
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TAMING TRANSFORMER

WITHOUT USING LEARNING RATE WARMUP

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling Transformer to a large scale without using some technical tricks such
as learning rate warump and an obviously lower learning rate, is an extremely
challenging task, and is increasingly gaining more attention. In this paper, we
provide a theoretical analysis for training Transformer and reveal a key prob-
lem behind the model crash phenomenon in the training, i.e., the spectral en-
ergy concentration of Wq

⊤Wk (where Wq and Wk are the projection matri-
ces for query and key in Transformer), which is the reason for a malignant en-
tropy collapse. To remedy this problem, motivated by Weyl’s Inequality, we
present a novel optimization strategy—making weight updating in successive

steps smooth, that is, if the ratio σ1(∇Wt)
σ1(Wt−1) is larger than a threshold, where ∇Wt

is the updating quantity in step t , we will automatically bound the learning rate

to a weighted multiply of σ1(Wt−1)
σ1(∇Wt) . Our optimization strategy is able to prevent

the rapid spectral energy concentration to only a few directions, and thus is able
to avoid the malignant entropy collapse that will trigger the model crash. We
conduct extensive experiments using ViT, Swin-Transformer and GPT, show-
ing that our optimization strategy can effectively and stably train these (Trans-
former) models without using learning rate warmup.

“Nothing in life is to be feared. It is only to be understood.”

— Marie Curie

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has revolutionized various domains of artificial intelligence,
including natural language processing (Radford et al., 2018; 2019; Brown et al., 2020; Chowdh-
ery et al., 2023; Touvron et al., 2023; Dubey et al., 2024) and computer vision (Dosovitskiy et al.,
2020; Liu et al., 2021) and many more applications (Radford et al., 2021; Ramesh et al., 2021;
Peebles & Xie, 2023), owning to their ability to capture long-range dependencies through self-
attention mechanisms. However, despite their widespread application and empirical success,
training deep Transformer models remains quite challenging. Practitioners frequently encounter
variant issues, such as gradient explosion (Qi et al., 2023b), rank collapse (Dong et al., 2021), en-
tropy collapse (Zhai et al., 2023) and general training instability (Kim et al., 2021; Qi et al., 2023b),
especially during the initial stages of the training.

To address these challenges, researchers have proposed various modifications to the original
Transformer architecture, including altering the placement of the Layer Normalization (Wang
et al., 2019; Xiong et al., 2020) (e.g., pre-LN vs. post-LN schemes), carefully conditioning the
residual connections Bachlechner et al. (2021), and QKNorm (Henry et al., 2020; Dehghani et al.,
2023) for self-attention module. Similarly, DeepNet (Wang et al., 2022) introduces a new normal-
ization function to modify the residual connection in Transformer. ReZero (Bachlechner et al.,
2021) introduces a learnable residual scalar parameter for the residual shortcut, and requiring
to initiate it to 0 at the start time of training. More recent approaches (Kim et al., 2021; Qi et al.,
2023a) have focused on examining and enforcing Lipschitz continuity properties of Transformer
components, which can provide insights into the network behavior and the training stability. Al-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

though there are a few works (Bachlechner et al., 2021; Qi et al., 2023a) that can avoid using learn-
ing rate warmup to train the Transformer successfully, all of them require significant modifications
of the network architecture.

Learning rate warmup (Loshchilov & Hutter, 2016) seems to be a must-have technology for stan-
dard optimizers (Robbins & Monro, 1951; Duchi et al., 2011; Kingma & Ba, 2014; Loshchilov &
Hutter, 2019) in some popular large Transformer models (Radford et al., 2018; 2019; Brown et al.,
2020; Chowdhery et al., 2023; Touvron et al., 2023). Without the learning rate warmup stage, the
Transformer training will prone to diverge.

Although it is usual to train a Transformer by modifying the network structure as mentioned
above or using the learning rate warmup, two natural and interesting questions remain:

1. What are the training dynamics of a Transformer model when its training fails or successes?

2. Can we successfully tame an arbitrary Transformer without changing its network structure or
without using learning rate warmup?

This paper aims to answer these questions. To answer the first question, we visualize the training
processes of three types of Transformers, construct 15 or 13 quantities of parameters and acti-
vations, and visualize their change trajectories along with the training process and the changes
of the attention maps. By doing so, we observe that the model crash is accompanied by a weird
phenomenon that the entropy of the attention map is almost 0 and the spectral norm ofWq

⊤Wk
increases to a very large value. By conducting mathematical analysis for the Transformer train-
ing, we identify that the spectral energy concentration Wq

⊤Wk is the key problem to leading
the model crash. To answer the second question, motivated by Weyl’ Inequality, we present a
novel optimization strategy—making weight updating smooth, and verify empirically that our
optimization strategy can prevent the rapid spectral energy concentration and thus achieving a
stable convergence in training.

Paper Contributions. The contributions of the paper are highlighted as follows.

• We visualize the training dynamics of Transformers that train successfully or unsuccessfully
and summarize two important observations from unsuccessful training that: a) the rank of the
attention map matrix tends to very low and the entropy of attention probability matrix tends
to 0; and b) σ1(Wq

⊤Wk) increases rapidly to a very large value.

• We present theoretical analysis for the Transformer training, finding that the Jacobian matrix
∂vec(P)

∂vec(Wq
⊤Wk)

=X⊤⊗X⊤, where P =X⊤Wq
⊤WkX . It implies that the gradient of Wq

⊤Wk

is largely dominated by the rank of X⊤⊗X⊤.

• We reveal that the Spectral Energy Concentration (SEC) of W⊤
q Wk makes the attention map

matrix to be sparse yet low-rank and it is the inner reason leading to model crash.

• Motivated by Weyl’s inequality, We introduce a novel strategy to address the problem of spectral
energy concentration of Wq

⊤Wk by controlling the rapid growth of singular values, and verify
that our strategy leads to a stable training process.

2 PRELIMINARIES

We first review some notions or algorithm, i.e., matrix norm, power iteration, Adam optimizer
that will be used in this paper.

Matrix norm. Given a matrix W , its p-norm is a non-negative real number denoted ∥W ∥p .
A classical definition of matrix norm is induced by vector p-norm, it is defined as: ∥W ∥p =
supx̸=0

∥Wx∥p

∥x∥p
. When p = 2, the induced matrix norm is the spectral norm. The spectral norm

of a matrix W is defined as the largest singular value of W . This can also be expressed as the
square root of the largest eigenvalue of the Gram matrix W⊤W . The spectral norm of a matrix

W can be calculated as: ∥W ∥2 = maxx∈Sn−1 ∥Ax∥2 =
√
λmax(W⊤W) = σ1(W), where σ1(W)

represents the largest singular value of matrix W , which is also be denoted by σmax(W), Sn−1

denotes a unit sphere in Rn with radius 1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Power iteration to compute matrix norm. The power iteration algorithm starts with a vector x0
(to speedup the iteration, we usually use ℓ2-norm to normalize x0). The entire iteration process

is as follows: xk+1 = Wxk
∥Wxk∥2

for k = 0, · · · ,K −1. At every iteration, xk is multiplied by the matrix
W and normalized. The final ∥xK ∥2 is returned as the final spectral norm. Usually, it takes 3 to 5
iterations to converge. The overall complexity is low.

Adam Optimizer. Adam optimizer (Kingma & Ba, 2014) is currently the most widely used opti-
mizer for training neural networks, owing to its efficiency and effectiveness. Adam can be simply
defined as: Mt =β1Mt−1+(1−β1)Gt , Vt =β2Vt−1+(1−β2)G2

t , Wt =Wt−1−αtMt⊘
√
Vt +ϵ

where Gt is the gradient at time step t , G2
t is the element-wise square of Gt , and ⊘ denotes

element-wise division, αt is the learning rate at time step t , (β1,β2) are the first-order and the
second-order momentum factors.

3 TAMING TRANSFORMER REQUIRES REVISITING ITS TRAINING DYNAMICS

Before starting to analyze the training dynamics of Transformer, we first give some basic notions
in Transformer, which includes an attention module, an FFN module and two normalization
modules which is used before attention module or FFN module. For the attention module, we
usually use multi-head attention that allows the model to jointly attend to information from dif-
ferent representations from different heads. Here, for convenience of definition without losing
generality, we only use a single-head attention. To be precise, we define each of them as follows.

Attn(X ;Wq ,Wk ,Wv ,Wo) = WoWvX softmax

X⊤Wq
⊤WkX√
dq

 ,

FFN(x;W1,W2) = W2 ReLU(W1x),

LN(x) = γ⊙z+β, where z = y

std(y)
and y =

(
I − 1

D
11⊤

)
x.

Here, X ∈Rd×n , Wq ,Wk ∈Rdq×d , Wv ∈Rdv×d , Wo ∈Rd×d , W1 ∈R4d×d , W2 ∈Rd×4d , γ,β ∈
Rd . Note that only in a single-head definition, Wo can be put before Wv , otherwise, it should
be after a concatenation operator. For the sake of further discussion, we will define the following
notations:

P =X⊤Wq
⊤WkX , A= softmax(

P√
dq

),

where A is the attention map, and Pp
dq

is usually called as the logit.

3.1 VISUALIZATION: WHAT HAPPENS WHEN A TRANSFORMER TRAINING FAILS OR SUCCEEDS

Visualizations is a commonly used effective technology to help us understand why the training
of a neural networks work or fail. In particular, what happens when the training of a Transformer
collapses? And what happens when its training successes? Visualization of these phenomenons
can help us obtain a deeper understanding of the process of training Transformer.

