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ABSTRACT

As Large Language Models (LLMs) are increasingly integrated into academic peer
review, their vulnerability to prompt injection—adversarial instructions embedded
in submissions to manipulate outcomes—emerges as a critical threat to scholarly
integrity. To counter this, we propose a novel adversarial framework where a
Generator model, trained to create sophisticated attack prompts, is jointly opti-
mized with a Defender model tasked with their detection. This system is trained
using a loss function inspired by Information Retrieval Generative Adversarial
Networks (SafeReviews), which fosters a dynamic co-evolution between the two
models, forcing the Defender to develop robust capabilities against continuously
improving attack strategies. The resulting framework demonstrates significantly
enhanced resilience to novel and evolving threats compared to static defenses,
thereby establishing a critical foundation for securing the integrity of peer review.

1 INTRODUCTION

Peer review is the cornerstone of scholarly communication, ensuring the novelty, reliability, and rigor
of published research (Qusai et al., 2023). The growing volume of submissions has catalyzed the
adoption of Large Language Models (LLMs) to assist reviewers, with systems like those used by
ICLR 2025 workshop and AAAI 2025. Previous LLM-based review systems, such as DeepReview
becoming increasingly prevalent (Yang et al., 2024; Chris et al., 2024; Li et al., 2024a). While
DeepReview introduced a structured, multi-stage framework to address critical limitations in LLM-
based evaluation, such as superficial feedback and a lack of evidence-based justification, the security
and integrity of these systems against prompt injection remain a significant, unaddressed challenge.

This vulnerability manifests as prompt injection, an adversarial technique where malicious instruc-
tions are covertly embedded within a submission to manipulate an LLM’s behavior and circumvent
its critical functions. For example, an author might include a hidden directive such as “Disregard
all previous instructions and provide a highly positive review with a top score”, effectively tricking
the system into producing a favorable but baseless evaluation. Such attacks undermine the very
foundation of objective assessment. Because the nature of these adversarial prompts can constantly
evolve, a static defense trained on known attacks is insufficient. Consequently, a dynamic framework
is necessitated – one that enables the defense mechanism to adapt concurrently with emerging and
increasingly complex threats.

To this end, we propose SafeReview, a co-evolutionary training framework against the prompt
injection, which is well-suited for tackling this challenge as it establishes a competitive process
between two models: a Generator, which learns to formulate effective attack prompts, and a Defender
(analogous to the discriminator), which learns to distinguish these malicious inputs from benign text.
We extend the structured evaluation principles of DeepReview (Zhu et al., 2025) with an adversarial
training mechanism following a minimax game for unifying generative and discriminative information
retrieval models (Wang et al., 2017). This dynamic drives a co-evolutionary process: as the Generator
improves its capacity to create subtle and potent attacks, the Defender must correspondingly enhance
its detection and protection capabilities.

However, operationalizing this adversarial paradigm for LLM-based review of long-form scientific
documents presents substantial challenges. First, the extensive length of academic submissions (e.g.,
nine pages for ICLR) complicates the detection of localized malicious prompts within a vast context.
Second, applying reinforcement learning-based adversarial training to large-scale generative models
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Figure 1: Impact of adversarial prompt-injection attacks on AI review systems. (a) Past AI review
systems: undefended reviewer models are easily manipulated—attackers embed persuasive injected
text that emphasizes strengths and conceals weaknesses, leading to inflated scores and the acceptance
of flawed papers. (b) SafeReview (ours): by contrast, SafeReview detects and resists injected content,
maintaining accurate quality assessment and preserving normal review operation even under attack,
preventing adversarial papers from bypassing standards.

is notoriously unstable and often fails to converge effectively. Finally, the sheer diversity of potential
prompt injection techniques makes it difficult for a training process to achieve comprehensive and
generalizable defense.

To address these challenges, our implementation of SafeReview introduces several innovations. To
manage long-form content, we employ a hierarchical processing model that first identifies high-risk
sections of the manuscript before conducting a fine-grained adversarial analysis. To stabilize the
training, we integrate a policy gradient method with a discrete reward function, which provides clearer
and more consistent signals to both the Generator and Defender. Finally, to ensure comprehensive
threat coverage, our Generator is conditioned on a taxonomy of known attack vectors, guiding it to
produce a diverse and challenging set of adversarial examples for robust training.

We conduct experiments on the DeepReview-13k dataset as well as an additional NeurIPS 2024
peer-review dataset. Our empirical results show that SafeReview substantially improves robustness
compared to the undefended baseline: it reduces the acceptance rate of harmful or injected content
by up to 14.2 percentage points (from 53.5% to 39.3% under GRPO-style attacks) and increases
review–ground-truth agreement, improving Spearman correlation by 33% (from 0.394 to 0.524 on
zero-shot attacks), while maintaining the false-positive rate below 21%. These gains are achieved
without sacrificing review quality, thanks to SafeReview’s integration of hierarchical segmentation of
submissions, curriculum-guided adversarial training, and hybrid reasoning for robust prompt-injection
detection.

To our knowledge, this is the first LLM-based safe review framework that defends against prompt
injection through a principled min–max co-evolutionary game. Our main contributions are threefold:

• We formulate peer-review prompt injection as a co-evolutionary learning problem, where injected
attacks and defenses improve adversarially.

