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ABSTRACT

While training generative models in distributed settings has recently become in-
creasingly important, prior efforts often suffer from compromised performance,
increased communication costs, and privacy issue. To tackle these challenges,
we propose PRISM: a new federated framework tailored for generative models
that emphasizes not only strong and stable performance but also resource ef-
ficiency and privacy preservation. The key of our method is to search for an
optimal stochastic binary mask for a random network rather than updating the
model weights; i.e., identifying a “strong lottery ticket”: a sparse subnetwork
with competitive generative performance. By communicating the binary mask
in a stochastic manner, PRISM minimizes communication overhead while guar-
anteeing differential-privacy (DP). Unlike traditional GAN-based frameworks,
PRISM employs the maximum mean discrepancy (MMD) loss, ensuring stable
and strong generative capability, even in data-heterogeneous scenarios. Com-
bined with our weight initialization strategy, PRISM also yields an exception-
ally lightweight final model with no extra pruning or quantization, ideal for en-
vironments such as edge devices. We also provide a hybrid aggregation strategy,
PRISM-α, which can trade off generative performance against communication
cost. Experimental results on MNIST, CelebA, and CIFAR10 demonstrate that
PRISM outperforms the previous methods in both IID and non-IID cases, all while
preserving privacy at the lowest communication cost. To our knowledge, we are
the first to successfully generate images in CelebA and CIFAR10 with distributed
and privacy-considered settings. Our code is available at PRISM.

1 INTRODUCTION

Recent generative models have demonstrated remarkable advancements in image quality and have
been widely extended to various domains, including image-to-image translation Isola et al. (2017);
Saharia et al. (2022), image editing Abdal et al. (2019); Tov et al. (2021), text-to-image genera-
tion Rombach et al. (2022); Ramesh et al. (2022), and video generation Skorokhodov et al. (2022).
To reach a certain level of image quality of generative models, a significant volume of training data is
generally required. However, in many applications, data samples are often distributed across differ-
ent client devices and should be kept private (e.g., personal data at smartphones), posing challenges
for centralized training. Federated learning (FL) McMahan et al. (2017) is a promising paradigm
tailored to this setup, enabling clients to collaboratively train a global model based on repeated local
updates and server-side model aggregation, without sharing each client’s local dataset to the third
party. One of the major bottlenecks in FL is the significant communication cost for exchanging the
model between the server and the clients. Moreover, it is shown that each client’s local dataset can be
inferred from its local model transmitted to the server, resulting in privacy issues Zhu et al. (2019).

A few recent works have specifically focused on training generative models over distributed
clients Hardy et al. (2019); Rasouli et al. (2020); Li et al. (2022); Zhang et al. (2021); Amalan
et al. (2022). These methods are generally built upon generative adversarial networks (GANs) Good-
fellow et al. (2020), which have shown impressive results in the field of image generation. Based
on GANs, prior works such as DP-FedAvgGAN Augenstein et al. (2019), GS-WGAN Chen et al.
(2020), and Private-FLGAN Xin et al. (2020) apply differential privacy (DP) Dwork et al. (2006);
Mironov (2017) to mitigate the potential privacy risk in FL setups. However, existing works still
face several challenges: 1) Due to the training instability of GANs Farnia & Ozdaglar (2020a;b);
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Wang et al. (2022), previous approaches underperform, especially in non-IID (independent, iden-
tically distributed) data distribution scenarios with strong data heterogeneity across FL clients. 2)
Performance evaluations are limited to relatively simple datasets such as MNIST, Fashion MNIST,
and EMNIST. 3) They suffer from a significant communication overhead during model exchanges
between the server and clients.

To overcome the above challenges, we propose PRivacy-preserving Improved Stochastic-Masking
for generative models (PRISM), a new strategy for training generative models in FL settings. At the
heart of PRISM lies the strong lottery ticket (SLT) Frankle & Carbin (2018), a subnetwork in a ran-
domly initialized network that can achieve strong performance. Our approach seamlessly integrates
the Edge-Popup (EP) method Ramanujan et al. (2020); Yeo et al. (2023), a pioneering algorithm
crafted to discern a supermask in densely interconnected networks. By harnessing the SLT in the
FL paradigm, our focus shifts to finding an optimal global binary mask, while keeping initialized
weights static. This enables each client to directly transfer the binary mask with the server instead of
the full model, significantly reducing the overload in each communication round. In addition, due to
the stochastic binary masks that are randomly sampled from the Bernoulli distribution, PRISM also
provides DP-guarantee. We also opt MMD loss during the client-side local update process to stably
find the SLT for generative models. By doing so, PRISM exhibits consistent and robust performance
even in non-IID FL settings, unlike traditional GAN-based approaches. When training is finished,
PRISM produces a lightweight final model as each weight is already quantized thanks to our initial-
ization strategy, providing significant advantages for resource-constrained edge devices. Finally, we
propose a variation of our method, termed PRISM-α, that can strategically control the amount of
binary mask communication and score communication. By letting α be the portion of the score com-
munication layer, PRISM-α explores the trade-off between communication cost and image quality
depending on the application and resource constraint.

We provide qualitative and qualitative comparisons using MNIST, CelebA, and CIFAR10 datasets
and confirm that PRISM and PRISM-α present remarkable performance improvements against the
traditional GAN-based approaches with less communication costs, in both IID and non-IID data
distribution settings. PRISM expands the applicability of privacy-aware federated generative models
to CelebA and CIFAR10 datasets, producing clean images on these datasets for the first time. We
also demonstrate that PRISM enables edge devices to save resources not only during training but
also during the inference stage.

Overall, our main contributions can be summarized as follows:

• We propose PRISM, a SLT-based FL framework that leverages stochastic binary masks to
facilitate communication-efficient FL for training generative models while providing DP-
guarantee. In conjunction with the weight initialization strategy, a lightweight final model
is produced when training is finished.

• We make a breakthrough against instability and performance deficiencies by introducing
the MMD loss to federated generative models. Our objective function ensures consistent
convergence and enhanced performance in both IID and non-IID FL scenarios.

