
SCA: Selective Compression Attention for Efficiently Extending the
Context Window of Large Language Models

Anonymous ACL submission

Abstract

Large language models (LLMs) have achieved001
impressive performance across various do-002
mains, but the limited context window and003
the expensive computational cost of processing004
long texts restrict their more comprehensive ap-005
plication. In this paper, we propose Selective006
Compression Attention (SCA), a general and007
effective method to expand the context window008
and reduce memory footprint by compressing009
the KV cache of LLMs. Specifically, through010
preliminary experiments, we found that the KV011
cache contains many similar vectors, result-012
ing in information redundancy, which can be013
compressed by retaining representative vectors014
and discarding others. Therefore, SCA contin-015
uously selects the most distinctive vectors to016
keep through a greedy algorithm, reducing in-017
formation loss during compression. Extensive018
experiments on various tasks verify the effec-019
tiveness of our method. Compared with exist-020
ing methods, SCA can significantly reduce the021
impact on model performance under the same022
compression ratio. Furthermore, the context023
window of LLMs can be efficiently expanded024
using SCA without any training, which can025
even achieve better performance than specially026
fine-tuned long context models.027

1 Introduction028

Transformer-based (Vaswani et al., 2017) large lan-029

guage models (LLMs) have excellent capabilities,030

which have extensively promoted the development031

of various natural language processing applications032

(Wolf et al., 2019; Thoppilan et al., 2022; Touvron033

et al., 2023a; OpenAI, 2023) and provided a possi-034

bility for artificial general intelligence. However,035

due to their huge size, their deployment is very036

expensive. In particular, the quadratic cost of at-037

tention layers and the growing KV cache make the038

overhead of LLMs unacceptable when processing039

long texts, which limits the application and devel-040

opment of LLMs in long context scenarios.041

Full Attention StreamingLLM SCA (ours)

Figure 1: Upper plots illustrate attention maps applying
different methods. Lower plots show the distribution of
vectors retained by different attention methods after t-
SNE dimensionality reduction. The distribution of SCA
retained vectors is closer to the original distribution than
StreamingLLM, so it can keep more information.