One of the most important aspects of understanding the training of neural networks is the ob-
servation of changes in parameters and activations. Since that the parameters or activations and
their gradients are basically matrices or vectors, the matrix norm is the best way to look at the
statistics of these quantities. In this paper, for a Transformer training, we summarize the follow-
ing 15 terms to watch:

σ1(Wq), σ1(Wk), σ1(Wv), σ1(Wo), σ1(W1), σ1(W2), ∥γ1∥2, ∥β1∥2, ∥γ2∥2, ∥β2∥2,

σ1(Wq
⊤Wk), σ1(WoWv), σ1(W2W1), ∥x∥2,

∥∥∥∥ ∂L

∂x

∥∥∥∥
2

,

(1)
where β1,γ1 and β2,γ2 denote the parameters of the first and the second LayerNorm. When
RMSNorm (Zhang & Sennrich, 2019) is used, only 13 terms will be analyzed since that it does

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0k 50k 100k 150k 200k
Step

10

20

30

40

50

60

70

V
a
lu

e

|| 1||2 of block 0
|| 1||2 of block 2
|| 1||2 of block 4
|| 1||2 of block 6
|| 1||2 of block 8
|| 1||2 of block 10
|| 1||2 of block 11

(a) ∥γ1∥2

0k 50k 100k 150k 200k
Step

0

10

20

30

40

V
a
lu

e

|| 1||2 of block 0
|| 1||2 of block 2
|| 1||2 of block 4
|| 1||2 of block 6
|| 1||2 of block 8
|| 1||2 of block 10
|| 1||2 of block 11

(b) ∥β1∥2

0k 50k 100k 150k 200k
Step

0

100

200

300

400

500

600

V
a
lu

e

(Wq) of block 0
(Wq) of block 2
(Wq) of block 4
(Wq) of block 6
(Wq) of block 8
(Wq) of block 10
(Wq) of block 11

(c) σ1
(
Wq

)

0k 50k 100k 150k 200k
Step

0

100

200

300

400

500

600

700

V
a
lu

e

(Wk) of block 0
(Wk) of block 2
(Wk) of block 4
(Wk) of block 6
(Wk) of block 8
(Wk) of block 10
(Wk) of block 11

(d) σ1
(
Wk

)
0k 50k 100k 150k 200k

Step

0

50000

100000

150000

200000

250000

300000

350000

V
a
lu

e

(Wq Wk) of block 0
(Wq Wk) of block 2
(Wq Wk) of block 4
(Wq Wk) of block 6
(Wq Wk) of block 8
(Wq Wk) of block 10
(Wq Wk) of block 11

(e) σ1
(
Wq

⊤Wk
) 0k 50k 100k 150k 200k

Step

0

50

100

150

200

250

300

350

V
a
lu

e

(Wv) of block 0
(Wv) of block 2
(Wv) of block 4
(Wv) of block 6
(Wv) of block 8
(Wv) of block 10
(Wv) of block 11

(f) σ1 (Wv)

0k 50k 100k 150k 200k
Step

0

100

200

300

400

500

V
a
lu

e

(Wo) of block 0
(Wo) of block 2
(Wo) of block 4
(Wo) of block 6
(Wo) of block 8
(Wo) of block 10
(Wo) of block 11

(g) σ1 (Wo)

0k 50k 100k 150k 200k
Step

20

40

60

80

100

120

140

160

V
a
lu

e

|| 2||2 of block 0
|| 2||2 of block 2
|| 2||2 of block 4
|| 2||2 of block 6
|| 2||2 of block 8
|| 2||2 of block 10
|| 2||2 of block 11

(h) ∥γ2∥2

0k 50k 100k 150k 200k
Step

0

2

4

6

8

10

12

14

V
a
lu

e

|| 2||2 of block 0
|| 2||2 of block 2
|| 2||2 of block 4
|| 2||2 of block 6
|| 2||2 of block 8
|| 2||2 of block 10
|| 2||2 of block 11

(i) ∥β2∥2

0k 50k 100k 150k 200k
Step

0

100

200

300

400

V
a
lu

e

(W1) of block 0
(W1) of block 2
(W1) of block 4
(W1) of block 6
(W1) of block 8
(W1) of block 10
(W1) of block 11

(j) σ1 (W1)

0k 50k 100k 150k 200k
Step

0

200

400

600

800

V
a
lu

e

(W2) of block 0
(W2) of block 2
(W2) of block 4
(W2) of block 6
(W2) of block 8
(W2) of block 10
(W2) of block 11

(k) σ1 (W2)

0k 50k 100k 150k 200k
Step

0

50000

100000

150000

200000

V
a
lu

e

(W2W1) of block 0
(W2W1) of block 2
(W2W1) of block 4
(W2W1) of block 6
(W2W1) of block 8
(W2W1) of block 10
(W2W1) of block 11

(l) σ1 (W2W1)

0k 50k 100k 150k 200k
Step

0

20000

40000

60000

80000

100000

120000

140000

160000

V
a
lu

e

(WoWv) of block 0
(WoWv) of block 2
(WoWv) of block 4
(WoWv) of block 6
(WoWv) of block 8
(WoWv) of block 10
(WoWv) of block 11

(m) σ1 (WoWv)

0k 50k 100k 150k 200k
Step

2

3

4

5

6

7

8

V
a
lu

e
 (

lo
g
)

||x||2 of block 0
||x||2 of block 2
||x||2 of block 4
||x||2 of block 6
||x||2 of block 8
||x||2 of block 10
||x||2 of block 11

(n) ∥x∥2

0k 50k 100k 150k 200k
Step

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

V
a
lu

e
 (

lo
g
)

|| L
x ||2 of block 0

|| L
x ||2 of block 2

|| L
x ||2 of block 4

|| L
x ||2 of block 6

|| L
x ||2 of block 8

|| L
x ||2 of block 10

|| L
x ||2 of block 11

(o) ∥ ∂L
∂x∥2

FIGURE 1: Training dynamics of a failure ViT. This figure shows how the values of these 15 items as
shown in Equation 1 change as the number of training steps increases. Please pay more attention
to subfigures (a)-(e).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

not have β. For the weight matrix, we use the spectral norm which is defined by the maximum
singular value. For a vector, we use its ℓ2 norm.

(a) Block 0 (successful). (b) Block 6 (successful). (c) Block 11 (successful).

(d) Block 0 (crashed). (e) Block 6 in (crashed). (f) Block 11 (crashed).

FIGURE 2: Visualization of the dynamics process of attention map
in different training steps for a successful and a crashed ViT-Base
model, respectively. Please click the images to play the flash. Best
viewed with Acrobat Reader.

To ensure that the phe-
nomena we observed
can generalize well, we
visualized them on both
ViT (Dosovitskiy et al.,
2020) and GPT (Radford
et al., 2018). ViT is a pure
encoder architectures,
and GPT is a pure de-
coder architecture. In
this section, due to the
limitations of paper space,
we will only visualize
ViT-Base, and put more
visualization results into
the Appendix H. For the
ViT implementation, we
use Timm Wightman
(2019), in which “timm”
library provides rich
model architectures of
many pre-trained image
models in PyTorch. For
the GPT implementation,
we use nanoGPT, which
uses LayerNorm without
bias term, and thus only

adopt 13 terms instead of 15 terms in ViT.

To achieve a successful ViT training, we use a long learning rate warmup. For instance, we use 60
epochs of warmup and the whole training process takes 150 epochs. To obtain the dynamics of a
failure training of ViT, we do not use warmup.

Figure 1 visualizes a failure training process of a ViT-Base model. The visualized model includes
12 blocks with index from 0 to 11. In Figure 1, we visualize the weight matrices in blocks [0, 2,
4, 6, 8, 10, 11]. Block 11 is the last block. For the features x and the gradients ∂l

∂x , we hook the
input features that enter into the corresponding blocks. Figure 8 in the Appendix I visualizes a
successful training process of a ViT-L model. Meanwhile, in Figure 2, we visualize the dynamic
process of attention map as the number of training steps increases for a successful and failure
ViT-Base model. In different time steps, we visualize the attention map of the same image.

We observe the following phenomena from Figures 1 and 2.

• As shown in Figure 1, at the beginning, the maximum singular value of σ1(Wq
⊤Wk) gradually

increases, and at a certain point, the maximum singular value suddenly and rapidly increases
to a very large value (around 200,000),.that is, the loss diverge at this time. However, for a
successful training process, σ1(Wq

⊤Wk) gradually increases to a medium value as shown in
Figure 8 and then vibrate around that value.

• As shown in Figure 2, in a failure training process of Transformer, the attention map gradually
becomes sparse and low-rank, and finally collapses to a very sparse and low-rank mode. In
a collapsed model, the entropy of the attention map is 0. However, in a successful training
process, the attention map is not too sparse and have a medium rank.

• The normalization layers exhibit a huge difference: the γ1 and β1 in a successful ViT training
process are very smooth, but they change a lot in an unsuccessful case.

• The ranges of the activation and the gradients are very large in a crashed model, and the gradi-
ents in different blocks vary much larger than that in a successful model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Remark. We summarize that the successful training and the unsuccessful training of Trans-
former exhibit significant differences between their σ1(Wq

⊤Wk), their normalization param-

eters γ and β, and their activations x and gradients ∂L
∂x .

3.2 THEORETICAL ANALYSIS: MATRIX CALCULUS OF TRANSFORMER

To understanding the training dynamics of Transformer, we should investigate the process of
back-propagation (Rumelhart et al., 1986; LeCun et al., 2002; 1989; 1998). In the attention mech-
anism, however, the input and the output are both matrices, we cannot directly use vector calcu-
lus. Instead, we need to use Vectorization 1 (Graham, 2018; Petersen et al., 2008) and Kronecker
Product 2 (Graham, 2018; Petersen et al., 2008). In matrix calculus, the vectorization of a matrix
is a linear transformation that converts a matrix into a vector. Specifically, the vectorization of a
matrixM ∈Rm×n , denoted as vec(M), is a column vector, obtained by an ordered stacking of the

columns of the matrix M , i.e., vec(M) ∈Rmn . For example, for a 2×3 matrix M =
[

a b c
d e f

]
,

the vectorization of M is vec(M) = [a d b e c f]⊤. For the attention module, we have the follow-
ing proposition about the Jacobian matrix of the output P with respect to the input X and the
parameters.

Proposition 1 (Matrix Calculus for Self-Attention)
Let P =X⊤Wq

⊤WkX , where X ∈Rd×n ,Wq ∈Rdq×d ,Wk ∈Rdq×d , according to vectorization
and matrix calculus, we have the following derivations:

∂vec(P)

∂vec(Wq
⊤Wk)

=X⊤⊗X⊤,
∂vec(P)

∂vec(X)
= (X⊤Wq

⊤Wk ⊗In)K+ (In ⊗X⊤Wq
⊤Wk), (2)

∂vec(P)

∂vec(W⊤
q)

=X⊤⊗ (WkX)⊤,
∂vec(P)

∂vec(Wk)
=X⊤⊗ (WqX)⊤, (3)

where ⊗ denotes Kronecker product, In ∈Rn×n denotes an identity matrix with shape n ×n, K
is the commutation matrix, which depends on the dimensions of X . Since X ∈ Rd×n , then we
know K ∈Rnd×nd . The commutation matrix K has the property that vec(X⊤) =K vec(X) for
any matrix X .

In Appendices A and B, we supply some elementary background information for vectorization
and Kronecker product and the derivation of Jacobian matrix for a single-head attention.

We have the following observations from Proposition 1.

• We have ∂vec(P)
∂vec(Wq

⊤Wk)
= X⊤ ⊗X⊤ in Equation 2, and we know about the Kronecker prod-

uct that rank(X⊤ ⊗X⊤) = rank(X⊤)
2

, which implies that if X has a very low rank, then
∂vec(P)

∂vec(Wq
⊤Wk)

will also have a very low rank. Note that X having a low rank means the fea-

tures across different timestep are highly correlated or coherent. If all xi in X collapses to a
single point, then X⊤⊗X⊤ will only have a large singular value, and the rest are 0.

• the Jacobian matrix ∂vec(P)
∂vec(X) in Equation 2, is in direct proportion to X and Wq

⊤Wk . If the

spectral norm σ1(Wq
⊤Wk) is very large, it implies that the gradient ∂L

∂X will more likely to be
magnified a lot.

• Equation 3 suggests that changes in the query weights Wq are related to both the input X
and the key representation WkX . Equation 3 suggests that changes in the key weights Wk are
related to both the input X and the query representation WqX .

• All these relationships are interconnected, with changes in one variable potentially affecting
the others. For instance, if Wk increases fast, then according to Equation 3, ∂vec(P)

∂vec(W ⊤
q)

will more

likely to be very large. In this way, Wq will likely to increase fast.

