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ABSTRACT

Few-shot class-incremental learning (FSCIL) has been a challenging problem as
only a few training samples are accessible for each novel class in the new ses-
sions. Finetuning the backbone or adjusting the classifier prototypes trained in
the prior sessions would inevitably cause a misalignment between the feature and
classifier of old classes, which explains the well-known catastrophic forgetting
problem. In this paper, we deal with this misalignment dilemma in FSCIL in-
spired by the recently discovered phenomenon named neural collapse, which re-
veals that the last-layer features of the same class will collapse into a vertex, and
the vertices of all classes are aligned with the classifier prototypes, which are
formed as a simplex equiangular tight frame (ETF). It corresponds to an opti-
mal geometric structure for classification due to the maximized Fisher Discrim-
inant Ratio. We propose a neural collapse inspired framework for FSCIL. A
group of classifier prototypes are pre-assigned as a simplex ETF for the whole
label space, including the base session and all the incremental sessions. During
training, the classifier prototypes are not learnable, and we adopt a novel loss
function that drives the features into their corresponding prototypes. Theoretical
analysis shows that our method holds the neural collapse optimality and does not
break the feature-classifier alignment in an incremental fashion. Experiments on
the miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our pro-
posed framework outperforms the state-of-the-art performances. Code address:
https://github.com/NeuralCollapseApplications/FSCIL

1 INTRODUCTION

Learning incrementally and learning with few-shot data are common in the real-world implementa-
tions, and in many applications, such as robotics, the two demands emerge simultaneously. Despite
the great success in a closed label space, it is still challenging for a deep learning model to learn
new classes continually with only limited samples (LeCun et al., 2015). To this end, few-shot class-
incremental learning (FSCIL) was proposed to tackle this problem (Tao et al., 2020b).

Compared with few-shot learning (Ravi & Larochelle, 2017; Vinyals et al., 2016), FSCIL trans-
fers a trained model into new label spaces incrementally. It also differs from incremental learning
(Cauwenberghs & Poggio, 2000; Li & Hoiem, 2017; Rebuffi et al., 2017) in that there are only a
few (usually 5) samples accessible for each new class in the incremental sessions. For each ses-
sion’s evaluation, the model is required to infer test images coming from all the classes that have
been encountered. The base session of FSCIL contains a large label space and sufficient training
samples, while each incremental session only has a few novel classes and labeled images. It poses
the notorious catastrophic forgetting problem (Goodfellow et al., 2013) because the novel sessions
have no access to the data of the previous sessions.

Due to the importance and difficulty, FSCIL has attracted much research attention. The initial so-
lutions to FSCIL finetune the network on new session data with distillation schemes to reduce the
forgetting of old classes (Tao et al., 2020b; Dong et al., 2021). However, the few-shot data in novel
sessions can easily induce over-fitting. Following studies favor training a backbone network on the
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Figure 1: A popular choice in prior studies is to evolve the old-class prototypes via delicate design of
loss or regularizer to keep them separated from novel-class prototypes, but will cause misalignment.
As a comparison, we pre-assign and fix an optimal feature-classifier alignment, and then train a
model towards the same neural collapse optimality in each session to avoid target conflict.

base session as a feature extractor (Zhang et al., 2021; Hersche et al., 2022; Akyürek et al., 2022).
For novel sessions, the backbone network is fixed and a group of novel-class prototypes (classifier
vectors) are learned incrementally. But as shown in Figure 1 (a), the newly added prototypes may
lie close to the old-class prototypes, which impedes the ability to discriminate between the old-class
and the novel-class samples in evaluation. As a result, adjusting the classifier prototypes is always
necessary for two goals: (i) keep a sufficient distance between the old-class and the novel-class
prototypes; (ii) prevent the adjusted old-class prototypes from shifting far away from their original
positions. However, the two goals rely on sophisticated loss functions or regularizers (Chen & Lee,
2021; Hersche et al., 2022; Akyürek et al., 2022), and are hard to attain simultaneously without
qualification. Besides, as shown in Figure 1 (a), there will be a misalignment between the adjusted
classifier and the fixed features of old classes. A recent study proposes to reserve feature space
for novel classes to circumvent their conflict with old classes (Zhou et al., 2022a), but an optimal
feature-classifier alignment is hard to be guaranteed with learnable classifier (Pernici et al., 2021).

We point out that it is the misalignment dilemma between feature and classifier that causes the
catastrophic forgetting problem of old classes. If a backbone network is finetuned in novel sessions,
the features of old classes will be easily deviated from their classifier prototypes. Alternatively,
when a backbone network is fixed and a group of new prototypes for novel classes are learned
incrementally, the adjustment of old-class prototypes will also induce misalignments with their fixed
features. In this paper, we pose and study the following question,

“Can we look for and pre-assign an optimal feature-classifier alignment such that the model is
optimized towards the fixed optimality, so avoids conflict among sessions?”

1.1 MOTIVATIONS AND CONTRIBUTIONS

Neural collapse is a recently discovered phenomenon that at the terminal phase of training (after 0
training error rate), the last-layer features of the same class will collapse into a single vertex, and
the vertices of all classes will be aligned with their classifier prototypes and be formed as a simplex
equiangular tight frame (ETF) (Papyan et al., 2020). A simplex ETF is a geometric structure of K
vectors in Rd, d ≥ K−1. All vectors have the same `2 norm of 1 and any pair of two different vectors
has an inner product of − 1

K−1 , which corresponds to the largest possible angle of K equiangular
vectors. Particularly when d = K − 1, a simplex ETF reduces to a regular simplex such as triangle
and tetrahedron. It describes an optimal geometric structure for classification due to the minimized
within-class variance and the maximized between-class variance (Martinez & Kak, 2001), which
indicates that the Fisher Discriminant Ratio (Fisher, 1936; Rao, 1948) is maximized. Following
studies aim to theoretically explain this phenomenon (Fang et al., 2021; Han et al., 2022).
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It is expected that imperfect training condition, such as imbalance, cannot induce neural collapse
and will cause deteriorated performance (Fang et al., 2021; Yang et al., 2022b). Training in an
incremental fashion will also break the neural collapse optimality. Since neural collapse offers us
an optimal structure where features and their classifier prototypes are aligned, we can pre-assign
such a structure and learn the model towards the optimality. Inspired by this insight, in this paper,
we initialize a group of classifier prototypes ŴETF ∈ Rd×(K0+K

′) as a simplex ETF for the whole
label space, whereK0 is the number of classes in the base session andK ′ is the number of classes in
all the incremental sessions. As shown in Figure 1 (b), it serves as the optimization target and keeps
fixed throughout all sessions training. We append a projection layer after the backbone network and
store the mean latent feature of each class output by the backbone in a memory. In the training of
incremental sessions, we only finetune the projection layer using a novel loss function that drives the
final features towards their corresponding target prototypes. Without bells and whistles, our method
achieves superior performances and relieves the catastrophic forgetting problem.