• We present a hybrid score and binary mask aggregation strategy termed PRISM-α, to con-
trol the trade-off between communication and model capability. PRISM-α is able to further
improve the performance while incurring a small amount of additional communication cost.

To the best of our knowledge, this is the first work to address the challenges on communication effi-
ciency, privacy, and performance instability altogether for federated generative models. We provide
new directions to this area based on several unique characteristics, including SLT with stochastic
binary mask, MMD loss, and hybrid score/mask communications.

2 RELATED WORK

Federated learning. FL has recently achieved a significant success in training a global model in a
distributed setup, eliminating the necessity of sharing individual client’s local datasets with either
the server or other clients. Research has been conducted for various aspects in FL such as data het-
erogeneity Zhao et al. (2018); Li et al. (2021b), communication efficiency Isik et al. (2022); Li et al.
(2021a); Mitchell et al. (2022); Basat et al. (2022), privacy Wei et al. (2020), with most of them fo-
cusing on the image classification task. Related to our approach, Isik et al. (2022); Li et al. (2021a)
adopted binary mask communication to reduce the communication cost in FL. Li et al. (2021a)
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introduces binary mask communication, focusing communication efficiency and personalization in
decentralized environments. Isik et al. (2022) utilizes stochastic masks to minimize uplink over-
head and proposes a bayesian aggregation method to robustly manage scenarios with partial client
participation. In connection with these methods, PRISM also employs binary masks for lightweight
communication between the client and the server. To distinguish our work from previous works, we
would like to clarify our specific objectives. Tailored to FL for generative models, we introduce a
stable MMD loss Gretton et al. (2006; 2012) and a hybrid method that strikes an efficient balance
between performance and cost. Additionally, we conduct extensive experiments to validate these
contributions in the realms of image generation and communication cost.

FL for generative models. Several recent works have aimed to incorporate generative models into
distributed settings Hardy et al. (2019); Amalan et al. (2022); Li et al. (2022); Zhang et al. (2021);
Rasouli et al. (2020); Augenstein et al. (2019); Chen et al. (2020); Xin et al. (2020). MD-GAN Hardy
et al. (2019) was the first attempt to apply generative models in the FL framework using GANs Good-
fellow et al. (2020), which have been extensively studied in image generation tasks. In MD-GAN,
each client holds a discriminator, and the server aggregates the discriminator feedback received
from each client to train the global generator. To prevent overfitting of local discriminators, clients
exchange discriminators, incurring additional communication costs. Multi-FLGAN Amalan et al.
(2022) proposed all vs all game approach by employing multiple generators and multiple discrimina-
tors and then selecting the most powerful network, to enhance the model performance. IFL-GAN Li
et al. (2022) improves both performance and stability by weighting each client’s feedback based on
the MMD between the images generated by the global model and the local generator. This approach
maintains a balance between the generator and the discriminator, which leads to Nash Equilibrium.
Other works such as Zhang et al. (2021); Rasouli et al. (2020) have also explored the utilization
of GANs in FL. However, these works do not consider the challenge of privacy preservation in the
context of FL, and suffer from resource issues during training and inference.

Only a few prior works have focused on the privacy issue in federated generative models Augen-
stein et al. (2019); Chen et al. (2020). DP-FedAvgGAN Augenstein et al. (2019) introduces a frame-
work that combines federated generative models and differential privacy (DP) Dwork et al. (2006);
Mironov (2017) to ensure privacy preservation. GS-WGAN Chen et al. (2020) adopts Wasserstein
GAN Gulrajani et al. (2017) to bypass the cumbersome challenge of searching for an appropriate
DP-value, leveraging the Lipshitz property. While these approaches have successfully integrated
FL and generative models, they inherit drawbacks such as notorious instability of GANs Farnia &
Ozdaglar (2020a;b); Wang et al. (2022) and face issues with data heterogeneity. Moreover, all exist-
ing approaches suffer from significant communication cost during training and storage cost during
inference. Our proposed PRISM addresses all the above issues of prior federated generative model
works, with several unique characteristics including SLT Frankle & Carbin (2018) with stochastic
binary mask, MMD loss Gretton et al. (2006; 2012), and hybrid score/mask communications.

3 BACKGROUND

3.1 STRONG LOTTERY TICKETS

Strong Lottery Ticket (SLT) Frankle & Carbin (2018); Malach et al. (2020); Orseau et al. (2020) is a
hypothesis related to pruning of dense neural networks, claiming that a randomly initialized network
already contains a sparse subnetwork that achieves a superior performance. To this end, Edge-popup
(EP) algorithm Ramanujan et al. (2020) was proposed to discover supermask within the dense net-
work. The EP algorithm introduces a scoring mechanism to select potentially important weights
among the widespread initialized weight values. The operation of EP algorithm unfolds as follows:
Given a randomly initialized dense network Winit, a learnable score s is trained while keeping the
weight values in frozen. These scores are designed to encapsulate the importance of each weight for
the objective function. As the scores get iteratively updated, the EP algorithm progressively shrinks
the model by applying binary masks to weights with higher scores, indicating their potentials to be
included in the winning lottery ticket. The obtained SLT can be expressed asW =Winit⊙M , where
M is the obtained binary mask and ⊙ denotes element-wise multiplication. In Yeo et al. (2023), the
existence of winning tickets in generative models is shown based on the MMD loss.
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Figure 1: Overview of PRISM. PRISM finds the supermask for generative models in a FL scenario.
At every round t, each client k updates a local score skt via MMD loss and generates the binary mask
Mk

t , which is sent to the server. The server aggregates the masks and use θt+1 to estimate the global
probability, which is converted to a score st+1 and broadcasted to the clients for the next round.

4 METHOD

We consider a FL setup with K clients, where each client k has its own local dataset Dk. Starting
from a randomly initialized modelWinit, the clients aim to collaboratively obtain a global generative
model W ∗ that well-reflects all data samples in the system, i.e., in ∪Kk=1Dk.