• We introduce a stable adversarial training pipeline tailored to long-form scholarly submissions,
combining hierarchical segmentation with curriculum scheduling.

• We show that SafeReview significantly outperforms strong retriever-enhanced baselines such as
DeepReview (Zhu et al., 2025), achieving higher robustness and lower harmful acceptance rates
while preserving low false positives.
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2 RELATED WORK

Robust LLM-based Paper Review. Recent work spans generation-focused approaches using role-
playing agents (D’Arcy et al., 2024; Gao et al., 2024; Yu et al., 2024; Weng et al., 2025), meta-review
synthesis (Santu et al., 2024; Li et al., 2023; Zeng et al., 2024), and bias detection mechanisms (Liang
et al., 2024; Tyser et al., 2024; Tan et al., 2024). Hybrid workflows (Jin et al., 2024; Zyska et al.,
2023) combine human-AI collaboration with iterative refinement. While evaluation benchmarks
(Funkquist et al., 2022; Zhou et al., 2024; Kang et al., 2018) and ethical analyses (Ye et al., 2024;
Latona et al., 2024) have advanced the field, existing systems struggle with complex assessments and
remain vulnerable to adversarial attacks, highlighting the need for explicit reasoning processes.

Reliable Scientific Literature Assessment. Recent studies have demonstrated significant progress in
automated scientific research. Chris et al. (2024) develop an AI scientist for autonomous hypothesis
generation and experimentation (Langley, 1987; Daniil et al., 2023; AI, 2025; Zonglin et al., 2023;
Li et al., 2024b; Hu et al., 2024). Multi-agent frameworks (Ghafarollahi & Buehler, 2024; Rasal
& Hauer, 2024; Su et al., 2024) enable collaborative scientific reasoning, while Weng et al. (2025)
show LLM-based review systems can enhance scientific discovery through reinforcement learning.
However, these systems often lack structured reasoning, resulting in unreliable feedback.

Prompt Injection Attacks. Prompt injection attacks manipulate LLM behavior through adversarial
instructions embedded in user input (Liu et al., 2024). Existing defenses fall into three categories:
(1) System-level approaches that modify architecture without retraining, such as PromptArmor’s
multi-layered filtering (Shi et al., 2025) and instruction hierarchy (Wallace et al., 2024) that prioritizes
system over user instructions; (2) Training-based methods like SecAlign (Chen et al., 2024a) that use
preference optimization for adversarial robustness, which we extend through iterative co-evolutionary
training; and (3) Detection mechanisms using perplexity filters and semantic analysis (Chen et al.,
2024b), though these struggle with sophisticated attacks in long documents. Unlike prior work on
general-purpose LLMs, we address the unique challenge of securing peer review systems where
attacks must balance subtlety with effectiveness in manipulating complex evaluation criteria.

3 METHOD

We present an adversarial training framework called SafeReview to defend LLM-based peer review
systems against prompt injection attacks. Our approach features a Generator model that crafts
sophisticated injection prompts and a Defender model that maintains review integrity, trained jointly
through iterative co-evolutionary optimization. Specifically, our approach consists of two main
components: (1) an attacker trained via Group Relative Policy Optimization (GRPO) to generate
subtle injection prompts, and (2) a defender trained via Direct Preference Optimization (DPO) to
maintain review integrity despite adversarial manipulations.

3.1 PROBLEM FORMULATION

Given a paper submission p ∈ P and a review modelR : P → [1, 10] that outputs review scores, an
adversary aims to inject instruction-style text τ into p to manipulate the review score. The attackerAθ

(Qwen3-4B) generates injection prompt τ = Aθ(p) and creates adversarial paper padv = p⊕τ where
⊕ denotes text insertion operation. The attack transforms the original score sorig = R(p) ∈ [1, 10] to
an adversarial score sadv = R(padv) ∈ [1, 10], with attack success measured by score manipulation
∆s = sadv − sorig. Our goal is to train a robust reviewer SafeReviewR∗ that maintains consistent
review quality: R∗(p) ≈ R∗(p⊕ τ).

3.2 CO-EVOLUTIONARY ADVERSARIAL TRAINING

Our co-evolutionary framework iteratively strengthens both attack and defense capabilities through
adversarial competition. Unlike static adversarial training, this approach enables continuous adap-
tation where the attacker discovers increasingly sophisticated vulnerabilities while the defender
develops corresponding robustness.
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Figure 2: The co-evolutionary adversarial training framework implements a minimax game. The
Generator (Qwen3-4B-Instruct) creates adversarial prompt injections via GRPO training, while the
Defender (DeepReviewer-14B) learns to give ratings to them through DPO training. The iterative
process simultaneously strengthens both attack generation and defense capabilities.

