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Abstract
Federated learning (FL) has been widely studied to enable privacy-preserving machine learning
(ML) model training. Most existing FL frameworks focus on unimodal data, where clients train
on the same type of data, such as images or time series. However, many real-world applications
naturally involve multimodal data from diverse sources. While multimodal FL has recently been
proposed, it still faces challenges in managing data heterogeneity across diverse clients. This
paper proposes a novel multimodal meta-FL framework termed mmFL that orchestrates multimodal
learning and personalized learning. Our approach can enable the federated training of local ML
models across data modality clusters while addressing the data heterogeneity across clients based
on a meta-learning-based solution. Extensive simulation results show that our approach brings
a significant improvement in the training performance (up to 7.18% in accuracy) compared with
state-of-the-art algorithms.

1. Introduction

Federated learning (FL) has recently attracted significant attention for enabling privacy-aware ma-
chine learning by training models across distributed clients without sharing their data [9]. Traditional
FL frameworks mostly consider unimodal data settings, where all clients train their machine learning
(ML) models on the same type of data, e.g., image or time-series data. However, in real-world
applications such as human activity monitoring and emotion recognition, systems often rely on
multiple data modalities for a holistic understanding and reasoning. For example, in human activity
recognition, a camera captures spatial features like body posture and movements, while wearable
sensors record temporal features such as motion speed and acceleration. These complementary data
sources enhance model training accuracy and robustness. Moreover, in multimodal FL systems, data
across clients within each modality cluster is often non-independent and non-identically distributed
(non-IID), creating new challenges for effective model training [3, 5, 10].

Multimodal learning and heterogeneous FL have been extensively studied in the literature. The
first line of research focuses on multimodal learning, where data from different types are integrated
into a dedicated server for ML model training [6, 12]. However, these works require centralized
data collection and training, which raises data privacy concerns. The second line of research is
heterogeneous FL with a focus on unimodal learning settings on a single data domain [11, 16].
To deal with data heterogeneity, personalization techniques have been proposed by allowing more
diverse clients in FL and providing a performance-based impact on the global model [7, 8, 15].

Despite such research efforts, a joint approach of multimodal learning and model personalization
has been largely under-explored. To fill this research gap, this paper proposes a novel multimodal
meta-FL framework termed mmFL that orchestrates multimodal learning and personalized learning
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aimed at significantly improving the training performance of FL across heterogeneous clients.
Extensive simulations performed on real-world datasets demonstrate that the proposed mmFL method
improves training performance and overall accuracy up to 7.18% compared to existing methods.

2. Proposed MmFL Method

Fig. 1 illustrates our system’s overall architecture, where there is a single server connected to a set of
clients from different data modalities denoted as the set M. It is assumed that each data modality
m ∈ M has a set of clients Nm. The raw data collected by the sources is denoted by Dm

n,k for data
modality m and client n. Every global communication round is denoted as k ∈ K where every client
creates a local model from the local data and sends their local encoder model’s weight to the decoder.
The weights are denoted as θm,t

n,k where t ∈ T is the local model iterations and t = 1, 2, . . . , T . For
our meta-learning approach, we consider total j available learning rates denoted by ηi where i ∈ j,
and local temporal round denoted by ttemp ∈ Ttemp and ttemp = 1, 2, . . . , Ttemp. The decoder receives
the encoder models and proceeds with the decoder model for each data modality m and then does
federated averaging afterward. As a result, for M types of datasets, the server has M decoder models
and does M federated averaging. We can separate our system model into multiple steps as follows.
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Fig. 1: The proposed mmFL framework with M modals where
every client trains their encoder model and then calculates their
best learning rates through meta-learning. Clients train the encoder
model on the local client and the decoder model on the server and
perform FL.

Step 1: For each global round k, the
client n at data modality cluster m receives
non-IID local dataset Dm

n,k for local model
raining, and the global model’s weight θm

g,k.
We denote the initial local model’s weight
as the global model before the local rounds,
therefore, θm,0

n,k = θm
g,k.

Step 2: For meta-learning, in every
data modality m, every client n creates a
small testing dataset from Dm

n,k denoted as
dmn,k ⊂ Dm

n,k and duplicate the local models
as temporary local models θm

n,temp = θm,0
n,k .

Step 3: We denote the optimal learn-
ing rate as αm

n,k for data modality m, and
client n, and for calculation, we apply avail-
able learning rates ηi where i ∈ j on dmn,k.
The updated local model is calculated as
follows.

θ
m,ttemp+1

n,temp = θ
m,ttemp
n,temp − ηi∇F (θ

m,ttemp
n,temp , d

m
n,k). (1)

Step 4: After Ttemp rounds, we calculate the objective function (loss value) for learning rates as:

min
θ∈IRd

F (θ
m,ttemp
n,temp ) :=

1

N

N∑
n=1

fn(θ
m,ttemp
n,temp ), (2)

where IRd denotes the d-dimensional real space in which the model parameters θ reside local loss
function, N is the total number of clients participating in FL.
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Step 5: Here, fi : IRd ∈ IR denotes the predicted loss value over the client’s data distribution:

fm
n,k(θ

m,ttemp
n,temp ) := IEξi

[
f

′m
n,k(θ

m,ttemp
n,temp , χ

m
n,k)
]
. (3)

Here, χm
n,k are non-IID data sample from dmn,k.