1https://en.wikipedia.org/wiki/Vectorization_(mathematics)
2https://en.wikipedia.org/wiki/Kronecker_product

6

https://en.wikipedia.org/wiki/Vectorization_(mathematics)
https://en.wikipedia.org/wiki/Kronecker_product

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 A KEY PROBLEM OCCURS IN MODEL CRASH: SPECTRAL ENERGY CONCENTRATION

Before we reveal the key problem in model crash, let us first discuss the concept so-called entropy
collapse.

Two Entropy Collapse Modes. In experiments, we observe two types of attention entropy col-
lapse modes. Note that when attention collapse happens, the attention map tends to a sparse
matrix (i.e., there are a few dominate nonzero attention coefficients), and thus the entropy of the
attention map is vanishing. To be more specific, when the attention map is sparse but not low-
rank, we call it a benign collapse; whereas if the attention map is sparse yet low-rank,3 we call it a
malignant collapse. When benign collapse occurs, the attention map is shown in the right panel
of Figure 3 that, there is almost an identity matrix. In this way, the diagonal elements are almost
1, and the non-diagonal elements have values around 0. Unfortunately, when malignant collapse
happens, the attention probability matrix will become to a sparse yet low-rank matrix as shown
in middle panel of Figure 3. Furthermore, we observe that the distribution of the spectral energy
ofWq

⊤Wk for the benign collapse is relatively uniform; whereas the spectral energy of the atten-
tion matrix for the malignant collapse tends to concentrate on a few dominate singular values.

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

0.1

0.2

0.3

0.4

Normal attention.

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

0.0

0.2

0.4

0.6

0.8

1.0

Malignant collapse.

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

0.0

0.2

0.4

0.6

0.8

1.0

Benign collapse.

FIGURE 3: Three modes of attention maps. The left panel shows a
normal attention map. The middle panel shows a classical atten-
tion map when the model crashes, for which the entropy is almost
0. The right panel shows an attention map from a normal model
training while its entropy is almost 0.

By analyzing the matrix
Wq

⊤Wk in the benign
mode when it happens
in the experiments, we
find that it has the follow-
ing property: Wq

⊤Wk is
usually a non-symmetric
positive quasi-definite
square matrix (see Ap-
pendix O for details). In
a benign attention mode,
the self-attention layer
degenerates into a linear
projection layer because

Y =WvXA≈WvXI =WvX . We give an intuitive analysis in Appendix C.

When the malignant mode happens, the model will usually crash. We identify that the key prob-
lem is a phenomenon called spectral energy concentration (SEC). Before we present our theorem
about SEC, let us first introduce an index to quantify SEC. Recall that Wq ,Wk ∈Rdq×d , where
dq < d . We have that Wq

⊤Wk ∈Rd×d , but its rank is less or equal than dq . Precisely, we define a
SEC index as follows:

SEC(dq , s) =
∑s

i=1σ
2
i (Wq

⊤Wk)∑dq

i=1σ
2
i (Wq

⊤Wk)
, (4)

where dq is the head dimension, s is an integer which is not greater than dq . For instance, if we
have dq = 64 and s = 4, and if at this time, SEC(64,4) > 99%, we could say the spectral energy of
Wq

⊤Wk highly concentrates on only four dominant singular values.

To be precise, we have the following theorem for the reason to cause a malignant collapse.

Theorem 1 (Malignant Entropy Collapse)
Malignant entropy collapse happens (i.e., the attention map A becomes a sparse yet low-rank)
with high probability, when Wq

⊤Wk satisfies the following two conditions simultaneously:

1. Spectral energy concentration, i.e., there exists an integer s where s ≪ dq , such that
SEC(dq , s) ≈ 1;

2. A few leading singular values of Wq
⊤Wk are significantly large, i.e., σi (Wq

⊤Wk) for
i = 1, · · · , s ≪ dq are very large.

3For a sparse yet low-rank matrix, we refer the reader to a recent textbook (Wright & Ma, 2022).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

When the malignant entropy collapse happen, the training process will crash. We provide a proof
for Theorem 1 in Appendix D.

According to Theorem 1, we know that the model crash is caused by the spectral energy concen-
tration. In Figure 4, we compares the SEC(dq , s) of three different blocks under a successfully
trained model and a crashed model. In a successful training model, the spectral energy dis-
tributes in all directions. However, the spectral energy only concentrates on a few directions.
As shown in Figure 4, in a crashed model the SEC collapses into less than 10 directions.

0 10 20 30 40 50 60
the dimension s

0.2

0.4

0.6

0.8

1.0

SE
C(

d,
s)

Spectral Energy Concentration

Block 0 Head 0 (Baseline Model)
Block 0 Head 0 (Crashed Model)

(a) Block 0

0 10 20 30 40 50 60
the dimension s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SE
C(

d,
s)

Spectral Energy Concentration

Block 6 Head 0 (Baseline Model)
Block 6 Head 0 (Crashed Model)

(b) Block 6

0 10 20 30 40 50 60
the dimension s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SE
C(

d,
s)

Spectral Energy Concentration

Block 11 Head 0 (Baseline Model)
Block 11 Head 0 (Crashed Model)

(c) Block 11

FIGURE 4: Comparison of spectral energy concentration index between a successfully trained
model and a crashed model. Figure shows the results of three different blocks. The spectral
energy distributes in all directions in a successful training case. The spectral energy only concen-
trates on a few directions in a crashed model.

X l↓ X⊤⊗X⊤↓
∂vec(P)

∂vec(Wq
⊤Wk)↓ Wq

⊤Wk↓ A⇓ X l+1↓

FIGURE 5: Attribution flow chart of attention collapse.

Figure 5 reveals how attention collapse propagates through each term, illustrating the entire at-
tribution process from X l as the input to the output X l+1 in the attention module. Note that ↓
indicates being low-rank and ⇓ means being sparse yet low-rank. IfX is low-rank, thenX⊤⊗X⊤
is also low-rank because rank(X ⊗X) = rank(X) · rank(X). According to the gradient computa-
tion, we have ∂vec(P)

∂vec(W ⊤
q Wk)

=X⊤⊗X⊤, thus we know ∂vec(P)
∂vec(W ⊤

q Wk)
is also low-rank. Meanwhile,

it should be noted that the spectral energy of ∂vec(P)
∂vec(W ⊤

q Wk)
is over-concentrated, it means the gra-

dient update will largely change W⊤
q Wk , thus W⊤

q Wk will have large probability to be low-rank.

In the paper, we have proved that being low-rank and the leading singular values of W⊤
q Wk are

very large will lead to the attention map A over-concentrated (see Appendix C for the proof.),
becomes to be a sparse yet low-rank matrix. Finally, an over-concentrated A will lead to X l+1 to
be low-rank.

3.4 OUR SOLUTION: TAMING TRANSFORMER VIA WEYL’S INQUALITY

The analysis above reveals that spectral energy concentration is the key cause leading to unstable
training. One manifestation of spectral energy concentration is the rapid growth of the singular
values. Therefore, our motivation is to constraint the fast growth of the singular values of the
weight matrices. Fortunately, Weyl’s inequality provides us a simple but effective tool.
Theorem 2 (Weyl’s Inequality on Singular Values.)
Let W1,W2 ∈Rm×n , and m ≥ n, and let σ1(W1) ≥σ2(W1) ≥ ... ≥σn(W1) be the ordered singular
values of W1, σi (W1) and σi (W2) are the corresponding singular values of W1 and W2. Then we
have that:

σi+ j−1(W1 +W2) ≤σi (W1)+σ j (W2).

We provide a proof for Theorem 2 in Appendix E. From Theorem 2, it is easy to see that
σ1(W1 +W2) ≤ σ1(W1)+σ1(W2). Let Wt is the weight matrix at time step t , ∇Wt is the quan-
tity computing from gradient and its derivations (where ∇Wt can be obtained by SGD (Robbins

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 1 AdamW2: Taming Transformer via Weyl’ Inquality without learning rate warmup.
Input: learning rate schedularαt , weight decay λ, and first-order and second-order momentums β1, β2
Output: updated weight wT

1: for t = 1,2, . . . ,T do
2: Gt =∇Wt−1

L
3: Mt =β1Mt−1 +

(
1−β1

)
Gt , Vt =β2Vt−1 +

(
1−β2

)
G2

t
4: M̂t =Mt /

(
1−βt

1

)
, V̂t =Vt /

(
1−βt

2

)
5: ∇Wt =M̂t ⊘

√
V̂t +ϵ ▷ ∇Wt is the final update quantity.

6: δ̂t = PowerIter(∇Wt), σ̂t−1 = PowerIter(Wt−1) ▷ Power iteration to computer matrix norm.

7: if αt δ̂t
σ̂t−1

> τ then ▷ If Rule 1 is unsatisfied, readjust the learning rate.

8: αt = τσ̂t−1

δ̂t
9: end if

10: if Weight Decay is Yes then
11: Wt = Wt−1 −αt∇Wt −αtλtWt−1
12: else
13: Wt = Wt−1 −αt∇Wt
14: end if
15: end for

& Monro, 1951), Adagrad (Duchi et al., 2011), or Adam (Kingma & Ba, 2014)), αt is the learning
rate at time step t . Usually, our update equation is Wt =Wt−1 −αt∇Wt . According to Weyl’s
Inequality, we have,

σ1(Wt) =σ1(Wt−1 −αt∇Wt) ≤σ1(Wt−1)+αtσ1(∇Wt). (5)

A key problem in Equation 5 is that ifσ1(∇W) is very large, then Wt will be largely different from
Wt−1. It means this update at time step t will not be smooth. A smooth update should satisfy the
following rule.
Rule 1 (Smooth Weight Updating Rule)
GivenWt−1 and the updating quantity at step t , with the learning rateαt , a smooth update should
satisfy the following inequality: ∥Wt−1 −αt∇Wt∥2 ≤ (1+τ)∥Wt−1∥2, where τ is a small factor.

If the Rule 1 is satisfied, then it means that σ1(Wt−1) +αtσ1(∇Wt) ≤ (1 + τ)∥Wt−1∥2 = (1 +
τ)σ1(Wt−1). We can derive the following inequality,

αt ≤ τσ1(Wt−1)

σ1(∇Wt)
. (6)

This inequality depicts that the learning rate should be bounded by a ratio of singular values
of σ1(Wt−1), σ1(∇Wt). Generally, τ is a small value, e.g., 0.004 or 0.005. The intuition behind
this is that if the spectral norm of ∇W are significantly larger than that of W , then the model
is potentially undergoing rapid changes. In such cases, a large learning rate could lead to train-

ing instability. Therefore, our motivation is that if αt
σ1(∇Wt)
σ1(Wt−1) > τ, then αt will be truncated to

τσ1(Wt−1)
σ1(∇Wt) . Since our based optimizer is AdamW (Loshchilov & Hutter, 2019) and our algorithm is

motivated by Weyl’s Inequality, thus, we term our algorithm as AdamW2.