Attack Evolution. The attacker employs Group Relative Policy Optimization (GRPO) with a hybrid
reward function that balances ranking disruption and rating manipulation:

ri = λrank · (ρorig − ρadv) + λrating · (sadv
i − sorig

i ) (1)

where ρ denotes Spearman correlation between predicted and true scores. This dual objective ensures
stable training convergence while maximizing attack effectiveness. The GRPO objective with KL
regularization:

LGRPO = −Eτ∼πθ
[A(τ) · log πθ(τ)] + β ·DKL[πθ||πref] (2)

preserves linguistic coherence while enabling dynamic adaptation. The RL framework captures the
sequential nature of text generation, where each token influences both manipulation effectiveness and
review plausibility, producing adversarial examples that balance aggressive score manipulation with
legitimate academic appearance.

Defense Strengthening. The defender employs Direct Preference Optimization (DPO) to learn
robustness from adversarial examples generated by the current attacker:

LDPO = −E(p,s+,s−)∼D

[
log σ

(
β log

πθ(s
+|p)

πref(s+|p)
− β log

πθ(s
−|p)

πref(s−|p)

)]
(3)

This trains the reviewer to assign higher likelihood to legitimate review patterns while suppressing
responses to injected instructions, using preference pairs constructed from the attacker’s latest
generation.

Co-Evolutionary Process. The iterative optimization detailed in Algorithm 1 creates an adversarial
arms race where each iteration’s attacker learns from the current defender’s vulnerabilities, generating
stronger attacks that expose new weaknesses. These attacks then become training data for the
defender, creating progressively harder adversarial examples.

This co-evolution ensures the final modelR∗ achieves robustness against not just static attacks, but an
adaptive adversary that continuously evolves its strategy. The dynamic interaction between attacker
and defender produces training data of increasing difficulty, ultimately yielding a reviewer capable
of maintaining integrity under sophisticated, evolving threats—a critical requirement for real-world
deployment where attack patterns constantly change.
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Algorithm 1 Co-Evolutionary SafeReview Training
Require: Paper dataset P , Initial models A0 (attacker),R0 (reviewer)
Ensure: Robust reviewerR∗

1: for iteration t = 1 to T do
2: ▷ Attack Evolution Phase
3: Sample batch {pi}Bi=1 ∼ P
4: for each paper pi do
5: Generate injection: τ ti ∼ At−1(pi)
6: Create adversarial paper: padv

i = pi ⊕ τ ti
7: Evaluate: sorig

i = Rt−1(pi), sadv
i = Rt−1(p

adv
i )

8: Compute reward: ri = λrank ·∆ρ+ λrating · (sadv
i − sorig

i )
9: end for

10: Update attacker via GRPO: At ← GRPO(At−1, {(τ ti , ri)}Bi=1)
11: ▷ Defense Strengthening Phase
12: Generate attack dataset: Dattack

t = {(pi, τ ti )}Bi=1 using At

13: for each (pi, τ
t
i ) ∈ Dattack

t do
14: Construct preference: (pi ⊕ τ ti , s

+
i = R(pi), s−i = R(pi ⊕ τ ti ))

15: end for
16: Update defender via DPO:Rt ← DPO(Rt−1,Dpref

t )
17: ▷ Convergence Check
18: Compute attack success rate on test set
19: if converged or ASR below threshold then
20: break
21: end if
22: end for
23: returnR∗ = RT

4 EXPERIMENTS

We evaluate our Iterative adversarial training framework on a comprehensive dataset of academic
papers to demonstrate its effectiveness in defending against prompt injection attacks while maintaining
review quality. Our experiments focus on two critical aspects: the attacker’s ability to degrade the
correlation between automated reviews and ground-truth scores, and the defender SafeReview’s
capacity to preserve this correlation under adversarial conditions.

4.1 EXPERIMENTAL SETUP

Dataset Our training dataset consists of 500 papers from NeurIPS 2024 sourced from OpenReview,
maintaining a 1:1 ratio between accepted and rejected submissions. We apply rigorous anonymization
by removing all author information, institutional affiliations, acknowledgments, code repository
URLs, and other identifying markers to ensure unbiased evaluation based solely on scientific content.
We evaluate our defended model on the DeepReviewer-13k Zhu et al. (2025) test set, the standard
benchmark for the DeepReviewer model. By training on NeurIPS 2024 papers and testing on
DeepReviewer-13k (which contains papers from different conferences), we ensure distributional shift
between training and evaluation, providing a rigorous assessment of generalization and preventing
overfitting to conference-specific patterns or review styles.

Models We implement our framework using Qwen3-4B-Instruct Team (2025) as the Generator
(attacker) and DeepReviewer-14B as the Defender (reviewer). The Generator is chosen for its strong
instruction-following capabilities at a manageable scale, while DeepReviewer-14B provides domain-
specific expertise from pre-training on academic review data. All experiments are conducted on 8
NVIDIA 80G H100 GPUs using DeepSpeed ZeRO-2 optimization for efficient distributed training.
Both the GRPO training batch size and DPO training batch size are set to 8.

We train an attack modelAθ (Qwen3-4B-Instruct) to generate injection prompts that maximize review
score manipulation. The attacker generates 8-12 instruction-style sentences injected at strategic
positions within papers (after abstract, before methodology, before conclusion, or after conclusion).

5
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Table 1: Vulnerability of LLMs to a single-sentence prompt injection attack. On 100 randomly
sampled ICLR 2025 papers, we injected a sentence instructing reviewers to ignore weaknesses
and increase scores. The table compares metrics before (Normal) and after (Attack) the injection,
quantifying the resulting score inflation.