Step 6: We select the ηi as αm
n,k for modality m and client n that produce the minimum fm

n,k

value. So, we can explain it as:
αm
n,k := argmin

i∈j
(fm

n,k(ηi)). (4)

Step 7: We use αm
n,k to do the encoder model training in kth global round for mth modality data

nm−th client, which can be expressed via model updating as

θ
′m,t
n,k = θm,t

n,k − αm
n,k∇F (θm,t

n,k ). (5)

Step 8: Then we send the encoder model’s parameter from the client to the server for decoder
model training using the same α and it is expressed as:

θm,t+1
n,k = θ

′m,t
n,k − αm

n,k∇F (θ
′m,t
n,k ). (6)

Step 9: After all the local rounds T , the server receives all completed models for every client n
for aggregation. We also calculate the global round kth loss and accuracy value from the weight θm

n,k

on the test data Dm
n,test.

fm
n,k(θ

m
n,k) := IEξi

[
f

′m
n,k(θn,k, D

m
n,test)

]
. (7)

Step 10: Once the server collects all the weights, it calculates the federated averaging separately
for the modalities for the next global round k + 1 as:

θm
g,k+1 =

1

N

∑
n∈N

θm
n,k. (8)

Finally, the updated global model θm
g,k+1 is distributed across all N in M for the K + 1 global

round. After K global rounds, we finally get the optimal global model θ∗m
n .

Our proposed mmFL method enables clients with good datasets and better performance to use a
different learning rate than those with poor performance and datasets. As a result, the global model
is impacted separately for every client and the global model can have more accurate updates by
using the personalized factor for enhancing decoder model training. The convergence analysis of the
meta-learning-based FL within a data modaltiy cluster is given in the below appendix.

3. Experiments

3.1. Dataset and Data Processing

We use two datasets in this research: HAR (human activity recognition) [1] and CMU-MOSEI
(Carnegie Mellon University Multimodal Opinion Sentiment and Emotion Intensity) [14].

HAR is a popular multimodal dataset that identifies human activities from smartphone sensor
data consisting of accelerometers and gyroscopes. The activities include time series features for
walking, walking upstairs, walking downstairs, sitting, standing, and laying. Accelerometer data
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captures linear acceleration along three axes (X, Y, and Z), allowing for the recognition of activities
such as walking or running. Meanwhile, gyroscope data records angular velocity along the same
axes, detecting rotational movements and changes in orientation, such as tilting or twisting, which
can help identify activities like walking upstairs or sitting down. These sensors provide two types of
data for effectively categorizing various human activities.

CMU-MOSEI dataset is a multimodal dataset for sentiment and emotion analysis with over
23,000 utterances from over 1,000 speakers from various YouTube videos. The emotions include
happiness, sadness, anger, fear, disgust, and surprise with three perspectives: text (speech transcripts),
audio (speech), and video (facial expressions and gestures). Text data is collected from the video’s
speech that helps in assessing words represent emotions. The audio data is made up of speech
recordings, and prosodic elements such as tone, pitch, rhythm, and speech patterns are used to
identify emotions.

3.2. Simulation Results

First, we compare FL results with the standalone method to show the effectiveness of collaborating
learning over individual learning in Fig 2. From the figure, we can see that FL with 3 non-IID clients
performs significantly better than running a model in one user in all the datasets.
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Fig. 2: Comparison between standalone learning (1 client) and FL (3 non-IID clients) in each data modality group.

Therefore, we proceed with our simulations for the collaborative approaches, particularly with
FL and meta-FL. For calculating the performance, there are various loss functions available that
directly affect the learning performance. In Table 1, we compare FL results on different datasets with
different loss values: Cross-entropy loss, MSE loss, and BCE loss. From the table, we can see that
the cross-entropy loss is more consistent than the other loss functions in handling both HAR and
CMU-MOSEI data. Therefore, we will consider using cross-entropy loss for comparison.

Features
CrossEntropy Loss MSE Loss BCE Loss
Loss Accuracy Loss Accuracy Loss Accuracy

H
A

R

Multimodal FL Accelerometer 0.0672 87.93% 0.0196 95.73% 0.2885 75.13%
Multimodal FL Gyroscope 0.2142 80.12% 0.0891 75.28% 0.3101 68.99%
MmFL Accelerometer 0.1690 92.68% 0.0121 98.10% 0.1238 87.66%
MmFL Gyroscope 0.1602 92.49% 0.0808 76.45% 0.0829 89.82%

C
M

U
-M

O
SE

I Multimodal FL Text 0.0284 97.02% 0.0269 95.37% 0.2099 85.39%
Multimodal FL Audio 0.2229 75.12% 0.0991 70.13% 0.1008 73.81%
MmFL Text 0.0112 99.04% 0.0190 98.45% 0.1987 89.10%
MmFL Audio 0.1877 87.51% 0.0880 75.55% 0.0772 87.82%

Table 1: Performance comparison (both loss and accuracy) between 3 different loss functions: CrossEntropy Loss, MSE
Loss, and BCE Loss in both HAR and MOSEI multimodal data.

Then we compare our results with different learning rates and meta-learning that uses optimal
learning rates using those learning rates in Fig. 3. The learning rates include 0.01, 0.001, and
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Fig. 3: Comparison between different learning rates 0.01, 0.001, and 0.0001 for the FL and meta-FL with optimal
learning (fine-tuning different learning rates).
0.0001 used in comparison and meta-learning. The figure shows that meta-learning is performing
significantly better than a fixed learning rate-based FL. Then we compare the unimodal meta-FL
with mmFL for different datasets in Fig. 4.
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Fig. 4: Comparison between unimodal meta-FL and mmFL in both HAR and CMU-MOSEI multimodal datasets.

From the graph, we can see that the accuracy of multimodal models is better than that of the
unimodal models in all modalities of both datasets. Finally, we compare our model with other state-
of-the-art methods in Fig. 5. For comparison, in the HAR model, we selected the multimodal LSTM
[12], unimodal FL [4], multimodal FL [13], unimodal meta-FL [11], and our approach (mmFL).
Similarly, for CMU-MOSEI, we also select multimodal LSTM [6], unimodal FL [2], multimodal
FL [17], unimodal meta-FL [16], and our approach (mmFL). From the graphs, we can see that our
method has outperformed all other approaches by around 7.18% across all datasets.
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Fig. 5: Comparison between our approach and other state-of-the-art approaches in both HAR and CMU-MOSEI
multimodal datasets.