The contributions of this paper can be summarized as follows:

• To relieve the misalignment dilemma in FSCIL, we propose to pre-assign an optimal align-
ment inspired by neural collapse as a fixed target throughout the incremental learning. Our
model is trained towards the same optimality to avoid optimization conflict among sessions.

• We fix the prototypes and apply a novel loss function that only finetunes a projection layer
to drive the output features into their corresponding prototypes. Theoretical and empirical
analyses show that our method better holds the neural collapse optimality.

• Experiments on miniImageNet, CIFAR-100, and CUB-200 demonstrate that our method
is able to surpass the state-of-the-art performances. In particular, our method achieves an
average accuracy improvement of more than 3.5% over a recent strong baseline on both
miniImageNet and CIFAR-100.

2 RELATED WORK

Few-shot class-incremental learning (FSCIL). As a variant of class-incremental learning (CIL)
(Cauwenberghs & Poggio, 2000; Li & Hoiem, 2017; Rebuffi et al., 2017), FSCIL only has a few
novel-classes and training data in each incremental session (Tao et al., 2020b; Dong et al., 2021),
which increases the tendency of overfitting on novel classes (Snell et al., 2017; Sung et al., 2018).
Both CIL and FSCIL require a delicate balance between well adapting a model to novel classes and
less forgetting of old classes (Zhao et al., 2021). A popular choice is to use meta learning (Yoon et al.,
2020; Chi et al., 2022; Zhou et al., 2022b). Some studies try to make base and incremental sessions
compatible via pseudo-feature (Cheraghian et al., 2021b; Zhou et al., 2022a), augmentation (Peng
et al., 2022), or looking for a flat minima (Shi et al., 2021). For training in incremental sessions,
the new prototypes for novel classes should be separable from the old-class prototypes. Meanwhile,
the adjustment of old-class prototypes should not induce large shifts. Current studies widely rely on
evolving the prototypes (Zhang et al., 2021; Zhu et al., 2021a) or sophisticated designs of loss and
regularizer (Ren et al., 2019; Hou et al., 2019; Tao et al., 2020a; Joseph et al., 2022; Lu et al., 2022;
Hersche et al., 2022; Chen & Lee, 2021; Akyürek et al., 2022; Yang et al., 2022a). However, the two
goals have inherent conflict, and a tough effort to balance the loss terms is necessary. In contrast,
our method pre-assigns and fixes a feature-classifier alignment as an optimality. A model is trained
towards the same target in all sessions. We only use a single loss without any regularizer.

Neural collapse. Neural collapse describes an elegant geometric structure of the last-layer feature
and classifier in a well-trained model (Papyan et al., 2020). It inspires later studies to theoretically
explain this phenomenon. Based on a simplified model that only considers the last-layer optimiza-
tion, neural collapse is proved to be the global optimality of balanced training with the CE (Weinan
& Wojtowytsch, 2020; Graf et al., 2021; Lu & Steinerberger, 2020; Fang et al., 2021; Zhu et al.,
2021b; Ji et al., 2022) and the MSE (Mixon et al., 2020; Poggio & Liao, 2020; Zhou et al., 2022c;
Han et al., 2022; Tirer & Bruna, 2022) loss functions. Recent studies try to induce neural collapse
in imbalanced training by fixing a classifier (Yang et al., 2022b; Zhong et al., 2023) or novel loss
(Xie et al., 2023). Our method is inspired by Yang et al. (2022b), but we apply the classifier in an
incremental fashion. Galanti et al. (2022) show that neural collapse is still valid when transferring a
model into new samples or classes. To the best of our knowledge, we are the first to study FSCIL
from the neural collapse perspective, which offers our method sound interpretability.
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3 BACKGROUND

3.1 FEW-SHOT CLASS-INCREMENTAL LEARNING (FSCIL)

In real-world applications, one often needs to adapt a model to data coming from a new label space
with only a few labeled samples. FSCIL trains a model incrementally on a sequence of training

datasets {D(0),D(1), . . . ,D(T )}, where D(t) = {(xi, yi)}|D
(t)|

i=1 , D(0) is the base session, and T the
number of incremental sessions. The base session D(0) usually contains a large label space C(0) and
sufficient training images for each class c ∈ C(0). In each incremental session D(t), t > 0, there
are only a few labeled images and we have |D(t)| = pq, where p is the number of classes and q is
the number samples per novel class, known as p-way q-shot. The label space C(t) has no overlap
with any other session, i.e., C(t) ∩ C(t′) = ∅, ∀t′ 6= t. For any incremental session t > 0, we only
have access to the data in D(t), and the training sets of the previous sessions are not available. For
evaluation in session t, the test dataset comes from all the encountered classes in the previous and
current sessions 1, i.e. the label space of ∪ti=0C(i).
Therefore, FSCIL suffers from severe data scarcity and imbalance. It requires a model to be adapt-
able to novel classes, and meanwhile keep the ability on old classes.

3.2 NEURAL COLLAPSE

Neural collapse refers to a phenomenon at the terminal phase of training (after 0 training error rate)
on balanced data (Papyan et al., 2020). It reveals a geometric structure formed by the last-layer
feature and classifier that can be defined as:

Definition 1 (Simplex Equiangular Tight Frame) A simplex Equiangular Tight Frame (ETF)
refers to a matrix that is composed of K vectors in Rd and satisfies:

E =

√
K

K − 1
U

(
IK −

1

K
1K1TK

)
, (1)

where E = [e1, · · · , eK ] ∈ Rd×K , U ∈ Rd×K allows a rotation and satisfies UTU = IK , IK is
the identity matrix, and 1K is an all-ones vector.

All column vectors in E have the same `2 norm and any pair has an inner produce of − 1
K−1 , i.e.,

eTk1ek2 =
K

K − 1
δk1,k2 −

1

K − 1
, ∀k1, k2 ∈ [1,K], (2)

where δk1,k2 = 1 when k1 = k2, and 0 otherwise.