Significant efforts have been made to improve 042

the efficiency and extend the context window for 043

LLMs. For example, some methods (Beltagy et al., 044

2020; Xiao et al., 2023; Zhang et al., 2023) use a 045

manually set sparse attention mode to limit the 046

maximum size of the attention calculation win- 047

dow. However, they will lose valuable information, 048

causing the performance to decrease significantly. 049

There are some other methods (Wu et al., 2022; 050

Wang et al., 2023b) that only use the retrieved most 051

relevant chunks to calculate attention but still need 052

to keep the complete KV cache. Another works 053

improve efficiency by changing the model structure 054

(Kitaev et al., 2020; Gu and Dao, 2023). However, 055

such methods require retraining or fine-tuning the 056

model, making their application costly. 057

Therefore, this paper aims to propose a method 058

that can overcome the shortcomings of previous 059

approaches. Specifically, 060

1. It can effectively compress the KV cache and 061

expand the context window of LLMs. 062

2. It can retain most original information in the 063

KV cache during the compression process and 064

1



reduce the impact on performance.065

3. It is model-independent, plug-and-play, and066

does not require training or fine-tuning.067

We first conducted a preliminary experiment to ex-068

plore the feasibility. Fortunately, we found that the069

KV cache has many redundant vectors that could070

be deleted. Specifically, the cosine similarity be-071

tween many vectors in the KV cache is extremely072

high. The similar vectors provide similar informa-073

tion when calculating attention. Therefore, we can074

compress the KV cache and retain its original in-075

formation by reserving representative vectors and076

removing similar redundant vectors.077

Based on the preliminary experimental results,078

we propose the Selective Compression Attention079

(SCA) method, which can effectively compress the080

KV cache, improve the efficiency of LLMs, and ex-081

tend their context window. Specifically, our method082

uses a greedy algorithm to select the least redun-083

dant vector based on the current retained result to084

reserve, ensuring that more different information085

can be kept at each step during compression. When086

the KV cache length reaches a given maximum087

threshold, it can be compressed using the SCA088

approach to provide free space, allowing LLMs089

to receive more context. Moreover, unlike the re-090

cently proposed AutoCompressors (Chevalier et al.,091

2023), our method does not require fine-tuning and092

can be easily applied to any LLMs.093

To verify the effectiveness of our proposed094

method, we conduct extensive experiments on dif-095

ferent LLMs and datasets. On the one-shot and096

zero-shot short text tasks, the performance after097

using SCA to compress the KV cache is almost the098

same as the original full attention, verifying that099

SCA can retain most of the original information100

during compression. For the long context tasks,101

our method can effectively extend the LLMs’ orig-102

inal context window and ensure the fluency and103

accuracy of the generated results. Especially, SCA104

can still achieve 100% accuracy on the passkey105

retrieval task after extending the context window106

size of Llama2-13B-Chat (Touvron et al., 2023b)107

to 12k. Furthermore, using SCA to extend the con-108

text length of Vicuna1.5-7b (Zheng et al., 2023)109

to 16k can even perform better than the fine-tuned110

Vicuna1.5-7b-16k on real long context tasks.111

In summary, our main contributions are the fol-112

lowing: (1) We analyze and verify the feasibility113

of compressing the KV cache. By exploring the114

similarities between vectors, the preliminary ex-115

periment demonstrates that the KV cache contains 116

much redundant information. (2) We propose an 117

efficient and plug-and-play approach, which can 118

compress the KV cache and keep most of the origi- 119

nal information by retaining the representative vec- 120

tors. (3) We conduct extensive experiments to show 121

the powerful potential of our method, which can 122

effectively extend the context window and reduce 123

the memory footprint for different LLMs. 124

2 Related Work 125

Extensive research has been done on efficient infer- 126

ence and context window extension of LLMs. 127

An intuitive idea is manually setting sparse at- 128

tention to limit computational complexity (Belt- 129

agy et al., 2020; Ding et al., 2023; Han et al., 130

2023). For example, StreamingLLM (Xiao et al., 131

2023) only retains the most recent tokens and sev- 132

eral initial tokens for stable attention computation. 133

StreamingLLM can perform language modeling of 134

millions of tokens. However, it loses much original 135

information and cannot truly enhance LLMs’ abil- 136

ity to remember and use long contexts. Recently, 137

Han et al. (2023) proposed H2O, a heuristic KV 138

cache eviction policy. H2O compresses the KV 139

cache by evicting tokens with the smallest accumu- 140

lated attention score. However, the score calculated 141

only based on the current KV cache is one-sided, 142

which may cause it to discard tokens needed in the 143

future. Unlike the previous methods, our approach 144

selects the most representative vectors based on the 145

vector distribution of the KV cache so that more 146

different information can be retained, significantly 147

reducing the information loss during the compres- 148

sion process. 149

The second type of method retrieves the most 150

relevant chunk in the KV cache for the attention 151

calculation (Wu et al., 2022; Zhong et al., 2022; 152

Wang et al., 2023b; Lu et al., 2024). Although these 153

methods can reduce the overhead of attention cal- 154

culation, they still need to store the complete KV 155

cache. Therefore, they can not solve the problem 156

of the KV cache increasing linearly as the context 157

length increases. When the context is very long, 158

they need to offload the KV cache to the CPU, 159

increasing communication overhead between the 160

GPU and the CPU. In contrast, SCA can ensure 161

the KV cache size does not exceed a given thresh- 162

old, significantly reducing the memory footprint of 163

LLMs when processing long contexts. 164

Another type of work changes the model struc- 165

2



Layer0 Layer7 Layer15 Layer23 Layer31

Layer0 Layer7 Layer15 Layer23 Layer31

Figure 2: Visualization of the redundancy of each token vector in Key (Upper) and Value (Lower) caches at different
layers of Llama2-7B. To facilitate visualization, we convert the 400 vector redundancy into a 20×20 matrix. The
high redundancy of a token vector indicates that there are other vectors in the cache that are very similar to it.

ture to make it more efficient (Dai et al., 2019;166

Kitaev et al., 2020; Peng et al., 2023). For example,167

Transformer-XL (Dai et al., 2019) uses a segment-168

level recurrence mechanism to expand its receptive169

field and capture longer dependencies while fixing170

the attention window size. Reformer (Kitaev et al.,171

2020) proposes a new attention module that uses172

locality sensitive hashing attention to reduce the173

computational cost from quadratic to superlinear174

complexity. However, such methods require re-175

training, making their deployment on LLMs costly.176

In contrast, our approach is plug-and-play and can177

be easily adapted to any LLMs.178

3 Preliminary Experiment179

In this section, we carefully explore the characteris-180

tics of the KV cache in LLMs. Specifically, we con-181

ducted experiments to answer two questions: (1)182

Is there information redundancy in the KV cache?183

(2) Can the KV cache be effectively compressed by184

only retaining representative vectors?185

3.1 Experimental Setup186

We conducted experiments on the validation set of187

PG19 (Rae et al., 2019) based on Llama2-7B and188

Llama2-7B-Chat (Touvron et al., 2023b). Specif-189

ically, the books in the PG19 validation set are190

truncated from the right, allowing LLMs to encode191

fixed-length contexts and obtain their correspond-192

ing KV cache. Then, we measure the degree of193

information redundancy by the cosine similarity194

between different vectors in the KV cache. Similar195

key and value vectors have similar meanings in the196

latent space, and the information they provide in197

attention calculations is also similar. Therefore, we198

Context length Llama2-7B Llama2-7B-Chat

200 0.89/0.67 0.88/0.64
400 0.89/0.69 0.88/0.66
800 0.89/0.70 0.88/0.67
1600 0.89/0.71 0.88/0.67
3200 0.88/0.72 0.88/0.69

Table 1: Redundancy of Key/Value cache of different
context lengths in Llama2-7B and Llama2-7B-Chat.

designed an information redundancy metric based 199

on cosine similarity between vectors: 200

redundancy =

∑n
i=1 redundancyi

n
redundancyi = max (sim (wi, w̸=i))

(1) 201

where n represents the number of vectors in the 202

matrix W . Since Llama2 uses RoPE (Su et al., 203

2021) positional encoding, when calculating the 204

redundancy of the key matrix, we first add position 205

information to it to make it consistent with the form 206

of attention calculation. Furthermore, considering 207

the tokens’ integrity, we calculate the cosine sim- 208

ilarity after concatenating the vectors of all heads 209

for each token. Finally, we average the redundancy 210

of all layers to measure the overall redundancy of 211

the KV cache generated by the LLMs. 212

3.2 Experimental Results 213

The main experimental results are shown in Table 1. 214

As we can see, the KV cache generated by LLMs 215

has apparent information redundancy, whether the 216

key or value matrix. Specifically, the average re- 217

dundancy of the key matrix is between 0.88-0.89, 218

and the average redundancy of the value matrix is 219

between 0.64-0.72, which shows that most of the 220

3



Algorithm 1 SCA

1: Input: K ∈ Rn×d, V ∈ Rn×d, m
2: Initialize: R = [n], D = [1, 2, ..., n-1]
3: K

′
= Relative_Position(K)

4: SimK , SimV = Cos_Sim(K
′
), Cos_Sim(V )

5: for i = 1 to m do
6: Calculate AddK and AddV based on SimK

and SimV respectively
7: t = argmin

j∈D
(AddK(kj) + AddV (vj))

8: R, D = R.append(t), D.remove(t)
9: end for

10: R = R.sort()
11: Return K[R], V [R]