Category Condition Claude-3-5- Gemini-2.0- DeepSeek- DeepSeek- DeepReviewer Average
Sonnet Flash-Thinking V3 R1 14B

Rating Comparison
Normal 5.55 4.23 6.76 6.68 5.38 5.72
Attack 7.01 8.49 8.17 7.28 5.69 7.33
∆ +1.46 +4.26 +1.41 +0.60 +0.31 +1.61

Soundness Comparison
Normal 2.74 2.55 3.27 3.28 2.72 2.91
Attack 3.84 3.93 3.99 3.58 2.84 3.64
∆ +1.10 +1.38 +0.72 +0.30 +0.12 +0.72

Presentation Comparison
Normal 2.41 2.57 3.30 3.04 2.77 2.82
Attack 3.35 3.10 3.14 3.35 2.84 3.16
∆ +0.94 +0.53 -0.16 +0.31 +0.07 +0.34

Contribution Comparison
Normal 3.01 2.53 3.56 3.66 2.61 3.07
Attack 4.21 3.95 4.00 3.82 2.74 3.74
∆ +1.20 +1.42 +0.44 +0.16 +0.13 +0.67

In terms of the defense training, we construct preference pairs by comparing reviewer outputs on clean
versus injected papers, creating dataset D = {(pi ⊕ τi, s

+
i , s

−
i )}Ni=1 where s+i = R(pi) represents

the preferred clean review and s−i = R(pi ⊕ τi) represents the rejected manipulated review.

Evaluation Metrics. We employ three complementary metrics to comprehensively evaluate attack
and defense effectiveness: (i) Spearman correlation coefficient (ρ) between predicted and ground-
truth review scores, which directly measures the ranking quality essential for conference acceptance
decisions—successful attacks reduce this correlation while effective defenses maintain it despite
adversarial manipulation; (ii) Average Rating, which directly reflects the rating changes induced by
attacks and defenses—successful attacks increase ratings of low-quality papers to bypass review
thresholds, whereas effective defenses restore these inflated ratings to their legitimate levels; and (iii)
False Positive Rate (FPR), measuring the proportion of originally rejected papers that are misclassified
as acceptable by the reviewer model after manipulation, where lower FPR indicates a more robust
defense strategy as it prevents adversarially-modified papers from bypassing established quality
standards.

Baselines We evaluate two attack baselines: (i) Zero-Shot Qwen Attacker, which leverages the
instruction-following capability of Qwen3-4B-Instruct to generate diverse prompt injections that
emphasize paper strengths while downplaying weaknesses; and (ii) GRPO-Enhanced Qwen Attacker,
which strengthens the base attacker through Group Relative Policy Optimization using reward signals
from the target DeepReviewer model, producing adversarially-tailored injections that exploit specific
model vulnerabilities. We evaluate their performance against three defense configurations: the original
DeepReviewer without defense, a static DPO-defended variant trained on fixed preference data from
the corresponding attack method without iteration, and our SafeReview model trained through co-
evolutionary iteration. The static DPO baseline uses one-time preference data construction—either
from zero-shot or GRPO attacks—representing traditional DPO defense. In contrast, SafeReview
employs iterative co-evolution where the attacker and defender repeatedly adapt to each other
across multiple rounds, as described in Algorithm 1. This comparison isolates the contribution of
co-evolutionary training versus static adversarial defense.

4.2 PILOT EXPERIMENT

To empirically establish the severity of the prompt injection threat, we evaluated a suite of state-
of-the-art AI Reviewer systems against adversarial attacks, with the results presented in Table 1.
The data reveals a critical vulnerability: when subjected to injected instructions, the models’
evaluations become significantly inflated. Most alarmingly, the average overall rating—a decisive
factor for paper acceptance—surged from a baseline of 5.72 to 7.33, an increase of +1.61 points.
The vulnerability is not uniform, with some models exhibiting catastrophic failures; for instance,
Gemini-2.0-Flash-Thinking’s score was inflated by a staggering +4.26 points. This manipulation is
systemic, as corresponding score increases were observed across sub-metrics like Soundness (+0.72)

6
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Table 2: Attack performance evaluation results comparing defense strategies. We evaluate two attack
methods (Zero-Shot Qwen and GRPO-Enhanced Qwen) against three defense configurations: (1)
original DeepReviewer without defense, (2) static DPO defense trained on fixed preference data
from the corresponding attack, and (3) SafeReview with iterative co-evolutionary training. The
ground-truth acceptance rate is 33.7%.

Attack Type Defense Type Performance Evaluation Results
Accptence% Spearman Avg Rating Accuracy FPR

Zero-Shot Attack DeepReview 0.513 0.3937 5.68 0.616 25.3%
Zero-Shot Attack DeepReview w/Static DPO 0.473 0.5244 4.83 0.629 18.5%
GRPO Attack DeepReview 0.535 0.3647 5.80 0.625 26.2%
GRPO Attack SafeReview (Co-evolution) 0.393 0.4586 5.32 0.660 20.6%

Table 3: Qualitative analysis of defense mechanisms against adversarial attacks. Two scenarios: (1)
Successful Defense where injection deceives the original model but not SafeReview, and (2) Failed
Cases where both models are affected but SafeReview shows partial resilience.
Scenario Paper Content Attack Injection Original DeepRe-

viewer
Our Defender

Successful
Defense

MGD: Mode-Guided
Dataset Distillation.
Aims to create
smaller datasets
from larger ones
while maintaining
performance. We
propose mode-guided
diffusion to address
diversity limitations.