The neural collapse phenomenon includes the following four properties:

(NC1): The last-layer features of the same class will collapse into their within-class mean, i.e., the
covariance Σ

(k)
W → 0, where Σ

(k)
W = Avgi{(µk,i−µk)(µk,i−µk)T }, µk,i is the feature of sample

i in class k, and µk is the within-class mean of class k features;

(NC2): The within-class means of all classes centered by the global mean will converge to the
vertices of a simplex ETF defined in Definition 1, i.e., µ̂k, 1 ≤ k ≤ K satisfy Eq. (2), where
µ̂k = (µk − µG)/‖µk − µG‖ and µG is the global mean;

(NC3): The within-class means centered by the global mean will be aligned with (parallel to) their
corresponding classifier weights, which means the classifier weights will converge to the same sim-
plex ETF, i.e., µ̂k = wk/‖wk‖, 1 ≤ k ≤ K, where wk is the classifier weight of class k;

(NC4): When (NC1)-(NC3) hold, the model prediction using logits can be simplified to the nearest
class centers2, i.e., arg maxk〈µ,wk〉 = arg mink ||µ−µk||, where 〈·〉 is the inner product operator,
µ is the last-layer feature of a sample for prediction.

Neural collapse corresponds to an optimal feature-classifier alignment for classification due to the
maximized Fisher Discriminant Ratio (between-class variance to within-class variance).

1Different from task-incremental learning, we do not know which session a test sample comes from.
2We omit the bias term in a linear classifier layer for simplicity.
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4 METHOD

Neural collapse tells us an optimal geometric structure for classification problems where the last-
layer features and classifier prototype of the same class are aligned, and those of different classes
are maximally separated. However, this structure will be broken in imperfect training conditions,
such as imbalanced training data (Fang et al., 2021; Yang et al., 2022b). As illustrated in Figure 1
(a), training in an incremental fashion will also break the neural collapse optimality. Inspired by this
perspective, what we should do for FSCIL is to keep the neural collapse inspired feature-classifier
alignment as sound as possible. Concretely, we adopt a fixed classifier and a novel loss function as
described in Section 4.1 and Section 4.2, respectively. We introduce our framework for FSCIL in
Section 4.3. Finally, in Section 4.4, we conduct theoretical analysis to show how our method better
holds the neural collapse optimality in an incremental fashion.

4.1 ETF CLASSIFIER

Assume that the base session contains a label space of K0 classes, each incremental session has p
classes, and we have T incremental sessions in total. The whole label space of this FSCIL problem
has K0 + K ′ classes, where K ′ = Tp, i.e., we need to learn a model that can recognize samples
from K0 +K ′ classes. We denote a backbone network as f , and then we have µ = f(x, θf ), where
µ ∈ Rd is the output feature of input x, and θf is the backbone network parameters.

A popular choice in current studies learns f and W(0) using the base session data, where W(0) ∈
Rd×K0 is the classifier prototypes for base classes. In incremental sessions t > 0, f is fixed as a
feature extractor and only W(t) ∈ Rd×p for novel classes is learnable. As shown in Figure 1 (a), one
need to adjust {W(0), · · · ,W(t)} via sophisticated loss or regularizer to ensure separation among
these prototypes (Akyürek et al., 2022; Hersche et al., 2022). But it will inevitably introduce mis-
alignment between the adjusted prototypes and the fixed features of old classes. It is an underlying
reason for the catastrophic forgetting problem (Joseph et al., 2022).

Since neural collapse describes an optimal geometric structure of the last-layer feature and classifier,
we pre-assign such an optimality by fixing a learnable classifier as the structure instructed by neural
collapse. Following Yang et al. (2022b), we adopt an ETF classifier that initializes a classifier as
a simplex ETF and fixes it during training. The difference lies in that we use it in an incremental
fashion. Concretely, we randomly initialize classifier prototypes ŴETF ∈ Rd×(K0+K

′) by Eq. (1)
for the whole label space, i.e., the union of classes in all session, ∪Ti=0C(i). We have K0 = |C(0)|
and K ′ =

∑T
i=1 |C(i)| = Tp. Then any pair (k1, k2) of classifier prototypes in ŴETF satisfies:

ŵT
k1ŵk2 =

K0 +K ′

K0 +K ′ − 1
δk1,k2 −

1

K0 +K ′ − 1
, ∀k1, k2 ∈ [1,K0 +K ′], (3)

where ŵk1 and ŵk2 are two column vectors in ŴETF. Our ETF classifier ensures that the prototypes
of the whole label space have the maximal pair-wise separation. It serves as a fixed target along the
incremental training to avoid conflict among sessions. We only need to learn a model whose output
features are aligned with this pre-assigned structure.

4.2 DOT-REGRESSION LOSS

The gradient of cross entropy (CE) loss with respect to the last-layer feature is composed of a pull
term that drives the feature into its classifier prototype of the same class, and a push term that
pushes it away from the prototypes of different classes. As pointed out by Yang et al. (2022b), when
the classifier prototypes are fixed as an optimality, the pull term is always accurate towards the
solution, and we can drop the push gradient that may be inaccurate. Accordingly, we adopt a novel
loss named dot-regression (DR) loss that can be formulated as (Yang et al., 2022b):

L
(
µ̂i,ŴETF

)
=

1

2

(
ŵT
yiµ̂i − 1

)2
, (4)

where µ̂i is the normalized feature, i.e., µ̂i = µi/‖µi‖, µi = f(xi, θf ), yi is the label of input xi,
ŵyi is the fixed prototype in ŴETF for class yi, and we have ‖ŵyi‖ = 1 by Eq. (3). The total loss
is an average over a batch of input xi. The gradient of Eq. (4) with respect to µ̂i takes the form of:
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Figure 2: An illustration of our NC-FSCIL.hi is the intermediate feature from the backbone network
f . µ̂i is the normalized output feature after the projection layer g. ŴETF is the ETF classifier that
contains prototypes of the whole label space and serves as a fixed target throughout the incremental
training. L denotes the dot-regression loss function. f is frozen in the incremental sessions (1 ≤
t ≤ T ). A small memory of old-class features is widely adopted in prior studies such as Cheraghian
et al. (2021a), Chen & Lee (2021), Akyürek et al. (2022), and Hersche et al. (2022).