token vectors in the matrix have other vectors that221

are very similar to them. In addition, as the length222

increases, the redundancy of the KV cache will also223

increase, especially for the value matrix. This ex-224

perimental result provides us with the possibility to225

compress the KV cache by retaining representative226

token vectors and deleting redundant vectors.227

For a more fine-grained analysis, we visualized228

the redundancy of each token vector in the KV229

cache at different layers of Llama2-7B when the230

input context length is 400. As shown in Figure231

2, most of the token vectors have high redundancy,232

indicating that there are other vectors in the matrix233

that are very similar to them. These results further234

demonstrate that we can effectively compress the235

KV cache and maintain the original information by236

selecting one representative from the set of similar237

vectors to retain. Furthermore, we find that the first238

token vector of the KV cache in the first and last239

layers does not have other similar vectors, indicat-240

ing that it has unique information. This observation241

provides another explanation for StreamingLLM242

and LM-Infinite (Han et al., 2023) methods, i.e., if243

the initial tokens are discarded, their unique infor-244

mation will be lost, resulting in a sharp decline in245

the performance of the model.246

4 Method247

This section details the proposed approach. First,248

we present the problem definition in 4.1, then in-249

troduce the design ideas of our method in 4.2, and250

give the implementation details in 4.3.251

4.1 Problem Definition252

Through the preliminary experiment, we found that253

the KV cache of LLMs has a lot of redundant in-254

formation, and it can be effectively compressed by 255

retaining representative tokens and discarding other 256

redundant vectors. In this way, we can improve the 257

computational efficiency and extend the context 258

window for LLMs. 259

Therefore, the problem we want to solve can 260

be defined as a matrix compression task. Specifi- 261

cally, given the matrix W = (w1, w2, . . . , wn), it 262

contains n vectors. Our goal is to select m vec- 263

tors from these n vectors to retain and delete other 264

vectors, thereby obtaining the compressed matrix 265

W ∗ = (w∗
1, w

∗
2, . . . , w

∗
m). In addition, we require 266

that the minimum amount of information is lost 267

during the compression process. The information 268

amount of the compressed matrix W ∗ is inversely 269

proportional to the redundancy. The lower the re- 270

dundancy, the more information W ∗ contains, and 271

the less information is lost during the compression 272

process. Consequently, our final goal is to propose 273

a method that can compress W into W ∗ and ensure 274

that the redundancy of W ∗ is minimal. 275

4.2 Selective Compression Attention 276

Determining the best selection strategy with the 277

lowest redundancy presents a combinatorial chal- 278

lenge, which makes it difficult to find the optimal 279

solution in a reasonable time. Therefore, we use 280

a greedy algorithm to effectively obtain the local 281

optimal selection result for matrix compression. 282

Based on the principle of greedy algorithm, 283

we divide the original problem into multiple sub- 284

problems and obtain the final result through multi- 285

step calculation. At each step, we select one vec- 286

tor to retain, thereby obtaining the final result 287

through m steps. Specifically, for step t, know- 288

ing W ∗
t−1 = (w∗

1, w
∗
2, . . . , w

∗
t−1), our goal is to 289

select one of the unretained vectors from W to add 290

to W ∗
t−1 and ensure that the redundancy of the re- 291

sulting W ∗
t matrix is minimal. According to the 292

redundancy metric in Equation (1), the change in 293

redundancy of W ∗
t compared to W ∗

t−1 after adding 294

w∗
t consists of two parts. First, adding w∗

t may 295

cause the most similar vector of each vector in 296

W ∗
t−1 to change, resulting in their redundancy in- 297

creases: 298

Add1 =
t−1∑
i=1

max (0, sim (w∗
i , w

∗
t )− redundancyi) 299

Second, the redundancy caused by the similarity 300

between w∗
t itself and the retained vectors: 301

Add2 = max (sim (w∗
t , w

∗
<t)) 302

4



Therefore, to ensure local optimality, for each step,303

we select the vector that leads to the smallest in-304

crease in the redundancy value of the two parts305

to retain (Add = Add1 + Add2). The main idea306

of our method is to preserve vectors with different307

meanings as much as possible so that the vector dis-308

tribution of the compressed matrix can be similar309

to that before, thus reducing the loss of information310

(Figure 1). Furthermore, because the Add values311

of all candidate vectors can be calculated in par-312

allel, the time required for each step is very short,313

ensuring the efficiency of our method.314

4.3 Implementation Details315

The implementation of Selective Compression At-316

tention is summarized in Algorithm 1. For the KV317

cache compression, we have several important de-318

tails to consider.319

First, because LLMs generally pay more atten-320

tion to the most recent tokens (Xiao et al., 2023;321

Han et al., 2023; Zhang et al., 2023), we retain322

the most recent one or more tokens during initial-323

ization to ensure that the most recent important324

information is not lost (Line 2 of Algorithm 1).325

Second, most existing LLMs use relative posi-326

tion encoding (Zeng et al., 2022; Touvron et al.,327

2023b; Biderman et al., 2023; Team, 2023; Zheng328

et al., 2023). Therefore, we will first add position329

information to the key matrix and then calculate its330

similarity (Lines 3-4) to ensure that it is consistent331

with the attention calculation process.332

Third, since the vectors in the key and value333

matrices correspond to each other, their selection334

results must also be the same. Otherwise, the atten-335

tion calculation results will seriously deviate from336

the original results. Therefore, in each step, we will337

consider the redundancy of key and value matrices338

together to make the selection (Lines 7-8).339

Our method only focuses on the KV cache,340

which is general and can be applied to any LLMs.341

Moreover, our method does not require any training342

and is plug-and-play, thus significantly reducing343

the difficulty and cost of its deployment.344

5 Experiments345

In this section, we conduct extensive experiments346

to verify the effectiveness of our proposed method.347

Specifically, we first verify whether using SCA to348

compress the KV cache affects the performance349

of the LLMs in Section 5.1. Then, we verify the350

context window extension capability of our method351

Method IMDB RACE AG News Cosmos QA Avg.

Full 91.6 35.4 76.0 35.4 59.6

Stream 80.2 32.0 66.8 34.0 53.3
Sparse 50.6 15.4 70.8 20.6 39.6
H2O 90.0 34.8 71.8 33.2 57.5
SCA 90.0 35.4 75.8 34.8 59.0

Table 2: The performance of different compression
methods on Llama2-7B. We compress the KV cache
to 50% of its original length and then predict the re-
sults. The average context lengths of the four datasets
are 1048, 462, 367, and 184 tokens.

based on a variety of tasks, including language 352

modeling tasks (Seciton 5.2), passkey retrieval 353

tasks (Section 5.3), and real long context tasks 354

in the L-Eval benchmark (Section 5.4). Finally, 355

we conduct fine-grained ablation experiments in 356

Section 5.5 to further analyze our approach. 357

We use a single NVIDIA RTX A6000 48GB 358

GPU for experiments. During inference, we use 359

the greedy search for LLMs to generate results. 360

We mainly compare several advanced baselines, 361

including: 362

• StreamingLLM (Xiao et al., 2023): when the 363

KV cache’s length reaches the threshold, the 364

most recent and first four tokens are retained. 365

• Sparse Attention: uses a stride of 2 to retain 366

tokens in the KV cache. If multiple compres- 367

sions are performed, its effect is similar to the 368

Dilated Attention (Ding et al., 2023). 369

• H2O (Zhang et al., 2023): retains most recent 370

tokens and the tokens with higher accumu- 371

lated attention scores in the KV cache. 372

Considering the token’s integrity, SCA is per- 373

formed in units of tokens during compression. 374

Specifically, we concatenate the vectors of all atten- 375

tion heads in the KV cache to construct the token 376

vector for SCA. Moreover, based on the experi- 377

mental results in Section 5.5, we only use the SCA 378

algorithm for the last layer and let all layers share 379

the selection results to further improve efficiency. 380

5.1 The Impact of Compression 381

Setting We selected four commonly used natural 382

language processing datasets: IMDB (Maas et al., 383

2011), RACE (Lai et al., 2017), AG News (Zhang 384

et al., 2015), and Cosmos QA (Huang et al., 2019), 385

including sentiment classification, reading compre- 386

hension and text classification tasks, and conducted 387

experiments based on Llama2-7B. For each dataset, 388

5



Model Method PG19 ArXiv
4k 8k 16k 32k 64k 4k 8k 16k 32 k 64k

Llama2-7B

Full 6.5 165.6 >103 OOM OOM 3.8 100.9 >103 OOM OOM
Local 6.5 171.9 947.6 >103 >103 3.8 132.1 681.4 >103 >103