Overview of approach. We propose PRISM, a new FL framework tailored to generative models
that can handle communication, model performance, and privacy issues of prior works. Inspired
by SLT hypothesis, PRISM aims to find a good subnetwork from the initialized generative model
Winit, and adopts the final SLT as the global model. To this end, we shift our focus to finding
an optimal binary mask M∗ that has either 1 or 0 in its element, and construct the final global
model as W ∗ = Winit ⊙M∗. Figure 1 shows the overview of our PRISM. At a high-level, each
client k generates a binary mask Mk

t based on its local dataset at every communication round t,
which is aggregated at the server. After repeating the process for multiple rounds t = 1, 2, . . . , T ,
PRISM produces the final supermask M∗ =MT . In the following, we describe the detailed training
procedure of PRISM along with its advantages.

4.1 PRISM : PRIVACY-PRESERVING IMPROVED STOCHASTIC MASKING

Local score updates with MMD loss. Before training starts, the server randomly initializes the
model Winit and broadcasts it to all clients, which is frozen throughout the training process. In the
beginning of each round t, all clients download the score vector st from the server, which represents
the importance of each parameter in Winit. Intuitively, if the score value of a specific parameter is
high, the corresponding weight is more likely be included in the final SLT. PRISM lets each client k
to update the score vector st based on its local dataset to obtain skt , which will be used to generate the
local mask. In this local score update procedure, we leverage maximum mean discrepancy (MMD)
loss Gretton et al. (2006; 2012), which provides stable convergence for training generative models.
As in Santos et al. (2019); Ramanujan et al. (2020), we take VGGNet pretrained on ImageNet as a
powerful characteristic kernel. Specifically, given the local dataset Dk = {xki }Ni=1 of client k and
the fake image set Dk

fake = {yki }Mi=1 produced by its own generator, the local objective function at
each client k is written as follows:

Lk
MMD =

∥∥∥Ex∼Dk [ψ(x)]− Ey∼Dk
fake

[ψ(y)]
∥∥∥2 + ∥∥Cov(ψ(Dk))− Cov(ψ(Dk

fake))
∥∥2 , (1)

where ψ(·) is a function that maps each sample to the VGG embedding space. Specifically, each
client aims to match the mean and covariance between real and fake samples after mapping them to
the VGG embedding space using kernel ψ(·). Based on Eq. 1, each client locally updates the scores
to minimize the MMD loss according to skt = st−η∇Lk

MMD. Here, we note that the VGG network
is utilized only for computing the MMD loss, and is discarded when training is finished.

We would like to highlight that taking advantage of MMD loss guarantees stable training for find-
ing the SLT of the generative model. This enables PRISM to handle the issue of prior federated
generative model approaches mainly adopting GANs that suffer from unstable training and limited
performance in data heterogeneous FL settings.
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Figure 2: Overview of PRISM-α. With a controllable parameter α, score layers are selected from
α% of layers and mask layers are chosen from the remaining layers. At communication round t, each
client k uploads the learned scores sk(α)t from the score layers and binary masks Mk(1−α)

t from the
mask layers. Then, the server aggregates the received scores and binary masks, respectively.

Binary mask generation and aggregation. After the local score update process, each client k
maps the score skt to a probability value θkt ∈ [0, 1] as θkt = Sigmoid(skt ), where Sigmoid(·) is
the sigmoid function. The obtained θkt is then used as the parameter of the Bernoulli distribution
to generate the stochastic binary mask Mk

t , according to Mk
t ∼ Bern(θkt ). Each client k uploads

only this binary mask Mk
t to the server, significantly reducing the communication overhead. The

stochasticity of the mask also enables PRISM to preserve privacy. At the server-side, the received
masks are aggregated to estimate the global Bernoulli parameter as θt+1 = 1

K

∑K
k=1M

k
t , which can

be interpreted as the probabilistic score that reflects the importance of the overall clients’ weights.
θt+1 is then converted to the score through the inverse of the sigmoid function according to st+1 =
Sigmoid−1(θt+1), which is broadcasted to the clients in the beginning of next round.

Inference-time storage efficiency. When training is finished after T rounds of FL, θT is obtained
at the server. The supermask is then generated following M∗ ∼ Bern(θT ), which is used to obtain
the final global model as W ∗ =Winit ⊙M∗. This final model W ∗ can be stored efficiently even in
resource-constrained edge devices, due to the model initialization strategy. When initializing Winit

in PRISM, we employ the standard deviation of Kaiming Normal distribution He et al. (2015), which
means that the weight value in layer l is sampled from {−

√
2/nl−1,

√
2/nl−1}. Hence, by storing

the scaling factor
√

2/nl−1, each parameter in the initial modelWinit is already quantized to a 1-bit
value. This makes the final model exceptionally lightweight without extra pruning or quantization,
which will be also confirmed via comparison in Section 5.4.

4.2 HYBRID SCORE AND MASK AGGREGATION

PRISM in Section 4.1 achieves minimum communication cost by letting clients transmit only the
binary mask during FL. In this subsection, we additionally introduce PRISM-α, which can flexibly
control the trade-off between communication overhead and performance depending on the applica-
tion and resource constraint. Figure 2 illustrates the idea of PRISM-α. Instead of sending the full
binary mask to the server, every client k sends the deterministic score for the fixed α% of layers (i.e.,
score layers) and the binary mask for the remaining (100 − α)% of layers (i.e., mask layers). This
enables the server to more accurately obtain the global score, as the score layers do not have any
stochasticity. This further leads to improved model performance, which is an advantage of PRISM-
α that can be achieved via additional communication cost for sending the non-binary values. At the
server side, the score layers are aggregated according to s(α)t+1 = 1

K

∑K
k=1 s

k(α)
t , while the mask lay-

ers are aggregated as θ(100−α)
t+1 = 1

K

∑K
k=1M

k(100−α)
t . The obtained score is directly broadcasted

to the clients, while the aggregated mask is converted to the score as in PRISM before broadcasting.
Note that as mask layers consistently transmits stochastic outcomes, PRISM-α still protects privacy.
Even in cases where the server can infer local data from the score layers, this can be easily handled
by applying secure aggregation Bonawitz et al. (2016) to the score layers.