∂L/∂µ̂i = −(1 − cos∠(µ̂i, ŵyi))ŵyi . It is shown that the gradient pulls feature µ̂i towards the
direction of ŵyi , which is a pre-assigned target prototype. Finally, the converged features will be
aligned with ŴETF, and thus the geometric structure instructed by neural collapse is attained. The
theoretical advantage of the DR loss has been proved in Yang et al. (2022b). In experiments, we will
compare the DR loss with the CE loss to show its effectiveness in FSCIL.

4.3 NC-FSCIL

Based on the ETF classifier and the DR loss, we now introduce our neural collapse inspired frame-
work for few-shot class-incremental learning (NC-FSCIL). As shown in Figure 2, our model is
composed of two components, a backbone network f and a projection layer g. The backbone net-
work f takes the training data xi as input, and outputs an intermediate feature hi. The projection
layer g can be a linear transformation or an MLP block following Hersche et al. (2022); Peng et al.
(2022). It projects the intermediate feature hi into µi. Finally, we perform an `2 normalization on
µi to get the output feature µ̂i, i.e.,

µ̂i = µi/‖µi‖, µi = g(hi, θg), hi = f(xi, θf ), (5)

where θf and θg denote the parameters of the backbone network and the projection layer, respec-
tively. We use the normalized output feature µ̂i to compute error signal by Eq. (4).

In the base session t = 0, we jointly train both f and g using the base session data. The empirical
risk to minimize in the base session can be formulated as:

min
θf ,θg

1

|D(0)|
∑

(xi,yi)∈D(0)

L
(
µ̂i,ŴETF

)
, (6)

where ŴETF is the pre-assigned ETF classifier as introduced in Section 4.1, L is the DR loss as
introduced in Section 4.2, and µ̂i is a function of f and g as shown in Eq. (5).

In each incremental session 1 ≤ t ≤ T , we fix the backbone network f as a feature extractor,
and only finetune the projection layer g. As a widely adopted practice in FSCIL studies, a small
memory of samples or features of old classes can be retained to relieve the overfitting on novel
classes (Cheraghian et al., 2021a; Chen & Lee, 2021; Akyürek et al., 2022; Hersche et al., 2022).
Following Hersche et al. (2022), we only keep a memoryM(t) of the mean intermediate feature hc
for each old class c. Concretely, we have,

M(t) = {hc|c ∈ ∪t−1j=0C
(j)}, hc = Avgi{f(xi, θf )|yi = c}, 1 ≤ t ≤ T, (7)

where f has been fixed after the base session. Then we use D(t) as the input of f , andM(t) as the
input of g to finetune the projection layer g. The empirical risk to minimize in incremental sessions
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can be formulated as:

min
θg

1

|D(t)|+ |M(t)|

 ∑
(xi,yi)∈D(t)

L
(
µ̂i,ŴETF

)
+

∑
(hc,yc)∈M(t)

L
(
µ̂c,ŴETF

) , (8)

where µ̂i, and µ̂c are the output features of xi and hc, respectively, |D(t)| is the number of training
samples in session t, and we have |M(t)| =

∑t−1
j=0 |C(j)|. Thanks to our pre-assigned alignment,

we do not rely on any regularizer in our training.

In the evaluation of session t, we predict an input x based on the inner product between its output
feature µ̂ and the ETF classifier prototypes: arg maxk〈µ̂, ŵk〉, ∀1 ≤ k ≤ K0 +K ′.

4.4 THEORETICAL SUPPORTS

We perform our theoretical work based on a simplified model that drops the backbone network and
only keeps the last-layer features and classifier prototypes as independent optimization variables.
This simplification has been widely adopted in prior studies to facilitate analysis (Graf et al., 2021;
Fang et al., 2021; Zhu et al., 2021b). We investigate the neural collapse optimality of an incremental
problem of T sessions with our ETF classifier. Concretely, we consider the following problem,

min
M(t)

1

N (t)

K(t)∑
k=1

nk∑
i=1

L
(
m

(t)
k,i,ŴETF

)
, 0 ≤ t ≤ T, (9)

s.t. ‖m(t)
k,i‖

2 ≤ 1, ∀1 ≤ k ≤ K(t), 1 ≤ i ≤ nk,

where m
(t)
k,i ∈ Rd denotes a feature variable that belongs to the i-th sample of class k in session t,

nk is number of samples in class k, K(t) is number of classes in session t, N (t) is the number of
samples in session t, i.e., N (t) =

∑K(t)

k=1 nk, and M(t) ∈ Rd×N(t)

denotes a collection of m(t)
k,i.

ŴETF ∈ Rd×K refers to the ETF classifier for the whole label space as introduced in Section 4.1,
and we haveK =

∑T
t=0K

(t). L can be both the cross entropy and the dot regression loss functions.

Theorem 1 Let M̂(t) denote the global minimizer of Eq. (9) by optimizing the model incrementally
from t = 0, and we have M̂ = [M̂(0), · · · , M̂(T )] ∈ Rd×

∑T
t=0N

(t)

. When L in Eq. (9) is CE or DR
loss, for any column vector m̂k,i in M̂ whose class label is k, we have:

‖m̂k,i‖ = 1, m̂T
k,iŵk′ =

K

K − 1
δk,k′ −

1

K − 1
, ∀k, k′ ∈ [1,K], 1 ≤ i ≤ nk, (10)

whereK =
∑T
t=0K

(t) denotes the total number of classes of the whole label space, δk,k′ = 1 when
k = k′ and 0 otherwise, and ŵk′ is the prototype of class k′ in ŴETF.

The proof of Theorem 1 can be found in Appendix A. Eq. (10) indicates that the global minimizer
M̂ of Eq. (9) satisfies the neural collapse condition, i.e., features of the same class collapse into a
single vertex, and the vertices of all classes are aligned with ŴETF as a simplex ETF. It is shown
that the feature space is equally separated by prototypes of all classes. More importantly, in problem
Eq. (9), the number of classes K(t) among T + 1 sessions and the number of samples nk among K
classes can be imbalanced, which corresponds to the challenging demand of FSCIL.

5 EXPERIMENTS

In this section, we test our method on FSCIL benchmark datasets including miniImageNet (Rus-
sakovsky et al., 2015), CIFAR-100 (Krizhevsky et al., 2009), and CUB-200 (Wah et al., 2011), and
compare it with state-of-the-art methods. We also perform ablation studies to validate the effects of
ETF classifier and DR loss. Finally, we show the feature-classifier structure achieved by our method.