Algorithm 1 shows our AdamW2 optimizer. Lines 6-9 marks our improvement to the base op-
timizer, the other codes are same as AdamW. According to line 6 in Algorithm 1, σ1(∇Wt) and
σ1(Wt−1) is computed via a fast power iteration method. In practice, we set the maximum itera-
tions in power iteration to 3. Actually, we find two iterations are enough to estimate the spectral

norm of matrices. According to Equation 6, if αt > τσ1(Wt−1)
σ1(∇Wt) , then the learning rate αt will be

truncated to τσ1(Wt−1)
σ1(∇Wt) , or the algorithm will adjustαt and use the default learning rate set by the

learning rate schedule. Our core operation corresponds to lines 7-8 in Algorithm 1.

4 EXPERIMENTS

Compared to some previous works (Bachlechner et al., 2021; Wang et al., 2019; Xiong et al., 2020;
Wang et al., 2022; Qi et al., 2023b) that focuses on improving the training stability of Transformer,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

TABLE 1: Quantitative comparison of AdamW and AdamW2 with and without learning rate
warmup. AdamW2 demonstrates a very competitive performance compared to AdamW.

Method ViT (Acc. ↑) GPT (Loss ↓) Swin-Transformer (Acc. ↑)
Configurations ViT-B ViT-L GPT-S Swin-S Swin-B

Parameters 86M 307M 125M 50M 88M

AdamW (with warmup) 80.22 81.65 2.848 83.02 83.48
AdamW2 (no warmup) 80.58 81.82 2.840 83.14 83.44

our method do not need to adjust the network structure and we do not use learning rate warmup.
For ViT, Swin-Transformer and GPT, we will use a warmup of 60 epochs, 20 epochs and 2000 steps
individually. In AdamW2, we directly use a cosine learning rate schedule and decay the learning
rate from maximum to minimum.

0 50 100 150 200 250 300
Epoch

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy

Swin-Small = 0.00075
Swin-Small = 0.003
Swin-Small = 0.004
Swin-Small = 0.005

(a) Swin-Transformer

0k 100k 200k 300k 400k 500k 600k
Step

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Va
l L

os
s

OpenWebText Val Loss
GPT2-S = 0.004
GPT2-S = 0.0075
GPT2-S = 0.01
GPT2-S = 0.015

(b) GPT

FIGURE 6: Ablation study of τ in AdamW2 using Swin-S and GPT-S.

We conduct experi-
ments on three pop-
ular Transformers,
i.e., ViT (Dosovitskiy
et al., 2020), GPT-
2 (Radford et al.,
2019) and Swin-
Transformer (Liu
et al., 2021), where
ViT are Swin-
Transformer are
pure encoder archi-
tectures and GPT
is a pure casual

decoder. Note that we do not conduct any adjustment to the networks and directly use the
original implementation. Our experiments include image classification on ImageNet (Deng
et al., 2009) and large language model on OpenWebText (Gokaslan & Cohen) dataset. We list
some training configuration in Appendix N. The quantitative results are shown in Table 1.
Our baseline model is the corresponding Transformer using a learning rate warmup; whereas
baseline models without using learning rate warmup will crash. AdamW2 demonstrates a very
competitive performance compared to the baseline method. These experimental results further
verify that our previous understanding to the training dynamics of Transformer is rational.

We also conduct ablation study of the choice of τ in GPT and Swin-Transformer. The results are
shown in Figure 6. We can see that the performance of AdamW2 varies slightly for different values
of τ, but overall, our approach is robust for different choices of τ. The lines basically overlap in
the later period because our smooth updating rule is never broken in the later period.

5 CONCLUSION

In this paper, we revisited the training dynamics of Transformers by visualizing the spectral norm
of weight matrices, the activations and the attention map, presented a theoretical analysis for
Transformer training and identified two attention entropy collapse modes, i.e., the benign col-
lapse and the malignant collapse, in which the malignant collapse accompanies with model
crash. Moreover, we revealed that the spectral energy concentration of Wq

⊤Wk is the key prob-
lem behind the model crash, which causes the attention map to be sparse yet low-rank. Fur-
thermore, we proposed a smoothing rule to resolve the problem of spectral energy concentra-
tion of Wq

⊤Wk by controlling the rapid growth of singular values, which can prevent the fast
spectral energy concentration to a few directions and thus avoid the malignant entropy collapse.
We conducted extensive experiments to verify the proposed strategy with ViT, Swin Transformer
and GPT and demonstrated that the proposed strategy could effectively and stably train a model
without using any learning rate warmup.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In this paper, we aim to provide a novel approach to train transformer without learning rate
warmup. Our work does not involve any human subjects, and we have carefully ensured that
it poses no potential risks or harms. Additionally, there are no conflicts of interest, sponsorship
concerns, or issues related to discrimination, bias, or fairness associated with this study. We have
taken steps to address privacy and security concerns, and all data used comply with legal and eth-
ical standards. Our work fully adheres to research integrity principles, and no ethical concerns
have arisen during the course of this study.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all the details to reproduce the experi-
ments. Theoretical proofs of the claims made in this paper, and detailed experimental settings
and configurations are provided in Appendices.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial
Intelligence, pp. 1352–1361. PMLR, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al. The
road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pp. 2793–2803. PMLR, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Alexander Graham. Kronecker products and matrix calculus with applications. Courier Dover
Publications, 2018.

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vi-
sion transformer using focused linear attention. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 5961–5971, 2023.

Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
normalization for transformers. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4246–4253, 2020.

Roger A Horn and Charles R Johnson. Topics in matrix analysis, 1991. Cambridge University
Presss, Cambridge, 37:39, 1991.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention.
In International Conference on Machine Learning, pp. 5562–5571. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 5747–5763, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. In International
Conference on Learning Representations, 2019.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank col-
lapse. Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical Univer-
sity of Denmark, 7(15):510, 2008.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing lips-
chitz continuity to vision transformers. In The Eleventh International Conference on Learning
Representations, 2023a.

12

https://github.com/karpathy/nanoGPT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xianbiao Qi, Jianan Wang, and Lei Zhang. Understanding optimization of deep learning via ja-
cobian matrix and lipschitz constant. arXiv preprint arXiv:2306.09338, 2023b.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language un-
derstanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pp. 8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on ma-
chine learning, pp. 8821–8831. Pmlr, 2021.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathe-
matical statistics, pp. 400–407, 1951.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter confer-
ence on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding train-
ing dynamics and token composition in 1-layer transformer. Advances in Neural Information
Processing Systems, 36:71911–71947, 2023a.

Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. Joma: Demys-
tifying multilayer transformers via joint dynamics of mlp and attention. arXiv preprint
arXiv:2310.00535, 2023b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data sci-
ence, volume 47. Cambridge university press, 2018.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deep-
net: Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787,
2019.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

John Wright and Yi Ma. High-dimensional data analysis with low-dimensional models: Principles,
computation, and applications. Cambridge University Press, 2022.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architec-
ture. In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing at-
tention entropy collapse. In International Conference on Machine Learning, pp. 40770–40803.
PMLR, 2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A KRONECKER PRODUCT AND VECTORIZATION

Kronecker product (Graham, 2018; Petersen et al., 2008), also called as matrix direct product, is
an operation defined on two matrices of arbitrary size. The specific definition is as follows.

Definition 1 (Kronecker Product)
Let A be an n ×p matrix and B an m ×q matrix. The mn ×pq matrix

A⊗B =


a1,1B a1,2B · · · a1,pB
a2,1B a2,2B · · · a2,pB

...
...

...
...

an,1B an,2B · · · an,pB


is called the Kronecker product ofA andB. It is also called the direct product or the tensor product.

For instance, if A=
[

1 2
3 4

]
, and B =

[
1 2 3
3 4 5

]
, then A⊗B =


1 2 3 2 4 6
3 4 5 6 8 10
3 6 9 4 8 12
9 12 15 12 16 20

.

Some basic properties of Kronecker product includes

A⊗ (B⊗C) = (A⊗B)⊗C,

A⊗ (B+C) = (A⊗B)+ (A⊗C), (A+B)⊗C = (A⊗C)+ (B⊗C),

(A⊗B)T =AT ⊗BT .

For a matrix A, the rank of A⊗A can be computed as,

rank(A⊗A) = rank(A) · rank(A).

It means if the rank of the matrix A is small, then the rank of A⊗A will also be very small.

In mathematics, Vectorization (Graham, 2018; Petersen et al., 2008) is usually used together with
the Kronecker product to express matrix multiplication as a linear transformation on matrices.
After vectorization, we can calculate Jacobian matrix of matrix product more conveniently. A
property of vectorization for matrix product is defined below.
Proposition 2 (Property of Vectorization for Matrix Product)
Let A ∈Rm×n ,B ∈Rn×k ,C ∈Rk×l , then we have

vec(ABC) = (C⊤⊗A)vec(B).

Proof. Let Ci be the i -th row of C. Then we have:

vec(ABC) =
n∑

i=1

k∑
j=1

bi j vec(aiC j)

=
n∑

i=1

k∑
j=1

bi j (C⊤
j ⊗ai)

=
k∑

j=1
(C⊤

j ⊗A)b j

= (C⊤⊗A)vec(B).

□
Furthermore, we have the following properties:

vec(AB) = (Ik ⊗A)vec(B) = (
B⊤⊗Im

)
vec(A),

vec(ABC) = (
C⊤B⊤⊗Im

)
vec(A)

= (
C⊤⊗A

)
vec(B)

= (Il ⊗AB)vec(C)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where Ik ∈Rk×k ,Il ∈Rl×l ,Im ∈Rm×m are all identity matrices.

Together with Kronecker product, vectorization is an effective tool to compute matrix calculus.
We can see the following two examples.

Let P =AB where A ∈Rm×n ,B ∈Rn×k , we have

∂vec(P)

∂vec(A)
=B⊤⊗Im ,

∂vec(P)

∂vec(B)
= Ik ⊗A.

Let P =ABC where A ∈Rm×n ,B ∈Rn×k ,C ∈Rk×l , we have,

∂vec(P)

∂vec(A)
=C⊤B⊤⊗Im ,

∂vec(P)

∂vec(B)
=C⊤⊗A,

∂vec(P)

∂vec(C)
= Il ⊗AB.

Vectorization and Kronecker product provide us a convenient way to analyze the self-attention
module. We can compute the Jacobian matrix of the output with respect to the input or the
weight matrix more conveniently. For more introduction to Kronecker product and vectorization,
the readers can refer to (Petersen et al., 2008; Graham, 2018)

B DERIVATION OF JACOBIAN MATRIX FOR SINGLE-HEAD SELF-ATTENTION

A single-head self-attention can be defined as

Y =WvXA,

where P =X⊤Wq
⊤WkX , A= softmax(Pp

dq
). A is called as the attention matrix and Pp

dq
is

called as the logit, A ∈Rn×n ,X ∈Rd×n ,Wv ∈Rdv×d . Here, our goal is to calculate ∂vec(Y)
∂vec(X) .

In the main body, we have derived ∂vec(P)
∂vec(X) . Here, let us calculate the matrix calculus of A =

softmax(Pp
dq

) with respect to P using Kronecker products and vectorization. We can rewrite

it as A = exp(Pp
dq

)⊘ (1n1
⊤
n exp(Pp

dq
)), where 1n denotes a Rn all one vector. Note that A is

obtained by conduct a softmax operation in each column individually.