Stream 6.5 6.8 6.9 7.0 7.1 3.8 3.6 3.3 3.1 3.0
Sparse 6.5 7.0 7.0 7.1 7.2 3.8 3.6 3.4 3.1 3.1
H2O 6.5 6.8 7.0 7.3 7.7 3.8 3.5 3.3 3.1 3.1
SCA 6.5 6.7 6.9 7.0 7.1 3.8 3.5 3.3 3.1 3.0

Llama2-7B-Chat

Full 6.5 204.4 >103 OOM OOM 3.8 180.9 >103 OOM OOM
Local 8.6 343.1 >103 >103 >103 5.2 226.1 947.0 >103 >103

Stream 8.6 9.0 9.2 9.4 9.5 5.2 4.8 4.5 4.2 4.1
Sparse 8.6 9.0 9.3 9.6 9.9 5.2 4.8 4.5 4.2 4.1
H2O 8.6 8.9 9.2 9.9 11.4 5.2 4.8 4.5 4.2 4.1
SCA 8.6 8.8 9.0 9.2 9.4 5.2 4.7 4.4 4.1 4.0

Table 3: Perplexity on PG19 and ArXiv of Llama2-7B and Llama2-7B-Chat with different compression methods.
"Local" means only the most recent token is retained during compression. "OOM" means out-of-memory.

we randomly sample 500 instances from their test389

sets. Because the KV cache of few-shot in-context390

learning naturally has a lot of redundant informa-391

tion, it is simple to compress. Therefore, we try to392

reduce the number of demonstrations to increase393

the compression difficulty. Specifically, we adopt394

the one-shot for IMDB and AG News, and the395

zero-shot for RACE and Cosmos QA. For all com-396

pression methods, we set the compression ratio to397

50%. For H2O and SCA, we first let them keep398

the 25% target retention number of the most recent399

tokens and then select 75% from the remaining400

tokens. Finally, we use accuracy to evaluate the401

model performance.402

Results We show the evaluation results in Table403

2. As we can see, the performance of Sparse At-404

tention is the worst, which shows that the method405

based on fixed stride loses much original informa-406

tion during the compression process. The perfor-407

mance of Stream and H2O is better than Sparse408

Attention, but they still lead to a significant de-409

crease in the model’s accuracy on some datasets.410

In contrast, SCA can achieve competitive perfor-411

mance with Full Attention (without compression)412

on all datasets, which shows that it can retain most413

of the original information during compression, al-414

lowing the model to still make correct predictions.415

More experimental results are shown in Appendix416

A, and our method can perform well under different417

compression ratios.418

5.2 Performance on Language Modeling419

Setting Excellent language modeling capability420

is essential for LLM to complete various tasks. We421

use the PG19 test set (Rae et al., 2019) and ArXiv 422

corpora of RedPajama (Computer, 2023) to eval- 423

uate the language modeling ability of LLMs with 424

different length contexts. For Arxiv, we randomly 425

sample 100 samples for testing. We filter samples 426

whose length is less than the required length and 427

truncate content that exceeds the given length. To 428

extend the context window of LLMs, whenever 429

the length of the KV cache reaches 4000, we use 430

a compression method to compress it to 2000 so 431

that the model can accept new texts. For H2O and 432

SCA, we make them keep the 128 most recent to- 433

kens first1. Similar to previous work (Xiao et al., 434

2023; Ding et al., 2023; Zhang et al., 2023), we use 435

perplexity (PPL) to measure the language modeling 436

ability of the model. 437

Results As shown in Table 3, the PPL increases 438

significantly when the input text length exceeds 439

the LLM’s context window size. By keeping the 440

most recent tokens (Local), the memory footprint 441

will not exceed the maximum as the context length 442

increases, but it destroys the language modeling 443

ability of LLMs. In contrast, other compression 444

methods can keep PPL within an acceptable range 445

after expanding the context window. In particular, 446

our proposed SCA can achieve the lowest PPL in 447

most cases, which can maintain LLMs’ powerful 448

language modeling ability even when the context 449

window size is expanded 16×. 450

As we can see from the experimental results, it is 451

relatively easy to make LLMs implement long text 452

language modeling through compression. However, 453

being able to perform language modeling does not 454

1If not specified below, this setting is used by default.

6



0

10

20

30

40

50

60

70

80

90

100

4000 5000 6000 7000 8000 9000 10000 11000 12000

A
cc

u
ra

cy

Context Length

Full Stream Sparse H2O SCA

(a) Performance of different methods on Llama2-7B-Chat.

0

10

20

30

40

50

60

70

80

90

100

4000 5000 6000 7000 8000 9000 10000 11000 12000

A
cc

u
ra

cy

Context Length

Full Stream Sparse H2O SCA

(b) Performance of different methods on Llama2-13B-Chat.

Figure 3: Passkey retrieval accuracy of two LLMs with different extended context window sizes. For different test
lengths, we randomly generate 100 test samples for evaluation.