5.1 IMPLEMENTATION DETAILS

Please refer to Appendix B for our implementation details.
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Table 1: Performance of FSCIL in each session on miniImageNet and comparison with other studies.
The top rows list class-incremental learning and few-shot learning results implemented by Tao et al.
(2020b); Zhang et al. (2021) in the FSCIL setting. “Average Acc.” is the average accuracy of all
sessions. “Final Improv.” calculates the improvement of our method in the last session. * indicates
that the method saves the within-class feature mean of each class for training or inference.

Methods Accuracy in each session (%) ↑ Average Final

0 1 2 3 4 5 6 7 8 Acc. Improv.

iCaRL (Rebuffi et al., 2017) 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 33.29 +41.1
NCM (Hou et al., 2019) 61.31 47.80 39.30 31.90 25.70 21.40 18.70 17.20 14.17 30.83 +44.14
D-Cosine (Vinyals et al., 2016) 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63 55.99 +12.68

*TOPIC (Tao et al., 2020b) 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 +33.89
*IDLVQ (Chen & Lee, 2021) 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84 51.16 +16.47
Self-promoted (Zhu et al., 2021a) 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92 52.76 +16.39
CEC (Zhang et al., 2021) 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75 +10.68
*LIMIT (Zhou et al., 2022b) 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19 59.06 +9.12
*Regularizer (Akyürek et al., 2022) 80.37 74.68 69.39 65.51 62.38 59.03 56.36 53.95 51.73 63.71 +6.58
MetaFSCIL (Chi et al., 2022) 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 58.85 +9.12
*C-FSCIL (Hersche et al., 2022) 76.40 71.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41 61.61 +6.90
Data-free Replay (Liu et al., 2022) 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21 58.02 +10.10
*ALICE (Peng et al., 2022) 80.60 70.60 67.40 64.50 62.50 60.00 57.80 56.80 55.70 63.99 +2.61

*NC-FSCIL (ours) 84.02 76.80 72.00 67.83 66.35 64.04 61.46 59.54 58.31 67.82

Improvement over ALICE +3.42 +6.20 +4.60 +3.33 +3.85 +4.04 +3.66 +2.74 +2.61 +3.83

Table 2: Performance of FSCIL in each session on CIFAR-100 and comparison with other studies.
The top rows list class-incremental learning and few-shot learning results implemented by Tao et al.
(2020b); Zhang et al. (2021) in the FSCIL setting. “Average Acc.” is the average accuracy of all
sessions. “Final Improv.” calculates the improvement of our method in the last session.

Methods Accuracy in each session (%) ↑ Average Final

0 1 2 3 4 5 6 7 8 Acc. Improv.

iCaRL (Rebuffi et al., 2017) 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 32.87 +42.38
NCM (Hou et al., 2019) 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 34.22 +42.57
D-Cosine (Vinyals et al., 2016) 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68 58.23 +8.43

*TOPIC (Tao et al., 2020b) 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 42.62 +26.74
Self-promoted (Zhu et al., 2021a) 64.10 65.86 61.36 57.45 53.69 50.75 48.58 45.66 43.25 54.52 +12.86
CEC (Zhang et al., 2021) 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 59.53 +6.97
DSN (Yang et al., 2022a) 73.00 68.83 64.82 62.64 59.36 56.96 54.04 51.57 50.00 60.14 +6.11
*LIMIT (Zhou et al., 2022b) 73.81 72.09 67.87 63.89 60.70 57.77 55.67 53.52 51.23 61.84 +4.88
MetaFSCIL (Chi et al., 2022) 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 60.79 +6.14
*C-FSCIL (Hersche et al., 2022) 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47 61.64 + 5.64
Data-free Replay (Liu et al., 2022) 74.40 70.20 66.54 62.51 59.71 56.58 54.52 52.39 50.14 60.78 +5.97
*ALICE (Peng et al., 2022) 79.00 70.50 67.10 63.40 61.20 59.20 58.10 56.30 54.10 63.21 +2.01

*NC-FSCIL (ours) 82.52 76.82 73.34 69.68 66.19 62.85 60.96 59.02 56.11 67.50

Improvement over ALICE +3.52 +6.32 +6.24 +6.28 +4.99 +3.65 +2.86 +2.72 +2.01 +4.29

5.2 PERFORMANCE ON BENCHMARKS

Our experiment results on minImageNet, CIFAR-100, and CUB-200 are shown in Table 1, Table 2,
and Table 4 (Appendix C), respectively. We see that our method achieves the best performance in
all sessions on both miniImageNet and CIFAR-100 compared with previous studies. ALICE (Peng
et al., 2022) is a recent study that achieves strong performances on FSCIL. Compared with this
challenging baseline, we have an improvement of 2.61% in the last session on miniImageNet, and
2.01% on CIFAR-100. We achieve an averaged accuracy improvement of more than 3.5% on both
miniImageNet and CIFAR-100. Although we do not surpass ALICE in the last session on CUB-200,
we still have the best average accuracy among all methods. As shown in the last rows of Table 1 and
Table 2, the improvement of our method lasts and even becomes larger in the first several sessions.
It indicates that our method is able to hold the superiority and relieve the forgetting of old sessions.

5.3 ABLATION STUDIES

We consider three models to validate the effects of ETF classifier and DR loss. All three models
are based on the same framework introduced in Section 4.3 including the backbone network, the
projection layer, and the memory module. The first model uses a learnable classifier and the CE

8
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Table 3: Ablation studies on three datasets to investigate the effects of ETF classifier and DR loss.
“Learnable+CE” uses a learnable classifier and the CE loss; “ETF+CE” adopts our ETF classifier
with the CE loss; “ETF+DR” uses both ETF classifier and DR loss. “FINAL” refers to the accuracy
of the last session; “AVERAGE” is the average accuracy of all sessions; “PD” denotes the perfor-
mance drop, i.e., the accuracy difference between the first and the last sessions.