4. Conclusion and Future Work

In this work, we proposed a novel meta-FL method called mmFL on two types of multimodal
datasets, HAR and CMU-MOSEI. Then we compared different parameters in the multimodal to find
the optimal settings. Simulation results also show that mmFL has improved the training performance
than all other state-of-the-art methods by around 7.18%. However, for clients with large datasets, the
mmFL method can be computationally demanding. Future works will be dedicated to resource-aware
model training across data modalities, where split learning will be applied to resource-constrained
clients.

5



SPECIFY RUNNING TITLE

References

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A
public domain dataset for human activity recognition using smartphones. In Esann, volume 3,
page 3, 2013.

[2] Timothy Castiglia, Shiqiang Wang, and Stacy Patterson. Flexible vertical federated learning
with heterogeneous parties. IEEE Transactions on Neural Networks and Learning Systems,
2023.

[3] Yutong Dai, Zeyuan Chen, Junnan Li, Shelby Heinecke, Lichao Sun, and Ran Xu. Tackling
data heterogeneity in federated learning with class prototypes. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 7314–7322, 2023.

[4] Gautham Krishna Gudur and Satheesh K Perepu. Federated learning with heterogeneous labels
and models for mobile activity monitoring. In Machine Learning for Mobile Health Workshop
at NeurIPS 2020., 2020.

[5] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and
Nicholas Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with
ordered dropout. Advances in Neural Information Processing Systems, 34:12876–12889, 2021.

[6] Louis-Philippe Morency, Paul Pu Liang, and Amir Zadeh. Tutorial on multimodal machine
learning. In Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts,
pages 33–38, 2022.

[7] Ratun Rahman and Dinh C Nguyen. Improved modulation recognition using personalized
federated learning. IEEE Transactions on Vehicular Technology, 2024.

[8] Ratun Rahman, Neeraj Kumar, and Dinh C Nguyen. Electrical load forecasting in smart grid:
A personalized federated learning approach. arXiv preprint arXiv:2411.10619, 2024.

[9] Emmanuelle Salin, Badreddine Farah, Stéphane Ayache, and Benoit Favre. Are vision-language
transformers learning multimodal representations? a probing perspective. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 11248–11257, 2022.

[10] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang.
Fedproto: Federated prototype learning across heterogeneous clients. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 8432–8440, 2022.

[11] Jiaqi Wang, Xingyi Yang, Suhan Cui, Liwei Che, Lingjuan Lyu, Dongkuan DK Xu, and
Fenglong Ma. Towards personalized federated learning via heterogeneous model reassembly.
Advances in Neural Information Processing Systems, 36, 2024.

[12] Xiao Wang, Zongzhen Wu, Bo Jiang, Zhimin Bao, Lin Zhu, Guoqi Li, Yaowei Wang, and
Yonghong Tian. Hardvs: Revisiting human activity recognition with dynamic vision sensors.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 5615–5623,
2024.

6



SPECIFY RUNNING TITLE

[13] Xiaoshan Yang, Baochen Xiong, Yi Huang, and Changsheng Xu. Cross-modal federated human
activity recognition via modality-agnostic and modality-specific representation learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 36, pages 3063–3071,
2022.

[14] AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe
Morency. Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable
dynamic fusion graph. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 2236–2246, 2018.

[15] Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
Fedala: Adaptive local aggregation for personalized federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pages 11237–11244, 2023.

[16] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. Parameter-
ized knowledge transfer for personalized federated learning. Advances in Neural Information
Processing Systems, 34:10092–10104, 2021.

[17] Yi Zhang, Mingyuan Chen, Jundong Shen, and Chongjun Wang. Tailor versatile multi-modal
learning for multi-label emotion recognition. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 9100–9108, 2022.

7



SPECIFY RUNNING TITLE

5. Appendix

We here focus on conducting the analysis of theoretical convergence of the proposed meta-learning-
based FL in a certain modality cluster, which is applicable to all modality clusters. To facilitate our
theoretical convergence analysis, we summarize the key notations as follows.

• The set of global rounds: K

• The set of local SGD iterations: T

• The set of device: N

To support our convergence analysis, we introduce two virtual sequences as:

θ̄
t
k =

1

N

∑
n∈N

θt
k, x̄t

k =
1

N

∑
n∈N

xt
k. (9)

Subsequently, each client updates its personalized model as

xt+1
k = xt

k − ηtgt, gt = ∇f(xt
k) + bt + nt (10)

where for zero-mean noise Ent = 0 and bias bk, gt is a gradient oracle and ηt is the sequence of step
sizes. If there is no bias, bt = 0, it becomes the SGD setting and for no noise, nt = 0, it becomes the
classic gradient descent algorithm.

It is easy to observe that,

θ̄
t+1
k = θt

k − ηk∇F (θt
k, χ

t
k) + ηkBk − ηkNk, (11)

To facilitate the analysis, we use the following common assumptions:

Assumption 1 (L−smoothness). Each local loss function Fn (n ∈ N ) is L-smooth (L > 0), i.e.

Fn(θ
′)− Fn(θ) ≤ ⟨θ′ − θ,∇F (θ⟩+ L

2
||θ′ − θ||,∀θ′,θ (12)

Assumption 2 ((M,σ2)-bounded noise). There exists constant M , σ2 >= 0 such that

E||n(θ, ξ)||2≤ M ||∇Fn(θ) + b(θ)||2+σ2, ∀θ ∈ Rd. (13)

Assumption 3 ((m, ζ)-bounded bias). There exists constants 0 ≤ m < 1 and ζ2 ≥ 0 such that

||b(θ||2≤ m||∇Fn(θ)||2+ζ2,∀θ ∈ Rd. (14)

Assumption 4 Finite parameter space: The parameter space Θ is finite, i.e, Θ = χ1
k, χ

2
k, χ

3
k, . . . , χ

t
k.