4.3 PRIVACY PRESERVATION

Differential privacy (DP) Dwork et al. (2006), Rényi-Differential privacy (RDP) Mironov (2017)
are commonly adopted metrics in FL society to prevent data being inferred from the model. As
discussed in Section ??, random sampling from distribution family provides privacy amplification.
PRISM also enjoys the binary symmetric RDP thanks to the stochasticity of Bernoulli sampling,
directly following the derivations of Isik et al. (2022); Imola & Chaudhuri (2021).
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Table 1: Quantitative comparison in IID scenario. We compare the FID, P&R, D&C, communi-
cation cost. Communication cost is reported by capturing the number of bytes exchanged from the
client to the server. We set α = 70 for PRISM-α while α = 100 for PRISM-α (full score). Since
MD-GAN and PRISM-α (full score) do not provide privacy protection, they are considered as up-
per bounds. Although GS-WGAN can achieve highest precision and density in CIFAR10, it fails to
produce reasonable images as shown in Figure 3.

Method
(comm.cost) Privacy Metric MNIST CelebA CIFAR10

MD-GAN
(14MB)

FID ↓ 5.5364 6.74 28.5932
✗ P&R ↑ 0.8081 / 0.7414 0.796 / 0.6243 0.7949 / 0.5613

D&C ↑ 0.7525 / 0.7955 1.05 / 0.8919 1.071 / 0.5512

PRISM-100 (full score)
(24MB)

✗
FID ↓ 3.6597 11.0592 36.9452
P&R ↑ 0.8001 / 0.823 0.7824 / 0.4229 0.6602 / 0.3706
D&C ↑ 0.7312 / 0.8382 1.0275 / 0.8221 0.5751 / 0.4557

GS-WGAN
(15MB)

✓
FID ↓ 68.53 203.6972 193.5444
P&R ↑ 0.0975 / 0.0794 0.1675 / 0 0.9961 / 0
D&C ↑ 0.0257 / 0.0367 0.0357 / 0.002 1.4743 / 0.0541

DP-FedAvgGAN
(14MB)

✓
FID ↓ 87.9032 206.0260 195.9148
P&R ↑ 0.2237 / 0.0688 0.0518 / 0.0585 0.6671 / 0.0039
D&C ↑ 0.0549 / 0.0225 0.0111 / 0.0017 0.2302 / 0.0302

PRISM
(5.75MB)

✓
FID ↓ 8.778 18.1198 62.373
P&R ↑ 0.682 / 0.7255 0.772 / 0.2834 0.7439 / 0.0774
D&C ↑ 0.4584 / 0.6063 0.9281 / 0.6995 0.8234 / 0.3159

PRISM-70
(9.6MB)

✓
FID ↓ 4.6893 13.1921 50.682
P&R ↑ 0.8001 / 0.823 0.7858 / 0.3926 0.685 / 0.256
D&C ↑ 0.731 / 0.838 0.978 / 0.779 0.6066 / 0.3796

5 EXPERIMENTS

In this section, we validate the effectiveness of PRISM on MNIST, CelebA, and CIFAR10 datasets.
The training set of each dataset is distributed across 10 clients following either IID or non-IID data
distributions, where the details are described in each subsection. We set α = 70 for our PRISM-α
regardless of datasets. The effect of varying α on PRISM-α is also studied in Section 5.3.

Baselines. We compare our method with three previous approaches on federated generative models:
DP-FedAvgGAN Augenstein et al. (2019) and GS-WGAN Chen et al. (2020) that preserve privacy,
and MD-GAN Hardy et al. (2019) which does not. As MD-GAN does not consider privacy, we
employ it as an upper bound for performance comparison.

Performance metrics. We evaluate the generative performance of each scheme using the commonly
adopted metrics, including Fréchet Inception Distance (FID) Heusel et al. (2017), Precision & Re-
call Kynkäänniemi et al. (2019), Density & Coverage Naeem et al. (2020). We further demonstrate
the efficiency of PRISM by comparing the required communication cost (MB) at each FL round.
Finally, we compare the storage size (MB) of different schemes during the inference stage.

5.1 IID CASE

In this subsection, we consider an IID scenario where the training set of each dataset is distributed
to clients uniformly at random. We first compare various evaluation metrics of different schemes
(Table 1). It can be seen that PRISM outperforms traditional GAN-based models while requiring
significantly lower communication cost. In addition, our proposed hybrid strategy PRISM-α ex-
hibits notable performance enhancements by trading off performance against communication cost.
In CIFAR10, while GS-WGAN achieves highest performance in specific metrics (precision and den-
sity), it fails to generate reasonable images as shown in Figure 3, which depicts qualitative results
of generated images. From Figure 3, we observe that existing methods that preserve privacy tend to
generate distorted images in both CelebA and CIFAR10, while our method produces high quality
results. Although the generated images are not perfect for CIFAR10, our approach still produces bet-
ter quality of images compared with the privacy-preserving baselines. In Figure 4(a), we also report
the relationship between FID, number of parameters in the generator, and communication cost of
each scheme. Here, for a fair comparison with the baselines, we reduce the number of generator pa-
rameters from 6.3M to 3.5M, and denote by PRISM (small). It can be seen that PRISM consistently
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Figure 3: Qualitative results in IID scenario. We compare the generated images from the models
in Table 1 on MNIST, CelebA, and CIFAR10. Here, α = 70 for PRISM-α.
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Figure 4: The performance of baselines and our PRISM. X-axis represents the number of learn-
able parameters of generator, while Y-axis represents FID. The diameter of each circle denotes the
required communication cost at every round. The ideal case is the bottom-left corner with a small
diameter. For a fair comparison and to validate the training stability of PRISM, we reduce the ca-
pacity of PRISM by half (to match the capacity of other models) and denote by PRISM (small).

demonstrates stable performance while offering more lightweight communication cost, confirming
its significant advantage.