Methods miniImageNet CIFAR-100 CUB-200
FINAL↑ AVERAGE↑ PD↓ FINAL↑ AVERAGE↑ PD↓ FINAL↑ AVERAGE↑ PD↓

Learnable+CE 50.04 61.30 34.53 52.13 62.68 30.14 50.38 59.58 29.19
ETF+CE 56.66 68.23 28.21 54.42 64.00 27.36 56.83 65.51 23.27
ETF+DR 58.31 67.82 25.71 56.11 67.50 26.41 59.44 67.28 21.01
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ETF+DR (Ours)

(d) test (accumulate)
Figure 3: Average cosine similarity between features and classifier prototypes of different classes,
i.e., Avgk 6=k′{cos∠(mk −mG,wk′)}, where mk is the within-class mean of class k features, mG

denotes the global mean, and wk′ is the classifier prototype of class k′. Statistics are performed
among classes in each session (a and c), and all encountered classes by the current session (b and d),
on train set (a and b) and test set (c and d), for models trained after each session on miniImageNet.

loss, which is the most adopted practice. The second model only replaces the classifier with our
ETF classifier and also uses the CE loss. The third model corresponds to our method using both
ETF classifier and DR loss. As shown in Table 3, when a fixed ETF classifier is used, the final
session accuracies are significantly better, and the performance drops get much mitigated. Adopting
the DR loss is able to further moderately improve the performances. It indicates that the success of
our method is largely attributed to ETF classifier and DR loss, as they pre-assign a neural collapse
inspired alignment and drive a model towards the fixed optimality, respectively.

5.4 FEATURE-CLASSIFIER STRUCTURE

We check the feature-classifier alignment instructed by neural collapse using our method and
“Learnable+CE” as a comparison. As shown in Figure 3, the average cosine similarities between
features and classifier prototypes of different classes, i.e., Avgk 6=k′{cos∠(mk −mG,wk′)}, of our
method are consistently lower than those of the baseline. Most values of our method are negative and
close to 0, which is in line with the guidance from neural collapse as derived in Eq. (10). Particularly
in Figure 3b and Figure 3d, the average cosine similarities between mk −mG and wk′ (k 6= k′)
among all encountered classes increase fast with session for the baseline method, while ours keep
relatively flat. It indicates that the baseline method reduces the feature-classifier margin of different
classes as training incrementally, and our method enjoys a stable alignment. As shown in Figure
4 and Figure 5, we also calculate the average cosine similarities between feature and classifier of
the same class, i.e., Avgk{cos∠(mk −mG,wk)}, and the trace ratio of within-class covariance to
between-class covariance, tr(ΣW )/tr(ΣB). These results together support that our method better
holds the feature-classifier alignment and relieves the forgetting problem.

6 CONCLUSION

In this paper, we propose to fix a learnable classifier as a geometric structure instructed by neural
collapse for FSCIL. It pre-assigns an optimal feature-classifier alignment as a fixed target throughout
incremental training, which avoids optimization conflict among sessions. Accordingly, a novel loss
function that drives features towards this pre-assigned optimality is adopted without any regularizer.
Both theoretical and empirical results support that our method is able to hold the alignment in an
incremental fashion, and thus relieve the forgetting problem. In experiments of FSCIL, we achieve
and even surpass the state-of-the-art performances on three datasets.
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A APPENDIX: PROOF OF THEOREM 1

Our proof is following Yang et al. (2022b). We consider the problem in Eq. (9),

min
M(t)

1

N (t)

K(t)∑
k=1

nk∑
i=1

L
(
m

(t)
k,i,ŴETF

)
, 0 ≤ t ≤ T,

s.t. ‖m(t)
k,i‖

2 ≤ 1, ∀1 ≤ k ≤ K(t), 1 ≤ i ≤ nk,

where m
(t)
k,i ∈ Rd denotes a feature variable that belongs to the i-th sample of class k in session

t, nk is number of samples in class k, K(t) is number of classes in session t, N (t) is the number
of samples in session t, i.e., N (t) =

∑K(t)

k=1 nk, and M(t) ∈ Rd×N(t)

denotes a collection of m(t)
k,i.

ŴETF ∈ Rd×K refers to the ETF classifier for the whole label space as introduced in Section 4.1.
We have K =

∑T
t=0K

(t) and,

ŵT
k ŵk′ =

K

K − 1
δk,k′ −

1

K − 1
, ∀k, k′ ∈ [1,K], (11)

where ŵk and ŵk′ are two column vectors in ŴETF. From the definition of a simplex ETF in Eq.
(1), we have ŴETF · 1K = 0d, where 1K is an all-ones vector in RK , and 0d is an all-zeros vector
in Rd. Then we have,

K∑
k=1

ŵk = 0d. (12)

When L is the dot-regression (DR) loss in Eq. (4), it is easy to identify that L ≥ 0 and the equality
holds if and only if ŵT

km
(t)
k,i = 1, ∀0 ≤ t ≤ T, 1 ≤ k ≤ K, 1 ≤ i ≤ nk. Since ‖ŵk‖ = 1

and ‖m(t)
k,i‖2 ≤ 1, we have ŵT

km
(t)
k,i ≤ 1. The equality holds if and only if ‖m(t)

k,i‖2 = 1 and

cos∠(ŵk,m
(t)
k,i) = 1. Denote M̂ = [M̂(0), · · · , M̂(T )] ∈ Rd×

∑T
t=0N

(t)

as the global optimality of
Eq. (9) for all sessions 0 ≤ t ≤ T . For any column vector m̂k,i in M̂, we have,

‖m̂k,i‖ = 1, m̂T
k,iŵk′ =

K

K − 1
δk,k′ −

1

K − 1
, ∀k, k′ ∈ [1,K], 1 ≤ i ≤ nk,

which concludes the proof for DR loss.

When L is the cross-entropy (CE) loss, i.e.,

L
(
m

(t)
k,i,ŴETF

)
= − log

exp(ŵT
km

(t)
k,i)∑K

j=1 exp(ŵT
j m

(t)
k,i)

, (13)

where 0 ≤ t ≤ T, 1 ≤ k ≤ K(t), and 1 ≤ i ≤ nk. Since the problem is separable among T + 1
sessions, we only analyze the t-th session and omit the superscript (t) for simplicity. The objective
in Eq. (13) is the sum of an affine function and log-sum-exp functions. When ŴETF is fixed, the
loss is convex w.r.t mk,i with convex constraints. So, we can use the KKT condition for its global
optimality. Based on Eq. (9) and Eq. (13), we have the Lagrange function,

L̃ =
1

N (t)

K(t)∑
k=1

nk∑
i=1

− log
exp(ŵT

kmk,i)∑K
j=1 exp(ŵT

j mk,i)
+

K(t)∑
k=1

nk∑
i=1

λk,i(‖mk,i‖2 − 1), (14)

where λk,i is the Lagrange multiplier. The gradient with respect to mk,i takes the form of:

∂L̃
∂mk,i

= − (1− pk)

N (t)
ŵk +

1

N (t)

K∑
j 6=k

pjŵj + 2λk,imk,i, (15)

where 1 ≤ i ≤ nk, 1 ≤ k ≤ K(t), and pj is the softmax probability of mk,i for the j-th class, i.e.,

pj =
exp(ŵT

j mk,i)∑K
j′=1 exp(ŵT

j′mk,i)
. (16)
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Since ‖ŵk‖ = 1 and ‖mk,i‖ ≤ 1, we have 0 < pk < 1,∀1 ≤ k ≤ K.