Also, χ
′t
k ∈ Θ

There exist 0 < LH < ∞ such that

||∇F (θ, χ1
k)−∇F (θ, χ2

k)||2≤ LH ||χ1
k − χ2

k||2∀χ1
k, χ

2
k ∈ Θ,∀x ∈ X (15)

Sampling variance is bounded by σ2, such that

E[||∇f(θ∗, ξ)−∇F (θt
k, χ

t
k)||22|χn] ≤ σ2,∀χk ∈ Θ (16)

8



SPECIFY RUNNING TITLE

Assumption 5 The variance of stochastic gradients on local model training at each client is
bounded: E||∇F (θt

n,k, χ
t
n,k)−∇F (θt

n,k)||2≤ σ2
g

Lemma 1 Under Assumption 4, there exist a constant C1 > 0 such that for any δ > 0, with
probability 1− δ we have

||Eπt∇F (θk, χ
t
k)− Eπ1∇F (θk, χ

′t
k )||22≤ C1

logDt+ log 1
δ

Dt
, (17)

∀x ∈ X,∀t > 0

Lemma 2 Let F be L-smooth, xt+1
k and xt

k as in 11 with Assumption 2 and 3. Then for any stepsize
η ≤ 1

(M+1)L , it holds

Eξ[F (wt+1
k )− F (wt

k)|w
t
k] ≤

η(m− 1)

2
||∇F (wt

k)||
2+

η

2
ζ2 +

η2L

2
σ2 (18)

when M = m = ζ2 = c for any constant c, we recover the standard descent lemma.

Lemma 3 Under Assumption 4, there exists a constant C1 > 0 such that for any δ > 0, with
probability at least 1− δ we have

||E∇F (θ, χt)− Eπ1∇F (θ, χ
′t)||22≤ C1

logDt+ log 1
δ

Dt
, ∀x ∈ X,∀t > 0. (19)

Lemma 4 Under the assumption p = Ps and series
∑

l≥1Nle
−l2 converges.

v̄[B(s,
k√
n
)|X] ≥ 1− δ, ∀s ∈ S, ϵ, δ ∈ (0, 1) (20)

with probability at least 1− ϵ with respect to Pn
s , and where

k = k(ϵ, δ, v(s)) = inf
[
j ≥ 1|

∑
l≥j Nle

−l2 ≤ ϵ
√
δv(s)

]
is independent of n and nonincreasing with the positive parameters ϵ, δ, andv(s).

Lemma 5 Let Assumption 5 hold, the expected upper bound of the variance of the stochastic
gradient on local model training is given as

E||gtk − ḡtk||2≤
σ2
g

N2
. (21)

Lemma 6 The expected upper bound of the divergence of θt
n,k is given as[

1

N

∑
n∈N

E
∥∥∥θ̄t

k − θt
n,k

∥∥∥2] ≤ 4ηkTB
2, (22)

for some positive B.

9
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Lemma 7 The expected upper bound of E[|| ¯θt+1
k − θ∗||2] is given as

E||θ̄t+1
k − θ∗||2

≤ ||(1− µηk)||θ̄
t
k − θ∗||2+ 1

N

∑
n∈N

||θ̄t
k − θt

n,k||2+
1

4ηk

1

N

∑
n∈N

||θt
n,k − θ̄

t
k||2+

1

2
min(Θ1,Θ2,Θ3) + η2k||gtk − ḡtk||2

(23)

Theorem 1 Under some Assumptions, for any δ > 0, we have the probability at least 1− δ, for any
T > 0, the following bound on the expected gradient of the final output under the true parameter χ

′t
k

(i) if the step size (η) satisfies ηk = a√
K
,∀k ≤ K, for some constant a <

√
K

Lh
, then

E[||∇F (zK, χ
′t
k )||22]

≤ [
2(F (θ1,χ

′t
k )−minx∈X F (θ,χ

′t
k ))

a
√
K ] + [A1

K + A2logK
K + A3log2K

K ] + Lhaσ
2

√
K

where A1 =
C1(logD−logδ)

LhD
, A2 =

C1(logD−logδ)
LhD

+ C1
LhD

, A3 =
C1
LhD

.

(ii) if the step size (η) satisfies ηk = a
k , ∀k ≤ K, for some constant a < 1

Lh
, then

E[||∇F (zK, χ
′t
k )||22]

≤ [
2(F (θ1,χ

′t
k )−minx∈X F (θ,χ

′t
k ))

a + 6C1+π2C1(logD−logδ)
6D + π2Lhaσ

2

6 ] 1
logK

(iii) if the step size (η) satisfies ηk = a√
k
, ∀k ≤ K, for some constant a < 1

Lh
, then

E[||∇F (zK, χ
t
k)||22]

≤ [
2(F (θ1,χ

′t
k )−minx∈X F (θ,χ

′t
k ))

a
√
K + 3C1(logD−logδ)+4C1

D
√
K + Lhaσ

2
√
K ] + Lhaσ

2logK√
K

Theorem 2 Given above Lemmas and Theorem 1, the convergence bound of our approach after K
global communication rounds is given as

E [F (θK)]− F ∗ ≤ L

2(K + L/µ)

[
16ΦK

15µ2
+

(
L

µ
+ 1

)
E||θ0 − θ∗||2

]
. (24)

10
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6. Proofs of Convergence of Global Model Training

6.1. Proof of Lemma 2

By the quadratic upper bound in Assumption 1 and Assumption 2:

EF (θt+1
k ) ≤ F (θt

k)− ηk(∇F (θt
k),Egt) +

η2L

2
(E||gt − Egt||2+E||Egt||2)