mean that LLMs can capture and exploit content in455

long texts (Xiao et al., 2023). Therefore, we further456

explore our method’s effectiveness through other457

more complex tasks.458

5.3 Performance on Passkey Retrieval Task459

Setting Passkey retrieval (Mohtashami and Jaggi,460

2023) is a synthetic task that requires LLMs to461

retrieve a simple passkey (a five-digit random num-462

ber) from a long meaningless text sequence. This463

task randomly inserts the passkey into any posi-464

tion of the input context, which can test whether465

LLMs can be aware of and use information from466

different positions in the input context. We conduct467

experiments based on two LLMs of different sizes,468

Llama2-7B-Chat and Llama2-13B-Chat, to verify469

whether our method can find and retain valuable470

information during compression.471

Results The experimental results are shown in472

Figure 3. It can be seen that when the input text473

length is 4k, both LLMs can achieve 100% accu-474

racy, indicating they have strong passkey retrieval475

capabilities. However, when the length exceeds the476

context window size, the retrieval accuracy drops477

sharply to 0%. Moreover, even if the context win-478

dow is expanded by existing methods, the accuracy479

still drops significantly for long texts. These results480

show that although the previous approaches can481

achieve language modeling for long texts, they can-482

not effectively discover and retain valuable infor-483

mation, resulting in the information corresponding484

to the passkey being deleted during compression.485

In contrast, SCA can maintain high retrieval ac-486

curacy under extended context length. Especially487

on Llama-13B-Chat, even if the extended length is488

three times the original context window size, SCA489

can still achieve 100% accuracy. This verifies the490

effectiveness of SCA, which uses the distribution of 491

token vectors in the KV cache as the principle for 492

selection, allowing it to retain valuable information 493

and still perform well after compression. 494

5.4 Performance on Real Long Context Tasks 495

Setting Language modeling and passkey retrieval 496

tasks still cannot comprehensively reflect LLMs’ 497

long context capabilities. Therefore, to further ver- 498

ify the effectiveness of our method, we conducted 499

experiments on the long context evaluation bench- 500

mark L-Eval (An et al., 2023). Since the evaluation 501

of open-ended tasks has fairness issues and the 502

closed-ended tasks can better reflect unbiased re- 503

sults, we only use L-Eval’s closed-ended tasks to 504

evaluate the model’s performance, which includes 505

various question styles such as multiple choice 506

questions (Coursera, QuALITY, TOFEL), math 507

problems (GSM), code understanding (CodeU), 508

and true or false questions (SFiction). The evalua- 509

tion metric used for these tasks is accuracy. Differ- 510

ent from the previous setting, we extend the LLMs 511

context window by compressing the KV cache 512

length from 4000 to 3000. We use various meth- 513

ods to expand Llama2-7B-Chat and Vicuna1.5-7B 514

(Zheng et al., 2023) with a 4k original window size 515

to 8k and 16k and evaluate their performance. 516

Results As shown in Table 4, the performance of 517

using StreamingLLM and H2O to extend the con- 518

text window is even worse than the original LLMs, 519

which means they lose much information after mul- 520

tiple compression, so they cannot truly expand the 521

context window for LLMs. In particular, although 522

H2O has little impact on the accuracy when com- 523

pressing short text tasks, its performance on real 524

long text tasks is poor, especially on Vicuna1.5-7B. 525

These results show that the method based on atten- 526

7



Model Tokens Coursera GSM QuALITY TOFEL CodeU SFiction Avg.

Llama2-7B-Chat 4k 32.4 29.0 37.6 53.2 1.1 60.1 35.6
+ Stream 16k 23.0 18.0 30.7 53.2 1.1 53.9 30.0
+ H2O 16k 32.1 14.0 35.1 53.2 1.1 58.6 32.4
+ SCA 8k 36.6 31.0 37.6 57.2 2.2 62.5 37.9
+ SCA 16k 38.5 31.0 37.6 57.2 2.2 64.1 38.4

Longchat1.5-7B-32k 32k 33.0 18.0 37.6 39.8 3.3 57.0 31.5

Vicuna1.5-7B 4k 36.2 19.0 38.1 51.3 3.3 56.3 34.0
+ Stream 16k 35.6 22.0 35.6 46.8 1.1 61.7 33.8
+ H2O 16k 28.2 1.0 28.2 18.8 0.0 46.1 20.4
+ SCA 8k 40.0 24.0 39.6 53.2 4.4 66.4 37.9
+ SCA 16k 39.0 24.0 39.1 53.2 4.4 69.5 38.2

Vicuna1.5-7B-16k 16k 38.7 19.0 39.6 55.4 5.5 60.2 36.4

Table 4: Performance of different methods on closed-ended tasks of L-Eval benchmark. Tokens denotes the
maximum input length. The input context is truncated from the right according to the given maximum length.

30

35

40

45

50

55

60

1 2 4 8 16 32

A
cc

u
ra

cy

Number of adjacent shared layers

short text tasks long text tasks

Figure 4: Average accuracy on short and long text tasks
using different sharing strategies. Setting the number of
adjacent shared layers to 32 indicates that the selection
result is calculated only based on the KV cache of the
last layer and shared with all layers for compression.

tion scores to select important tokens can not apply527

to long texts because the current accumulated atten-528

tion scores cannot reflect its importance for distant529

future predictions.530

In contrast, using SCA to extend the context531

window can achieve better performance than the532

original LLMs. Specifically, expanding the con-533

text window size of the two LLMs to 16k can im-534

prove the accuracy by 2.8 and 4.2, respectively.535

Moreover, even compared with two specially fine-536

tuned long context LLMs, Longchat1.5-7B-32k537

(Dacheng Li and et al., 2023) and Vicuna1.5-7B-538

16k, our method still performs better. These experi-539

mental results show that compared with previous540

methods, by retaining more different representa-541

tive vectors, SCA can keep enough original infor-542

mation in the KV cache even after multiple com-543

pressions, thereby ensuring excellent performance.544

More experimental results on Llama2-13B-Chat545

and Vicuna1.5-13B are shown in Appendix B.546

5.5 Ablation Experiments 547

Setting Although SCA can compress the KV 548

caches of all layers in parallel, calculating the selec- 549

tion results for each layer requires many computing 550

resources. Therefore, we test the performance of 551

sharing the selection results between adjacent lay- 552

ers on the short text tasks in Section 5.1 and the 553

long text tasks in Section 5.4. Specifically, we set 554

6 different sharing strategies for Llama2-7B and 555

Llama2-7B-Chat and evaluate their performance. 556

Results As shown in Figure 4, different sharing 557

strategies have little impact on performance. We 558

believe this is because the vector relationship of 559

the KV caches in most layers is similar, i.e., if two 560

tokens’ vectors are similar in the last layer, their 561

vectors in other layers are also likely to be similar. 562

Therefore, we share selection results in all layers to 563

improve efficiency. Due to space constraints, more 564

analysis experiments are presented in Appendix C. 565

6 Conclusion 566

In this paper, we first explore the characteristics 567

of the KV cache and verify the feasibility of com- 568

pressing it by retaining representative vectors and 569

discarding others. Based on these experimental 570

results, we propose a general and plug-and-play 571

method called SCA, which adopts a greedy algo- 572

rithm to minimize the information loss during the 573

compression process. Extensive experiments on 574

various tasks demonstrate the effectiveness of our 575

approach, which can compress the KV cache with 576

little impact on the model performance. Further- 577

more, SCA can easily and efficiently expand the 578

context window of LLMs, and its performance is 579

even better than the fine-tuned long context LLMs. 580

8



7 Limitations581

Although we conduct experiments on various long582

text tasks, it still has limitations and cannot compre-583

hensively evaluate the performance of LLMs after584

expanding the context window. How to effectively585

and accurately evaluate LLMs’ long context han-586

dling capability remains an open question. In the587

future, we will explore better evaluation methods588

to verify the effectiveness of our approach.589

In addition, our proposed method is general, but590

in this paper, we only focus on its performance on591

large language models. Recently, multimodal large592

language models (Zhu et al., 2023; Liu et al., 2023;593

OpenAI, 2023) have attracted widespread attention594

from researchers. Since they need to receive in-595

put from different modalities, they require a larger596

context window. In the future, we will further ex-597

plore the performance of SCA on multimodal large598

language models.599

References600

Chen An, Shansan Gong, Ming Zhong, Mukai Li, Jun601
Zhang, Lingpeng Kong, and Xipeng Qiu. 2023. L-602
eval: Instituting standardized evaluation for long con-603
text language models. ArXiv, abs/2307.11088.604