We now solve the equation ∂L̃
∂mk,i

= 0. Assume that λk,i = 0, and then we have,

K∑
j 6=k

pjŵj = (1− pk)ŵk. (17)

Since 1− pk =
∑K
j 6=k pj and Eq. (11), multiplying ŵk by both sides of Eq. (17), we have,

K

K − 1
(1− pk) = 0, (18)

which contradicts with 0 < pk < 1. Then we have the other case λk,i > 0. Based on the KKT
condition, the global optimality m̂k,i satisfies that

‖m̂k,i‖2 = 1. (19)

The equation ∂L̃
∂m̂k,i

= 0 leads to:

K∑
j 6=k

pj(ŵj − ŵk) + 2N (t)λk,im̂k,i = 0. (20)

Based on Eq. (11), for any j′ 6= k, multiplying ŵj′ by both sides of Eq. (20), we have,

pj′
K

K − 1
+ 2N (t)λk,im̂

T
k,iŵj′ = 0. (21)

Since ∀k ∈ [1,K], pk > 0, we have m̂T
k,iŵj′ < 0. Then for any j1, j2 6= k,

pj1
pj2

=
exp(ŵT

j1
m̂k,i)

exp(ŵT
j2
m̂k,i)

=
ŵT
j1
m̂k,i

ŵT
j2
m̂k,i

. (22)

The function f(x) = exp(x)/x is monotonically increasing when x < 1. So, Eq. (22) indicates that

pj1 = pj2 , ŵ
T
j1m̂k,i = ŵT

j2m̂k,i, ∀j1, j2 6= k, (23)

and

pj =
1− pk
K − 1

= −
2N (t)λk,im̂

T
k,iŵj(K − 1)

K
, ∀j 6= k. (24)

Multiplying ŵk by both sides of Eq. (20), we have,

− K

K − 1
(1− pk) + 2N (t)λk,im̂

T
k,iŵk = 0. (25)

Combing Eq. (24) and Eq. (25), we have,

m̂T
k,iŵj(K − 1) + m̂T

k,iŵk = 0, ∀j 6= k. (26)

Based on pj = 1−pk
K−1 ,∀j 6= k, and Eq. (12), we can rewrite Eq. (20) as:

− (1− pk)K

K − 1
ŵk + 2N (t)λk,im̂k,i = 0, (27)

which means that m̂k,i is aligned with ŵk, i.e., cos∠(m̂k,i, ŵk) = 1. Given that ‖ŵk‖ = 1 and
‖m̂k,i‖ = 1 (Eq. (19)), we have,

m̂T
k,iŵk = 1,

and Eq. (26) leads to:

m̂T
k,iŵj = − 1

K − 1
, ∀j 6= k.

Therefore, for any column vector m̂k,i in M̂, we have,

‖m̂k,i‖ = 1, m̂T
k,iŵk′ =

K

K − 1
δk,k′ −

1

K − 1
, ∀k, k′ ∈ [1,K], 1 ≤ i ≤ nk,

which concludes the proof for CE loss. �
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Table 4: Performance of FSCIL in each session on CUB-200 and comparison with other studies.
The top rows list class-incremental learning and few-shot learning results implemented by Tao et al.
(2020b); Zhang et al. (2021); Liu et al. (2022); Zhou et al. (2022a) in the FSCIL setting. “Average
Acc.” is the average accuracy of all sessions. “Final Improv.” calculates the improvement of our
method in the last session.

Methods Accuracy in each session (%) ↑ Average Final

0 1 2 3 4 5 6 7 8 9 10 Acc. Improv.

iCaRL (Rebuffi et al., 2017) 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.67 +38.28
EEIL (Castro et al., 2018) 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 36.27 +37.33
NCM (Hou et al., 2019) 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 32.49 +39.57
Fixed classifier (Pernici et al., 2021) 68.47 51.00 45.42 40.76 35.90 33.18 27.23 24.24 21.18 17.34 16.20 34.63 +43.24
D-NegCosine (Liu et al., 2020) 74.96 70.57 66.62 61.32 60.09 56.06 55.03 52.78 51.50 50.08 48.47 58.86 +10.97
D-DeepEMD (Zhang et al., 2020) 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60 58.73 +11.84
D-Cosine (Vinyals et al., 2016) 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31 59.36 +10.13
DeepInv (Yin et al., 2020) 75.90 70.21 65.36 60.14 58.79 55.88 53.21 51.27 49.38 47.11 45.67 57.54 +13.77

TOPIC (Tao et al., 2020b) 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92 +33.16
IDLVQ (Chen & Lee, 2021) 77.37 74.72 70.28 67.13 65.34 63.52 62.10 61.54 59.04 58.68 57.81 65.23 +1.63
SPPR (Zhu et al., 2021a) 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.32 +22.11
Cheraghian et al. (2021b) 68.78 59.37 59.32 54.96 52.58 49.81 48.09 46.32 44.33 43.43 43.23 51.84 +16.21
CEC (Zhang et al., 2021) 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 +7.16
LIMIT (Zhou et al., 2022b) 76.32 74.18 72.68 69.19 68.79 65.64 63.57 62.69 61.47 60.44 58.45 66.67 +0.99
MgSvF (Zhao et al., 2021) 72.29 70.53 67.00 64.92 62.67 61.89 59.63 59.15 57.73 55.92 54.33 62.37 +5.11
MetaFSCIL (Chi et al., 2022) 75.9 72.41 68.78 64.78 62.96 59.99 58.3 56.85 54.78 53.82 52.64 61.93 +6.8
FACT (Zhou et al., 2022a) 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 64.42 +2.5
Data-free replay (Liu et al., 2022) 75.90 72.14 68.64 63.76 62.58 59.11 57.82 55.89 54.92 53.58 52.39 61.52 +7.05
ALICE (Peng et al., 2022) 77.40 72.70 70.60 67.20 65.90 63.40 62.90 61.90 60.50 60.60 60.10 65.75 -0.66

NC-FSCIL (ours) 80.45 75.98 72.30 70.28 68.17 65.16 64.43 63.25 60.66 60.01 59.44 67.28

Table 5: A comparison of backbone networks used in different studies.