5.2 NON-IID CASE

In this subsection, we investigate another practical yet challenging scenario, the non-IID case, where
the local data distributions across clients are different. Since the clients have heterogeneous data
distributions in this setup, achieving sufficient performance becomes more challenging. We sort
MNIST and CIFAR10 datasets by class labels and divide into 40 partitions. Then, we randomly
assign four partitions to each client. As CelebA has multiple attributes in a single image, we split the
overall dataset into two sets that contain opposite attributes (male and female) and distribute each
to 5 clients, to model the non-IID scenario. Table 2 shows the quantitative comparison of baselines
and our methods. PRISM and PRISM-α exhibit robust performance in non-IID case, even better
than MD-GAN (no privacy) on MNIST. Figure 5 shows that despite data heterogeneous nature, our
methods successfully generate high quality images, while traditional methods exhibit subpar quality
on MNIST and CelebA, with GS-WGAN even failing on MNIST. In Figure 4(b), we visualize the
FID, number of parameters in the generator, and communication cost on non-IID scenario. It can
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Table 2: Quantitative comparison in non-IID scenario. We compare the FID, P&R, D&C, and
communication cost. We report the number of bytes exchanged from the client to the server as
communication cost. As in Table 1, we set α = 70 for PRISM-α, while α = 100 for PRISM-α (full
score). MD-GAN and PRISM-α (full score) do not preserve privacy.

Method
(comm.cost) privacy Metric MNIST CelebA CIFAR10

MD-GAN
(14MB)

✗
FID ↓ 40.4037 18.5903 51.2847
P&R ↑ 0.3297 / 0.491 0.715 / 0.4673 0.827 / 0.1968
D&C ↑ 0.1145 / 0.1434 0.7363 / 0.6793 1.2201 / 0.3829

PRISM-100 (full score)
(24MB)

✗
FID ↓ 7.7762 14.1072 52.8479
P&R ↑ 0.7616 / 0.7387 0.782 / 0.35 0.6585 / 0.2749
D&C ↑ 0.5895 / 1.0453 0.7217 / 0.2834 0.5506 / 0.3464

GS-WGAN
(15MB)

✓
FID ↓ 155.2829 246.682 299.27
P&R ↑ 0.0216 / 0.0011 0.2318 / 0.0 0.7097 / 0
D&C ↑ 0.0044 / 0.0009 0.0566 / 0.0015 0.6558 / 0.0504

DP-FedAvgGAN
(14MB)

✓
FID ↓ 131.6076 216.2886 199.9460
P&R ↑ 0.3086 / 0.0608 0.0639 / 0.0 0.4989 / 0.0007
D&C ↑ 0.0674 / 0.0113 0.0140 / 0.0015 0.2589 / 0.0333

PRISM
(5.75MB)

✓
FID ↓ 14.4835 23.7323 75.354
P&R ↑ 0.6904 / 0.5599 0.7758 / 0.1883 0.6805 / 0.086
D&C ↑ 0.4627 / 0.4908 1.0209 / 0.6082 0.5599 / 0.2468

PRISM-70
(9.6MB)

✓
FID ↓ 8.1081 20.2256 54.6813
P&R ↑ 0.7378 / 0.7749 0.7899 / 0.2391 0.6204 / 0.2469
D&C ↑ 0.5517 / 0.6505 1.0493 / 0.6618 0.5006 / 0.3348

(a) MD-GAN (b) GS-WGAN (c) DP-FedAvgGAN (d) PRISM

M
N
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T
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eb
A

w/o privacy w/ privacy

C
IF

A
R

10

(e) PRISM-𝛼𝛼
Figure 5: Qualitative results in non-IID scenario. We compare the generated images from the
models in Table 1 on MNIST, CelebA, and CIFAR10. Here, α = 70 for PRISM-α. Each client is
assigned with four classes in MNIST and CIFAR10, and male or female in CelebA.

be seen that our method achieves similar performance even when the size of the model is reduced,
i.e., PRISM (small), demonstrating the stability of PRISM in data-heterogeneous environments. The
overall results confirm the advantage of our method compared with existing baselines.

5.3 ANALYSIS OF HYBRID AGGREGATION

In this subsection, we further analyze PRISM-α, which utilizes both binary mask and score com-
munications. To explore the trade-off between communication cost and generative capability, we
consider two strategies: the backward path and forward path. As illustrated in Figure 2, our default

8
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(a) CIFAR10 IID case (b) CIFAR10 Non-IID case

Sweet spotSweet spot

Figure 6: Analysis of PRISM-α . The backward path selects α% of score layers from deeper layers,
while the forward path chooses from the opposite layers. Solid-line demonstrates FID following
each direction while dash-line shows communication cost (MB) of each path.

(b) PRISM-20(a) PRISM-0 (c) PRISM-50 (d) PRISM-70 (e) PRISM-100

High cost
High quality

Less cost
Less quality

Figure 7: The effect of adjusting α. PRISM-α provides trade-off between communication cost and
generative performance. Note that PRISM-0 is identical to PRISM.

configuration, the backward path progressively increases the number of score layers from deeper
layers to earlier layers. Conversely, in the forward path, we select score layers from earlier layers
to deeper layers. Figure 6 visually demonstrates the trade-off between communication cost and FID
of both strategies. The FID gradually improves as we increase α values in both cases. Note that
the additional communication cost of the backward path tends to increase more smoothly. Figure
7 provides comprehensive comparison across a wide range of α values, showing that PRISM-α
consistently produces high quality images.

5.4 RESOURCE EFFICIENCY IN INFERENCE TIME

Table 3: Final model size. The stor-
age of PRISM includes the sparse and
quantized network and binary mask,
while baselines save the full generator.

Method Storage
MD-GAN 14 MB

GS-WGAN 15 MB
DP-FedAvgGAN 14 MB

PRISM 7.258MB

Once PRISM identifies the SLT, each client needs to save
the final model W ∗ = Winit ⊙ M∗ for inference. As
discussed in Section 4.1, one advantage of PRISM is the
extremely lightweight final model. This is attributed to
the uniform binarization of the weights Winit with signed
constants, allowing for more efficient storage of each ini-
tialized weight through the utilization of ternary quantiza-
tion Zhu et al. (2016). Table 3 reports the final model size
of baselines and our method. While baselines save the full
weights, PRISM only stores the pruned and 1-bit quantized
values. Note that in addition to our method, applying various lossless compression techniques (e.g.,
arithmetic coding Rissanen & Langdon (1979)) further reduce the required resources of PRISM.