First, let us define two intermediate variables:

B = exp(
P√
dq

), C =11⊤ exp(
P√
dq

) =11⊤B.

In this way, we can represent the attention matrix A as A=B⊘C.

Then, we can vectorize the equation,

vec(A) = vec(B⊘C) = vec(B)⊘vec(C).

According to the chain rule, we have

∂vec(A)

∂vec(P)
= ∂vec(A)

∂vec(B)

∂vec(B)

∂vec(P)
+ ∂vec(A)

∂vec(C)

∂vec(C)

∂vec(P)
.

Let us calculate each individual term. We have

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

∂vec(A)

∂vec(B)
=1n2 ⊘diag(vec(C)),

∂vec(B)

∂vec(P)
= diag(vec(B))√

dq

,

∂vec(A)

∂vec(C)
=−diag(vec(B)⊘ (vec(C)⊙vec(C))),

∂vec(C)

∂vec(P)
= (In ⊗1n1

⊤
n)diag(vec(B))√

dq

,

where In is a n ×n identity matrix and ⊗ is the Kronecker product, 1nn denotes a Rn2
all one

vector.

Substitute these four term into the chain rule, we have

∂vec(A)

∂vec(P)
=

(
1n2 ⊘diag(vec(C))

)
diag(vec(B))−diag(vec(B)⊘ (vec(C)⊙vec(C)))(In ⊗1n1

⊤
n)diag(vec(B))√

dq

= diag(vec(A))−diag(vec(B)⊘ (vec(C)⊙vec(C)))(In ⊗1n1
⊤
n)diag(vec(B))√

dq

= diag(vec(A))− (A⊗In)diag(vec(A))√
dq

.

If A and P are two vectors, here, let us use a and p denote them individually, then we know

∂vec(a)

∂vec(p)
= diag(a)−aa⊤√

dq

.

If a approaches to a unit vector e, then the Jabobian matrix ∂vec(a)
∂vec(p) will tend to 0.

In Section 3.2, we have the following Jacobian matrix

∂vec(P)

∂vec(X)
= (X⊤Wq

⊤Wk ⊗In)K+ (In ⊗X⊤Wq
⊤Wk).

By vectorization of Y =WvXA, we have

vec(Y) = (A⊤⊗Wv)vec(X)+ (In ⊗WvX)vec(A).

Therefore, according to the product rule and chain rule, we can denote the Jacobian matrix of Y
with respect to X as follows:

∂vec(Y)

∂vec(X)
= (A⊤⊗Wv)+ (In ⊗WvX)

∂vec(A)

∂vec(X)
,

= (A⊤⊗Wv)+ (In ⊗WvX)
∂vec(A)

∂vec(P)

∂vec(P)

∂vec(X)
.

Bringing in all the terms, we get the following formula

∂vec(Y)

∂vec(X)
= (A⊤⊗Wv)+(In⊗WvX)

 diag(vec(A))− (A⊗In)diag(vec(A))√
dq

(
(X⊤Wq

⊤Wk ⊗In)K+ (In ⊗X⊤Wq
⊤Wk)

)
.

(7)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Let us analyze Equation 7. If a malignant entropy mode happens, diag(vec(A))−(A⊗In)diag(vec(A))p
dq

will approach to 0 because each a in A will be a unit vector e. From the perspective of forward
process, the features Y will collapse to several directions. From the perspective of backward

process, diag(vec(A))−(A⊗In)diag(vec(A))p
dq

will become 0, and ∂vec(Y)
∂vec(X) will be a sparse low-rank matrix.

Through A⊤⊗Wv , most of position in X will get zero gradient, and only very few columns will
obtain some large noisy gradients. In a malignant entropy mode, the learned feature is invalid
and useless. Similarly, if a benign entropy mode happens, the attention map A will approach

to an identity matrix I and diag(vec(A))−(A⊗In)diag(vec(A))p
dq

≈ 0 when A ≈ I . Therefore, we have

∂vec(Y)
∂vec(X) ≈ (I⊤⊗Wv). In this way, a self-attention module degenerates to a linear layer.

C PROOF OF BENIGN ENTROPY COLLAPSE

Recall that P =X⊤Wq
⊤WkX ,A = softmax(Pp

dq
). Here, let W =Wq

⊤Wk and W ∈Rd×d . In

this way, we denote that A = softmax(X
⊤WXp

dq
). We know that rank(W) ≤ dq and dq < d . To

prove A will always collapse to an identity matrix when W is a non-symmetric positive quasi-
definite square matrix, it is equivalent to prove E

[
xi

⊤Wxi
] ≫ E

[
xi

⊤Wx j
]

for any i ̸= j . It
will be very hard to prove it mathematically if W is a form of a non-symmetric positive quasi-
definite square matrix. Therefore, let us make some simplification assumptions. Assume W
is a real symmetric positive semi-definite square matrix and its trace is in direct proportion to

the dimension dq , and any xi is a high-dimension random vector and each element in xi , j
iid∼

N (0,1).

We break our proof into a sub-problems.

Proposition 3 (Expectation of xi
⊤Wxi)

Let W is a real symmetric positive semi-definite matrix, and any xi is a high-dimension random
vector, E

[
xi

⊤Wxi
]= trace(W).

Proof. Let W be a real symmetric positive semi-definite, thus it can be decomposed into W =
UΣU⊤. In this way, we have

E
[
xi

⊤Wxi
]= E

[
xi

⊤UΣU⊤xi
]

= E
[
z⊤Σz (let z =U⊤xi)

]
= E

[
d∑

i=1
σiz

2

]
(Σ is a diagonal matrix)

=
dq∑

i=1
σi × (0+1) (by independence, mean 0)

=
dq∑

i=1
σi = trace(W).

For a real symmetric positive semi-definite, all its singular values is larger or equal to 0. Thus, we

know
∑dq

i=1σi > 0 considering W is not a all zero matrix. □
Proposition 4 (Expectation of xi

⊤Wx j for i ̸= j)
Let W is a real symmetric positive semi-definite square matrix, and any xi is a high-dimension
random vector, Ei ̸= j

[
xi

⊤Wx j
]= 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. W is a real symmetric positive semi-definite, thus it can be decomposed into W =
UΣU⊤. In this way, we have

Ei ̸= j
[
xi

⊤Wx j
]= Ei ̸= j

[
xi

⊤UΣU⊤x j
]

= E
[
z⊤Σv

]
(let z =U⊤xi , and v =U⊤x j)

= E

[
dq∑

i=1
σiz

⊤v

]
(Σ is a diagonal matrix. z and v are independent)

= 0. (According to vecotr concentration inequality z⊤v→ 0 for high dimension d)

□
According to Proposition 3 and Proposition 4, we can have that E

[
xi

⊤Wxi
] > E

[
xi

⊤Wx j
]

for
any i ̸= j . Considering that W is usually a high-dimensional matrix and some of its singular
values are significantly larger than 0, thus, after softmax operation, A will always collapse to an
identity matrix. In this way, the self-attention module degenerates into a linear projection mod-
ule. The model fitting ability will decline, but model training will not crash. Our proof is based
on matrix computations (Golub & Van Loan, 2013) and high-dimensional probability (Vershynin,
2018), readers can refer to these two books.

D PROOF OF MALIGNANT ENTROPY COLLAPSE

Proof. Recall that we have P = X⊤Wq
⊤WkX , A = softmax(Pp

dq
). Let W = Wq

⊤Wk and

W ∈Rd×d . Let us take a column of P , we have P:,i =X⊤Wxi . According to SVD decomposi-
tion, we have W =UΣV ⊤. Since in the malignant mode of entropy collapse, the matrix W has
a significantly lower rank than d . Here, let us assume rank(W) = k, and k ≪ d . We know that
σ j (W) = 0, where j > k. For convenience, let us just write σ j for σ j (W). Thus, we have

P:,i =X⊤Wxi

=X⊤UΣV ⊤xi

= [σ1z1
⊤qi , σ2z2

⊤qi , ..., σdzd
⊤qi]

⊤
(let z j =U⊤x j and qi =V ⊤xi)

= [σ1z1
⊤qi , ..., σkzk

⊤qi , 0×zk+1
⊤qi , ..., ,0×zd

⊤qi]
⊤

.

Let us assume that after normalization (e.g., LayerNorm (Ba et al., 2016), RMSNorm (Zhang &

Sennrich, 2019)), each element in z j ,l
iid∼N (0,1) and qi ,l

iid∼N (0,1). We know z,q ∈Rd , we can

easily derive that z⊤q iid∼N (0,d). In this way, we have
σ1z1

⊤qi
· · ·

σkzk
⊤qi

0×zk+1
⊤qi

· · ·
0×zd

⊤qi]


iid∼


N (0,σ1

2d)
· · ·

N (0,σk
2d)

N (0,0)
· · ·

N (0,0)

 .

We can see that σ jz j
⊤qi for j <= k has very large variance, it means each position has a large

probability to get a big positive or negative value. If one position σ jz j
⊤qi for j <= k gets a big

positive value, after softmax, the probability in position j for j > k will be almost 0. The position
that gets the biggest positive value will almost have a probability 1.0. This completes the proof of
malignant entropy collapse. □

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E PROOF OF WEYL’S INEQUALITY ON SINGULAR VALUES

Our derivation depends on Horn & Johnson (1991; 2012). Readers can refer to these material for
more background information.

Proof. Before we prove Weyl’s Inequality on singular values, let us review Courant-Fischer min-
max principle that is important for analyzing the singular values of matrix.

Theorem 3 (Courant-Fischer Min-max Principle for Singular Values)
Let W ∈Rm×n be a matrix where m ≥ n. W has ordered singular values σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0.
Then, for i = 1,2, . . . ,n, we have

σi (W) = max
S⊂Rn

dim(S)=i

min
x∈S∥x∥=1

∥Wx∥ = min
S′⊂Rn

dim(S′)=n−i+1

max
x∈S′
∥x∥=1

∥Wx∥

where the maximum is taken over all i -dimensional subspaces S of Rn , and the minimum is taken
over all unit vectors x in S.

Let W1 = UΣ1V
⊤ and W2 = UΣ2V⊤ be singular value decompositions of W1 and W2 with

unitary matrix V = [v1, . . . ,vn],V = [v1, . . . ,vn] where vi ,vi ∈ Rn and unitary matrix U =
[u1, . . . ,um],U = [u1, . . . ,um], where u j ,u j ∈Rm .

Let i and j be positive integers with 1 ≤ i , j ≤ n and i + j ≤ n +1. Let S1 ≡ Span{vi , . . . ,vn} and
S2 ≡ Span{v j , . . . ,vn}; notice that dim(S1) = n− i +1 and dim(S2) = n− j +1. Let k ≡ dim(S1∩S2),
then we have

dim(S1 ∩S2) = dim(S1)+dim(S2)−dim(S1 +S2) = (n − i +1)+ (n − j +1)−dim(S1 +S2)

≥ (n − i +1)+ (n − j +1)−n = n − (i + j −1)+1 ≥ 1.