Methods miniImageNet CIFAR-100 CUB-200
TOPIC (Tao et al., 2020b) ResNet-18 ResNet-18 ResNet-18
CEC (Zhang et al., 2021) ResNet-18 ResNet-20 ResNet-18
CFSCIL (Hersche et al., 2022) ResNet-12 ResNet-12 -
LIMIT (Zhou et al., 2022b) ResNet-18 ResNet-20 ResNet-18
ALICE (Peng et al., 2022) ResNet-18 ResNet-18 ResNet-18
NC-FSCIL (ours) ResNet-12 ResNet-12 ResNet-18

B APPENDIX: IMPLEMENTATION DETAILS

Datasets. We conduct our experiments on three FSCIL benchmark datasets including miniImageNet
(Russakovsky et al., 2015), CIFAR-100 (Krizhevsky et al., 2009), and CUB-200 (Wah et al., 2011).
miniImageNet is a variant of ImageNet with an image size of 84 × 84. It has 100 classes with
each class containing 500 images for training and 100 images for testing. CIFAR-100 has the same
number of classes and images, and the image size is 32× 32. CUB-200 is a dataset for fine-grained
image classification containing 11,788 images of 200 classes in a resolution of 224 × 224. There
are 5,994 images for training and 5,794 images for testing. We follow the standard experimental
settings in FSCIL (Tao et al., 2020b; Zhang et al., 2021). For both miniImageNet and CIFAR-100,
the base session (t = 0) contains 60 classes, and a 5-way 5-shot (5 classes and 5 images per class)
problem is adopted for each of the 8 incremental sessions (1 ≤ t ≤ 8). For CUB-200, 100 classes
are used in the base session, and there are 10 incremental sessions, each of which is 10-way 5-shot.

Architectures. Prior studies widely adopt ResNet-12, ResNet-18, and ResNet-20 (He et al., 2016)
for FSCIL experiments. As shown in Table 5, we compare the backbone networks used in different
studies. For miniImageNet and CIFAR-100, we use ResNet-12 following Hersche et al. (2022).
For CUB-200, we use ResNet-18 (pre-trained on ImageNet) following other studies. We adopt a
two-layer MLP block as the projection layer following the practice in Peng et al. (2022).
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Training Details. We adopt the standard data pre-processing and augmentation schemes including
random resizing, random flipping, and color jittering (Tao et al., 2020b; Zhang et al., 2021; Peng
et al., 2022). We train all models with a batchsize of 512 in the base session, and a batchsize
of 64 (containing new session data and intermediate features in the memory) in each incremental
session. On miniImageNet, we train for 500 epochs in the base session, and 100-170 iterations in
each incremental session. The initial learning rate is 0.25 for base session, and 0.025 for incremental
sessions. On CIFAR-100, we train for 200 epochs in the base session, and 50-200 iterations in each
incremental session. The initial learning rate is 0.25 for both base and incremental sessions. On
CUB-200, we train for 80 epochs in the base session, and 105-150 iterations in each incremental
session. The initial learning rates are 0.025 and 0.05 for base session and incremental sessions,
respectively. In all experiments, we adopt a cosine annealing strategy for learning rate, and use SGD
with momentum as optimizer. Our code will be publicly available in the final version.

C APPENDIX: MORE RESULTS

Our experimental result on CUB-200 is shown in Table 4. We achieve a better accuracy in the last
session than most of the baseline methods. Although we do not surpass ALICE in the last session
on CUB-200, we still have the best average accuracy among all methods.

We also visualize the average cosine similarities between feature and classifier of the same class,
i.e., Avgk{cos∠(mk −mG,wk)} and the trace ratio of within-class covariance to between-class
covariance, tr(ΣW )/tr(ΣB).

A higher average cos∠(mk −mG,wk) indicates that feature centers are more closely aligned with
their corresponding classifier prototypes of the same class. As shown in Figure 4, the values of our
method are consistently higher than those of the baseline method. Figure 4a and Figure 4d reveal
that our method has a better feature-classifier alignment in each session of the incremental training
on both train and test sets. When we measure on all the encountered classes by each session in
Figure 4b and Figure 4e, the metric for our method does not change obviously after the 4-th session
on train set, while the metric for the baseline method keeps decreasing as training incrementally.
Especially for the base session classes, our method is able to keep the metric stable on both train
and test sets after the decline of the first 3-4 sessions, as shown in Figure 4c and Figure 4f. As a
comparison, the baseline method cannot mitigate the deterioration. Given that the base session has
the most classes, the performance on base session classes largely decides the final accuracy in the
last session for FSCIL. Therefore, the superiority of our method can be attributed to our ability of
keeping the feature-classifier alignment well for base session classes.

The within-class covariance ΣW and the between-class covariance ΣB are defined as:

ΣW = Avgk{Σ
(k)
W }, Σ

(k)
W = Avgi{(mk,i −mk)(mk,i −mk)T },

and
ΣB = Avgk{(mk −mG)(mk −mG)T },

where mk,i is the feature of sample i in class k, mk is the within-class mean of class k features, and
mG denotes the global mean of all features. A lower within-class variation with a higher between-
class variation corresponds to a better Fisher Discriminant Ratio. As shown in Figure 5, we compare
the trace ratio of within-class covariance to between-class covariance between our method and the
baseline method. We observe similar patterns to Figure 4. Concretely, the trace ratio metric of our
method is consistently lower that of baseline. For the base session classes, the metric of our method
increases more mildly, which corroborates our ability of maintaining the performance on the old
classes, and is in line with the indications from Figure 3 and Figure 4.
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Figure 4: Average cosine similarity between features and classifier prototypes of the same class, i.e.,
Avgk{cos∠(mk −mG,wk)}, where mk is the within-class mean of class k features, mG denotes
the global mean, and wk is the classifier prototype of class k. Statistics are performed among classes
in each session (a and d), all encountered classes by the current session (b and e), and only the base
session classes (c and f), on train set (a, b, c) and test set (d, e, f), for models trained after each
session on miniImageNet.
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Figure 5: Trace ratio of within-class covariance to between-class covariance, i.e., tr(ΣW )/tr(ΣB),
where ΣW is the within-class covariance, and ΣB denotes the between-class covariance. Statistics
are performed among classes in each session (a and d), all encountered classes by the current session
(b and e), and only the base session classes (c and f), on train set (a, b, c) and test set (d, e, f), for
models trained after each session on miniImageNet.
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