= F (θt
k)− ηk(∇F (θt

k),∇f(xt
k) + bt + nt) +

η2L

2
(E||nt||2+E||∇f(xt

k) + bt + nt||2)

≤ F (θt
k)− ηk(∇F (θt

k),∇f(xt
k) + bt + nt) +

η2L

2
((M + 1)E||∇f(xt

k) + bt + nt||2+σ2)

By the choice of stepsize, η ≤ 1
(M+1)L , and Assumption 3:

EF (θt+1
k ) ≤ F (θt

k) +
ηk
2
(−2(∇F (θt

k),∇f(xt
k) + bt + nt) + ||∇f(xt

k) + bt + nt||2) +
η2L

2
σ2

= F (θt
k) +

ηk
2
(−||∇F (θt

k||2+||bt + nt||2) +
η2L

2
σ2

= F (θt
k) +

ηk
2
(m− 1)||∇F (θt

k)||2+
η

2
ζ2 +

η2L

2
σ2

(25)
This concludes the proof.

6.2. Proof of Lemma 3

The Hellignger distance between θ1 and θ2

d(θ1, θ2) =

√
1

2

∫
Y
(
√

f(y; θ1 −
√
f(y; θ2))2 (26)

There exists a constant A such that ||θ1 = θ2||≤ Ad(θ1, θ2), where ||.|| is the Euclidean norm. Let
Bt

k = B(θc, k√
Dt

) be a ball centered at θc with radius k√
Dt

under distance d. Since Θ is finite, we

can directly apply Lemma 4. So for t ≤ T, ϵ, δ ∈ (0, 1) with probability at least 1− 6δ
π2t2

with respect
to Pt

θc , we have

πt(B
t
k(t)) ≥ 1− ϵ, (27)

where k(t) = inf
[
j ≥ 1|

∑
i≥j |Θ|e−i2 ≤ 6δ

π2t2

√
ϵπ0(θc)

]
.

Note that
∑

i≥j e
−i2 ≤ e

e−1e
−j2 , we can set k(t) to be the solution of next equation.

e

e− 1
|Θ|e−k(t)2 =

6δ

π2t2

√
ϵπ0(θc) (28)

we get k(t) =
√

log e|Θ|π2t2

6δ(e−1)
√

ϵ,π0(θc)
. Now the bias in the gradient estimator can be bonded as

follows.

11
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||Eπt∇xF (θ, χ)− Eπt∇xF (θ, χ
′
)||22

= ||
∫
(∇xF (θ, χ)−∇xF (θ, χ

′
))πt(θ)dθ||22

≤
∫
||(∇xF (θ, χ))− (∇xF (θ, χ

′
))22||πt(θ)dθ

≤ L2
H ||χ− χ

′ ||22πt(θ)dθ

=

∫
Bt

k(t)

L2
H ||χ− χ

′ ||22πt(θ)θ +
∫
(Bt

k(t)
)′
L2
H ||χ− χ

′ ||22πt(θ)dθ

≤ A2L2
H

k(t)2

Dt

∫
Bt

k(t)

πt(θ)dθ + L2
H max

χ∈Θ
||χ− χ

′ ||22
∫
(Bt

k(t)
)′
πt(θ)dθ

≤ A2L2
H

k(t)2

Dt
+ L2

H max
χ∈Θ

||χ− χ
′ ||22ϵ

(29)

Here, D is the data batch size. Note that ϵ = 1
Dt and k(t) =

√
log e|Θ|π2t2

√
Dt

6δ(e−1)
√

π0(χ′)
, we have

||Eπt∇xF (θ, χ)− Eπt∇xF (θ, χ
′
)||22

≤ A2L2
H

k(t)2

Dt
+ L2

H max
χ∈Θ

||χ− χ
′ ||22ϵ

≤ 2A2L2
H max

θ∈Θ
||χ− χ

′ ||22
log e|Θ|π2t2

√
Dt

6δ(e−1)
√

π0(χ′)

Dt

= O

(
logDt+ log 1δ

Dt

)
(30)

Let Et denote the event that the above inequality holds, and Ec
t denote that the above inequality does

not hold. Then
P(Ec

t ) ≤
6δ

π2t2
(31)

Therefore,
P(∩∞

t=1Et)

= 1− P(∪∞
t=1E

c
t )

≥ 1−
∞∑
t=1

P(Ec
t )) (Union bound)

≥ 1−
∞∑
t=1

6δ

π2t2

= 1− δ

(32)

12
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6.3. Proof of Lemma 5

From Assumption 5, we have

E||gtk − ḡtk||2=E
∥∥∥ 1

N

∑
n∈N

(
∇F (θt

n,k, χ
t
n,k)−∇F (θt

n,k)
) ∥∥∥2

=
1

N2

∑
n∈N

E
∥∥∥ (∇F (θt

n,k, χ
t
n,k)−∇F (θt

n,k)
) ∥∥∥2 ≤ σ2

g

N2
.

(33)

6.4. Proof of Lemma 6

We know that in every global communication round, each client performs T rounds of local SGDs
where there always exits t′ ≤ t such that t− t′ ≤ T and θt′

n,k = θ̄
t′

k , ∀n ∈ N . By using the fact that
E||X − EX||2= ||X||2−||EX||2 and θ̄

t
k = Eθt

n,k, we have:

1

N

∑
n∈N

E
∥∥∥θ̄t

k − θt
n,k

∥∥∥2 = 1

N

∑
n∈N

E
∥∥∥θt

n,k − θ̄
t
k

∥∥∥2 = 1

N

∑
n∈N

E
∥∥∥(θt

n,k − θ̄
t′

k )− (θ̄
t
k − θ̄

t′

k )
∥∥∥2

≤ 1

N

∑
n∈N

E
∥∥∥θt

n,k − θ̄
t′

k

∥∥∥2 ≤ 1

N

∑
n∈N

E
∥∥∥( t−1∑

t=t′

(θt
n,k − θ̄

t′

k )