Because of the bounds assumed for i and j . Thus, the subspace S1 ∩S2 has positive dimension
k, n −k +1 ≤ i + j −1, and we have

σi+ j−1(W1 +W2) ≤σn−k+1(W1 +W2)

= min
S⊂Rn

dim(S)=k

max
x∈S∥x∥2=1

∥(W1 +W2)x∥2

≤ max
x∈S1∩S2∥x∥2=1

∥(W1 +W2)x∥2

≤ max
x∈S1∩S2∥x∥2=1

∥W1x∥2 + max
x∈S1∩S2∥x∥2=1

∥W2x∥2

≤ max
x∈S1∥x∥2=1

∥W1x∥2 + max
x∈S2∥x∥2=1

∥W2x∥2 =σi (W1)+σ j (W2).

As a special case, the second part of the theorem follows directly from the general result of part
(a). Specifically, for i = j = 1, we have:

σ1(W1 +W2) ≤σ1(W1)+σ1(W2).

This completes the proof. □

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F RELATED WORKS

Training Dynamics of Transformer. Previous works have delved into understanding the training
dynamics of Transformers from two different perspectives: a high-level perspective and a low-
level perspective. From a high-level perspective, Scan&Snap (Tian et al., 2023a) unveiled com-
plex phenomena, particularly in single-layer architectures, relating to frequency and discrimi-
native bias. These studies linked sparse attention patterns to token co-occurrence frequencies
and observed two-stage behaviors in attention logits. JoMA (Tian et al., 2023b) further improved
upon previous models by incorporating residual connections and MLP nonlinearity, analyzing
joint training of MLP and self-attention layers, and offering qualitative explanations for multi-
layer Transformer dynamics. From a low-level perspective, two critical challenges in Transformer
training have been identified: rank collapse (Dong et al., 2021; Noci et al., 2022), where attention
output converges to a rank 1 matrix, potentially causing vanishing gradients; and entropy col-
lapse (Zhai et al., 2023), which denotes pathologically low attention entropy, corresponding to
highly concentrated attention scores. In this work, we analyze and prove two different entropy
collapse modes and identify the key reason for model failure is spectral energy concentration. Fi-
nally, we introduce a simple but effective solution to address this problem.

Training Stability of Transformer. ReZero (Bachlechner et al., 2021) introduces a simple yet ef-
fective mechanism for improving training stability. The key innovation lies in initializing residual
connections to zero, which allows networks to learn identity mappings more easily. Admin (Liu
et al., 2020) introduces a new network initialization strategy tailored for Transformer to make
the network train stable. DeepNorm (Wang et al., 2022) extends the concept of normalization to
accommodate increasingly deeper networks. By dynamically adjusting normalization parame-
ters, DeepNorm ensures stability even as network depth increases. LipsFormer Qi et al. (2023a)
addresses the specific challenge of stability in transformer networks. By introducing a Lipschitz
continuity constraint, Lipsformer effectively mitigates the issue of exploding gradients - a com-
mon problem in deep transformer architectures. This approach ensures that the network’s out-
put changes smoothly with respect to its input, promoting overall stability. ReZero, Admin and
DeepNorm can all be considered as an approach to control the Lipschitz constant of the net-
work in the initial stage. In this work, by revisiting the training dynamics of Transformer, we can
achieve a stable training only by modifying the optimizer instead of using learning rate warmup or
changing the network structures as LipsFormer (Qi et al., 2023a) and QKNorm Henry et al. (2020);
Dehghani et al. (2023).

Learning Rate Schedule. Warmup (Loshchilov & Hutter, 2016) has emerged as a must-have tech-
nique for ensuring a stable network training, especially in the initial phases of the optimization
process. This method involves gradually increasing the learning rate from a small value to the
desired initial learning rate over a certain number of training steps or epochs. The cosine learn-
ing rate scheduler (Loshchilov & Hutter, 2016) has gained popularity due to its smooth annealing
properties. This schedule decreases the learning rate following a cosine curve, starting from an
initial value and decaying to a minimum value over a set number of epochs or iterations. Cyclic
learning rates (Smith, 2017) involve systematically varying the learning rate between boundary
values. The learning rate oscillates between a lower and upper bound, either linearly or follow-
ing other patterns (e.g., triangular, cosine). The above-mentioned learning rate schedules require
specification of a stopping time step T , Defazio et al. (2024) introduces a Schedule-Free approach
that avoids the need for this stopping time by eschewing the use of schedules entirely.

Compared to the up-mentioned works, the core novel contributions of our work lie on follows.

1. We present a theoretical analysis for Transformer training and point out two entropy collapse
modes, i.e.the benign collapse and the malignant collapse.

2. We reveal that spectral energy concentration (SEC) of Wq
⊤Wk is the main reason of model

crash.

3. We introduce AdamW2, a new optimization strategy motivated by Weyl’s Inequality.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G SIMULATION OF THREE ATTENTION MODES

We provide a simple simulation code to simulate three attention modes, but it is important to
note that the real picture is more complicated. In real case, in the benign attention entropy mode,
Wq

⊤W is a non-symmetric positive quasi-definite square matrix instead of a symmetric positive
definite matrix in our simulation. The code is just to demonstrate the core ideas behind three
attention modes.

CODE 1: Simulation of Three Attention Modes.

1 import torch
2 import torch.nn
3 import matplotlib.pyplot as plt
4 import numpy as np
5

6

7 #Randomly generate data and weight matrices
8 d_q, d, num_tokens= 64, 768, 197
9 Wq = torch.randn(d_q, d)

10 Wk = torch.randn(d_q, d)
11 X = torch.randn(d, num_tokens)
12 W = torch.mm(Wq.T, Wk)
13

14

15 # Normal attention mode
16 W1 = W
17 P = torch.mm(torch.mm(X.T, W1), X)
18 attn_map1 = P.softmax(dim=1)
19

20

21 # Malignant attention entropy collapse mode
22 u,s,v = torch.svd(W)
23 s[0:3] = torch.tensor([3., 2., 1.])*s[0:3]
24 s[3:] = 0.0
25 W2 = torch.mm(torch.mm(u, torch.diag(s)), v.T)
26 P = torch.mm(torch.mm(X.T, W2), X)
27 attn_map2 = P.softmax(dim=1)
28

29

30 # Benign attention entropy collapse mode
31 u,s,v = torch.svd(W)
32 W3 = torch.mm(torch.mm(u, torch.diag(s)), u.T)
33 P = torch.mm(torch.mm(X.T, W3), X)
34 attn_map3 = P.softmax(dim=1)
35

36

37 # Plot figures
38 fig, axs = plt.subplots(1, 3, figsize=(15, 5))
39 axs[0].imshow(attn_map1.detach().numpy())
40 axs[1].imshow(attn_map2.detach().numpy())
41 axs[2].imshow(attn_map3.detach().numpy())
42 plt.show()

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

H ATTENTION MAP VISUALIZATION OF GPT

Figure 7 visualizes the dynamic process of attention map as the number of training steps in-
creases for a successful and unsuccessful GPT-Small model. It should be noted that the GPT
model uses a lower triangular attention mask.

(a) Block 11 (successful). (b) Block 11 (unsuccessful).

FIGURE 7: Visualization of the dynamic process of attention map as the number of training steps
increases for a successful and unsuccessful GPT-Small model. Attention map gradually becomes
sparse and low-rank along with the training process in a failure case. Please click the images to
play the flash. Best viewed with Acrobat Reader.

In Figure 7, the attention values in a successful case distribute to different position, but the at-
tention values in a unsuccessful case will only concentrate into several directions.

I MORE TRAINING DYNAMICS OF VIT AND GPT

Figure 8 visualizes a successful ViT training process. Compared with Figure 1, we find several
significant differences as follows.

• In a successful ViT training process, the value of σ1(Wq
⊤Wk) increases to 16,000, then starts

to oscillate smoothly. But for an unsuccessful training, the value suddenly increases to a very
large value, around 300,000, it triggers the model crash,

• The γ1 and β1 in a successful ViT training process are very smooth, but they change a lot in an
unsuccessful case,

• The fast increase of σ1(Wq
⊤Wk) is accompanied by a fast increase of Wq and Wk .

We can observe similar phenomenon in Figure 9 and Figure 15. In a successful GPT training
process, the value of σ1(Wq

⊤Wk) increases to 60, then starts to oscillate smoothly. But for an
unsuccessful GPT training, the value increases to 20,000. The difference between the sclae of
value between GPT and ViT may be due to the density and sparsity of the supervision signal. In
GPT, each token will contribute a gradient, but in ViT, only one class label in an image provides a
supervision information.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0k 50k 100k 150k 200k
Step

5

10

15

20

25

V
a
lu

e

|| 1||2 of block 0
|| 1||2 of block 2
|| 1||2 of block 4
|| 1||2 of block 6
|| 1||2 of block 8
|| 1||2 of block 10
|| 1||2 of block 11

(a) ∥γ1∥2

0k 50k 100k 150k 200k
Step

0

1

2

3

4

V
a
lu

e

|| 1||2 of block 0
|| 1||2 of block 2
|| 1||2 of block 4
|| 1||2 of block 6
|| 1||2 of block 8
|| 1||2 of block 10
|| 1||2 of block 11

(b) ∥β1∥2

0k 50k 100k 150k 200k
Step

0

25

50

75

100

125

150

V
a
lu

e

(Wq) of block 0
(Wq) of block 2
(Wq) of block 4
(Wq) of block 6
(Wq) of block 8
(Wq) of block 10
(Wq) of block 11

(c) σ1
(
Wq

)

0k 50k 100k 150k 200k
Step

0

20

40

60

80

100

V
a
lu

e

(Wk) of block 0
(Wk) of block 2
(Wk) of block 4
(Wk) of block 6
(Wk) of block 8
(Wk) of block 10
(Wk) of block 11

(d) σ1
(
Wk

)
0k 50k 100k 150k 200k

Step

0

2000

4000

6000

8000

10000

12000

14000

16000

V
a
lu

e

(Wq Wk) of block 0
(Wq Wk) of block 2
(Wq Wk) of block 4
(Wq Wk) of block 6
(Wq Wk) of block 8
(Wq Wk) of block 10
(Wq Wk) of block 11

(e) σ1
(
Wq

⊤Wk
) 0k 50k 100k 150k 200k

Step

2.5

5.0

7.5

10.0

12.5

15.0

17.5

V
a
lu

e

(Wv) of block 0
(Wv) of block 2
(Wv) of block 4
(Wv) of block 6
(Wv) of block 8
(Wv) of block 10
(Wv) of block 11

(f) σ1 (Wv)

0k 50k 100k 150k 200k
Step

0

10

20

30

40

50

60

70

V
a
lu

e

(Wo) of block 0
(Wo) of block 2
(Wo) of block 4
(Wo) of block 6
(Wo) of block 8
(Wo) of block 10
(Wo) of block 11

(g) σ1 (Wo)

0k 50k 100k 150k 200k
Step

15

20

25

30

35

40

45

V
a
lu

e

|| 2||2 of block 0
|| 2||2 of block 2
|| 2||2 of block 4
|| 2||2 of block 6
|| 2||2 of block 8
|| 2||2 of block 10
|| 2||2 of block 11