6 CONCLUSION

Although image generation task has recently emerged as one of the most promising areas in deep
learning, combining federated learning with generative models has not been extensively explored. In
this paper, we propose an efficient and stable federated generative framework PRISM that leverages
stochastic binary mask and MMD loss. We also introduce a hybrid mask/score aggregation method,
PRISM-α, which provides flexible and controllable trade-off between the performance and the ef-
ficiency. To the best of our knowledge, PRISM is the first framework that consistently generates
images with dramatically reduced communication in FL, particularly for CelebA and CIFAR10.
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A PRIVACY

Diffenrential privacy (DP) and Rényi Differential Privacy (RDP) Dwork et al. (2006); Mironov
(2017) are the most popular definitions to analysis the privacy in FL environments. These help
mitigate privacy concerns by limiting the contribution of individual data points. (ϵ, δ)-DP and (α, ϵ)-
RDP basically calculates the distance of outcome for the algorithm of adjacent datasets.

Definition 1 ((ϵ, δ)-Differential Privacy) A randomized mechanism M : X → R is (ϵ, δ)-
differential privacy, if for any two adjacent datasets D, D′ and for any measurable sets S:

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ (2)

Definition 2 ((α, ϵ) Rényi Differential Privacy) For two probability distributions P and Q, the
Rényi divergence of order α > 1 defined as follows:

Rα(P ||Q) ≜
1

α− 1
logEx∼Q(

P (x)

Q(x)
)α (3)

then, a randomized mechanism M : X → R is (α, ϵ) Rényi differential privacy, if for any two
adjacent datasets D, D′ and for any measurable sets S:

Rα(M(D)||M(D′)) ≤ ϵ (4)

Theorem 1 Mironov (2017) showed that ifM is (α, ϵ)-RDP guarantee, is also (ϵ+ log 1/δ
α−1 )-DP.

In this section, we provide more detailed explanation of privacy preserving in PRISM and also
present updated results when DP is applied. To satisfy the (ϵ, δ)-DP, our goal is privatize the
probability vector θ ∈ [0, 1]d by adding gaussian noise N (0, σ2), where σ2 =

2ln(1.25/δ)∆2
2

ϵ2 and
∆2 = maxD,D′ ||M(D)−M(D′)||2. When the local training is end, each client has scores s ∈ Rd

to choose which weight to prune. Recall that probaility θ ∈ [0, 1]d can be obtained through sig-
moid function. We inject gaussian noise and clip to θ̃ ∈ [c, 1 − c]d, where c is a small value
0 < c < 1

2 . In out setup, we fix it at 0.1. Now, we ensure θ̃ is (ϵ, δ)-DP. For a fair comparison,
we use (ϵ, δ) = (50, 10−5) to PRISM and our baselines in all of our experiments. In addition, we
regulate the global round to ensure that the overall privacy budget does not exceed ϵ. To track the
overall privacy budget, we employ subsampled moments accountant Wang et al. (2019). We refer to
the Opacus library which is the user-friendly pytorch framework for differential privacy Yousefpour
et al. (2021).

Imola & Chaudhuri (2021); Isik et al. (2022) have shown that performing post processing to already
privatized vector θ̃ such as bernoulli sampling enjoys privacy amplification under some conditions.
By doing so, the overall privacy budget becomes smaller ϵamp ≤ min{ϵ, dγα(c)}, where γα(·) is
the binary symmetry Rényi divergence as expressed below:

γα(c) =
1

α− 1
log(cα(1− c)α + (1− c)αc1−α), (5)

where α refers to the order of the divergence. Note that d limits the privacy amplification when the
model size becomes large. Since PRISM assumes that the model size is large enough due to SLT,
we focus on communication efficiency rather than privacy amplification.

B TRAINING DETAILS

In this section, we provide the detailed description of our implementations and experimental settings.
Our code is based on Santos et al. (2019); Yeo et al. (2023). They employ the ImageNet-pretrained
VGG19 network for feature matching by minimizing the Eq. 1. However, calculating the first and
second moments require the large batch size to obtain the accurate statistics. To address this is-
sue, Santos et al. (2019) introduces Adam moving average (AMA). With a rate λ, the update of
AMA m is expressed as follows:

m← m− λADAM(m−∆), (6)
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Table 4: Quantitative comparison in IID scenario. We compare the FID, P&R, D&C, communi-
cation cost with (ϵ, δ) = (50, 10−5). Communication cost is reported by capturing the number of
bytes exchanged from the client to the server. We set α = 70 for PRISM-α while α = 100 for
PRISM-α (full score). Since MD-GAN and PRISM-α (full score) do not provide privacy protection,
they are considered as upper bounds.

Method
(comm.cost) Privacy Metric MNIST CelebA

MD-GAN
(14MB)

FID ↓ 5.5364 6.74
✗ P&R ↑ 0.8081 / 0.7414 0.796 / 0.6243

D&C ↑ 0.7525 / 0.7955 1.05 / 0.8919

GS-WGAN
(15MB)

✓
FID ↓ 68.53 203.6972
P&R ↑ 0.0975 / 0.0794 0.1675 / 0
D&C ↑ 0.0257 / 0.0367 0.0357 / 0.002

DP-FedAvgGAN
(14MB)

✓
FID ↓ 87.9032 206.0260
P&R ↑ 0.2237 / 0.0688 0.0518 / 0.0585
D&C ↑ 0.0549 / 0.0225 0.0111 / 0.0017

PRISM
(5.75MB)

✓
FID ↓ 40.8520 52.9511
P&R ↑ 0.6043 / 0.11 0.6154 / 0.1171
D&C ↑ 0.4074 / 0.295 0.3781 / 0.2268

PRISM-70
(9.6MB)

✓
FID ↓ 31.4345 40.7070
P&R ↑ 0.4263 / 0.5051 0.6169 / 0.0978
D&C ↑ 0.1624 / 0.1786 0.378 / 0.268

PRISM-100 (full score)
(24MB)