)∥∥∥2
=

1

N

∑
n∈N

E
∥∥∥( t−1∑

t=t′

ηk∇F (θt
n,k, χ

t
n,k)

)∥∥∥2
≤ 1

N

∑
n∈N

E
∥∥∥(t−t′∑

t=1

ηk∇F (θt
n,k, χ

t
n,k)

)∥∥∥2,
(34)

where the last inequality holds since the learning rate ηk is decreasing. Using the fact that
||
∑U

t=1 z
t||2≤ U

∑U
t=1||zt||2, t− t′ ≤ T and assume that ηt

′
k ≤ 2ηk and ||∇F (θt

n,k, χ
t
n,k)||2≤ B2

for positive constant B, we have

1

N

∑
n∈N

E
∥∥∥θ̄t

k − θt
n,k

∥∥∥2 ≤ 1

N

∑
n∈N

(
E

t−t′∑
t=1

η2k(t− t′)
∥∥∥∇F (θt

n,k, χ
t
n,k)
∥∥∥2)

≤ 1

N

∑
n∈N

(
E

t−t′∑
t=1

η2kT
∥∥∥∇F (θt

n,k, χ
t
n,k)
∥∥∥2)

≤ 1

N

∑
n∈N

(
(ηt

′
k )

2
T

t−t′∑
t=1

B2

)
≤ 1

N

∑
n∈N

(ηt
′
k )

2
TB2 ≤ 4ηkTB

2.

(35)

6.5. Proof of Theorem 1

The local SGD update at client n is followed as:

θ̄
t+1
k = θt

k−ηk∇F (θt
k, χ

′t
k )+ηk[Eπ1∇F (θt

k, χ
t
k)−∇F (θt

k, χ̄
′t
k )]−ηk[∇f(θt

k, ξ
t
k)−Eπ1∇F (θt

k, χ̄
t
k)],

(36)

13
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where F is a local loss function, η > 0 is the local learning rate, and χ is a sample uniformly chosen
from the local dataset. Now if we will consider Eπ1∇F (θt

k, χ
t
k) − ∇F (θt

k, χ̄
′t
k ) as bias Bk and

∇f(θt
k, ξ

t
k)− Eπ1∇F (θt

k, χ̄
t
k) as noise Nk, the equation becomes:

θ̄
t+1
k = θt

k − ηk∇F (θt
k, χ

′t
k ) + ηkBk − ηkNk, (37)

By Lemma 3, we know

E[||Bt||22] ≤ C1
logDt+ log 1δ

Dt
(38)

By Assumption 4, we have
E[||Nt||22] ≤ σ2 (39)

By proof of Lemma 2, we know that

E[F (θt+1
k , χ

′t
k )− F (θt

k, χ
′t
k )] ≤ −ηk

2
||∇F (θt

k, χ
′t
k )||22+

ηk
2
C1

logDt+ log 1
δ

Dt
+

η2k
2
Lhσ

2 (40)

and after multiplying by 2,

2E[F (θt+1
k , χ

′t
k )− F (θt

k, χ
′t
k )] ≤ −ηk||∇F (θt

k, χ
′t
k )||22+ηkC1

logDt+ log 1
δ

Dt
+ η2kLhσ

2 (41)

after rearranging,

ηk||∇F (θt
k, χ

′t
k )||22≤ −2E[F (θt+1

k , χ
′t
k )− F (θt

k, χ
′t
k )] + ηkC1

logDt+ log 1
δ

Dt
+ η2kLhσ

2 (42)

noting that F (θt
k, χ

′t
k ) ≤ minxinX F (θ, χ

′t
k )

ηk||∇F (θt
k, χ

′t
k )||22≤2(F (θ1, χ

′t
k )−min

x∈X
F (θ, χ

′t
k )) + ηkC1

logDt+ log 1
δ

Dt
+ η2kLhσ

2 (43)

summing over k from 1 to K,

K∑
k=1

ηk||∇F (θt
k, χ

′t
k )||22≤2(F (θ1, χ

′t
k )− min

xinX
F (θ, χ

′t
k )) + C1

K∑
k=1

ηk
logDt+ log 1

δ

Dt

+ Lhσ
2

K∑
k=1

η2k

(44)

Dividing both sides by
∑K

k=1 ηk,

1∑K
k=1 ηk

K∑
k=1

ηk||∇F (θt
k, χ

′t
k )||22≤

1∑K
k=1 ηk

[
2(F (θ1, χ

′t
k )− min

xinX
F (θ, χ

′t
k ))+

C1

K∑
k=1

ηk
logDt+ log 1

δ

Dt
+ Lhσ

2
K∑

k=1

η2k

(45)

14



SPECIFY RUNNING TITLE

noting that 1∑K
k=1 ηk

∑K
k=1 ηk||∇F (θt

k, χ
′t
k )||22= E||∇F (zT , χ

′t
k )||22,

E||∇F (zT , χ
′t
k )||22≤

1∑K
k=1 ηk

[
2(F (θ1, χ

′t
k )− min

xinX
F (θ, χ

′t
k )) + C1

K∑
k=1

ηk
logDt+ log 1

δ

Dt

+ Lhσ
2

K∑
k=1

η2k

(46)

(i) if the step size (η) satisfies ηk = a√
K
,∀k ≤ K, for some constant a <

√
K

Lh
.