(h) ∥γ2∥2

0k 50k 100k 150k 200k
Step

0.0

0.5

1.0

1.5

2.0

2.5

V
a
lu

e

|| 2||2 of block 0
|| 2||2 of block 2
|| 2||2 of block 4
|| 2||2 of block 6
|| 2||2 of block 8
|| 2||2 of block 10
|| 2||2 of block 11

(i) ∥β2∥2

0k 50k 100k 150k 200k
Step

0

20

40

60

80

V
a
lu

e

(W1) of block 0
(W1) of block 2
(W1) of block 4
(W1) of block 6
(W1) of block 8
(W1) of block 10
(W1) of block 11

(j) σ1 (W1)

0k 50k 100k 150k 200k
Step

0

20

40

60

80

100

120

140

V
a
lu

e

(W2) of block 0
(W2) of block 2
(W2) of block 4
(W2) of block 6
(W2) of block 8
(W2) of block 10
(W2) of block 11

(k) σ1 (W2)

0k 50k 100k 150k 200k
Step

0

1000

2000

3000

4000

5000

V
a
lu

e

(W2W1) of block 0
(W2W1) of block 2
(W2W1) of block 4
(W2W1) of block 6
(W2W1) of block 8
(W2W1) of block 10
(W2W1) of block 11

(l) σ1 (W2W1)

0k 50k 100k 150k 200k
Step

0

200

400

600

800

V
a
lu

e

(WoWv) of block 0
(WoWv) of block 2
(WoWv) of block 4
(WoWv) of block 6
(WoWv) of block 8
(WoWv) of block 10
(WoWv) of block 11

(m) σ1 (WoWv)

0k 50k 100k 150k 200k
Step

2.0

2.5

3.0

3.5

4.0

4.5

V
a
lu

e
 (

lo
g
)

||x||2 of block 0
||x||2 of block 2
||x||2 of block 4
||x||2 of block 6
||x||2 of block 8
||x||2 of block 10
||x||2 of block 11

(n) ∥x∥2

0k 50k 100k 150k 200k
Step

4.0

3.5

3.0

2.5

2.0

1.5

V
a
lu

e
 (

lo
g
)

|| L
x ||2 of block 0

|| L
x ||2 of block 2

|| L
x ||2 of block 4

|| L
x ||2 of block 6

|| L
x ||2 of block 8

|| L
x ||2 of block 10

|| L
x ||2 of block 11

(o) ∥ ∂L
∂x∥2

FIGURE 8: Training dynamics of a successful ViT training.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0k 10k 20k 30k 40k 50k
Step

5

10

15

20

25

30

V
a
lu

e
(1 2) of block 0
(1 2) of block 2
(1 2) of block 4
(1 2) of block 6
(1 2) of block 8
(1 2) of block 10
(1 2) of block 11

(a) ∥γ1∥2

0k 10k 20k 30k 40k 50k
Step

1

2

3

4

5

6

7

8

V
a
lu

e

(Wq) of block 0
(Wq) of block 2
(Wq) of block 4
(Wq) of block 6
(Wq) of block 8
(Wq) of block 10
(Wq) of block 11

(b) σ1
(
Wq

) 0k 10k 20k 30k 40k 50k
Step

2

4

6

8

10

12

V
a
lu

e

(Wk) of block 0
(Wk) of block 2
(Wk) of block 4
(Wk) of block 6
(Wk) of block 8
(Wk) of block 10
(Wk) of block 11

(c) σ1
(
Wk

)

0k 10k 20k 30k 40k 50k
Step

0

10

20

30

40

50

60

V
a
lu

e

(Wq Wk) of block 0
(Wq Wk) of block 2
(Wq Wk) of block 4
(Wq Wk) of block 6
(Wq Wk) of block 8
(Wq Wk) of block 10
(Wq Wk) of block 11

(d) σ1
(
Wq

⊤Wk
) 0k 10k 20k 30k 40k 50k

Step

1

2

3

4

5

V
a
lu

e

(Wv) of block 0
(Wv) of block 2
(Wv) of block 4
(Wv) of block 6
(Wv) of block 8
(Wv) of block 10
(Wv) of block 11

(e) σ1 (Wv)

0k 10k 20k 30k 40k 50k
Step

0

2

4

6

8

10

12

14

V
a
lu

e

(Wo) of block 0
(Wo) of block 2
(Wo) of block 4
(Wo) of block 6
(Wo) of block 8
(Wo) of block 10
(Wo) of block 11

(f) σ1 (Wo)

0k 10k 20k 30k 40k 50k
Step

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

V
a
lu

e

(2 2) of block 0
(2 2) of block 2
(2 2) of block 4
(2 2) of block 6
(2 2) of block 8
(2 2) of block 10
(2 2) of block 11

(g) ∥γ2∥2

0k 10k 20k 30k 40k 50k
Step

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

V
a
lu

e

(W1) of block 0
(W1) of block 2
(W1) of block 4
(W1) of block 6
(W1) of block 8
(W1) of block 10
(W1) of block 11

(h) σ1 (W1)

0k 10k 20k 30k 40k 50k
Step

0

2

4

6

8

10

12

V
a
lu

e

(W2) of block 0
(W2) of block 2
(W2) of block 4
(W2) of block 6
(W2) of block 8
(W2) of block 10
(W2) of block 11

(i) σ1 (W2)

0k 10k 20k 30k 40k 50k
Step

0

20

40

60

80

V
a
lu

e

(W2W1) of block 0
(W2W1) of block 2
(W2W1) of block 4
(W2W1) of block 6
(W2W1) of block 8
(W2W1) of block 10
(W2W1) of block 11

(j) σ1 (W2W1)

0k 10k 20k 30k 40k 50k
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

V
a
lu

e

(WoWv) of block 0
(WoWv) of block 2
(WoWv) of block 4
(WoWv) of block 6
(WoWv) of block 8
(WoWv) of block 10
(WoWv) of block 11

(k) σ1 (WoWv)

0k 10k 20k 30k 40k 50k
Step

0

1000

2000

3000

4000

V
a
lu

e

||x||2 of block 0
||x||2 of block 2
||x||2 of block 4
||x||2 of block 6
||x||2 of block 8
||x||2 of block 10
||x||2 of block 11

(l) ∥x∥2

0k 10k 20k 30k 40k 50k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

|| L
x ||2 of block 0

|| L
x ||2 of block 2

|| L
x ||2 of block 4

|| L
x ||2 of block 6

|| L
x ||2 of block 8

|| L
x ||2 of block 10

|| L
x ||2 of block 11

(m) ∥ ∂L
∂x∥2

FIGURE 9: Training dynamics of a successful GPT training.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0k 10k 20k 30k 40k 50k
Step

0

50

100

150

200

V
a
lu

e

(W1) of block 0
(W1) of block 2
(W1) of block 4
(W1) of block 6
(W1) of block 8
(W1) of block 10
(W1) of block 11

(a) ∥γ1∥2

0k 10k 20k 30k 40k 50k
Step

0

20

40

60

80

100

120

V
a
lu

e

(Wq) of block 0
(Wq) of block 2
(Wq) of block 4
(Wq) of block 6
(Wq) of block 8
(Wq) of block 10
(Wq) of block 11

(b) σ1
(
Wq

) 0k 10k 20k 30k 40k 50k
Step

0

50

100

150

200

250

V
a
lu

e

(Wk) of block 0
(Wk) of block 2
(Wk) of block 4
(Wk) of block 6
(Wk) of block 8
(Wk) of block 10
(Wk) of block 11

(c) σ1
(
Wk

)

0k 10k 20k 30k 40k 50k
Step

0

5000

10000

15000

20000

V
a
lu

e

(Wq Wk) of block 0
(Wq Wk) of block 2
(Wq Wk) of block 4
(Wq Wk) of block 6
(Wq Wk) of block 8
(Wq Wk) of block 10
(Wq Wk) of block 11

(d) σ1
(
Wq

⊤Wk
) 0k 10k 20k 30k 40k 50k

Step

0

10

20

30

40

50

V
a
lu

e

(Wv) of block 0
(Wv) of block 2
(Wv) of block 4
(Wv) of block 6
(Wv) of block 8
(Wv) of block 10
(Wv) of block 11

(e) σ1 (Wv)

0k 10k 20k 30k 40k 50k
Step

0

20

40

60

80

100

120

140

V
a
lu

e

(Wo) of block 0
(Wo) of block 2
(Wo) of block 4
(Wo) of block 6
(Wo) of block 8
(Wo) of block 10
(Wo) of block 11

(f) σ1 (Wo)

0k 10k 20k 30k 40k 50k
Step

0

50

100

150

200

V
a
lu

e

(W2) of block 0
(W2) of block 2
(W2) of block 4
(W2) of block 6
(W2) of block 8
(W2) of block 10
(W2) of block 11

(g) ∥γ2∥2

0k 10k 20k 30k 40k 50k
Step

0

5

10

15

20

25

V
a
lu

e

(1 2) of block 0
(1 2) of block 2
(1 2) of block 4
(1 2) of block 6
(1 2) of block 8
(1 2) of block 10
(1 2) of block 11

(h) σ1 (W1)

0k 10k 20k 30k 40k 50k
Step

15

20

25

30

35

V
a
lu

e

(2 2) of block 0
(2 2) of block 2
(2 2) of block 4
(2 2) of block 6
(2 2) of block 8
(2 2) of block 10
(2 2) of block 11

(i) σ1 (W2)

0k 10k 20k 30k 40k 50k
Step

0

2000

4000

6000

8000

10000

12000

14000

V
a
lu

e

(W2W1) of block 0
(W2W1) of block 2
(W2W1) of block 4
(W2W1) of block 6
(W2W1) of block 8
(W2W1) of block 10
(W2W1) of block 11

(j) σ1 (W2W1)

0k 10k 20k 30k 40k 50k
Step

0

500

1000

1500

2000

2500

3000

V
a
lu

e

(WoWv) of block 0
(WoWv) of block 2
(WoWv) of block 4
(WoWv) of block 6
(WoWv) of block 8
(WoWv) of block 10
(WoWv) of block 11

(k) σ1 (WoWv)

0k 10k 20k 30k 40k 50k
Step

0

1

2

3

4

5

6

7

V
a
lu

e

1e7
||x||2 of block 0
||x||2 of block 2
||x||2 of block 4
||x||2 of block 6
||x||2 of block 8
||x||2 of block 10
||x||2 of block 11

(l) ∥x∥2

0k 10k 20k 30k 40k 50k
Step

10 4

10 2

100

102

104

V
a
lu

e

|| L
x ||2 of block 0

|| L
x ||2 of block 2

|| L
x ||2 of block 4

|| L
x ||2 of block 6

|| L
x ||2 of block 8

|| L
x ||2 of block 10

|| L
x ||2 of block 11

(m) ∥ ∂L
∂x∥2

FIGURE 10: Training dynamics of an unsuccessful GPT training.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

J EXPERIMENT OF 1B VIT

To further evaluate the effectiveness of our method at a larger scale, we assessed ViT-g with 1B
parameters. The ViT-g model architecture consists of 40 layers with a hidden dimension of 1408,
16 attention heads, and an MLP dimension of 6144. The total parameter count is 1011M, around
one billion parameters. We conducted a comparative study between ViT-g with AdamW2 and
ViT-g with AdamW, where ViT-g with AdamW was evaluated under two settings: with and without
learning rate warmup. Our AdamW2 does not use warmup. The comparison results are presented
in Figure 11 and Figure 12.

