (for V comp = {icomp, i ∈ V }) and
E+ = E ∪ Ecomp (for Ecomp = {(iicomp), i ∈ V }).
For i ∈ V , function fi is then split (using σ-strong convexity) into a sum of two σ/2-strongly convex
functions: fi = ϕi + ϕicomp where ϕicomp(xi) = fi(xi) − σ

4 ∥xi∥2 and ϕi(xi) = ϕcomm(xi) =
σ
4 ∥xi∥2.

The optimization objective (1)

min
x1=...=xn

1

n

n∑
i=1

fi(xi) , x = (x1, . . . , xn) ∈ RV×d

can then be rewritten as

min
x∈RV +

{
F (x) =

∑
i∈V

ϕi(xi) +
∑

icomp∈V comp

ϕicomp(xicomp)

}
,

under the constraint xi = xj for (ij) ∈ E+. This constraint can then be rewritten as A⊤x = 0 for
A ∈ RE+×V +

such that for all (ij) ∈ E+, Aeij = µij(ei − ej), as was done for network averaging,
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considering the augmented graph instead of the original graph. Using Lagrangian duality, denoting
F ∗A(λ) := F ∗(Aλ) for λ ∈ RE+×d where F ∗ is the Fenchel conjugate of F , we have:

min
x∈RV +×d,xi=xj ,(ij)∈E+

F (x) = max
λ∈RE×d

−F ∗A(λ).

Thus F ∗A(λ) is to be minimized over the dual variable λ ∈ RE+×d. The rest of the proof is divided in
two steps: in the first, we derive the updates of the DDO algorithm from coordinate gradient descent
steps on dual variables, and in the second step we apply Theorem 4 to prove rates of convergence for
these coordinate gradient descent steps on function F ∗A.

The partial derivative of F ∗A with respect to coordinate (ij) ∈ E+ of λ ∈ RE+×d reads:

∇ijF
∗
A(λ) = µij(∇ϕ∗i ((Aλ)i)−∇ϕ∗j ((Aλ)j)) .

Consider then the following step of coordinate gradient descent for F ∗A on coordinate (ikjk) ∈ E+

of λ, performed when edge (ikjk) is activated at iteration k (corresponding to time tk):

λtk = λtk− −
1

(2σ−1)µ2
ikjk

∇ikjkF
∗
A(λtk−τikjk

) , (30)

corresponding to an instantiation of delayed coordinate gradient descent in the continuized framework,
on function F ∗A, for P.p.p. of intensities (pij) for (ij) ∈ E and pcomp

i for (iicomp) ∈ Ecomp. Denoting
vt = Aλt ∈ RV +×d for t ⩾ 0, we obtain the following formula for updating coordinates ik, jk of v
when ikjk activated, irrespectively of the choice of µij in matrix A:

vtk,ik = vtk−,ik −
∇ϕ∗ik(vtk−τikjk

,ik)−∇ϕ∗jk(vtk−τikjk
,jk)

2σ−1
,

vtk,jk = vtk−,jk +
∇ϕ∗ik(vtk−τikjk

,ik)−∇ϕ∗jk(vtk−τikjk
,jk)

2σ−1
.

(31)

Such updates can be performed locally at nodes i and j after communication between the two nodes
(if (ij) is a ‘physical edge’), or locally (if (ij) is ‘virtual edge’). We refer in the sequel to this
scheme as the Coordinate Descent Method. While λ ∈ RE×d is a dual variable defined on the edges,
v ∈ Rn×d is also a dual variable, but defined on the nodes. The primal surrogate of v is defined as
x = ∇F ∗(v) i.e. xi = ∇f∗i (vi) at node i. It can hence be computed with local updates on v. The
decentralized updates of Algorithm 3 (computational updates in Algorithm 2, communication updates
in Algorithm 1) are then direct consequences of Equation (31).

The last step of the proof consists in applying Theorem 4 in order to obtain Theorem 2. The function
F ∗A we introduced satisfies the assumptions of Theorem 4 with coordinate blocks corresponding to
edges E+: The regularity assumptions are satisfied with smoothness parameter Lij = 8µ2

ijσ
−1 and

local Lipschitz coefficients M(ij),(kl) =
√
LijLkl for any (ij), (kl) ∈ E+, as shown in Lemmas ??

and ?? in the Appendix. F ∗A is moreover σ-strongly convex6 with σ derived using Lemmas ?? and
??, and the weights associated to matrix A are chosen so that µ2

ij =
εijKijσ

2µ2
ij

.

Finally, the output of the algorithm at node i is the primal surrogate of variable xi(t) (associated to
ϕi), which is equal to∇ϕi(xi(t)) =

σ
2xi(t).

F Proof of Theorem 3

Proof. The algorithm under capacity constraints is obtained by applying coordinate gradient descent
in the continuized framework to the same dual problem as in Section 4, but with random variables
“εk(t)” that are not taken constant equal to 1. Here, for (ij) ∈ E and t ∈ Pij , we have

εij(t) = 1{nij(t)<qij , ncomm
i (t)<qcomm

i , ncomm
j (t)<qcomm

j } ,

6In fact, it is strongly convex on the orthogonal of KerA, which suffices for us to conclude since the dynamics
are restricted to this subspace.
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while for i ∈ V and t ∈ Pcomp
i ,

εiicomp(t) = 1{ncomp
i <qcomp

i } .

We apply Theorem 4 as in the proof of Theorem 2, leading to the same stability conditions on the step
sizes Kij ,K

comp
i , while the rate of convergence is multiplied by a lower bound ε on all E [εij(t)]

and E [εiicomp(t)]. Let us finally compute such a lower bound ε.

For (ij) ∈ E, nij(t) is stochastically dominated by Zij a Poisson random variable of parameter
pijτij , while ncomm

i (t) and ncomm
j (t) are respectively dominated by Zi and Zj , Poisson random

variables of parameters τij
∑

k∼i pki and τij
∑

ℓ∼j pℓj , so that:

E [εij(t)] ⩾ P
(
Zij < qij , Zi < qcomm

i , Zj < qcomm
j

)
⩾ 1−P(Zij⩾ qij)−P(Zi⩾ qcomm

i )−P (Zj⩾ qcomm
j ) .

We now prove that P(Zij ⩾ qij),P(Zi ⩾ qcomm
i ), P (Zj ⩾ qcomm

j ) are all inferior to 1/6. For
P(Zij ⩾ qij), using that for Z a Poisson variable of parameter µ and x ⩾ 0,

P(Zµ ⩾ µ+ x) ⩽ e
−x2

µ+x ,

we have P(Zij ⩾ qij) ⩽ e
−

(qij−pijτij)
2

qij ⩽ e−2(1−1/c)
2

if qij ⩾ 2, and this quantity is equal to
1/6, by definition of c. Then, if qij = 1, using P(Zµ ⩾ 1) = 1 − e−µ, we have that P(Zij ⩾
qij) ⩽ pijτij ⩽ 1/c ⩽ 1/6. We proceed in the same way for P(Zi ⩾ qcomm

i ), P (Zj ⩾ qcomm
j ).

Hence, E [εij(t)] ⩾ 1/2 under our assumptions on the Poisson intensities. Similarly, we prove that
E [εiicomp(t)] ⩾ 1/2, and this concludes the proof.
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