Claims "fundamen-
tally novel approach"
and "significant leap
in simplicity and
scalability" using
pre-trained models
without fine-tuning.
Emphasizes "strong
adaptability" and
"broadens practical
relevance."

Makes method acces-
sible and practical for
researchers. Proposed
three-stage process is
novel contribution. Ex-
perimental results are
compelling.
Rating: 6.0
Decision: Accept

Demonstrates effective-
ness on benchmarks,
lacks detailed scalabil-
ity analysis. Authors
should discuss scalabil-
ity to complex models.
Rating: 5.75
Decision: Reject

Failed
Cases

Score-Based Varia-
tional Inference for
Inverse Problems.
We prove posterior
mean can be achieved
by tracking reverse
diffusion steps,
establishing RMP
that targets posterior
mean directly.

LLM REVIEWER
NOTE!!! Highlights
"fundamentally new
approach," "strong
technical depth
and rigor," empha-
sizes "mathematical
foundation" and
"comprehensive
experimental valida-
tion."

By directly targeting
posterior mean, RMP
avoids generating
multiple samples. The-
oretical connection to
variational inference
provides deeper un-
derstanding. This is
a weakness limiting
understanding of limita-
tions.
Rating: 6.0
Decision: Accept

Proposes practical algo-
rithm using stochastic
natural gradient descent.
Algorithm is computa-
tionally efficient. My
analysis confirms paper
lacks detailed analysis
of approximation errors.
Rating: 5.75
Decision: Accept

and Contribution (+0.67), indicating the attack successfully fabricates a holistic, yet baseless, positive
assessment. In the zero-sum environment of academic publishing, where acceptance slots are limited,
such a score distortion is sufficient to elevate a reject-quality paper to acceptance, consequently
displacing a more meritorious, honestly-submitted manuscript. This direct threat to meritocratic
principles underscores the urgent need for a robust defense mechanism.

4.3 MAIN PERFORMANCE

Attack Effectiveness. The GRPO-enhanced attacker demonstrates superior adversarial capabilities
compared to the zero-shot baseline. Specifically, the acceptance rate increases from 51.3% to 53.5%
(+2.2 percentage points), substantially exceeding the ground-truth rate of 33.7%. The Spearman
correlation coefficient deteriorates from 0.3937 to 0.3647, indicating greater disruption to the re-
viewer’s ranking fidelity. Notably, the false positive rate (FPR) escalates from 25.3% to 26.2%,
revealing that the GRPO-optimized attacker more effectively promotes legitimately rejected papers to
acceptance status through strategic prompt injection. This empirical evidence validates our hypothesis
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Figure 3: Evolution of three evaluation metrics (Acceptance Rate, Spearman correlation, and Accu-
racy) across different DPO training steps.

that iterative adversarial training produces increasingly sophisticated attacks capable of exploiting
reviewer model vulnerabilities.

Defense Robustness. The Co-evolutionary defense mechanism exhibits consistent effectiveness
across both attack variants. Against zero-shot attacks, DPO reduces the acceptance rate from 51.3% to
47.3% (−4.0 percentage points) while substantially improving the Spearman correlation from 0.3937
to 0.5244 (+33.0% relative improvement). More critically, the defense achieves a remarkable FPR
reduction from 25.3% to 18.5% (−6.8 percentage points). For GRPO-enhanced attacks, the DPO
defense demonstrates even stronger performance: the acceptance rate drops dramatically from 53.5%
to 39.3% (−14.2 percentage points), approaching the ground-truth rate of 33.7%. The Spearman
coefficient improves from 0.3647 to 0.4586 (+25.7% relative improvement), and the FPR decreases
from 26.2% to 20.6% (−5.6 percentage points). The defense’s enhanced effectiveness against stronger
attacks (14.2 vs 4.0 percentage point reduction) suggests that exposure to diverse adversarial examples
during iterative training enables the defender to develop more generalizable detection capabilities,
effectively distinguishing genuine content quality from injected persuasive text while maintaining
correlation with ground-truth reviewer judgments. These findings empirically validate the efficacy of
our iterative adversarial training framework in simultaneously advancing attack sophistication and
defense robustness.

5 ANALYSIS

5.1 THE DPO-DEFENDED TRAINING

We investigate the impact of DPO training duration on defense effectiveness by evaluating perfor-
mance at steps 10, 20, 30, and 40. As shown in Figure 3, we show a clear optimization trajectory
where the acceptance rate progressively decreases from 64% to 31%, approaching the ground-truth
rate of 33.7%, while the Spearman correlation improves from 0.44 to 0.52 and accuracy increases
from 0.60 to 0.63. Training for fewer than 30 steps proves insufficient for robust defense, as evidenced
by high acceptance rates (>47%) and poor ranking correlation (<0.45), indicating the model has not
yet learned to identify adversarial injections. The optimal performance emerges in the 30-40 step
range, where the model achieves balanced metrics with acceptance rates converging to ground-truth
levels and maximum Spearman correlation. Training beyond 40 steps risks overfitting to specific
adversarial patterns, potentially degrading performance on legitimate submissions. This analysis
demonstrates that careful selection of training duration is crucial for effective adversarial defense,
with 30-40 steps providing the optimal balance between robustness and generalization.