Note that
∑K

k=1
1
t ≤ logK + 1 and

∑K
k=1

logk
k ≤ log(logK + 1). Then

Θ1 ≜ E[||∇F (zK, χ
′t
k )||22]

≤
2(F (θ1, χ

′t
k )−minx∈X F (θ, χ

′t
k ))

a
√
K

+
C1(logD − logδ)(logK + 1)

LhDK
+

C1logK(logK + 1)

LhDK

=
2(F (θ1, χ

′t
k )−minx∈X F (θ, χ

′t
k ))

a
√
K

+
C1(logD − logδ)

LhDK
+

C1(logD − logδ)logK
LhDK

+
C1log

2K
LhDK

+
Lhaσ

2

√
K

(47)

(ii) if the step size (η) satisfies ηk = a
k ,∀k ≤ K, for some constant a < 1

Lh
. Let MK =

∑K
k=1

1
k .

Note that
K∑

k=1

logk

k2
<

∞∑
k=1

logk

k2
=

π2

6
(12lnA− γ − ln2π) < 1 (48)

where the Glaisher-Kinkelin constant A ≈ 1.28 and the Euler-Mascheroni constant γ ≈ 0.58.

Then we have

Θ2 ≜ E[||∇F (zK, χ
′t
k )||22]

≤
2(F (θ1, χ

′t
k )−minx∈X F (θ, χ

′t
k ))

aMK
+

C1

MK

K∑
k=1

logDk + log 1
δ

Dk2
+

K∑
k=1

Lhaσ
2

MKt2

≤

[
2(F (θ1, χ

′t
k )−minx∈X F (θ, χ

′t
k ))

a
+

6C1 + π2C1(logD − logδ) + π2Lhaσ
2

6

6D

]
1

logK
(49)
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(iii) if the step size (η) satisfies ηk = a√
k
,∀k ≤ K, for some constant a < 1

Lh
. Let Qt =

∑K
k=1

1√
k

.

Note that
∑∞

k=1
1

k
√
k
= ζ(1.5) ≈ 2.61 ≤ 3,

∑∞
t=1

logk

k
√
k
< 4,

∑K
k=1

1√
k
≥

√
K, where ζ(.) is

the Riemann’s zeta function. Then we have

Θ3 ≜ E[||∇F (zK, χ
′t
k )||22]

≤
2(F (θ1, χ

′t
k )−minx∈X F (θ, χ

′t
k ))

aQK
+

C1(logD − logδ)

DQK

K∑
k=1

1

k
√
k
+

C1

DQK

K∑
k=1

logk

k
√
k

+
Lhaσ

2

QK

K∑
k=1

1

k

≤ [
2(F (θ1, χ

′t
k )−minx∈X F (θ, χ

′t
k ))

a
√
K

+
3C1(logD − logδ) + 4C1

D
√
K

+
Lhaσ

2

√
K

]

+
Lhaσ

2logK√
K

(50)

6.6. Proof of Theorem 2

From the SGD update rule θ̄t+1
k = θ̄

t
k−ηkg

t
k+ v̄tk and ||a+b||2≤ 2||a||2+2||b||2 for two real valued

vectors a and b, we have

||θ̄t+1
k − θ∗||2= ||θ̄t

k − ηkg
t
k + v̄tk − θ∗||2≤ ||θ̄t

k − ηkg
t
k − θ∗||2︸ ︷︷ ︸

(A)

+||v̄tk||2 (51)

We now focus on the bounding term (A) in 51. We have

||θ̄t
k − ηkg

t
k − θ∗||2= ||θ̄t

k − ηkg
t
k − θ∗ − ηkḡ

t
k + ηkḡ

t
k||2

= ||(θ̄t
k − θ∗ − ηkḡ

t
k||2+2ηk⟨θ̄

t
k − θ∗ − ηkḡ

t
k, ḡ

t
k − gtk⟩+ η2k||gtk − ḡtk||2

= ||(θ̄t
k − θ∗ − ηkḡ

t
k||2︸ ︷︷ ︸

(B)

+η2k||gtk − ḡtk||2,
(52)
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where ⟨θ̄t
k − θ∗ − ηkḡ

t
k, ḡ

t
k − gtk⟩ = 0. We now focus on bounding term (B). We have

||(θ̄t
k − θ∗ − ηkḡ

t
k||2= ||θ̄t

k − θ∗||2+η2k||ḡtk||2−2ηk
1

N

∑
n∈N

⟨θ̄t
k − θ∗,∇F (θt

n,k)⟩

≤ ||θ̄t
k − θ∗||2+η2k

1

N

∑
n∈N

||∇F (θt
n,k)||2−2ηk

1

N

∑
n∈N

⟨θ̄t
k − θt

n,k + θt
n,k − θ∗,∇F (θt

n,k)⟩

≤ ||θ̄t
k − θ∗||2+2η2k

L

N

∑
n∈N

(F (θt
n,k)− F ∗)− 2ηk

1

N

∑
n∈N

⟨θ̄t
k − θt

n,k,∇F (θt
n,k)⟩

− 2ηk
1

N

∑
n∈N

⟨θt
n,k − θ∗,∇F (θt

n,k)⟩,

(53)

where in the first inequality we applied ||
∑

n∈N zn||2≤ N
∑

n∈N ||zn||2, and in the second inequality
we applied L-smoothness ||∇F (θt

n,k)||2≤ 2L(F (θt
n,k)− F ∗). For the third term in 53, by using the

Cauchy–Schwarz inequality and arithmetic and geometric means (AM-GM) inequality: 2⟨a, b⟩ ≤
1
ε ||a||

2+ε||b||2 for ε > 0, we have

−2⟨θ̄t
k − θt

n,k,∇F (θt
n,k)⟩ = 2⟨θt

n,k − θ̄
t
k,∇F (θt

n,k)⟩ ≤
1

ηk
||θt

n,k − θ̄
t
k||2+ηk||∇F (θt

n,k)||2

(54)

≤ 1

ηk
||θt

n,k − θ̄
t
k||2+2ηkL(F (θt

n,k)− F ∗).