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.605
Longformer: The long-document transformer. ArXiv,606
abs/2004.05150.607

Stella Biderman, Hailey Schoelkopf, Quentin G. An-608
thony, and et al. 2023. Pythia: A suite for analyzing609
large language models across training and scaling.610
ArXiv, abs/2304.01373.611

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and612
Danqi Chen. 2023. Adapting language models to613
compress contexts. ArXiv, abs/2305.14788.614

Together Computer. 2023. Redpajama: An open source615
recipe to reproduce llama training dataset.616

Anze Xie Dacheng Li, Rulin Shao and et al. 2023. How617
long can open-source llms truly promise on context618
length?619

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-620
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.621
Transformer-xl: Attentive language models beyond622
a fixed-length context. In Annual Meeting of the623
Association for Computational Linguistics.624

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and625
Christopher R’e. 2022. Flashattention: Fast and626
memory-efficient exact attention with io-awareness.627
ArXiv, abs/2205.14135.628

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, 629
Shaohan Huang, Wenhui Wang, and Furu Wei. 2023. 630
Longnet: Scaling transformers to 1, 000, 000, 000 631
tokens. ArXiv, abs/2307.02486. 632

Albert Gu and Tri Dao. 2023. Mamba: Linear-time 633
sequence modeling with selective state spaces. ArXiv, 634
abs/2312.00752. 635

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng 636
Ji, and Sinong Wang. 2023. Lm-infinite: Simple 637
on-the-fly length generalization for large language 638
models. ArXiv, abs/2308.16137. 639

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and 640
Yejin Choi. 2019. Cosmos qa: Machine reading com- 641
prehension with contextual commonsense reasoning. 642
In Conference on Empirical Methods in Natural Lan- 643
guage Processing. 644

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 645
2020. Reformer: The efficient transformer. ArXiv, 646
abs/2001.04451. 647

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, 648
and Eduard Hovy. 2017. RACE: Large-scale ReAd- 649
ing comprehension dataset from examinations. In 650
Proceedings of the 2017 Conference on Empirical 651
Methods in Natural Language Processing, pages 785– 652
794, Copenhagen, Denmark. Association for Compu- 653
tational Linguistics. 654

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 655
Lee. 2023. Visual instruction tuning. ArXiv, 656
abs/2304.08485. 657

Yi Lu, Xin Zhou, Wei He, Jun Zhao, Tao Ji, Tao Gui, 658
Qi Zhang, and Xuanjing Huang. 2024. Longheads: 659
Multi-head attention is secretly a long context pro- 660
cessor. ArXiv, abs/2402.10685. 661

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, 662
Dan Huang, Andrew Y. Ng, and Christopher Potts. 663
2011. Learning word vectors for sentiment analysis. 664
In Proceedings of the 49th Annual Meeting of the 665
Association for Computational Linguistics: Human 666
Language Technologies, pages 142–150, Portland, 667
Oregon, USA. Association for Computational Lin- 668
guistics. 669

Amirkeivan Mohtashami and Martin Jaggi. 2023. Land- 670
mark attention: Random-access infinite context 671
length for transformers. ArXiv, abs/2305.16300. 672

OpenAI. 2023. Gpt-4 technical report. 673

Bo Peng, Eric Alcaide, Quentin G. Anthony, and et al. 674
2023. Rwkv: Reinventing rnns for the transformer 675
era. In Conference on Empirical Methods in Natural 676
Language Processing. 677

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, 678
and Timothy P. Lillicrap. 2019. Compressive trans- 679
formers for long-range sequence modelling. ArXiv, 680
abs/1911.05507. 681

9

https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:215737171
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:258865249
https://api.semanticscholar.org/CorpusID:258865249
https://api.semanticscholar.org/CorpusID:258865249
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://api.semanticscholar.org/CorpusID:57759363
https://api.semanticscholar.org/CorpusID:57759363
https://api.semanticscholar.org/CorpusID:57759363
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:259341682
https://api.semanticscholar.org/CorpusID:259341682
https://api.semanticscholar.org/CorpusID:259341682
https://api.semanticscholar.org/CorpusID:265551773
https://api.semanticscholar.org/CorpusID:265551773
https://api.semanticscholar.org/CorpusID:265551773
https://api.semanticscholar.org/CorpusID:261339508
https://api.semanticscholar.org/CorpusID:261339508
https://api.semanticscholar.org/CorpusID:261339508
https://api.semanticscholar.org/CorpusID:261339508
https://api.semanticscholar.org/CorpusID:261339508
https://api.semanticscholar.org/CorpusID:202540590
https://api.semanticscholar.org/CorpusID:202540590
https://api.semanticscholar.org/CorpusID:202540590
https://api.semanticscholar.org/CorpusID:209315300
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://api.semanticscholar.org/CorpusID:258179774
https://api.semanticscholar.org/CorpusID:267740432
https://api.semanticscholar.org/CorpusID:267740432
https://api.semanticscholar.org/CorpusID:267740432
https://api.semanticscholar.org/CorpusID:267740432
https://api.semanticscholar.org/CorpusID:267740432
http://www.aclweb.org/anthology/P11-1015
https://api.semanticscholar.org/CorpusID:258887482
https://api.semanticscholar.org/CorpusID:258887482
https://api.semanticscholar.org/CorpusID:258887482
https://api.semanticscholar.org/CorpusID:258887482
https://api.semanticscholar.org/CorpusID:258887482
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:258832459
https://api.semanticscholar.org/CorpusID:258832459
https://api.semanticscholar.org/CorpusID:258832459
https://api.semanticscholar.org/CorpusID:207930593
https://api.semanticscholar.org/CorpusID:207930593
https://api.semanticscholar.org/CorpusID:207930593


Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng682
Liu. 2021. Roformer: Enhanced transformer with683
rotary position embedding. ArXiv, abs/2104.09864.684

MosaicML NLP Team. 2023. Introducing mpt-7b: A685
new standard for open-source, commercially usable686
llms. Accessed: 2023-05-05.687

Romal Thoppilan, Daniel De Freitas, Jamie Hall, and688
et al. 2022. Lamda: Language models for dialog689
applications. ArXiv, abs/2201.08239.690

Hugo Touvron, Thibaut Lavril, Gautier Izacard, and691
et al. 2023a. Llama: Open and efficient foundation692
language models. ArXiv, abs/2302.13971.693

Hugo Touvron, Louis Martin, Kevin R. Stone, and et al.694
2023b. Llama 2: Open foundation and fine-tuned695
chat models. ArXiv, abs/2307.09288.696

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob697
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz698
Kaiser, and Illia Polosukhin. 2017. Attention is all699
you need. In Neural Information Processing Systems.700

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,701
Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label702
words are anchors: An information flow perspec-703
tive for understanding in-context learning. ArXiv,704
abs/2305.14160.705

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu,706
Xifeng Yan, Jianfeng Gao, and Furu Wei. 2023b.707
Augmenting language models with long-term mem-708
ory. ArXiv, abs/2306.07174.709

Thomas Wolf, Lysandre Debut, Victor Sanh, and et al.710
2019. Huggingface’s transformers: State-of-the-art711
natural language processing. ArXiv, abs/1910.03771.712

Yuhuai Wu, Markus Norman Rabe, DeLesley S.713
Hutchins, and Christian Szegedy. 2022. Memorizing714
transformers. ArXiv, abs/2203.08913.715

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song716
Han, and Mike Lewis. 2023. Efficient stream-717
ing language models with attention sinks. ArXiv,718
abs/2309.17453.719

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,720
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,721
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:722
An open bilingual pre-trained model. arXiv preprint723
arXiv:2210.02414.724

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.725
Character-level convolutional networks for text clas-726
sification. In NIPS.727

Zhenyu (Allen) Zhang, Ying Sheng, Tianyi Zhou, Tian-728
long Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,729
Yuandong Tian, Christopher Ré, Clark W. Barrett,730
Zhangyang Wang, and Beidi Chen. 2023. H2o:731
Heavy-hitter oracle for efficient generative inference732
of large language models. ArXiv, abs/2306.14048.733

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 734
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 735
Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong 736
Zhang, Joseph Gonzalez, and Ion Stoica. 2023. Judg- 737
ing llm-as-a-judge with mt-bench and chatbot arena. 738
ArXiv, abs/2306.05685. 739

Zexuan Zhong, Tao Lei, and Danqi Chen. 2022. Train- 740
ing language models with memory augmentation. 741
In Proceedings of the 2022 Conference on Empir- 742
ical Methods in Natural Language Processing, pages 743
5657–5673, Abu Dhabi, United Arab Emirates. 744

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and 745
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing 746
vision-language understanding with advanced large 747
language models. ArXiv, abs/2304.10592. 748

A More Experimental Results on Short 749

Text Tasks 750

Besides the 50% compression ratio, we further 751

tested the performance of Llama2-7B with different 752

compression ratios on four short text tasks in Sec- 753

tion 5.1. As shown in Figure 5, the model’s perfor- 754

mance decreases as the compression ratio increases. 755

However, even when the compression ratio is set 756

to 70%, SCA can still achieve relatively high accu- 757

racy. In particular, on IMDB and RACE datasets, 758

SCA only needs to retain 30% of the KV cache to 759

achieve a higher accuracy than Stream retaining 760

60%. This result further illustrates the effective- 761

ness of our proposed selection strategy, which can 762

significantly reduce information loss during com- 763

pression. Furthermore, SCA can perform better 764

than the original model in some cases. We believe 765

this may be because SCA discards some redundant 766

noise in the KV cache, allowing the model to make 767

better predictions. In addition, although H2O can 768

achieve competitive performance with SCA, it is 769

only suitable for short text tasks. On long text tasks 770

(Section 5.3 and 5.4), its performance is signifi- 771

cantly worse than our method. 772

B More Experimental Results on L-Eval 773

To verify the generality of our proposed method, we 774

also tested it on Llama2-13B-Chat and Vicuna1.5- 775

13B. The experimental results are shown in the 776

Table 5. As we can see, our approach can still 777

achieve significantly better performance than base- 778

lines. Using SCA to expand the context window of 779

the two models by four times can indeed improve 780

their capabilities on real long text tasks. 781

In addition, similar to the results on Llama2- 782

7B-Chat and Vicuna1.5-7B, we found that H2O 783

performs much better on Llama2-13B-Chat than 784

10

https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:246063428
https://api.semanticscholar.org/CorpusID:246063428
https://api.semanticscholar.org/CorpusID:246063428
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:258841117
https://api.semanticscholar.org/CorpusID:258841117
https://api.semanticscholar.org/CorpusID:258841117
https://api.semanticscholar.org/CorpusID:258841117
https://api.semanticscholar.org/CorpusID:258841117
https://api.semanticscholar.org/CorpusID:259137816
https://api.semanticscholar.org/CorpusID:259137816
https://api.semanticscholar.org/CorpusID:259137816
https://api.semanticscholar.org/CorpusID:268093756
https://api.semanticscholar.org/CorpusID:268093756
https://api.semanticscholar.org/CorpusID:268093756
https://api.semanticscholar.org/CorpusID:247519194
https://api.semanticscholar.org/CorpusID:247519194
https://api.semanticscholar.org/CorpusID:247519194
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398
https://aclanthology.org/2022.emnlp-main.382
https://aclanthology.org/2022.emnlp-main.382
https://aclanthology.org/2022.emnlp-main.382
https://api.semanticscholar.org/CorpusID:258291930
https://api.semanticscholar.org/CorpusID:258291930
https://api.semanticscholar.org/CorpusID:258291930
https://api.semanticscholar.org/CorpusID:258291930
https://api.semanticscholar.org/CorpusID:258291930


60

65

70

75

80

85

90

95

20% 30% 40% 50% 60% 70%

A
ac

cu
ra

cy

Compression ratio

IMDB

Full

Stream

H2O

SCA
29

30

31

32

33

34

35

36

20% 30% 40% 50% 60% 70%

A
a

cc
u

ra
cy

Compression ratio

RACE

Full

Stream

H2O

SCA
60

62

64

66

68

70

72

74

76

78

20% 30% 40% 50% 60% 70%

A
a
cc

u
ra

cy

Compression ratio

AG News

Full

Stream

H2O

SCA
26

28

30

32

34

36

38

20% 30% 40% 50% 60% 70%

A
ac

cu
ra

cy

Compression ratio

Cosmos QA

Full

Stream

H2O

SCA

Figure 5: Performance of different methods on four short text tasks (IMDB, RACE, AG News, Cosmos QA) based
on different compression ratios. The higher the compression ratio, the less KV cache is retained. Full represents the
original model performance with full KV cache.