✓
FID ↓ 31.1024 41.1423
P&R ↑ 0.4051 / 0.5127 0.5884 / 0.1063
D&C ↑ 0.1535 / 0.3549 0.2618 / 0.3719

(a) MD-GAN (b) GS-WGAN (c) DP-FedAvgGAN (d) PRISM (e) PRISM-𝛼𝛼

w/o privacy w/ privacy

C
el

eb
A

M
N

IS
T

Figure 8: Qualitative results in IID scenario. We compare the generated images from the models
in Table 1 on MNIST, CelebA, and CIFAR10 with (ϵ, δ) = (50, 10−5). Here, α = 70 for PRISM-α.

where ADAM denotes Adam optimizer Kingma & Ba (2014) and ∆ is the discrepancy of the means
of the extracted features. Note that ADAM(m−∆) can be interpreted as gradient descent by mini-
mizing the L2 loss:

min
m

1

2
∥m−∆∥2 . (7)

This means the difference of statistics (m −∆) is passed through a single MLP layer and updated
using the Adam optimizer to the direction of minimizing Eq. 7. By utilizing AMA, Eq. 1 is for-

mulated as Lk
MMD =

∥∥∥Ex∼Dk [ψ(x)]− Ey∼Dk
fake

[ψ(y)]
∥∥∥2+∥∥∥Cov(ψ(Dk))− Cov(ψ(Dk

fake))
∥∥∥2 ,

Algorithm 1, 2 provides the psuedocode for PRISM and PRISM-α correspondingly. AMA is omit-
ted to simply express the flow of PRISM. See our code for pytorch implementation. We train the
local generator for 100 local iterations with learning rate of 0.1. For the AMA layer, learning rate is
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Table 5: Quantitative comparison in non-IID scenario. We compare the FID, P&R, D&C, and
communication cost with (ϵ, δ) = (50, 10−5). We report the number of bytes exchanged from the
client to the server as communication cost. As in Table 4, we set α = 70 for PRISM-α, while
α = 100 for PRISM-α (full score). MD-GAN and PRISM-α (full score) do not preserve privacy.

Method
(comm.cost) privacy Metric MNIST CelebA

MD-GAN
(14MB)

✗
FID ↓ 40.4037 18.5903
P&R ↑ 0.3297 / 0.491 0.715 / 0.4673
D&C ↑ 0.1145 / 0.1434 0.7363 / 0.6793

GS-WGAN
(15MB)

✓
FID ↓ 155.2829 246.682
P&R ↑ 0.0216 / 0.0011 0.2318 / 0.0
D&C ↑ 0.0044 / 0.0009 0.0566 / 0.0015

DP-FedAvgGAN
(14MB)

✓
FID ↓ 131.6076 216.2886
P&R ↑ 0.3086 / 0.0608 0.0639 / 0.0
D&C ↑ 0.0674 / 0.0113 0.0140 / 0.0015

PRISM
(5.75MB)

✓
FID ↓ 50.7144 57.3357
P&R ↑ 0.3666 / 0.3277 0.5063 / 0.0712
D&C ↑ 0.1308 / 0.1035 0.2536 / 0.1499

PRISM-70
(9.6MB)

✓
FID ↓ 43.8706 44.6085
P&R ↑ 0.3769 / 0.3878 0.5916 / 0.0817
D&C ↑ 0.1348 / 0.131 0.3289 / 0.2422

PRISM-100 (full score)
(24MB)

✓
FID ↓ 38.7667 43.3729
P&R ↑ 0.3825 / 0.3919 0.5814 / 0.0772
D&C ↑ 0.1457 / 0.1457 0.3519 / 0.2317

(a) MD-GAN (b) GS-WGAN (c) DP-FedAvgGAN (d) PRISM
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Figure 9: Qualitative results in Non IID scenario. We compare the generated images from the
models in Table 2 on MNIST, CelebA, and CIFAR10 with (ϵ, δ) = (50, 10−5). Here, α = 70 for
PRISM-α.

set to 0.005. In addition, we use the Adam optimizer with β1 = 0.5, β2 = 0.999 to update the scores
of the generators. After all clients complete their training, communication round is initiated. We
set the global epoch to 150 for the MNIST dataset and 350 for the CelebA and CIFAR10 datasets.
As we do not adjust the parameters, note that there is room for performance improvements through
hyperparameter tuning.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments to validate the effectiveness of MMD loss and
solve the potential two questions. One can ask why use MMD? To answer this, we conduct an
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Table 6: Quantitative comparison in IID scenario. We compare the FID, P&R, D&C, commu-
nication cost with (ϵ, δ) = (9.8, 10−5). Communication cost is reported by capturing the number
of bytes exchanged from the client to the server. We set α = 70 for PRISM-α while α = 100 for
PRISM-α (full score).

Method
(comm.cost) Privacy Metric MNIST CelebA

MD-GAN
(14MB)

FID ↓ 5.5364 6.74
✗ P&R ↑ 0.8081 / 0.7414 0.796 / 0.6243

D&C ↑ 0.7525 / 0.7955 1.05 / 0.8919

GS-WGAN
(15MB)

✓
FID ↓ 328.3735 338.6659
P&R ↑ 0.0 / 0.0 0.0 / 0.0
D&C ↑ 0.0 / 0.0 0.0 / 0.0

DP-FedAvgGAN
(14MB)

✓
FID ↓ 149.3563 243.2313
P&R ↑ 0.0193 / 0.0 0.1008 / 0.0
D&C ↑ 0.0041 / 0.0013 0.0211 / 0.0013

PRISM
(5.75MB)

✓
FID ↓ 59.4503 101.2505
P&R ↑ 0.2594 / 0.3884 0.4306 / 0.1051
D&C ↑ 0.0832 / 0.0852 0.1794 / 0.0889

PRISM-70
(9.6MB)

✓
FID ↓ 45.652 90.413
P&R ↑ 0.3876 / 0.3523 0.4307 / 0.0786
D&C ↑ 0.1382 / 0.1087 0.1834 / 0.0989

PRISM-100 (full score)
(24MB)

✓
FID ↓ 50.441 74.4931
P&R ↑ 0.3307 / 0.3947 0.4225 / 0.0904
D&C ↑ 0.1093 / 0.0923 0.1794 / 0.1069

Table 7: Quantitative comparison in non-IID scenario. We compare the FID, P&R, D&C, and
communication cost with (ϵ, δ) = (9.8, 10−5). We report the number of bytes exchanged from the
client to the server as communication cost.