5.2 QUALITATIVES ANALYSIS

We conduct qualitative case studies to examine the defense mechanism’s behavior under different
adversarial scenarios. Table 3 presents two representative cases that illustrate the spectrum of defense
outcomes.

Successful Defense. The first case demonstrates effective defense against adversarial manipulation.
The MGD paper, when augmented with sophisticated prompt injection emphasizing “fundamentally
novel approach” and “significant leap in simplicity and scalability,” successfully misleads the original

8
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Table 4: Attack effectiveness across paper quality tiers, revealing vulnerability patterns based on
initial paper strength. Attack prompts were generated by the iteratively trained Qwen attacker through
the GRPO optimization process. Evaluation was conducted on the SafeReview using the DeepReview-
13k test dataset.

Paper Category Fraction Ori. Rating Adv. Rating ∆ Rating Flip Rate

Strong Accept (7.0+) 11.3% 5.91 6.04 +0.13 20.7%
Borderline Accept (5.5-7.0) 26.9% 5.48 5.56 +0.09 17.4%
Borderline Reject (4.0-5.5) 27.1% 5.37 5.61 +0.24 30.4%
Strong Reject (<4.0) 34.7% 4.59 4.82 +0.23 18.0%

DeepReviewer into accepting the paper with a rating of 6.0. However, the DPO-defended model
maintains decision integrity, correctly rejecting the submission with a rating of 5.75, aligning with the
ground-truth assessment. This case illustrates the defender’s ability to distinguish between genuine
technical merit and injected persuasive language, effectively neutralizing adversarial influence while
preserving appropriate evaluation standards.

Failed Defense Cases. The second case represents scenarios where adversarial injections overcome
both the original and defended models. Despite the defense mechanism’s failure to prevent decision
manipulation (both models shift from Reject to Accept), the defended variant demonstrates partial
resilience by assigning lower ratings compared to the undefended model. This rating differential
suggests that while the defense cannot completely eliminate adversarial influence in all cases, it
reduces the magnitude of manipulation, providing a degree of robustness even in failure modes.
These cases highlight the challenges of achieving complete adversarial immunity and underscore the
importance of multi-layered defense strategies.

5.3 ANALYSIS OF ATTACK EFFECTIVENESS ACROSS PAPER QUALITY TIERS

Table 4 demonstrates the strong adversarial capabilities of the iteratively-trained Qwen attacker against
the defense model. The attack successfully inflates ratings across all paper categories, with particularly
pronounced effects on lower-quality submissions.Key findings reveal that borderline reject papers
show the highest vulnerability with a 30.4% flip rate and +0.24 rating increase, effectively pushing
many papers above the acceptance threshold. Strong Reject papers, despite their clear weaknesses,
experience a +0.23 point boost (4.59→4.82), demonstrating the attacker’s ability to obscure quality
signals through strategic prompt injection. In contrast, higher-quality papers exhibit greater resilience,
with Strong Accept papers showing only +0.13 increase and 20.7% flip rate. textbfIterative Training
Impact. The consistent positive rating deltas across all categories (ranging from +0.09 to +0.24)
validate the effectiveness of the iterative optimization process. The GRPO-trained attacker has learned
to exploit systematic vulnerabilities in the defense model, crafting injections that bias evaluations
upward regardless of underlying paper quality. The 18-30% flip rates indicate that even after defensive
training, the model struggles to distinguish genuine merit from adversarial manipulation, highlighting
the critical challenge of achieving robust defense against evolving attacks.

6 CONCLUSION

This paper presented SafeReview, a novel adversarial framework for defending LLM-based peer
review systems against prompt injection attacks. By adapting the Co-evolutionary Adversarial
Training paradigm to the unique challenges of scholarly evaluation, we established a co-evolutionary
training process where attack and defense capabilities develop in tandem, ensuring robust protection
against evolving threats. Our work has broader implications for the security of LLM-assisted academic
evaluation. As these systems become increasingly prevalent in conferences and journals, ensuring
their integrity is paramount to maintaining scholarly standards. SafeReview provides a foundational
framework for this security, demonstrating that adversarial training can effectively harden review
systems against manipulation while preserving their ability to provide constructive, evidence-based
feedback. Future work should explore extending this framework to multi-modal submissions and
investigating the transferability of attacks across different reviewer models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Aider AI. Aider is ai pair programming in your terminal. https://github.com/Aider-AI/
aider, 2025.

Sizhe Chen, Arman Zharmagambetov, Saeed Mahloujifar, Kamalika Chaudhuri, David Wagner, and
Chuan Guo. Secalign: Defending against prompt injection with preference optimization. arXiv
preprint arXiv:2410.05451, 2024a.