Model Tokens Coursera GSM QuALITY TOFEL CodeU SFiction Avg.

Llama2-13B-Chat 4k 36.1 39.0 41.1 62.8 1.1 52.3 38.7
+ Stream 16k 28.5 32.0 36.6 58.4 2.2 54.7 35.4
+ H2O 16k 38.1 36.0 38.6 59.5 0.0 53.1 37.6
+ SCA 16k 38.4 39.0 41.6 63.6 2.2 56.3 40.2

Vicuna1.5-13B 4k 39.4 36.0 47.0 65.8 3.3 57.0 41.4
+ Stream 16k 35.2 22.0 29.2 53.2 3.3 58.6 33.6
+ H2O 16k 24.6 1.0 32.2 21.6 1.1 43.0 20.6
+ SCA 16k 43.9 37.0 48.0 66.9 3.3 61.7 43.5

Vicuna1.5-13B-16k 16k 40.7 36.0 54.0 68.4 0.0 61.7 43.5

Table 5: Performance of different methods on closed-ended tasks of L-Eval benchmark based on Llama2-13B-Chat
and Vicuna1.5-13B. Vicuna1.5-13B-16k is a version specially fine-tuned based on long text data.

on Vicuna1.5-13B. This result shows that H2O’s785

KV cache eviction policy has limitations and is un-786

suitable for some LLMs. In contrast, our method787

can improve the performance of the four differ-788

ent LLMs on long text tasks, which shows that789

compressing the KV cache based on its vector dis-790

tribution is more versatile than other methods.791

C Analysis792

C.1 The Efficiency of SCA793

We conduct experiments to compare the efficiency794

of using our method to expand the context window795

(Vicuna1.5-7B+SCA) with the fine-tuned long con-796

text LLM (Vicuna1.5-7B-16k) during inference.797

Specifically, based on the PG19 test set, we let798

both models generate 1000 new tokens based on799

the context of 15000 length. During inference, we800

use Flash Attention (Dao et al., 2022) and set the801

batch size to 1. We measure model efficiency using802

average latency and memory footprint.803

The experimental results are shown in the Fig-804

ure 6. Expanding the context window through our805

approach can achieve more efficient inference than806

the fine-tuned model regarding inference speed and807

memory footprint. In particular, our SCA method808

can reduce memory usage by 54.8% compared to809

the Full Attention of Vicuna1.5-7B-16k, making810

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0

10

20

30

40

50

60

70

80

Vicuna1.5-7B-16k Vicuna1.5-7B+SCA

M
em

or
y 

fo
ot

p
ri

n
t 

(M
B

)

L
at

en
cy

 (
S

)

Latency Memory footprint

Figure 6: The average latency (s) and memory footprint
(MB) of Vicuna1.5-7B-16k and Vicuna1.5-7B+SCA on
the PG19 test set. We ask the models to generate 1000
new tokens based on the 15000 length context.

it possible to use LLMs for long text tasks in low 811

computing resource scenarios. 812

C.2 Redundancy at Different Layers of LLMs 813

In preliminary experiments (Section 3), we show 814

the average redundancy of KV caches in all lay- 815

ers of LLMs but lack a fine-grained analysis of 816

each layer. Therefore, we conducted experiments 817

to explore the redundancy of different layers in 818

Llama2-7B and Llama2-7B-Chat. 819

As shown in Figure 7, the redundancy change 820

trends of the two LLMs are almost the same. 821

Specifically, the redundancy difference at differ- 822

ent layers is small for the key matrix. We believe 823

11



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ed

u
n

d
a
n

cy

Layer

Llama2-7B Key Llama2-7B Value Llama2-7B-Chat Key Llama2-7B-Chat Value

Figure 7: Redundancy of KV cache at different layers of Llama2-7B and Llama2-7B-Chat when the input context
length is 3200. We add position information to the key matrix before calculating the redundancy.

Strategy Short tasks Long tasks

SCA 59.0 38.4

Based on Key 58.5 37.2
Based on Value 58.0 36.9
Max redundancy 46.2 30.6

Based on layer 0 57.4 37.5
Based on layer 12 57.7 36.9
Based on layer 24 58.0 37.7

Table 6: The performance of different selection strate-
gies on short and long text tasks.

this may be because the position information added824

to the key matrix affects its vector distribution,825

making its redundancy value stable. For the value826

matrix, its redundancy is very large in the initial827

layer but decreases significantly after several layers,828

which suggests that LLMs can aggregate and com-829

press information in their shallow layers (Wang830

et al., 2023a). After the 6th layer, its redundancy831

becomes stable and no longer changes drastically.832

C.3 The Impact of Different Selection833

Strategies834

To verify the superiority of the SCA selection strat-835

egy, we compared other different variants. Similar836

to Section 5.5, we tested the performance of differ-837

ent selection strategies on short and long text tasks.838

The different selection strategies include:839

• Based on Key/Value: the selection is made840

based solely on the redundancy of the key or 841

value matrix. 842

• Max redundancy: retain the token vector that 843

most increases redundancy at each step. We 844

force it to keep the initial tokens to ensure that 845

it can perform language modeling. 846

• Based on layer n: selection result is calculated 847

based on the layer n and shared with all layers 848

The experimental results are shown in Table 6. 849

As we can see, SCA can achieve better performance 850

than other variants. First, not considering the redun- 851

dancy of key and value matrices in the KV cache 852

together will lead to performance degradation. Sec- 853

ond, retaining results with high redundancy will 854

cause a sharp drop in accuracy because a large 855

amount of useful information is removed during 856

the compression process. These results further ver- 857

ify that our selection strategy is motivated and rea- 858

sonable. Finally, the performance gap between 859

the selection results calculated based on different 860

layers of LLMs is small, but using the last layer 861

has the best effect. We believe this is because the 862

KV caches in deeper layers have a more signifi- 863

cant impact on the prediction results of LLMs. The 864

selection result calculated based on the last layer 865

using the SCA algorithm can retain more informa- 866

tion in the deep layer than calculated based on other 867

layers, even if the relationships between vectors of 868

the KV caches in most layers are similar. 869

12