Method
(comm.cost) privacy Metric MNIST CelebA

MD-GAN
(14MB)

FID ↓ 5.5364 6.74
✗ P&R ↑ 0.8081 / 0.7414 0.796 / 0.6243

D&C ↑ 0.7525 / 0.7955 1.05 / 0.8919

GS-WGAN
(15MB)

✓
FID ↓ 338.6659 338.4467
P&R ↑ 0.0 / 0.0 0.0 / 0.0
D&C ↑ 0.0 / 0.0 0.0 / 0.0

DP-FedAvgGAN
(14MB)

✓
FID ↓ 146.0803 266.3443
P&R ↑ 0.0779 / 0.0002 0.0187 / 0.0
D&C ↑ 0.0207 / 0.0026 0.0034 / 0.0003

PRISM
(5.75MB)

✓
FID ↓ 81.0177 91.2942
P&R ↑ 0.3391 / 0.2996 0.3836 / 0.0801
D&C ↑ 0.107 / 0.0497 0.1531 / 0.0791

PRISM-70
(9.6MB)

✓
FID ↓ 74.4354 84.1179
P&R ↑ 0.2967 / 0.2534 0.4322 / 0.0795
D&C ↑ 0.0923 / 0.0573 0.1756 / 0.1

PRISM-100 (full score)
(24MB)

✓
FID ↓ 62.4888 80.257
P&R ↑ 0.3554 / 0.2959 0.4123 / 0.081
D&C ↑ 0.1226 / 0.0961 0.1778 / 0.0993

experiment which employs GAN loss instead of MMD loss. In this setup, we train both generator
and discriminator at client side and aggregate only generator likewise PRISM. Figure 10 shows
that application of GANloss to PRISM SLT actually does not work. Second possible question is
that does PRISM need multiple round? Since PRISM finds the strong lottery ticket in the dense
network, someone may be curious about the reason for performing multiple rounds rather than one
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Algorithm 1 PRISM

Parameter: learning rate η, communication rounds T, local iterations I
Input: local datasets ∪Kk=1Dk, ImageNet pretrained VGGNet ψ, random noise z

Server execute:
Initialize a random weight Winit and score vector s, then broadcasts to all clients.
for round t = 1, ..., T do

Client side:
for each client k ∈ [1,K] do

skt = st ▷ Download score vector
for local iteration i = 1, , , L do

θkt ← Sigmoid(skt )
Mk

t ∼ Bern(θkt )
W k

t ←Winit ⊙Mk
t

Dk
fake ←W k

t (z) ▷ Generate fake images
Extract real and fake features ψ(Dk), ψ(Dk

fake)

skt ← skt − η∇Lk
MMD(ψ(Dk), ψ(Dk

fake)) ▷ Update local score vector
end for
θ̄kt ← Sigmoid(skt )
θ̃kt =← θ̄kt +N (0, Iσ2)
Clip to [c, 1-c]
Mk

t ∼ Bern(θkt ))
Upload binary mask Mk

t to the server.
end for
Server side:
θt+1 ←

∑K
k=1M

k
t ▷ Aggregate the received binary masks

st+1 ← Sigmoid−1(θt+1)
end for
Sample the supermask M∗ ∼ Bern(θT )
Obtain the final model W ∗ ←Winit ⊙M∗

Algorithm 2 PRISM-α

Input: ratio of score layer α
Output: probability θkt (100− α) and binary mask Mk

t (α)

Client side:
for layer l = 1, ..., L do

if IsScoreLayer(l,α,L) then
Return probability θkt (l)

else
Return binary mask Mk

t (l)
end if

end for

shot manner. To address this question, we draw an analogy between each local dataset in our method
and a mini-batch in traditional centralized SGD. In this comparison, one-shot aggregation is akin to
optimizing with a very large step size. It is well-known in optimization theory that training with
a large step size and few epochs can often lead to local minima. Coming back to the perspective
of federated learning, by aggregating the scores (or binary masks) of each client through multiple
rounds, our goal is to find the global lottery ticket that is not biased towards specific local dataset.
To support our opinion, we conduct an experiment in which we performed single aggregation after
overfitting MNIST dataset to 500 local iterations. The results can be found in Figure 11. We observe
that it fails to generate proper images

Another interesting point of view is the effect of the choice of architecture on the performance of
PRISM. In the previous experiments, we have consistently utilized the ResNet-based generator for
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Figure 10: Generated images of PRISM + GAN loss.

Figure 11: Generated images of PRISM with one shot aggregation.

both our method and all baseline methods to ensure a fair comparison. In principle, our method
should work generally well for different architectures. Basically, SLT just presumes that a dense
network is sufficiently overparameterized to find a useful subnetwork. This implies that SLT has
robustness with architecture. To validate our argument, we evaluate architectures frequently used
in generative models in Table 8 while keep all setting, including DP, consistent with our frame-
work. Our default configuration is a ResNet-based generator, and architectures such as DCGAN and
SNGAN show robust performance on MNIST but exhibit a slight advantage depending on the archi-
tecture in CelebA. PRISM can somewhat follow the performance of the architecture since it extracts
a subnetwork from the dense network. Still, it consistently finds a stable SLT for various structures.
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Table 8: The effect of the choice of architecture. Left table shows the results in MNIST dataset,
while right one demonstrates on the CelebA datset.

MNIST
Metric ResNet DCGAN SNGAN
FID 34.4595 36.9683 33.4447
Precision 0.3784 0.3694 0.4652
Recall 0.4213 0.4848 0.3318
Density 0.1418 0.1323 0.2047
Coverage 0.1588 0.1490 0.2019

CelebA
Metric ResNet DCGAN SNGAN
FID 51.0857 78.4130 38.3009
Precision 0.5267 0.4540 0.6851
Recall 0.0631 0.0404 0.0925
Density 0.2676 0.1916 0.5378
Coverage 0.2012 0.0947 0.3155
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