Figure 11 shows that ViT-g with AdamW crashes after only a few training steps when running
without warmup. While the use of warmup enables ViT-g to complete training, but the loss spikes
one time. Our ViT-g with AdamW2 not only achieves stable training without warmup but also
demonstrates better performance.

0 20 40 60 80 100 120 140 160
Epoch

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Lo
ss

ImageNet Validation Loss
ViT-g
ViT-g wo warmup
ViT-g AdamW2

FIGURE 11: Comparison of loss curve of AdamW2 and AdamW on ViT-g model.

0 20 40 60 80 100 120 140 160
Epoch

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy

ViT-g
ViT-g wo warmup
ViT-g AdamW2

FIGURE 12: Comparison of accuracy of AdamW2 and AdamW on ViT-g model.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

K EXPERIMENT OF 774M NANOGPT

We also evaluated the effectiveness of our method on a larger-scale language model, termed as
nanoGPT-large. The model architecture consists of 36 layers with a hidden dimension of 1280
and 20 attention heads. The total parameter count is 774M. Our experimental setup strictly fol-
lows the nanoGPT configuration, including all learning rate settings. It is important to note that
training nanoGPT-large is computationally intensive, requiring two weeks to train 600K steps on
16 A800 GPUs. To reduce the training time, we limited our training to 100K steps instead of the
full 600K steps. The comparison results are presented in Figure 13. We can see from Figure 13,
nanoGPT-large achieves a stable training without warmup and obtains a similar validation loss
with its counterpart, GPT2-large. This further verifies our understanding to the model crash of
Transformer.

0k 20k 40k 60k 80k 100k
Step

2.50

2.60

2.70

2.80

2.90

3.00

Va
l L

os
s

OpenWebText Val Loss
GPT2-L
GPT2-L AdamW2

FIGURE 13: Comparison of validation loss of AdamW2 and AdamW on nanoGPT-large model.

L EXPERIMENT OF FLATTEN-SWIN

Besides ViT, GPT, and Swin-Transformer, we further validated our approach on Flatten-
Transformer Han et al. (2023). We used Flatten-Swin, and we compared the performance of our
method and the baseline method training 150 and 300 epochs. Our method could stably train
and demonstrate performance comparable to the baseline. This further verified the correctness
of our understanding of neural network stability.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epoch

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy

Flatten-Swim (300epochs)
Flatten-Swim AdamW2 (300epochs)
Flatten-Swim (150epochs)
Flatten-Swim AdamW2 (150epochs)

FIGURE 14: Evaluation of Flatten-Swin.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

M ACTUAL LEARNING RATE CURVE ALONG WITH TRAINING STEPS

We recorded the actual learning rate throughout the training steps, we sample one point every 50
steps. Our initial setting of the learning rate is a cosine learning rate scheduler without warmup.

If αt
σ1(∇Wt)
σ1(Wt−1) > τ, then αt will be truncated to τσ1(Wt−1)

σ1(∇Wt) . From the figure, we observe that γ1 and
γ2 in RMSNorm only exceed the preset τ during the initial training phase and rarely exceed it
afterwards. For other curves, they somewhat look like a curve with learning rate warmup, but we
can see that different blocks have different learning rates.

We also observe that shallower layers are more likely to violate the preset τ value. It means the
shallower layers are more likely to lead to a greater update of weight matrix and typically require
a smaller learning rate. Additionally, we notice that for the weight matrix W2, it is more prone to
exceeding the preset τ value compared to the weight matrix W1.

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(1) of block 0
lr(1) of block 2
lr(1) of block 4
lr(1) of block 6
lr(1) of block 8
lr(1) of block 10
lr(1) of block 11
default lr

(a) learning rate αt of γ1

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(Wqkv) of block 0
lr(Wqkv) of block 2
lr(Wqkv) of block 4
lr(Wqkv) of block 6
lr(Wqkv) of block 8
lr(Wqkv) of block 10
lr(Wqkv) of block 11
default lr

(b) learning rate αt of Wq , Wk and Wv

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(Wo) of block 0
lr(Wo) of block 2
lr(Wo) of block 4
lr(Wo) of block 6
lr(Wo) of block 8
lr(Wo) of block 10
lr(Wo) of block 11
default lr

(c) learning rate αt of Wo

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(2) of block 0
lr(2) of block 2
lr(2) of block 4
lr(2) of block 6
lr(2) of block 8
lr(2) of block 10
lr(2) of block 11
default lr

(d) learning rate αt of γ2

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(W1) of block 0
lr(W1) of block 2
lr(W1) of block 4
lr(W1) of block 6
lr(W1) of block 8
lr(W1) of block 10
lr(W1) of block 11
default lr

(e) learning rate αt of W1

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(W2) of block 0
lr(W2) of block 2
lr(W2) of block 4
lr(W2) of block 6
lr(W2) of block 8
lr(W2) of block 10
lr(W2) of block 11
default lr

(f) learning rate αt of W2

FIGURE 15: Actual Learning Rate Curve along with Training steps.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

N TRAINING CONFIGURATIONS

Training Configurations. We list the training configurations of ViT, GPT, Swin-Transformer and
Flatten-Swin in Table 2. For ViT, GPT, Swin-Transformer and Flatten-Swin, we do not use learning
rate warmup. For GPT, we follow the experimental configurations of nanoGPT (Karpathy, 2022),
all parameters are same as GPT2 (Radford et al., 2019). For ViT, we use Timm (Wightman, 2019).
For Swin-Transformer, we use the original code provided by Liu et al. (2021). For Flatten-Swin,
we use the original code provided by (Han et al., 2023).

TABLE 2: Training configurations for ViT, GPT and Swin-Transformer.

(a) Training configurations for ViT.

training config ViT-B/L/g (2242)
optimizer AdamW2

τ (In default) 0.004 or 0.003
warmup epochs 0
weight init Truncated Xavier
base learning rate 1e-3
weight decay 0.05/0.1
optimizer momentum β1,β2 = 0.9,0.99
batch size 1024
training epochs 150
learning rate schedule cosine decay
randaugment (9,0.5)
mixup 0.8
cutmix 1.0
random erasing 0
label smoothing 0.1
stochastic depth 0.1/0.5
gradient clip None
exp. mov. avg. (EMA) no

(b) Training configurations for GPT.

training config GPT-S/L
optimizer AdamW2

τ 0.01
warmup epochs 0
weight init Xavier
baseline learning rate 0.0006 or 0.00025
weight decay 0.1
optimizer momentum β1,β2 = 0.9,0.95
tokens seen each update 500,000
max iters 600K or 100K
batch size 480
sequence length 1024
dropout 0.0
bfloat16 True
gradient clipping 1.0

(c) Training configurations for Swin-Transformer.

training config Swin S/B (2242)
optimizer AdamW2

τ (In default) 0.004
warmup epochs 0
training epochs 300
others same as Liu et al. (2021)

(d) Training configurations for Flatten-Swin.

training config Flatten-Swin S (2242)
optimizer AdamW2

τ (In default) 0.004
warmup epochs 0
training epochs 150 or 300
others same as Han et al. (2023)

O NON-SYMMETRIC POSITIVE QUASI-DEFINITE SQUARE MATRIX

When we mention a non-symmetric positive quasi-definite square matrix, we mean it has the
following three properties,

1. W⊤
q Wk is not symmetric because generally, W⊤

q Wk ̸=W⊤
k Wq ,

2. W⊤
q Wk is a square matrix and most of its eigenvalues are larger than 0, and only very

few are less than 0.0. So we call it positive quasi-definite matrix.

3. if we assumeW =W⊤
q Wk is positive definite matrix, if for each element inx is sampled

from a standard Gaussian distribution, we can prove

E
[
xi

⊤Wxi
]≫ E

[
xi

⊤Wx j
]

when i ̸= j , see Appendix C for the proof.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

P DISCUSSION ABOUT RANK COLLAPSE, ENTROPY COLLAPSE AND SPARSE YET

LOW-RANK ENTROPY MATRIX

Before we start our discussion, let us see three matrices,

A=


1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

,B =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, C =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


We can see that A is low-rank, B is sparse but not low-rank, C is sparse and low-rank.

In previous papers (Dong et al., 2021; Zhai et al., 2023), researchers have analyzed the problem
of model crash via rank collapse of activations and entropy collapse of attention map. Dong et
al. (Dong et al., 2021) attributes the model crash into rank collapse of the activations, but Zhai
et al. (2023) think it is the entropy collapse of the attention map leading to the model crash.

However, based on our analysis, we can find a counterexamples for entropy collapse, and mean-
while the rank collapse of the activation cannot fully describe the inner reason of the model
crash (the weight matrix instead of activations). When the state of C usually happens, the model
crashed,

• Rank collapse of the activations cannot reveal the underlying cause that exists in the
weight matrix. Weight matrix is the inner key ingredient of the model instead of activa-
tions.

• B is a counterexample of entropy collapse. we observe that in some successful cases,
state B occurs. According to the definition of entropy collapse, state B should lead to
model crash; however, our experiments show that the model remains stable in this state.

• Sparse yet low-rank attention matrix is the state of the attention map when a model
crashs. We believe rank collapse of activations and entropy collapse of attention map are
not enough to describe the state of the model crash precisely. According to our analysis,
the Spectral Energy Concentration (SEC) of the W⊤

q Wk is the inner reason the model
crash, and the sparse yet low-rank attention matrix is the phenomena observed on the
attention matrix.

In summary, our paper, via a rigid theoritical analysis, our paper reveals the Spectral Energy Con-
centration (SEC) of the W⊤

q Wk is the inner reason the model crash, and the sparse yet low-rank
attention matrix is the phenomena that is observed on the attention matrix.

32

	Introduction
	Preliminaries
	Taming Transformer requires Revisiting its Training Dynamics
	Visualization: What happens when a Transformer training fails or succeeds
	Theoretical Analysis: Matrix Calculus of Transformer
	A Key Problem Occurs in Model Crash: Spectral Energy Concentration
	Our Solution: Taming Transformer via Weyl's Inquality

	Experiments
	Conclusion
	Kronecker Product and Vectorization
	Derivation of Jacobian Matrix for Single-head Self-Attention
	Proof of Benign Entropy Collapse
	Proof of Malignant Entropy Collapse
	Proof of Weyl’s Inequality on Singular Values
	Related Works
	Simulation of Three Attention Modes
	Attention Map Visualization of GPT
	More Training Dynamics of ViT and GPT
	Experiment of 1B ViT
	Experiment of 774M nanoGPT
	Experiment of Flatten-Swin
	Actual Learning Rate Curve along with Training steps
	Training Configurations
	non-symmetric positive quasi-definite square matrix
	Discussion about Rank collapse, Entropy collapse and Sparse yet low-rank entropy matrix

	anm7:
	7.20:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