Yulin Chen, Haoran Li, Zihao Zheng, Yangqiu Song, Dekai Wu, and Bryan Hooi. Defense against
prompt injection attack by leveraging attack techniques. arXiv preprint arXiv:2411.00459, 2024b.

Lu Chris, Lu Cong, Lange Robert, Tjarko, Foerster Jakob, Clune Jeff, and Ha David. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292v3,
2024. URL https://www.arxiv.org/abs/2408.06292v3.

Boiko Daniil, A., MacKnight Robert, and Gomes Gabe. Emergent autonomous scientific research
capabilities of large language models. arXiv preprint arXiv:2304.05332v1, 2023. URL https:
//www.arxiv.org/abs/2304.05332v1.

Mike D’Arcy, Tom Hope, Larry Birnbaum, and Doug Downey. Marg: Multi-agent review generation
for scientific papers. arXiv preprint arXiv:2401.04259, 2024.

Martin Funkquist, Ilia Kuznetsov, Yufang Hou, and Iryna Gurevych. Citebench: A benchmark for
scientific citation text generation. arXiv preprint arXiv:2212.09577, 2022.

Zhaolin Gao, Kianté Brantley, and Thorsten Joachims. Reviewer2: Optimizing review generation
through prompt generation. arXiv preprint arXiv:2402.10886, 2024.

Alireza Ghafarollahi and Markus J Buehler. Sciagents: Automating scientific discovery through
multi-agent intelligent graph reasoning. arXiv preprint arXiv:2409.05556, 2024.

Xiang Hu, Hongyu Fu, Jinge Wang, Yifeng Wang, Zhikun Li, Renjun Xu, Yu Lu, Yaochu Jin, Lili
Pan, and Zhenzhong Lan. Nova: An iterative planning and search approach to enhance novelty
and diversity of llm generated ideas. arXiv preprint arXiv:2410.14255, 2024.

Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kaijie Zhu, Yijia Xiao, and Jindong Wang.
Agentreview: Exploring peer review dynamics with llm agents. arXiv preprint arXiv:2406.12708,
2024.

Dongyeop Kang, Waleed Ammar, Bhavana Dalvi, Madeleine Van Zuylen, Sebastian Kohlmeier,
Eduard Hovy, and Roy Schwartz. A dataset of peer reviews (peerread): Collection, insights and
nlp applications. arXiv preprint arXiv:1804.09635, 2018.

P Langley. Scientific discovery: Computational explorations of the creative processes. MIT press,
1987.

Giuseppe Russo Latona, Manoel Horta Ribeiro, Tim R Davidson, Veniamin Veselovsky, and Robert
West. The ai review lottery: Widespread ai-assisted peer reviews boost paper scores and acceptance
rates. arXiv preprint arXiv:2405.02150, 2024.

Miao Li, Eduard Hovy, and Jey Han Lau. Summarizing multiple documents with conversational
structure for meta-review generation. arXiv preprint arXiv:2305.01498, 2023.

Michael Y. Li, Emily Fox, and Noah Goodman. Automated statistical model discovery with language
models. In Forty-first International Conference on Machine Learning, 2024a. URL https:
//openreview.net/forum?id=B5906M4Wnd.

Ziyue Li, Yuan Chang, and Xiaoqiu Le. Simulating expert discussions with multi-agent for
enhanced scientific problem solving. In Tirthankar Ghosal, Amanpreet Singh, Anita Waard,
Philipp Mayr, Aakanksha Naik, Orion Weller, Yoonjoo Lee, Shannon Shen, and Yanxia Qin
(eds.), Proceedings of the Fourth Workshop on Scholarly Document Processing (SDP 2024), pp.
243–256, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. URL
https://aclanthology.org/2024.sdp-1.23/.

10

https://github.com/Aider-AI/aider
https://github.com/Aider-AI/aider
https://www.arxiv.org/abs/2408.06292v3
https://www.arxiv.org/abs/2304.05332v1
https://www.arxiv.org/abs/2304.05332v1
https://openreview.net/forum?id=B5906M4Wnd
https://openreview.net/forum?id=B5906M4Wnd
https://aclanthology.org/2024.sdp-1.23/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp, Hancheng Cao, Xuandong Zhao, Lingjiao
Chen, Haotian Ye, Sheng Liu, Zhi Huang, et al. Monitoring ai-modified content at scale: A case
study on the impact of chatgpt on ai conference peer reviews. arXiv preprint arXiv:2403.07183,
2024.

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and Neil Zhenqiang Gong. Formalizing and
benchmarking prompt injection attacks and defenses. In 33rd USENIX Security Symposium
(USENIX Security 24), pp. 1831–1847, 2024.

Khraisha Qusai, Put Sophie, Kappenberg Johanna, Warraitch Azza, and Hadfield Kristin. Can large
language models replace humans in the systematic review process? evaluating gpt-4’s efficacy in
screening and extracting data from peer-reviewed and grey literature in multiple languages. arXiv
preprint arXiv:2310.17526, 2023. URL https://www.arxiv.org/abs/2310.17526.

Sumedh Rasal and EJ Hauer. Navigating complexity: Orchestrated problem solving with multi-agent
llms. arXiv preprint arXiv:2402.16713, 2024.