(55)

For the last term in 53, by using µ-strong convexity, we have

− ⟨θt
n,k − θ∗,∇F (θt

n,k)⟩ ≤ −(F (θt
n,k)− F ∗)− µ

2
||θt

n,k − θ∗||2. (56)

Therefore, 53 can be rewritten as

+ 2ηkL(F (θt
n,k)− F ∗)

− 2ηk
1
N

∑
n∈N (F (θt

n,k)− F ∗)− µηk
1
N

∑
n∈N

µ
2 ||θ

t
n,k − θ∗||2

≤ ||θ̄t
k − θ∗||2+2ηk(2ηkL− 1) 1

N

∑
n∈N (F (θt

n,k)− F ∗) + 1
N

∑
n∈N ||θ̄t

k − θt
n,k||2

− µηk
1
N

∑
n∈N ||θt

n,k − θ∗||2

= (1− µηk)||θ̄
t
k − θ∗||2+2ηk(2ηkL− 1) 1

N

∑
n∈N (F (θt

n,k)− F ∗) +
1
N

∑
n∈N ||θ̄t

k − θt
n,k||2,

where we used the fact: 1
N

∑
n∈N ||θt

n,k − θ∗||2= ||θ̄t
k − θ∗||2. We assume ηk ≤ 1

4L , it holds
ηkL ≤ 1

4 =⇒ 2ηkL− 1 ≤ −1
2 . Thus

||(θ̄t
k − θ∗ − ηkḡ

t
k||2≤ (1− µηk)||θ̄

t
k − θ∗||2+ 1

N

∑
n∈N

||θ̄t
k − θt

n,k||2−
1

2

1

N

∑
n∈N

(F (θt
n,k)− F ∗)

(57)
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||(θ̄t
k − θ∗ − ηkḡ

t
k||2≤ (1− µηk)||θ̄

t
k − θ∗||2+ 1

N

∑
n∈N

||θ̄t
k − θt

n,k||2−
1

2
E[||∇F (zK, χ

′t
k )||22]︸ ︷︷ ︸

(C)

(58)
We can bound (C) using equation 47, 49, and 50

E[||∇F (zK, χ
′t
k )||22] = min(Θ1,Θ2,Θ3) (59)

where the first inequality results from the convexity of Fn(.), the second inequality is derived from
the AM-GM inequality, and the third inequality results from the smoothness of Fn(.). Therefore, 58
is further expressed as

||(θ̄t
k − θ∗ − ηkḡ

t
k||2 ≤ (1− µηk)||θ̄

t
k − θ∗||2+ 1

N

∑
n∈N

||θ̄t
k − θt

n,k||2+
1

4ηk

1

N

∑
n∈N

||θt
n,k − θ̄

t
k||2+

1

2
min(Θ1,Θ2,Θ3)

(60)
By plugging 60 into 51 and taking expectation we obtain

E||θ̄t+1
k − θ∗||2

≤ ||(1− µηk)||θ̄
t
k − θ∗||2+ 1

N

∑
n∈N

||θ̄t
k − θt

n,k||2+
1

4ηk

1

N

∑
n∈N

||θt
n,k − θ̄

t
k||2+

1

2
min(Θ1,Θ2,Θ3) + η2k||gtk − ḡtk||2

(61)

From Lemmas 5, 6, and 7, we have

E||θ̄t+1
k − θ∗||2≤ (1− µηk)E||θ̄

t
k − θ∗||2+4

(
1 +

1

ηk

)
ηkTB

2 +
η2kσ

2
g

N2
(62)

Let us define Y t
k = E||θ̄t

k − θ∗||2 and Φk = 4
(
ηk+1
η2k

)
TB2 +

σ2
g

N2 , from 62 we have

T∑
t=1

Y t+1
k ≤

T−1∑
t=0

(1− µηk)Y
t
k + η2kΦk, (63)

By Yk =
∑T−1

t=0 Y t
k , 63 is rewritten as

Y t+1
k ≤ (1− µηk)Y

t
k + η2kΦk, (64)

We define a diminishing stepsize ηk = 4θ
k+ω for some θ > 1

4µ and ω > 0. By defining m =

max{ θ2Φk
4θµ−1 , (ω + 1)Y0}, we prove that Yk ≤ m

k+ω by induction. Due to 4θµ > 1, from 64 we have

Yk+1 =

(
1− 4θµ

k + ω

)
m

k + ω
+

16θ2

(k + ω)2
Φk ≤ k + ω − 1

(k + ω)2
m+

16θ2

(k + ω)2
Φk

≤ k + ω − 1

(k + ω)2
m+

16θ2

(k + ω)2
Φk −

4θµ− 1

(k + ω)2
≤ k + ω − 1

(k + ω)2
m− 4θµ− 1

(k + ω)2

≤ k + ω − 4θµ

(k + ω)2
m ≤ k + ω − 4θµ

(k + ω)2 − (4θµ)2
m =

1

k + ω + 4θµ
m ≤ 1

k + ω + 1
m

(65)
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We choose θ = 4
µ and ω = L

µ , it follows that

m = max{ θ2Φk

4θµ− 1
, (ω + 1)Y0} ≤ θ2Φk

4θµ− 1
+ (ω + 1)Y0 =

16Φk

15µ2
+

(
L

µ
+ 1

)
Y0 (66)

By using the L-smoothness of F (.), we have

E
[
F (θ̄k)

]
− F ∗ ≤ L

2
Yk ≤ L

2

m

(k + ω)
≤ L

2(k + L/µ)

[
16Φk

15µ2
+

(
L

µ
+ 1

)
E||θ0 − θ∗||2

]
(67)

Finally, by applying 67 recursively, the convergence bound of our approach after K global communi-
cation rounds can be given as

E [F (θK)]− F ∗ ≤ L

2(K + L/µ)

[
16ΦK

15µ2
+

(
L

µ
+ 1

)
E||θ0 − θ∗||2

]
, (68)

which completes the proof.
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