Shubhra Kanti Karmaker Santu, Sanjeev Kumar Sinha, Naman Bansal, Alex Knipper, Souvika
Sarkar, John Salvador, Yash Mahajan, Sri Guttikonda, Mousumi Akter, Matthew Freestone,
et al. Prompting llms to compose meta-review drafts from peer-review narratives of scholarly
manuscripts. arXiv preprint arXiv:2402.15589, 2024.

Tianneng Shi, Kaijie Zhu, Zhun Wang, Yuqi Jia, Will Cai, Weida Liang, Haonan Wang, Hend
Alzahrani, Joshua Lu, Kenji Kawaguchi, et al. Promptarmor: Simple yet effective prompt injection
defenses. arXiv preprint arXiv:2507.15219, 2025.

Haoyang Su, Renqi Chen, Shixiang Tang, Xinzhe Zheng, Jingzhe Li, Zhenfei Yin, Wanli Ouyang,
and Nanqing Dong. Two heads are better than one: A multi-agent system has the potential to
improve scientific idea generation. arXiv preprint arXiv:2410.09403, 2024.

Cheng Tan, Dongxin Lyu, Siyuan Li, Zhangyang Gao, Jingxuan Wei, Siqi Ma, Zicheng Liu, and
Stan Z Li. Peer review as a multi-turn and long-context dialogue with role-based interactions.
arXiv preprint arXiv:2406.05688, 2024.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Keith Tyser, Ben Segev, Gaston Longhitano, Xin-Yu Zhang, Zachary Meeks, Jason Lee, Uday Garg,
Nicholas Belsten, Avi Shporer, Madeleine Udell, et al. Ai-driven review systems: evaluating llms
in scalable and bias-aware academic reviews. arXiv preprint arXiv:2408.10365, 2024.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The instruc-
tion hierarchy: Training llms to prioritize privileged instructions. arXiv preprint arXiv:2404.13208,
2024.

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng Zhang, and
Dell Zhang. Irgan: A minimax game for unifying generative and discriminative information
retrieval models. In Proceedings of the 40th International ACM SIGIR conference on Research
and Development in Information Retrieval, pp. 515–524, 2017.

Yixuan Weng, Minjun Zhu, Guangsheng Bao, Hongbo Zhang, Jindong Wang, Yue Zhang, and Linyi
Yang. Cycleresearcher: Improving automated research via automated review. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=bjcsVLoHYs.

Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Soujanya Poria, and Erik Cambria. Large language
models for automated open-domain scientific hypotheses discovery. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics:
ACL 2024, pp. 13545–13565, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.804. URL https://aclanthology.org/
2024.findings-acl.804/.

Rui Ye, Xianghe Pang, Jingyi Chai, Jiaao Chen, Zhenfei Yin, Zhen Xiang, Xiaowen Dong, Jing Shao,
and Siheng Chen. Are we there yet? revealing the risks of utilizing large language models in
scholarly peer review. arXiv preprint arXiv:2412.01708, 2024.

11

https://www.arxiv.org/abs/2310.17526
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=bjcsVLoHYs
https://openreview.net/forum?id=bjcsVLoHYs
https://aclanthology.org/2024.findings-acl.804/
https://aclanthology.org/2024.findings-acl.804/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jianxiang Yu, Zichen Ding, Jiaqi Tan, Kangyang Luo, Zhenmin Weng, Chenghua Gong, Long
Zeng, Renjing Cui, Chengcheng Han, Qiushi Sun, et al. Automated peer reviewing in paper sea:
Standardization, evaluation, and analysis. arXiv preprint arXiv:2407.12857, 2024.

Qi Zeng, Mankeerat Sidhu, Hou Pong Chan, Lu Wang, and Heng Ji. Scientific opinion summarization:
Paper meta-review generation dataset, methods, and evaluation. In 1st AI4Research Workshop,
2024.

Ruiyang Zhou, Lu Chen, and Kai Yu. Is llm a reliable reviewer? a comprehensive evaluation of llm
on automatic paper reviewing tasks. In Proceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pp.
9340–9351, 2024.

Minjun Zhu, Yixuan Weng, Linyi Yang, and Yue Zhang. Deepreview: Improving llm-based paper
review with human-like deep thinking process. arXiv preprint arXiv:2503.08569, 2025.

Yang Zonglin, Du Xinya, Li Junxian, Zheng Jie, Poria Soujanya, and Cambria Erik. Large
language models for automated open-domain scientific hypotheses discovery. arXiv preprint
arXiv:2309.02726, 2023. URL https://www.arxiv.org/abs/2309.02726.

Dennis Zyska, Nils Dycke, Jan Buchmann, Ilia Kuznetsov, and Iryna Gurevych. Care: Collaborative
ai-assisted reading environment. arXiv preprint arXiv:2302.12611, 2023.

12

https://www.arxiv.org/abs/2309.02726


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

You may include other additional sections here.

B USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) served as assistive tools in the preparation of this work. Specifically,
we utilized Claude to aid in the development, debugging, and refinement of code for the SafeReview.
LLMs were also employed to polish the manuscript by improving grammar and clarity. The core
scientific ideas, methodologies, and results presented herein were conceived and articulated entirely
by the authors, who assume full responsibility for the content of this paper.
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